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Abstract. With the objective of analysing categorical data with missing re-
sponses, we extend the multinomial modelling scenario described by Paulino
(Braz. J. Probab. Stat. 5 (1991) 1–42) to a product-multinomial framework
that allows the inclusion of explanatory variables. We consider maximum
likelihood (ML) and weighted least squares (WLS) as well as a hybrid
ML/WLS approach to fit linear, log-linear and more general functional lin-
ear models under ignorable and nonignorable missing data mechanisms. We
express the results in an unified matrix notation that may be easily used for
their computational implementation and develop such a set of subroutines in
R. We illustrate the procedures with the analysis of two data sets, and perform
simulations to assess the properties of the estimators.

1 Introduction

A common pattern of missing (partially or incompletely classified) responses ob-
served in the collection of categorical data may be illustrated with the following
examples.

Example 1. The data in Table 1 were extracted from Lipsitz and Fitzmaurice
(1996) and relate to the evaluation of the association between wheezing status
in children and maternal smoking habits.

Example 2. The data in Table 2 contain information on the obesity status (yes
or no) of 5 to 15 years old children (in 1977) of both genders which participated
in one or more surveys in 1977, 1979 and 1981. The objective is to estimate the
probability of obesity as a function of gender and age. See Woolson and Clarke
(1984) for more details.

The genesis of the missingness pattern in Example 1 lies in the incomplete clas-
sification of subjects with respect to one of the intervening variables. In Example 2,
the missingness is related to the lack of observation of the response in one or more
instants of the longitudinal study.
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Table 1 Observed frequencies of maternal smoking cross-classified by child’s wheezing status and
home city

Child’s wheezing status

Home Maternal no wheeze wheeze apart
city smoking wheeze with cold from cold missing

Kingston– none 167 17 19 176
Harriman moderate 10 1 3 24

heavy 52 10 11 121

missing 28 10 12

Portage none 120 22 19 103
moderate 8 5 1 3

heavy 39 12 12 80

missing 31 8 14

Methods for drawing inferences from partially or incompletely classified cat-
egorical data have been widely considered in the literature. Early accounts may
be found in Blumenthal (1968) and Hocking and Oxspring (1971), for example.
Analyses of categorical data assuming missing completely at random (MCAR),
missing at random (MAR), or missing not at random (MNAR) mechanisms have
been proposed by many authors under different approaches; among them, we men-
tion Koch et al. (1972), Chen and Fienberg (1974) and Molenberghs et al. (1999).
For details on the taxonomy for missing data the reader is referred to Rubin (1976)
and Little and Rubin (2002).

In particular, Paulino (1991) considered fitting strictly linear and log-linear
multinomial models to data generated by MAR and MCAR mechanisms via max-
imum likelihood (ML) methods and more general functional linear models to data
generated by MCAR mechanisms via weighted least squares (WLS) methodol-
ogy. In the spirit of functional asymptotic regression methodology described by
Imrey et al. (1981, 1982) for complete data, he also proposed a hybrid methodol-
ogy, where simple models are fitted via ML to the data under ignorable (MAR or
MCAR) or nonignorable (MNAR) mechanisms in the first stage and the estimated
marginal probabilities of categorization and their covariance matrix are used in a
second stage to fit more general functional linear models via WLS. In most cases,
this approach is computationally simpler than and asymptotically as efficient as
the pure ML approach. Paulino and Soares (2003) extended the results to cover
situations where the data follow product-Poisson distributions. We review such
methods placing them in a more general setup where the underlying distribution is
product-multinomial. We also extend the ML methodology considered in Paulino
(1991) to more general classes of linear and log-linear models.

In general, the ML approach to the analysis of categorical data requires iter-
ative procedures to compute the estimates of the pertinent parameters. The EM
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Table 2 Observed frequencies of children classified by gender, age (years) and obesity status

Obesity status† in Gender: boy girl

1977 1979 1981 Age in 1977: 5–7 7–9 9–11 11–13 13–15 5–7 7–9 9–11 11–13 13–15

n n n 90 150 152 119 101 75 154 148 129 91
n n o 9 15 11 7 4 8 14 6 8 9
n o n 3 8 8 8 2 2 13 10 7 5
n o o 7 8 10 3 7 4 19 8 9 3
o n n 0 8 7 13 8 2 2 12 6 6
o n o 1 9 7 4 0 2 6 0 2 0
o o n 1 7 9 11 6 1 6 8 7 6
o o o 8 20 25 16 15 8 21 27 14 15

n n m 16 38 48 42 82 20 25 36 36 83
n o m 5 3 6 4 9 0 3 0 9 15
o n m 0 1 2 4 8 0 1 7 4 6
o o m 0 11 14 13 12 4 11 17 13 23

n m n 9 16 13 14 6 7 16 8 31 5
n m o 3 6 5 2 1 2 3 1 4 0
o m n 0 1 0 1 0 0 0 1 2 0
o m o 0 3 3 4 1 1 4 4 6 1

m n n 129 42 36 18 13 109 47 39 19 11
m n o 18 2 5 3 1 22 4 6 1 1
m o n 6 3 4 3 2 7 1 7 2 2
m o o 13 13 3 1 2 24 8 13 2 3

n m m 32 45 59 82 95 23 47 53 58 89
o m m 5 7 17 24 23 5 7 16 37 32

m n m 33 33 31 23 34 27 23 25 21 43
m o m 11 4 9 6 12 5 5 9 1 15

m m n 70 55 40 37 15 65 39 23 23 14
m m o 24 14 9 14 3 19 13 8 10 5

†n indicates not obese, o, obese, and m, missing.

algorithm (Dempster et al., 1977) has been used to obtain ML estimates based on
expected cell frequencies in augmented tables; see, for example, Fuchs (1982) and
Baker and Laird (1988) for, respectively, ignorable and nonignorable models for
the missingness mechanism. Molenberghs and Goetghebeur (1997) considered the
advantages of using Newton–Raphson and Fisher’s scoring algorithms, and Baker
(1994) suggested a combination of EM and Newton–Raphson algorithms for such
purposes. Although these methods embrace a part of the models described in this
paper, they are not yet available in many of the current commercial statistical soft-
ware, either because they need further input of the derivatives, adaptation of the
available computational procedures, and/or additional programming. Some excep-
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tions are multiple imputation methods (Rubin, 1987)—available in SAS (PROC
MI and MIANALYZE) and R/S-Plus (mitools package)—and saturated and hi-
erarchical log-linear multinomial models (Schafer, 1997)—available in R/S-Plus
(cat package).

The matrix approach we adopt allows a unified and general formulation of mod-
els and inferential procedures that may be easily employed for their computa-
tional implementation. We developed subroutines written in R (R Development
Core Team, 2012) for such purposes. To obtain the ML estimates for the first-
stage models under nonignorable mechanisms, built-in optimization functions in
R are required. Model formulation and use of the functions are similar to those
considered in GENCAT (Landis et al., 1976) or SAS’ PROC CATMOD. The dis-
tinctive feature of the proposed functions is that they allow the analysis of com-
plete and incomplete categorical data in a unified way. Hopefully, the package
ACD will be available in CRAN soon; meanwhile, ACD as well as the com-
mands to reproduce the analyses presented in this paper may be downloaded from
http://www.poleto.com/missing.html.

In order to present an overview of the pertinent statistical methods, we first
introduce the problem and the notation in Section 2 and describe the probabilis-
tic model along with the missing data generating mechanisms in Section 3. In
Section 4, we present the ML and WLS approaches to obtain inferential results
for saturated models, that is, where no structural constraints are imposed on the
probabilities of categorization. In Section 5, we describe the ML methodology for
fitting linear and log-linear models as well as the WLS and the hybrid ML/WLS ap-
proaches for fitting more general functional linear models. We apply the methods
to the couple of aforementioned examples in Section 6. In Section 7, we conduct
simulations to assess the properties of some of the estimators in small to moderate
sized samples. Some concluding remarks are presented in Section 8.

2 Problem description and notation

For simplicity, we admit that the random vector Y = (Y1, . . . , Yk)
′ of response

variables can assume R values, corresponding to combinations of the levels of its
components. For instance, when Y = (Y1, Y2, Y3)

′ and Y1, Y2 and Y3 may assume,
respectively, 2, 3 and 5 different values, we have R = 2 × 3 × 5 = 30. Likewise,
we assume that the vector X = (X1, . . . ,Xq)

′ of explanatory variables can take S

values (each of which defining a subpopulation of interest), corresponding to com-
binations of the levels of its components. The R response categories are indexed
by r , and the S subpopulations, by s.

We assume that each of the ns++ sampling units randomly selected from the
sth subpopulation can be independently classified into the r th response category
with the same probability θr(s), r = 1, . . . ,R, s = 1, . . . , S. This implies that the

http://www.poleto.com/missing.html
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n+++ = ∑S
s=1 ns++ units are (at least conceptually) obtained according to a strat-

ified random sampling scheme with sample sizes for the S strata given by the
elements of the vector N++ = (n1++, . . . , nS++)′.

