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Abstract. Linear regressions fitted to cross-sectional data oftentimes display
heteroskedasticity, that is, error variances that are not constant. A common
modeling strategy consists of estimating the regression parameters by ordi-
nary least squares and then performing hypothesis testing inference using
standard errors that are robust to heteroskedasticity. These tests have the cor-
rect size asymptotically regardless of whether the error variances are constant.
In finite samples, however, they can be quite size-distorted. In this paper, we
propose new heteroskedasticity-consistent covariance matrix estimators that
deliver more reliable testing inferences in samples of small sizes.

1 Introduction

The linear regression model is commonly used by practioners in empirical analyses
in fields such as chemistry, economics, finance, medicine, physics, among others.
An assumption that is frequently violated is that of homoskedasticity, that is, the
assumption that all errors share the same variance. Standard hypothesis tests (e.g.,
the usual t test) do not have the correct size when the errors are heteroskedas-
tic, nor even asymptotically, since they are based on an inconsistent covariance
matrix estimator. Several heteroskedasticity-robust standard errors were proposed
in the literature, the most commonly employed being that obtained from White’s
(1980) covariance matrix estimator. Halbert White proposed an estimator for the
covariance matrix of the vector of regression parameters least squares estimator
that is consistent under both homoskedasticity and heteroskedasticity of unknown
form. Using his estimator, one can perform hypothesis testing inference that is
asymptotically correct in the sense that the type I error probability will approach
the selected nominal size as the sample size grows. Nonetheless, White’s (1980)
estimator, which we shall denote by HC0, is typically quite biased and can de-
liver unreliable testing inference in small to moderately large samples, more so
under leveraged data. Several alternatives were proposed in the literature, such as
the HC1 (Hinkley, 1977), HC2 (Horn, Horn and Duncan, 1975), HC3 (Davidson
and MacKinnon, 1993), HC4 (Cribari-Neto, 2004) and HC5 (Cribari-Neto, Souza
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and Vasconcellos, 2007) estimators. These alternative estimators include finite-
sample corrections and their associated tests are typically less size-distorted than
the HC0-based test. Bias-corrected variants of White’s estimator were obtained by
Cribari-Neto, Ferrari and Cordeiro (2000) and by Qian and Wang (2001); see also
Cribari-Neto and Lima (2010).

Under heteroskedasticity, the ordinary least squares estimator of the vector of
regression parameters is no longer efficient in the class of linear and unbiased es-
timators, but it remains unbiased, consistent and asymptotically normal. A t test
in which the usual least squares standard error in the test statistic is replaced by
a heteroskedasticity-robust standard error is said to be a “quasi-t” test. Since the
variance estimator is consistent, the test statistic null distribution converges to the
standard Gaussian distribution N (0,1). The test can then be based on standard
normal (asymptotic) critical values. These critical values are used as an approxi-
mation to the (unknown) exact critical values. As a result, size distortions are likely
to occur in finite samples. Such distortions are typically more pronounced when
the data contain high leverage observations (Chesher and Jewitt, 1987). In particu-
lar, the HC0 (White) estimator tends to be “optimistic” (positively biased) and the
HC0-based test tends to be liberal (anticonsertative). Long and Ervin (2000) rec-