For several reasons, it may not be possible to completely observe the responses
of all variables in Y, so only part of the ns++ units in the sth stratum is com-
pletely classified into one of the R originally defined response categories, while
the remaining units are associated to some type of missingness. For subpopula-
tion s, we define Ts missingness patterns as follows. The set of units with no
missing data (i.e., with complete classification) is indexed by t = 1 and the sets
that have some degree of missingness, by t = 2, . . . , Ts . We assume that each unit
with the t th missingness pattern is recorded in one of Rst response classes Cstc,
c = 1, . . . ,Rst , defined by at least two of the R response categories and such that
Cstc ∩ Cstd = ∅, c �= d and

⋃Rst

c=1 Cstc = {1, . . . ,R}. Thus, the response classes
for the units with the t th pattern form a partition Pst = {Cstc, c = 1, . . . ,Rst }
of the set of response categories for units with complete classification, that is,
Ps1 = P1 = {{r}, r = 1, . . . ,R}. For notational simplicity, we let Cs1r = C1r = {r}
and Rs1 = R1 = R. We represent the total number of response classes for units
with some missingness pattern in the sth subpopulation by ls = ∑Ts

t=2 Rst .
For mathematical convenience, we consider (R ×1)-dimensional indicator vec-

tors zstc, the elements of which are equal to 1 for the positions corresponding to
the response categories in the class Cstc and to 0 otherwise. We also let Zst =
(zstc, c = 1, . . . ,Rst ) denote an R × Rst matrix having as columns the indicator
vectors zstc corresponding to all response classes for units with the t th missingness
pattern in the sth subpopulation. Finally, we let Zs = (Zst , t = 1, . . . , Ts) denote an
R× (R+ ls) matrix combining, columnwise, the indicator vectors zstc correspond-
ing to all response classes for units with all missingness patterns in the sth subpop-
ulation. Note that Zs1 = IR (an identity matrix of order R). The observed frequen-
cies {nstc} indicate the units in the sth subpopulation with the t th missingness pat-
tern classified into the cth response class. The vector Nst = (nstc, c = 1, . . . ,Rst )

′
stacks the observed frequencies of units with the t th missingness pattern in the sth
subpopulation, and Ns = (N′

st , t = 1, . . . , Ts)
′ encloses all the observed frequen-

cies corresponding to the sth subpopulation. Additionally, N = (N′
s, s = 1, . . . , S)′

includes all the observed frequencies, and nst+ = ∑Rst

c=1 nstc indicates the total
units with the t th missingness pattern in the sth subpopulation. Replacement of
any subscript by “+” indicates the sum of the values over that particular subscript.

We assume that units randomly selected from the sth subpopulation and that
should be classified in the r th response category are actually considered as per-
taining to the t th missingness pattern (i.e., classification in the only set with this
pattern that includes the r th category) with probability λt(rs). The {λt(rs)} are the
conditional probabilities of missingness, and the marginal probabilities of catego-
rization are represented by {θr(s)}. Underlying this simplified notation is the as-
sumption of no misclassification. We assume throughout that there are no missing
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values in X. We illustrate the notation with the two examples described previ-
ously.

Example 1. We index the subpopulation of Kingston–Harriman by s = 1, and
that of Portman by s = 2. The index r is used to order the 9 response cate-
gories (with r = 1 corresponding to Maternal smoking = none, Child’s wheez-
ing status = no wheeze) lexicographically. We index the missingness pat-
tern associated to child’s wheezing status by t = 2 and the missingness pat-
tern associated to maternal smoking by t = 3. For the complete classifica-
tion pattern (t = 1), there are Rs1 = R = 9 classes/categories, so that Ps1 =
{{1}, {2}, . . . , {9}}, Zs1 = I9, s = 1,2, N11 = (167,17,19,10,1,3,52,10,11)′,
n11+ = 290, N21 = (120,22,19,8,5,1,39,12,12)′, and n21+ = 238. For ei-
ther city, the missingness pattern t = 2 has Rs2 = 3 classes, so that Ps2 =
{{1,2,3}, {4,5,6}, {7,8,9}},

Zs2 =
⎛⎝ 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞⎠′
= I3 ⊗ 13,

s = 1,2, where ⊗ denotes the Kronecker product and 1k represents a k × 1
vector with all elements equal to 1, N12 = (176,24,121)′, n12+ = 321, N22 =
(103,3,80)′, n22+ = 186. Also, for either city, the pattern t = 3 has Rs3 = 3
classes, so that Ps3 = {{1,4,7}, {2,5,8}, {3,6,9}},

Zs3 =
⎛⎝ 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞⎠′
= 13 ⊗ I3,

s = 1,2, N13 = (28,10,12)′, n13+ = 50, N23 = (31,8,14)′, n23+ = 53. Addition-
ally, ls = Rs2 + Rs3 = 6, Ns = (N′

s1,N′
s2,N′

s3)
′, Zs = (Zs1,Zs2,Zs3), s = 1,2,

N++ = (n1++, n2++)′ = (661,477)′, n+++ = 1138 and N = (N′
1,N′

2)
′.

Example 2. There are S = 10 subpopulations, defined from the combinations
of the levels of gender and age, and R = 8 response categories, obtained from
the three longitudinal binary responses. We index the subpopulations by s and
the response categories by r lexicographically following the display in Table 2.
As the missingness patterns are equal for all the subpopulations, we present
the partitions Pst and matrices of response indicators Zst for a general sub-
population, and we illustrate the vectors of frequencies Nst for s = 1 (boys, 5
to 7 years old in 1977). The index t = 1 corresponds to the R = 8 response
classes/categories with complete classification of units, so that Ps1 = {{r}, r =
1, . . . ,8}, Zs1 = I8, and N11 = (90,9,3,7,0,1,1,8)′. When only the response
in 1981, 1979 or 1977 is missing, the missingness patterns are indexed by
t = 2,3,4, respectively, resulting in Rs2 = Rs3 = Rs4 = 4 response classes, so
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that

Ps2 = {{1,2}, {3,4}, {5,6}, {7,8}},
Zs2 = I4 ⊗ 12, N12 = (16,5,0,0)′,

Ps3 = {{1,3}, {2,4}, {5,7}, {6,8}},
Zs3 = I2 ⊗ 12 ⊗ I2, N13 = (9,3,0,0)′,

Ps4 = {{1,5}, {2,6}, {3,7}, {4,8}},
Zs4 = 12 ⊗ I4, N14 = (129,18,6,13)′.

The indices t = 5,6,7 correspond to the missingness patterns where only the re-
sponse in 1977, 1979 or 1981 is observed, yielding Rs5 = Rs6 = Rs7 = 2 response
classes; thus

Ps5 = {{1,2,3,4}, {5,6,7,8}}, Zs5 = I2 ⊗ 14, N15 = (32,5)′,
Ps6 = {{1,2,5,6}, {3,4,7,8}}, Zs6 = 12 ⊗ I2 ⊗ 12, N16 = (33,11)′,
Ps7 = {{1,3,5,7}, {2,4,6,8}}, Zs7 = 14 ⊗ I2, N17 = (70,24)′.

The conditions Cstc ∩ Cstd = ∅, c �= d and
⋃Rst

c=1 Cstc = {1, . . . ,R} are guaran-
teed by letting Zst have one element equal to 1 in exactly one column for each row.
In both examples, the observed missingness patterns for each subpopulation are the
same. More generally, Rst , Cstc, Pst , ls , zstc, Zst and Zs need not be necessarily
equal for s = 1, . . . , S.

3 Probability model and missingness mechanisms

We assume that the observed frequencies N follow a product-multinomial distri-
bution expressed by the probability mass function

P
(
N|θ , {λt(rs)},N++

) =
S∏

s=1

ns++!∏Ts

t=1
∏Rst

c=1 nstc!
R∏

r=1

(θr(s)λ1(rs))
ns1r

(3.1)

×
Ts∏

t=2

Rst∏
c=1

( ∑
r∈Cstc

θr(s)λt (rs)

)nstc

,

where θr(s) is the marginal probability that a unit selected at random from the
sth subpopulation is classified in the r th response category, λt(rs) is the condi-
tional probability that a unit randomly selected from the sth subpopulation and that
should be classified in the r th response category is associated to the t th missing-
ness pattern, θ = (θ ′

s, s = 1, . . . , S)′, θ s = (θr(s), r = 1, . . . ,R)′, ∑R
r=1 θr(s) = 1,

s = 1, . . . , S and
∑Ts

t=1 λt(rs) = 1, r = 1, . . . ,R, s = 1, . . . , S. This factorization
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into a marginal model for the measurements and a conditional model for the miss-
ingness process given the measurements corresponds to the so-called selection
model framework described in Little and Rubin (2002).

If it were possible to identify the response category associated to every unit
in each of the missingness patterns, ystr would be the number of sampling units,
selected from the sth subpopulation and with the t th missingness pattern, classi-
fied into the r th response category. Hence, {ystr} denote nonobservable augmented
frequencies, except for the missingness pattern t = 1 (no missing data), where
ys1r = ns1r . Under the other patterns, we only know the frequencies associated to
the response classes Cstc, namely nstc = ∑

r∈Cstc
ystr .

For each subpopulation, there are R − 1 parameters {θr(s)} and R(Ts − 1) pa-
rameters {λt(rs)} not functionally related to the former, totalizing RTs − 1 parame-
ters. Likewise, there are R observed frequencies for the complete classification
pattern and other ls ones for the patterns with some missingness. As ns++ is
fixed, there is a total of R − 1 + ls not functionally related observed frequen-
cies in each subpopulation. Therefore, the mismatch between the R

∑S
s=1 Ts − S

parameters {θr(s), λt (rs)} associated to the augmented frequencies {ystr} and the
S(R − 1) + ∑S

s=1 ls observed frequencies {nstc} associated to the parameters
{∑r∈Cstc

θr(s)λt (rs)} clearly point towards an overparameterization of (3.1) with∑S
s=1[R(Ts − 1) − ls] nonidentifiable parameters.
As the interest usually lies in {θr(s)}, we consider reduced structures for {λt(rs)}

to identify the model. One of them corresponds to a noninformative missingness
mechanism or, according to Rubin (1976), a missing at random (MAR) mecha-
nism, expressed by

MAR: λt(rs) = αt(cs),
(3.2)

s = 1, . . . , S, t = 1, . . . , Ts, c = 1, . . . ,Rst , r ∈ Cstc.

This indicates that the conditional probabilities of missingness depend only on the
observed response classes and, conditionally on these, they do not depend on the
unobserved response categories. The statistical model under the MAR mechanism
is saturated, and the likelihood function can be factored as

L
(
θ , {αt(cs)}|N;MAR

) ∝ L1
(
θ |N)

L2
({αt(cs)}|N;MAR

)
, (3.3)

where

L1
(
θ |N) =

S∏
s=1

R∏
r=1

θ
ns1r

r(s)

Ts∏
t=2

Rst∏
c=1

(
z′
stcθ s

)nstc

and

L2
({αt(cs)}|N;MAR

) =
S∏

s=1

Ts∏
t=1

Rst∏
c=1

α
nstc

t (cs).
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A special case known as the missing completely at random (MCAR) mecha-
nism, namely

MCAR: λt(rs) = αt(s), s = 1, . . . , S, t = 1, . . . , Ts, r = 1, . . . ,R, (3.4)

implies that the conditional probabilities of missingness do not depend on the
response categories, irrespectively of whether they are partially observed or not.
There are, under this missingness mechanism, S + ∑S

s=1(ls − Ts) degrees of free-
dom in the likelihood function

L
(
θ , {αt(s)}|N;MCAR

) ∝ L1
(
θ |N)

L2
({αt(s)}|{nst+};MCAR

)
, (3.5)

where L1
(
θ |N)

has the same definition as (3.3) and

L2
({αt(s)}|{nst+};MCAR

) =
S∏

s=1

Ts∏
t=1

α
nst+
t (s) . (3.6)

This implies that inferences about θ can be based only on the distribution of N
conditionally on {nst+}, the kernel of which, under (3.4), is L1. Then, the MCAR
missingness mechanism can be ignored for both likelihood- and frequentist-based
inferences, as discussed by Paulino (1991) in the multinomial setting. The MAR
missingness mechanism, on the other hand, is ignorable for likelihood-based
but not for frequentist-based inferences on θ . Kenward and Molenberghs (1998)
present a practical illustration where the estimation of the Fisher information be-
comes biased when the missingness process under the MAR mechanism is ig-
nored.

Alternative models that allow the conditional probabilities of missingness not
to vary for some or all subpopulations may be considered. Since under either
the MCAR or the MAR mechanisms the likelihood function factors as in (3.3)
and (3.5), such alternative models for {λt(rs)} have no effect on the ML estimates
of θ and are not developed further.

Missing not at random (MNAR) or informative missingness mechanisms can
be formulated by assuming that at least two conditional probabilities of miss-
ing response categories pertaining to the same class are not equal, that is,
λt(as) �= λt(bs), {a, b} ∈ Cstc. For such models, it is necessary to specify at least∑S

s=1[R(Ts − 1) − ls] parametric constraints to obtain an identifiable structure. In
Example 1, for instance, we may assume that the conditional probabilities of miss-
ingness depend only on the home city and on the missing result. Substituting the
index r by two indices, i to represent the maternal smoking level and j to indi-
cate child wheezing status, and incorporating the constrains λ2(ijs) = α2(js) and
λ3(ijs) = α3(is) in the likelihood function, we obtain a saturated statistical model
under a MNAR structure. MNAR mechanisms are not ignorable for likelihood- or
frequentist-based inferences on θ since the likelihood function cannot be factored
as in the MAR or the MCAR cases; here the ML estimators of θ and {λt(rs)} are not
orthogonal and the term corresponding to the covariance matrix of θ must be ex-
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tracted from the joint covariance matrix. In Section 8, we address some additional
details regarding these mechanisms.

4 Fitting saturated models for the marginal probabilities of
categorization

Estimates of the probabilities of the response categories obtained under saturated
models using all the available data may be used as input in the process of fitting
unsaturated models as we show in Section 5.

As the units with missing responses in all variables, that is, with Pst = {Cst1} =
{{1, . . . ,R}}, do not carry any information about θ under either the MAR or the
MCAR mechanisms, we ignore such missingness pattern and redefine Ts as the
number of partial missingness patterns; in this context, we also let ns++ be the
number of units with some type of categorization.

To avoid technical problems related to the natural restriction on the proba-
bilities of categorization in each subpopulation, we let θ s = (IR−1,0R−1)θ s =
(θr(s), r = 1, . . . ,R − 1)′ contain the R − 1 first components of θ s and θ =
[IS ⊗ (IR−1,0R−1)]θ = (θ

′
s, s = 1, . . . , S)′, where 0k denotes a k × 1 vector with

all elements equal to 0. We also let Zst denote an (R − 1) × (Rst − 1) matrix ob-
tained from Zst by deleting the last row and column and Zs = (Zst , t = 1, . . . , Ts).
Then, θ st = Z

′
stθ s = (θc(st), c = 1, . . . ,Rst − 1)′ encloses the parameters {θr(s)}

related to the first Rst − 1 classes associated to the t th missingness pattern of
the sth subpopulation, where θc(st) = ∑

r∈Cstc
θr(s) = z′

stcθ s . Similarly, we let
pst = Nst /nst+ = (pc(st), c = 1, . . . ,Rst )

′ be the observed proportions of units in
the classes associated with the t th missingness pattern in the sth subpopulation and
ps = (p′

st , t = 1, . . . , Ts)
′. Finally, we let Nst = (IRst−1,0Rst−1)Nst = (nstc, c =

1, . . . ,Rst − 1)′, pst = Nst /nst+ and ps = (p′
st , t = 1, . . . , Ts)

′. We may obtain θ s

from θ s and θ from θ , respectively, from the relations

θ s =
(

0R−1
1

)
+

(
IR−1

−1′
R−1

)
θ s = bs + Bsθ s, (4.1)

θ = 1S ⊗
(

0R−1
1

)
+

[
IS ⊗

(
IR−1

−1′
R−1

)]
θ = b + Bθ , (4.2)

where bs = (0′
R−1,1)′, Bs = (IR−1,−1R−1)

′, b = 1S ⊗ (0′
R−1,1)′ and B = IS ⊗

(IR−1,−1R−1)
′.

4.1 ML inferences under MAR and MCAR assumptions

Maximum likelihood estimation of θ can be based only on the factor L1(θ |N)

in (3.3) and in general, must be carried out through iterative methods. Among
the available alternatives, the EM algorithm has the advantage of not requiring
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derivatives of the log-likelihood function. For both MCAR and MAR mechanisms,
the EM algorithm is specified by

θ̂
(i+1)

s = 1

ns++

(
Ns1 +

Ts∑
t=2

D
θ̂

(i)
s

ZstD
−1

Z′
st θ̂

(i)
s

Nst

)
,

(4.3)
s = 1, . . . , S, i = 0,1, . . . ,

where D
θ̂

(i)
s

denotes a diagonal matrix with the elements of θ̂
(i)

s along the main

diagonal. We may start the iterative process by letting θ̂
(0)

s = ps1 = Ns1/ns1+. It is
important to replace any null frequencies by a small value, for example, (Rns1+)−1

or 10−6, since null values for θ̂
(0)
r(s) do not allow information from other missingness

patterns to be incorporated. Alternatively, one may consider Newton–Raphson or
Fisher’s scoring algorithms. The [S(R − 1) × 1]-dimensional score function asso-
ciated to lnL1(θ |Ns) is S(θ) = (S′

s, s = 1, . . . , S)′, where

Ss(θ s) =
Ts∑

t=1

Zst

[
�(θ st )

]−1
(pst − θ st ), s = 1, . . . , S, (4.4)

and �(θ st ) = 1
nst+ (Dθ st

−θ stθ
′
st ). The corresponding S(R−1)×S(R−1) hessian

matrix, H(θ), is a block diagonal matrix with blocks

Hs(θ s) = −
Ts∑

t=1

Zst

[
DNst

D−2
θ st

+ nstRst

(1 − 1′
Rst−1θ st )2

1Rst−11′
Rst−1

]
Z

′
st , (4.5)

s = 1, . . . , S, where D−2
θ st

= D−1
θ st

D−1
θ st

.
For both MCAR and MAR mechanisms, the Newton–Raphson algorithm is then

specified by

θ̂
(i+1)

s = θ̂
(i)

s + [−Hs

(̂
θ

(i)

s

)]−1Ss

(̂
θ

(i)

s

)
, s = 1, . . . , S, i = 0,1, . . . . (4.6)

Fisher’s scoring algorithm requires additional estimation of the conditional
probabilities of missingness, since

E
(
nstc|N++, θ,

{
αMAR

st

}) = ns++z′
stcθ sαt (cs), (4.7)

E
(
nstc|N++, θ,

{
αMCAR

st

}) = ns++z′
stcθ sαt (s), (4.8)

where αMAR
st = (αt(cs), c = 1, . . . ,Rst )

′ and αMCAR
st = αt(s). For the MAR mech-

anism, estimators of these additional parameters may be obtained from the ML
estimator {̂θ s} in view of the invariance property and are given by

α̂MAR
st = 1

ns++
D−1

Z′
st θ̂ s

Nst , s = 1, . . . , S, t = 1, . . . , Ts. (4.9)
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Under the MCAR mechanism, on the other hand, the factor (3.6) leads directly to
the ML estimators of the conditional probabilities of missingness that are given by

α̂MCAR
st = α̂t (s) = nst+

ns++
, s = 1, . . . , S, t = 1, . . . , Ts. (4.10)

The Fisher information matrix I(θ , {αM
st }) corresponding to θ under the mech-

anism M (= MAR or MCAR) may be obtained from the above results and is de-
tailed in Appendix A.1. Estimators of the asymptotic covariance matrix V̂M

θ̂
of θ̂

may be obtained either as the inverse of the observed information matrix, −H(θ),
computed at θ̂ , or as the inverse of the Fisher information matrix computed at
(̂θ , {α̂M

st }). From (4.2), we may estimate the asymptotic covariance matrix of θ̂ as
V̂M

θ̂
= BV̂M

θ̂
B′.

Substituting {α̂t (cs) = nstc/(ns++z′
stcθ̂ s)} from (4.9) in the expression for the

Fisher information matrix corresponding to the MAR mechanism, we obtain
I (̂θ , {α̂MAR

st }) = −H(̂θ) so that essentially three strategies may be employed to
obtain the ML estimate of θ . The first relies exclusively on (4.3) for both MAR
or MCAR mechanisms; the second relies on (4.6) for both cases too, and the third
relies on (4.6) with the observed information matrix replaced by the Fisher infor-
mation matrix under the MCAR mechanism. We may use this iterative process
even when assuming the MAR mechanism, if after obtaining θ̂ we consider an
estimate of its asymptotic covariance matrix under the MAR mechanism. In fact,
this may be the best choice to avoid the low speed of the EM algorithm and, at
the same time, the possible instability of the iterative process based on the MAR
mechanism where zero counts may easily generate unstable covariance matrices.

Goodness-of-fit tests for the MCAR mechanism, conditionally on the MAR as-
sumption, can be obtained either from Wilks’ likelihood ratio statistic

QL(MCAR|MAR) = −2 ln
L2({α̂t (s)}|{nst+};MCAR)

L2({α̂t (cs)}|N;MAR)

= −2
S∑

s=1

Ts∑
t=1

Rst∑
c=1

nstc

[
ln

(
z′
stcθ̂ s

) − ln
(

nstc

nst+

)]
(4.11)

= −2
S∑

s=1

N′
s

[
ln

(
Z′

s θ̂ s

) − ln(ps)
]
,

where ln(ps) denotes a vector containing the logarithms of the elements of ps , or
from the Pearson (QP ) and the Neyman (QN ) statistics, which are given in Ap-
pendix B.1. Under the MCAR hypothesis, all three statistics follow an asymptotic
χ2

(g) distribution, with g = S + ∑S
s=1(ls − Ts) degrees of freedom. Since null ob-

served frequencies nstc do not contribute to the probability mass function (3.1),
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we use the definition 0 × [ln(z′
stcθ̂ s) − ln(0/nst+)] ≡ 0 in (4.11) to avoid incon-

sistencies in the computation of the logarithm. The Neyman statistic [(B.2), in
Appendix B.1] requires {nstc > 0} or, equivalently, {pc(st) > 0}, which does not
always happen in practice. Therefore, we suggest to replace possibly null frequen-
cies by some small value before obtaining ps and computing the inverse of Dps . In
the WLS context, Koch et al. (1972) suggest replacing nstc = 0 by (Rstnst+)−1.

The expected augmented frequencies under the MAR and the MCAR mecha-
nisms can be estimated by {ŷMAR

str = ns++θ̂r(s)α̂t (cs)} and {ŷMCAR
str =

ns++θ̂r(s)α̂t (s)}, respectively.

4.2 WLS inferences under MCAR assumption

The ignorability of the missingness process under the MCAR mechanism for fre-
quentist inferences on θ allows us to focus on the distribution of Ns condition-
ally on {nst+}, which is a product of Ts multinomial distributions with parameters

{θ0
st } for each subpopulation. The MCAR assumption implies the linear structure

(θ
0′
st , t = 1, . . . , Ts)

′ = Z
′
sθ s , s = 1, . . . , S, so that the WLS methodology proposed

by Grizzle et al. (1969) may be considered for analysis. Here the response cate-
gories vary from one missingness pattern to the other, as pointed out by Koch et
al. (1972).

The WLS approach involves the minimization of the quadratic form

QN

({θ s}) =
S∑

s=1

(
ps − Z

′
sθ s

)′[
�∗(ps)

]−1(
ps − Z

′
sθ s

)
,

where �∗(ps) is a block diagonal matrix with blocks �(pst ), t = 1, . . . , Ts . Under
the MCAR mechanism, the WLS estimator of θ s is

θ̃ s = (
Zs

[
�∗(ps)

]−1Z
′
s

)−1Zs

[
�∗(ps)

]−1ps, (4.12)

and an estimate of its asymptotic covariance matrix is

Ṽ
θ̃ s

= (
Zs

[
�∗(ps)

]−1Z
′
s

)−1
.

From (4.1), we obtain the WLS estimator of θ s as θ̃ s = bs + Bs θ̃ s ; analogously,
an estimate of the corresponding asymptotic covariance matrix is Ṽθ̃ s

= BsṼ
θ̃ s

B′
s .

An estimate of the asymptotic covariance matrix of θ̃ , denoted by Ṽ
θ̃
, is a block

diagonal matrix with blocks Ṽ
θ̃ s

, s = 1, . . . , S; similarly, for θ̃ , we have Ṽθ̃ =
BṼ

θ̃
B′.

Goodness-of-fit for the MCAR mechanism may be tested with the Neyman
statistic, QN({θ s}) computed at {̃θ s}, which asymptotically follows a χ2

(g) distribu-
tion under the null hypothesis. Since we assume that �∗(ps) is nonsingular and in
practice we do not always have {pc(st) > 0} or, equivalently, {nstc > 0}, we replace
such values with small quantities as suggested earlier. Estimates of the expected
augmented frequencies are given by {ỹstr = nst+θ̃r(s)}.
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5 Fitting unsaturated models for the marginal probabilities of
categorization

In general, questions of interest are related to a reduction of the number of param-
eters obtained by considering models based on functions of the marginal probabil-
ities of categorization. In this context, we examine (strictly) linear and log-linear
models under the ML approach and more general functional linear models under a
hybrid ML/WLS approach.

5.1 ML inferences on linear and log-linear models under MAR and MCAR
assumptions

We first focus on (strictly) linear models expressed as

ML : Aθ = Xβ, (5.1)

where A is a u × SR matrix defining the u linear functions of interest with
rank r(A) = u ≤ S(R − 1), X is a u × p model specification matrix with rank
r(X) = p ≤ u and β = (β1, . . . , βp)′ is a p × 1 vector that contains the unknown
parameters. This model can also be expressed under the equivalent constraint
formulation UAθ = 0u−p , where U is a (u − p) × u full rank matrix such that
UX = 0(u−p),p . We also have to include in the model specification the S natural
constraints (

IS ⊗ 1′
R

)
θ = 1S. (5.2)

We assume that r(A′, IS ⊗ 1R) = u + S.
To take advantage of the expressions of the models in terms of θ considered in

Section 4.1, it is convenient to consider (5.1) and (5.2) simultaneously, by setting(
A

IS ⊗ 1′
R

)
θ =

(
Xβ
1S

)
. (5.3)

Therefore, if u = S(R − 1), we can obtain θ solely from A, X and β as

θ(β) = [
IS ⊗ (IR−1,0R−1)

](
A

IS ⊗ 1′
R

)−1 (
Xβ
1S

)
. (5.4)

Incorporating this linear structure in lnL1(θ(β)|N) and differentiating the result-
ing expression with respect to β , we obtain the score vector SL(β) = W′S(θ(β)),
where

W = [
IS ⊗ (IR−1,0R−1)

](
A

IS ⊗ 1′
R

)−1 (
X

0S,p

)
, (5.5)

and S(θ(β)) is defined in (4.4). We also obtain the hessian matrix HL(β) =
W′H(θ(β))W, where H(θ(β)) is given in (4.5), and the Fisher information ma-
trix under the M (= MAR or MCAR) mechanism, namely IL(β, {αM

st }) =
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W′I(θ(β), {αM
st })W, where I(θ(β), {αM

st }) is defined in Appendix A.1. The it-
erative process for the Newton–Raphson or Fisher’ scoring algorithms may be
initialized with the WLS estimate

β̂
(0) = [

X′(AV̂M
θ̂

A′)−1X
]−1X′(AV̂M

θ̂
A′)−1Aθ̂; (5.6)

where θ̂ is the ML estimate of θ under the saturated model, and V̂M
θ̂

is an estimate
of its corresponding asymptotic covariance matrix under the mechanism M, ob-
tained according to the suggestion presented in Section 4.1. We might as well use
the alternative iterative scheme proposed by Paulino and Silva (1999) adapted to
incomplete data, by using the constraint formulation expressed in terms of (4.2).
When u < S(R − 1), we need to augment the model (5.3) and, consequently, per-
form suitable changes in (5.4)–(5.6) as detailed in Appendix C.1.

Estimators of the asymptotic covariance matrix V̂M
β̂L

of β̂ under M may be

obtained along similar lines as in Section 4.1. We obtain the ML estimate θ̂(ML)

of θ under the linear model ML computing (5.4) at β̂ and, given its linear structure,
we derive an estimate of its corresponding asymptotic covariance matrix V̂M

θ̂(ML)
=

WV̂M
β̂L

W′. Analogously, ML estimates of the linear functions Aθ under ML are

Xβ̂ and an estimate of its asymptotic covariance matrix is V̂M
Aθ̂(ML)

= XV̂M
β̂L

X′.
Now, we consider log-linear models

MLL : ln(θ) = (IS ⊗ 1R)ν + Xβ, (5.7)

where ν = (ν1, . . . , νS)′ = − ln[(IS ⊗ 1′
R) exp(Xβ)], exp(Xβ) is a vector, the ele-

ments of which are exponentials of those of Xβ , β = (β1, . . . , βp)′ is a p×1 vector
which embodies the p ≤ S(R − 1) unknown parameters, and X = (X′

1, . . . ,X′
S)′ is

an SR ×p matrix with each R ×p submatrix Xs such that r(1R,Xs) = 1 + r(Xs),
s = 1, . . . , S, and r(IS ⊗ 1R,X) = S + p. Rewriting (5.7), we may obtain θ from
β by

θ(β) = D−1
ψ exp(Xβ), (5.8)

where ψ = [IS ⊗ (1R1′
R)] exp(Xβ) = (ψ ′

s, s = 1, . . . , S)′, θ(β) = (θ ′
s(β), s =

1, . . . , S)′, θ s(β) = D−1
ψs

exp(Xsβ), and ψ s = (1R1′
R) exp(Xsβ).

We can also consider a larger class of (generalized) log-linear models, expressed
by

MLL : A ln(θ) = XLβ, (5.9)

where A is a u × SR matrix with rank r(A) = u ≤ S(R − 1) such that A(IS ⊗
1R) = 0u,S . Taking A = IS ⊗ (IR−1,−1R−1), for instance, generates logits with
the baseline category R. When u = S(R − 1), the S(R − 1) × p matrix XL is
related to X via XL = AX and X = A′(AA′)−1XL. When u < S(R − 1), we need
to augment the model (5.9) before re-expressing it in the form of (5.7) as detailed
in Appendix C.2.
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The freedom equation formulations (5.7) and (5.9) are respectively equivalent to
the constraint formulations U ln(θ) = 0S(R−1)−p and ULA ln(θ) = 0u−p , where U
is full rank [S(R −1)−p]×SR matrix defining the S(R −1)−p constraints such
that U(IS ⊗ 1R,X) = 0(SR−p),p , and UL is full rank (u − p) × u matrix defining
the u − p constraints such that ULXL = 0(u−p),p .

Differentiating lnL1(θ(β)|N) with respect to β , we obtain the score vector

SLL(β) =
S∑

s=1

X′
s

[
Ns1 +

Ts∑
t=2

(
Dθ s (β)ZstD

−1
Z′

stθ s (β)
Nst

) − ns++θ s(β)

]
. (5.10)

Further differentiation with respect to β ′ leads to the hessian matrix

HLL(β) =
S∑

s=1

X′
s

[
−ns++IR +

Ts∑
t=2

(
DuI

st
− DuII

st
ZstZ′

st

)]
(5.11)

× {
Dθ s (β) − θ s(β)

[
θ s(β)

]′}Xs,

where uI
st = ZstD

−1
Z′

stθ s (β)
Nst and uII

st = Dθ s (β)ZstD
−2
Z′

stθ s (β)
Nst . Under the M

(= MAR or MCAR) mechanism, the Fisher information matrix ILL(β, {αM
st })

is given in Appendix A.2.
These expressions allow us to get ML estimates β̂ of β via either Newton–

Raphson or Fisher’s scoring algorithms. When u = S(R − 1), the iterative pro-
cesses may be initialized with the WLS estimate

β̂
(0) = [

X′
L

(
AD−1

θ̂
V̂θ̂D−1

θ̂
A′)−1XL

]−1

(5.12)
× X′

L

(
AD−1

θ̂
V̂θ̂D−1

θ̂
A′)−1A ln(̂θ),

where θ̂ is the ML estimate of θ under the saturated model and V̂M
θ̂

is an estimate
of its corresponding asymptotic covariance matrix under the mechanism M, ob-
tained according to the suggestion presented in Section 4.1. The case u < S(R−1)

is detailed in Appendix C.2.
Estimators of the asymptotic covariance matrix V̂M

β̂LL
of the ML estimate β̂ may

be obtained along the lines suggested earlier. The ML estimate θ̂(MLL) of θ under
MLL may be obtained from (5.8); an estimate of its asymptotic covariance matrix
under the M mechanism obtained via the delta method is

V̂M
θ̂(MLL)

= ∂̂θ

∂β ′ V̂
M
β̂LL

(
∂̂θ

∂β ′
)′

= V̂LLXV̂M
β̂LL

X′V̂LL, (5.13)

where V̂LL is a block diagonal matrix with blocks given by Dθ s (β̂) −
θ s(β̂)[θ s(β̂)]′, s = 1, . . . , S. The ML estimates of the log-linear functions A ln(θ)

under MLL are XLβ̂ and an estimate of its asymptotic covariance matrix is
V̂M

A ln(̂θ(MLL))
= XLV̂M

β̂LL
X′

L.
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Now, let M be a missingness mechanism more restrictive than MAR (e.g.,
MCAR) and let M be a reduced model for θ (e.g., ML or MLL). The Wilks like-
lihood ratio test statistic for the joint model (M, M) conditional on the assumed
MAR mechanism can be partitioned as

QL(M, M|MAR) = −2 ln
L1(̂θ(M)|N;M)L2({α̂t (cs)(M)}|N; M)

L1(̂θ |N)L2({α̂t (cs)}|N;MAR)
(5.14)

= QL(M) + QL(M|MAR),

where θ̂ is the ML estimate of θ under the saturated model, and θ̂(M), under the
model M , {α̂t (cs)} are the ML estimates of {αt(cs)} under the MAR mechanism
and {α̂t (cs)(M)}, under the mechanism M. As noted by Williamson and Haber
(1994), this partition of QL shows that the comparison of any pair of models for
the marginal probabilities of categorization and for the conditional probabilities
of missingness does not depend on, respectively, the more restrictive missingness
mechanism and the reduced model for θ . If the parameter of interest is θ , the
likelihood ratio statistic for the goodness-of-fit test of model M is

QL(M|M) = −2 ln
L1(̂θ(M)|N)

L1(̂θ |N)
(5.15)

= −2
S∑

s=1

N′
s

[
ln

(
Z′

s θ̂ s(M)
) − ln

(
Z′

s θ̂ s

)]
,

and is independent of the more restrictive mechanism M than the assumed MAR
mechanism. In contrast with the likelihood ratio statistic, the Pearson, Neyman
and Wald statistics no longer have the same advantageous property of being inde-
pendent of the more restrictive mechanism M. Computational formulae for these
goodness-of-fit statistics as well as their asymptotic null distributions are given in
Appendix B.2.

For tests of hypotheses of the form H : Cβ = C0, where C is a c × p full rank
matrix (c ≤ p) and C0 is a c × 1 vector with known elements (usually, C0 = 0c),
we may appeal to the Wald statistic

QW(H |M, M) = (
Cβ̂(M) − C0

)′(CV̂M
β̂(M)

C′)−1(
Cβ̂(M) − C0

)
, (5.16)

which follows an asymptotic χ2
(c) distribution under the null hypothesis.

5.2 WLS and hybrid ML/WLS inferences on functional linear models under
MAR, MCAR and MNAR mechanisms

With the purpose of fitting functional linear models of θ under an MCAR mech-
anism, Koch et al. (1972) considered a two-stage procedure according to which
WLS methodology is used to fit such models to WLS estimates θ̃ obtained in a
first stage.
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In the light of the functional asymptotic regression for complete data suggested
by Imrey et al. (1981, 1982), it is also possible to apply WLS methods to fit func-
tional linear models to ML estimates θ̂ , or to some other best asymptotically nor-
mal (BAN) estimates, obtained under any missingness mechanism in a first stage,
as suggested by Paulino (1991) in a multinomial setup. Using this hybrid method-
ology, we may draw inferences about θ more easily, mainly in the context of
nonignorable models for the missingness mechanism under a product-multinomial
framework.

We consider functional linear models of the form

MF : F ≡ F(θ) = Xβ, (5.17)

where F(θ) = (Fi(θ), i = 1, . . . , u)′ is a u × 1 vector defining the u ≤ S(R − 1)

functions of interest, and is such that G ≡ G(θ) = ∂F/∂θ ′ and ∂2F/(∂θ ∂θ ′) exist
and are continuous in an open subset containing θ , X is a u×p model specification
matrix with r(X) = p ≤ u and β = (β1, . . . , βp)′ is a p × 1 vector with unknown
parameters. The equivalent constraint formulation of (5.17) is UF(θ) = 0u−p ,
where U is a (u − p) × u full rank matrix such that UX = 0(u−p),p .

Let θ̃ denote any BAN estimator of θ reflecting all the available data, for ex-
ample, the WLS estimator under the MCAR mechanism (Section 4.2), the ML
estimator under the MAR or the MCAR mechanism (Section 4.1), or even the
ML estimator obtained under any MNAR mechanism. Similarly, let Ṽθ̃ represent
a consistent estimator of the covariance matrix of θ̃ under the same missingness
mechanism. Given that for sufficiently large sample sizes, θ̃

a∼ Nu(θ , Ṽθ̃ ), we have

F̃ ≡ F(̃θ)
a∼ Nu(F, ṼF̃), where we assume that ṼF̃ = G̃Ṽθ̃ G̃′, with G̃ ≡ G(̃θ), is

nonsingular. Therefore, the WLS estimator of β in (5.17) is

β̃ = (
X′Ṽ−1

F̃
X

)−1X′Ṽ−1
F̃

F̃, (5.18)

and an estimate of its asymptotic covariance matrix is Ṽβ̃ = (X′Ṽ−1
F̃

X)−1. The

WLS estimator of the functions F under MF is Xβ̃ and, recalling the delta method,
an estimate of its asymptotic covariance matrix is ṼF̃(MF ) = XṼβ̃X′.

The goodness-of-fit of the model MF conditionally on the missingness mecha-
nism M (MCAR, MAR or MNAR) can be tested with the Wald statistic

QW(MF |M) = (UF̃)′
(
UṼF̃U′)−1UF̃, (5.19)

which follows an asymptotic null distribution χ2
(u−p). Reductions in the dimension

of β may also be assessed via Wald tests analogous to (5.16).
In many cases, the vector F(θ) may be expressed as a composition of linear,

F(θ) = Aθ [so that G(θ) = A, a u × SR matrix, with u ≤ S(R − 1)], logarith-
mic, F(θ) = ln(θ) [so that G(θ) = D−1

θ ], exponential, F(θ) = exp(θ) [so that
G(θ) = Dexp(θ)], and addition of constants, F(θ) = π + θ , where π is an SR × 1
vector with known constants [so that G(θ) = ISR]. Some examples of compounded
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functions and associated first derivatives are F(θ) = A ln(θ) and G(θ) = AD−1
θ or

F(θ) = exp[A ln(θ)] and G(θ) = Dexp[A ln(θ)]AD−1
θ . Note that these last two ma-

trices G(θ) may be obtained using the chain rule for differentiation.
When (5.17) corresponds to strictly linear or log-linear models, we may use the

results of Section 5.1 to obtain the first stage ingredients.

6 Illustration

We now apply the methods presented in the last two sections to the examples
described in Section 1. For brevity, we carry out both analyses under the MAR
assumption, after assessing whether the MCAR missingness mechanism may be a
reasonable simplification; one MNAR mechanism is considered in Example 1 for
illustration purposes. In Section 8, we indicate how additional sensitivity analyses
of MNAR models may be conducted and comment on some problems associated
to them.

Example 1. The association between maternal smoking and child wheezing status
given the home city may be assessed through the logarithms of local odds ratios

ωij (s) = ln
(

πij (s)πi+1,j+1(s)

πi,j+1(s)πi+1,j (s)

)
, i, j, s = 1,2,

where (π11(s), π12(s), . . . , π33(s))
′ = (θr(s), r = 1, . . . ,9)′ = θ s . Taking the order of

the categories into account, to assess whether the conditional independence is ten-
able, as in Lipsitz and Fitzmaurice (1996), we first consider a homogeneous linear-
by-linear association model with unit-spaced response scores (Agresti, 2002), that
is, we let ωij (s) = β , and then test whether β = 0. For such purposes, we may
consider a log-linear model A ln(θ) = XLβ with

A = I2 ⊗

⎛⎜⎜⎝
1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

⎞⎟⎟⎠ ,

(6.1)
XL = 18, β = β.

Alternatively, the log-linear model corresponding to a homogeneous association
(or to a no three-factor interaction) model may be obtained by taking

XL = 12 ⊗ I4 and β = (β11, β12, β21, β22)
′. (6.2)

Conditionally on this model, independence may be assessed via a test of the hy-
pothesis Cβ = 04, where C = I4. If the interest is not in estimating β , but just
checking the fit of the homogeneous association model, we may use the equivalent
constraint formulation ULA ln(θ) = 04, where UL = [(1,−1) ⊗ I4].
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We assume a MAR mechanism for the subsequent analyses, because the MCAR
mechanism does not seem reasonable (p < 0.0001) as suggested by the goodness-
of-fit statistics for the MCAR mechanism conditionally on the MAR assump-
tion using either the ML approach of Section 4.1 (QL = 45.54, QP = 46.16,
QN = 48.15) or the WLS methodology of Section 4.2 (QN = 44.75). Fitting the
log-linear model (6.1) under the ML methodology of Section 5.1, there is no evi-
dence against the homogeneous linear-by-linear association model (QL = 5.25,
QP = 5.93, QN = 4.89, QW = 5.52, df = 7), resulting in p-values ranging
from 0.5480 to 0.6729. As the Wald statistic, in this case, uses only the esti-
mates under the saturated model for the marginal probabilities of categorization,
the statistic has the same value whether we fit the model using the ML approach
or the hybrid (ML/WLS) methodology of Section 5.2 jointly with ML estimates
under the MAR mechanism of Section 4.1. The estimate (standard error) of β

is 0.2003 (0.0680) for the ML methodology, and 0.2036 (0.0685) for the hy-
brid approach, respectively, leading to p-values equal to 0.0032 (QW = 8.67)
and to 0.0030 (QW = 8.83) for the conditional independence hypothesis under
model (6.1). The corresponding likelihood ratio statistic (QL = 8.41, p = 0.0037)
may also be easily obtained by the difference between the goodness-of-fit statis-
tics (QL) of the independence and the homogeneous linear-by-linear associa-
tion models. The Pearson (QP = 8.75, p = 0.0031) and Neyman (QN = 8.07,
p = 0.0045) statistics are computed with expressions analogous to those in Ap-
pendix B.2 by comparing the estimates of the expected frequencies of the re-
sponse classes, {n̂stc = ∑

r∈Cstc
ŷstr}, under both models. Since the homoge-

neous linear-by-linear association model is a special case of the homogeneous
association model (6.2), the latter also exhibits a good fit (p = 0.3838 for
QN , and p > 0.5400 for the other statistics). The conditional independence test
under this unordered case generates QL = 10.57, QP = 11.01, QN = 10.11,
QW(ML) = 10.90 and QW(ML/WLS) = 11.75 (p = 0.0318, 0.0264, 0.0386,
0.0277, 0.0193). These results are similar to the ordered and unordered score tests
statistics 8.06 (p = 0.0045) and 9.98 (p = 0.0408) obtained by Lipsitz and Fitz-
maurice (1996), which also follow asymptotic χ2

1 and χ2
4 null distributions respec-

tively, albeit we expected that they would be closer to QP (a score-type statistic)
than to QN . Indeed, this may be due to their use of the alternative estimation
method for the variance of the score vector proposed by Berndt et al. (1974).

When we fit the saturated MNAR model described in the last paragraph of Sec-
tion 3 with the hybrid (ML/WLS) approach, the previous conclusions are main-
tained; the corresponding p-values are 0.3828 and 0.4124, respectively, for the
goodness-of-fit of models (6.1) and (6.2), and 0.0001 and 0.0011, for their cor-
responding tests of conditional independence. These p-values suggest that under
this MNAR model, the association between maternal smoking and child wheezing
status is stronger than that obtained via the MAR assumption; this conclusion is
also corroborated by the larger estimate (and lower standard error) of β in (6.1),
namely 0.2398 (0.0626).
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Example 2. In their analysis, Woolson and Clarke (1984) first assume that there
are no cohort effects, that is, that the marginal probability of obesity does not
vary between 1977 and 1981 conditionally on the gender and the age group of the
children at the year of the measurement. This can be expressed as a (strictly) linear
model Aθ = Xβ with

A = I10 ⊗
⎛⎝ 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎠ = I10 ⊗
⎛⎝ (0,1) ⊗ 1′

4
1′

2 ⊗ (0,1) ⊗ 1′
2

1′
4 ⊗ (0,1)

⎞⎠
and

X = I2 ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

′

. (6.3)

Woolson and Clarke (1984) propose a quadratic relationship on age for each gen-
der, to obtain a more parsimonious structure, by taking

X = I2 ⊗ (
18,age,age2)

, (6.4)

where age = (6,8,10,8,10,12,10,12,14,12,14,16,14,16,18)′ are the mid-
points of the age intervals and age2 are its squared values. Alternatively, we could
consider a piecewise linear regression model

X = (
130,12 ⊗ (−4,−2,0,−2,0′

11
)′
, (0,1)′ ⊗ 115

)
, (6.5)

where β = (β1, β2, β3)
′, β2 is the linear variation of the probability of obesity

between ages 6 and 10 for boys and girls, β1 is the probability of obesity for boys
assumed constant between 10 and 18 years old, and β3 is the difference between
the probability of obesity for girls and boys assumed constant between ages 6
and 18.

Although we are mainly interested in modelling the marginal probabilities of
obesity, we may consider a reduced structure for the association parameters among
the responses of the same individuals in the longitudinal setting using the log-linear
model ln(θ) = (I10 ⊗ 18)ν + Xβ with

X = (
I10 ⊗ [υ1,υ2,υ3],110 ⊗ [

υ2 ∗ (υ1 + υ3),υ1 ∗ υ3,υ1 ∗ υ2 ∗ υ3
])

, (6.6)

where υ1 = (0,1)′ ⊗ 14, υ2 = 12 ⊗ (0,1)′ ⊗ 12, υ3 = 14 ⊗ (0,1)′, ∗ denotes the
element-wise multiplication, ν contains the parameters associated to the natural
constraints, the first 30 parameters included in β are associated to the marginal
probabilities of obesity, and the last 3 (namely, ϕ1, ϕ2 and ϕ3), to the association
among the repeated measurements, which are assumed homogeneous over gender
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and age levels. Here, ϕ1 corresponds to the association between successive times
(1977–1979 and 1979–1981), ϕ2, between the first and last measurement, and ϕ3
allows these paired associations to vary according the level of the third measure-
ment. A first-order homogeneous Markov chain is a special case of this model and
may be evaluated by the hypothesis ϕ2 = ϕ3 = 0.

Many reanalyses of the Woolson and Clarke (1984) data set (or some subset of
it) have appeared in the literature. Among them, we mention Lipsitz et al. (1994)
and Azzalini (1994). Both considered the MAR assumption; the first compared the
hybrid (ML/WLS) approach with applications of WLS methodology of Koch et al.
(1972) and Woolson and Clarke (1984), and the second constructed separate mod-
els for the marginal outcome and the longitudinal association structure, assuming
a Markovian dependence for the latter.

In the following analyses, we assume the MAR mechanism since QL = 152.6
(p = 0.0237) and QP = 143.9 (p = 0.0680), df = 120, indicate that the MCAR
mechanism may not be reasonable; here we must point out that the asymptotic
tests may be imprecise due to the sparse configuration of the data in Table 2 [there
are 81 (31%) small frequencies (<5), including 17 zeros]. Indeed, this makes the
Neyman statistic (B.2) and WLS methodology of Section 4.2 untrustworthy be-
cause the results vary substantially accordingly to the values chosen to replace the
null frequencies. For instance, substituting zeros by any value smaller than 0.125
generates negative WLS estimates for some probabilities of the saturated model.
Lipsitz et al. (1994) did not mention which strategy they used to substitute null
frequencies to perform the two-stage WLS procedure and we were not able to re-
produce exactly their corresponding results labelled “KO.” The ML approach we
consider here does not require the substitution of zero frequencies. However, as
Newton–Raphson and Fisher’s scoring algorithms do not impose constraints on
the probabilities, some linear models may provide negative estimates in some it-
eration when there are null frequencies. Actually, this happened for models (6.3),
(6.4) and (6.5). For these cases, replacing the null frequencies by 10−6 bypassed
the problem. On the contrary, the hybrid (ML/WLS) approach did not generate
negative estimates for the probabilities; the corresponding results of Lipsitz et al.
(1994), which they labelled “ML,” appear to have used the 10−6 replacement.

Using the ML approach, the log-linear model (6.6) seems to fit well (QL = 37.5,
QP = 24.6, QW = 21.8, df = 37, p > 0.4400), and there is no evidence support-
ing further simplification to a Markovian dependence (QW = 85.3, df = 2). We
proceed by fitting linear models (6.3), (6.4) and (6.5) by WLS methodology using
the ML estimates from the log-linear model (6.6) for θ̃ and Ṽθ̃ of Section 5.2. The
quadratic relationship (6.4) does not appear to fit well (p = 0.0717, df = 24). Lip-
sitz et al. (1994) fitted this linear model by the hybrid methodology without impos-
ing any association structure and obtained p = 0.053, although they would have
obtained p = 0.0972 without replacing the null frequencies. The less restrictive
model (6.3) fits rather well (p = 0.5773, df = 16). Indeed, a careful examination
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of the WLS estimates of this model suggested that the marginal probability of obe-
sity increases between age intervals 5–7 and 9–11, but appears to stabilize from
this point until ages 17–19, and the difference between the probabilities for boys
and girls may be taken as approximately constant in time. Model (6.5) reflects
such behaviour and has an acceptable fit (p = 0.2429, df = 27), with estimates
β̃ = (0.2159,0.0314,0.0252)′ and standard errors (0.0075,0.0031,0.0104)′. The
gender effect for models (6.3) and (6.5), both yielding p = 0.0157 when Wald tests
are considered, are substantially stronger than for model (6.4), p = 0.1042. Again,
without the reduction of the association structure, Lipsitz et al. (1994) obtained
p = 0.098 (this would have been p = 0.1420 if zeros had not been replaced). Re-
placing the null frequencies does not alter any of the results of the linear models
fitted subsequently to the log-linear model.

7 Simulations

A series of simulation studies would be required to assess the properties of all
statistics presented in the last sections in small and moderate sized samples. Par-
simoniously, we focus only on the ML and hybrid (ML/WLS) estimators for the
log-linear model (6.1). For the same reason, we also consider only the MAR as-
sumption, because MNAR models require lengthy evaluations as those considered
in Poleto et al. (2011a), for example.

We generated 10,000 Monte Carlo replicates of product-multinomial distribu-
tions with parameters obtained from the ML fit to the data in Example 1. In Ta-
ble 3, we display the Monte Carlo estimates of the bias, standard deviation (SD)
and mean squared error (MSE) of the estimators of β in (6.1) as well as the mean of
the corresponding standard errors [Mean(SE)], ratio between Mean(SE) and SD,
and 95% coverage probability (CovP).

Table 3 Monte Carlo estimates of the bias, standard deviation (SD) and mean squared error (MSE)
of the estimators of β in (6.1), the mean of the standard errors [Mean(SE)], ratio between Mean(SE)
and SD, and 95% coverage probability (CovP)

N++ Approach Bias SD MSE Mean(SE) Mean(SE)/SD 95% CovP

(100, 100) ML 0.0053 0.1823 0.0333 0.1720 0.944 0.954
hybrid 0.0501 0.1622 0.0288 0.1857 1.145 0.975

(200, 200) ML 0.0020 0.1185 0.0141 0.1173 0.989 0.956
hybrid 0.0224 0.1105 0.0127 0.1205 1.090 0.970

(661, 477) ML 0.0018 0.0693 0.0048 0.0687 0.990 0.948
hybrid 0.0078 0.0676 0.0046 0.0692 1.023 0.953

(10,000, 10,000) ML 0.0001 0.0162 0.0003 0.0161 0.993 0.948
hybrid 0.0004 0.0162 0.0003 0.0161 0.995 0.949
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The bias of the ML estimator is between 4 to 10 times smaller than that obtained
via the hybrid approach, but the SD and MSE obtained via ML are unexpectedly
larger than the corresponding ones produced via the hybrid approach; this is also
true for the largest sample size, although the difference has a smaller magnitude.
These differences decrease when the sample size increases. It is also curious that
for the smaller sample sizes, the Mean(SE) is larger than the SD when the hybrid
estimator is considered. This may have avoided the anticipated decrease of the
95% CovP in these cases. Although we do not expect that in general, the hybrid
approach will always generate smaller MSEs than the ML procedure nor that the
confidence intervals of the hybrid approach will usually behave conservatively, our
results suggest that this methodology, indeed, may have an acceptable behaviour
in some cases.

8 Concluding remarks

We present a unified matrix notation to describe methods for fitting functional
linear models to product-multinomial data when there are missing responses and
develop computational subroutines for such purposes. Strictly linear and log-
linear models assuming MAR and MCAR mechanisms are considered under ML
methodology. More general functional linear models are treated via a WLS ap-
proach under a more restrictive MCAR assumption. Greater flexibility is achieved
via a hybrid strategy, where relatively simple (e.g., saturated) models for the mea-
surement process are fitted in the first step via ML under MCAR, MAR or MNAR
missingness mechanisms, and the estimated marginal probabilities of categoriza-
tion and their covariance matrix are used in a second step to fit more general func-
tional linear models via WLS. Here, the unique additional programming effort ap-
pears in the first step under MNAR mechanisms, where the user needs to employ
built-in optimization functions to obtain ML estimates.

The inferential framework described by Paulino (1991) is a special case of ours
when there are no explanatory variables (subpopulations), that is, S = 1, and the
number of linear and log-linear functions to be modelled and fitted via ML is equal
to the number of parameters of the multinomial distribution, that is, the number
of rows of A in (5.1) and (5.9) are u = R − 1. Hence, our extension allows the
handling of explanatory variables and parameters that are common to several sub-
populations, as well as the fitting of larger classes of linear and log-linear models
via the ML methodology.

We illustrated the methodology with two examples under a MAR assumption
and one under a MNAR model. As there is no way to decide among saturated
MAR and MNAR mechanisms merely on statistical grounds (Molenberghs et al.,
2008), sensitivity analyses should be considered. An informal route is to fit and
compare different meaningful MNAR models. A more formal strategy, adopted
by Kenward et al. (2001), is to consider over-parameterized missingness models.
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The so-called sensitivity parameters are then replaced by known values to enable
the estimation of the remaining parameters. These are repeatedly estimated for
a series of fixed values of the former. The union of the estimates results in the
so-called ignorance region, and the union of the credible regions, in the so-called
uncertainty region. Vansteelandt et al. (2006) indicate three methods for construct-
ing the uncertainty regions and also provide appropriate definitions of consistency
and coverage. Both kinds of sensitivity analyses can be conducted in combina-
tion with the hybrid (ML/WLS) approach using the same principle described for
the MNAR mechanism. This was performed for Example 1 in Poleto (2006) and
raised some difficulties with the conclusion that maternal smoking is associated to
wheezing in children. When there is prior information or when classical sensitivity
analysis is not feasible due to a large number of sensitivity parameters, a Bayesian
framework may offer advantages, as Poleto et al. (2011b) indicate. However, these
authors showed that both approaches have subjective components that can impact
results in nontrivial ways, and therefore, a careful evaluation is indispensable.

Our simulations suggested that the hybrid approach may be a viable alternative
to the ML methodology in certain cases when the latter cannot be easily employed.
Although additional simulation studies are required to improve our understanding
of the scenarios where the hybrid strategy may (or not) be adequate, general rules
usually cannot be formulated. When MNAR mechanisms are considered, Poleto
et al. (2011a) showed that ML estimators and likelihood ratio tests have undesir-
able asymptotic properties either if estimates of the conditional probabilities of
missingness are on the boundary of the parameter space, or if the parameters of
saturated models are nonidentifiable; even in standard cases the bias may be low
only for large sample sizes (500 to 20,000), but it was always smaller than the
naive analysis based on the units with no missing data, if the MNAR model is cor-
rectly specified. The same behaviour is likely shared by the hybrid approach due
to the use of the ML methodology in the first step.

The saturated models considered for Examples 1 and 2 include, respectively,
18 and 80 marginal probabilities of categorization (S × R). This illustrates that
the number of parameters increases exponentially with the number of variables.
The formulation of models becomes naturally more complex with the increasing
number of parameters, but poses no additional computational difficulties; the al-
gorithm takes, in general, less than a second to converge. Fitting models to sparse
tables, however, might bring in some problems as we mentioned in the discussion
of Example 2 in Section 6.

Appendix A: Fisher information matrices

A.1 Saturated models for the marginal probabilities of categorization

The expectation of −H(θ), using (4.5), (4.7) and (4.8), lead to the Fisher infor-
mation matrices under the MAR and the MCAR mechanisms corresponding to θ ,
denoted by I(θ , {αMAR

st }) and I(θ , {αMCAR
st }), which are block diagonal matrices
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with blocks respectively, given by

Is

(
θ s,

{
αMAR

st

})
= ns++

Ts∑
t=1

Zst

(
DαMAR

st
D−1

θ st
+ αt(sRts)

1 − 1′
Rst−1θ st

1Rst−11′
Rst−1

)
Z

′
st , (A.1)

s = 1, . . . , S,

where αMAR
st = (IRst−1,0Rst−1)α

MAR
st = (αt(cs), c = 1, . . . ,Rst −1)′, s = 1, . . . , S,

t = 1, . . . , Ts and

Is

(
θ s,

{
αMCAR

st

})
= ns++

Ts∑
t=1

αt(s)Zst

(
D−1

θ st
+ 1

1 − 1′
Rst−1θ st

1Rst−11′
Rst−1

)
Z

′
st , (A.2)

s = 1, . . . , S.

A.2 Log-linear models for the marginal probabilities of categorization

The Fisher information matrix under the M (MAR or MCAR) mechanism for the
log-linear model discussed in Section 5.1 is expressed as

ILL

(
β,

{
αM

st

}) =
S∑

s=1

X′
s

[
ns++IR −

Ts∑
t=2

(
DvM

st
− DwM

st
ZstZ′

st

)]
(A.3)

× {
Dθ s (β) − θ s(β)

[
θ s(β)

]′}Xs,

where

vMAR
st = ns++Zstα

MAR
st , wMAR

st = ns++Dθ s (β)ZstD
−1
Z′

stθ s (β)
αMAR

st ,

vMCAR
st = ns++αt(s)1R, wMCAR

st = ns++αt(s)Dθ s (β)ZstD
−1
Z′

stθ s (β)
1Rst .

Appendix B: Additional goodness-of-fit statistics

B.1 Saturated models for the marginal probabilities of categorization

The Pearson and Neyman statistics for testing MCAR conditionally on the MAR
mechanism in Section 4.1 are

QP (MCAR|MAR) =
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − nst+z′
stcθ̂ s)

2

nst+z′
stcθ̂ s

(B.1)

=
S∑

s=1

(
ps − Z′

s θ̂ s

)′(DNs+D−1
Z′

s θ̂ s

)(
ps − Z′

s θ̂ s

)
,
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QN(MCAR|MAR) =
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − nst+z′
stcθ̂ s)

2

nstc

(B.2)

=
S∑

s=1

(
ps − Z′

s θ̂ s

)′(DNs+D−1
ps

)(
ps − Z′

s θ̂ s

)
,

where Ns+ = (nst+ ⊗ 1′
Rst

, t = 1, . . . , Ts)
′ is the vector with the same dimension

as Ns that contains the total observed frequencies of units with each missingness
pattern in the sth subpopulation sequentially repeated according to the number of
classes in each pattern (note that ps = D−1

Ns+Ns).

B.2 Unsaturated models for the marginal probabilities of categorization

In Section 5.1, the Pearson and Neyman statistics for testing (M,MCAR) condi-
tionally on the MAR mechanism, where M is ML or MLL, are

QP (M,MCAR|MAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − nst+z′
stcθ̂ s(M))2

nst+z′
stcθ̂ s(M)

(B.3)

=
S∑

s=1

(
ps − Z′

s θ̂ s(M)
)′(DNs+D−1

Z′
s θ̂ s (M)

)(
ps − Z′

s θ̂ s(M)
)
,

QN(M,MCAR|MAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − nst+z′
stcθ̂ s(M))2

nstc

(B.4)

=
S∑

s=1

(
ps − Z′

s θ̂ s(M)
)′(DNs+D−1

ps

)(
ps − Z′

s θ̂ s(M)
)
.

The corresponding statistics for testing M conditionally on the MAR or on the
MCAR mechanisms are

QP (M|MAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − ns++z′
stcθ̂ s(M)α̂t (cs))

2

ns++z′
stcθ̂ s(M)α̂t (cs)

(B.5)

=
S∑

s=1

(
Z′

s

[̂
θ s − θ̂ s(M)

])′(DNs
D−1

Z′
s θ̂ s

D−1
Z′

s θ̂ s (M)

)(
Z′

s

[̂
θ s − θ̂ s(M)

])
,
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QN(M|MAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nstc − ns++z′
stcθ̂ s(M)α̂t (cs))

2

nstc

(B.6)

=
S∑

s=1

(
1R+ls − D−1

Z′
s θ̂ s

Z′
s θ̂ s(M)

)′DNs

(
1R+ls − D−1

Z′
s θ̂ s

Z′
s θ̂ s(M)

)
,

QP (M|MCAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nst+z′
stcθ̂ s − nst+z′

stcθ̂ s(M))2

nst+z′
stcθ̂ s(M)

(B.7)

=
S∑

s=1

(
Z′

s

[̂
θ s − θ̂ s(M)

])′(DNs+D−1
Z′

s θ̂ s (M)

)(
Z′

s

[̂
θ s − θ̂ s(M)

])
,

QN(M|MCAR)

=
S∑

s=1

Ts∑
t=1

Rst∑
c=1

(nst+z′
stcθ̂ s − nst+z′

stcθ̂ s(M))2

nst+z′
stcθ̂ s

(B.8)

=
S∑

s=1

(
Z′

s

[̂
θ s − θ̂ s(M)

])′(DNs+D−1
Z′

s θ̂ s

)(
Z′

s

[̂
θ s − θ̂ s(M)

])
,

where α̂t (cs) = nstc/(ns++z′
stcθ̂ s).

The Wald statistics for testing the goodness-of-fit of model ML or model MLL

conditionally on the missingness mechanism M (MAR or MCAR) are, respec-
tively

QW(ML|M) = (UAθ̂)′
(
UAV̂M

θ̂
A′U′)−1UAθ̂ , (B.9)

QW(MLL|M) = (
ULA ln(̂θ)

)′(UAD−1
θ̂

V̂M
θ̂

D−1
θ̂

A′U′)−1ULA ln(̂θ). (B.10)

Asymptotically, under the model M and the MAR mechanism

QL(M)
a≈ QP (M|MAR)

a≈ QN(M|MAR)
a≈ QW(M|MAR)

a−→ χ2
(u−p)

and, additionally under the MCAR mechanism,

QP (M|MCAR)
a≈ QN(M|MCAR)

a≈ QW(M|MCAR)
a−→ χ2

(u−p),

QL(M,MCAR|MAR)
a≈ QP (M,MCAR|MAR)

a≈ QN(M,MCAR|MAR)
a−→ χ2

(u−p+g).
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Appendix C: Augmentation of models

C.1 Linear models

For the (strictly) linear model (5.3), when u < S(R − 1), we need to augment the
model to ⎛⎝ A

IS ⊗ 1′
R

A0

⎞⎠ θ =
⎛⎝ Xβ

1S

β0

⎞⎠ , (C.1)

with an [S(R−1)−u]×SR matrix A0, basis of the orthocomplement of the vector
space generated by (A′, IS ⊗ 1R)′. This formulation encompasses the former, but
has S(R −1)−u additional nuisance parameters, β0. This requires us to substitute
(5.4) and (5.5), respectively, by

θ(β,β0) = [
IS ⊗ (IR−1,0R−1)

]⎛⎝ A
IS ⊗ 1′

R

A0

⎞⎠−1 ⎛⎝ Xβ
1S

β0

⎞⎠ (C.2)

and

W = [
IS ⊗ (IR−1,0R−1)

]⎛⎝ A
IS ⊗ 1′

R

A0

⎞⎠−1 ⎛⎝ X 0u,S(R−1)−u

0S,p 0S,S(R−1)−u

0S(R−1)−u,p IS(R−1)−u

⎞⎠ . (C.3)

In (5.6), we also need to replace A by (A′,A′
0)

′ and X by(
X 0u,S(R−1)−u

0S(R−1)−u,p IS(R−1)−u

)
. (C.4)

C.2 Log-linear models

For the (generalized) log-linear model (5.9), when u < S(R − 1), we must include
a basis of the orthocomplement of the vector space generated by (A′, IS ⊗ 1R)′,
that is, an [S(R − 1) − u] × SR matrix A0 such that the model

MLL :
(

A
A0

)
ln(θ) =

(
XLβ
β0

)
(C.5)

may be re-expressed in the form (5.7) as

MLL : ln(θ) = (IS ⊗ 1R)ν + (
A′(AA′)−1XL,A′

0
(
A0A′

0
)−1)(

β
β0

)
. (C.6)

In (5.12), we need to substitute A by (A′,A′
0)

′ and XL by(
XL 0u,S(R−1)−u

0S(R−1)−u,p IS(R−1)−u

)
. (C.7)
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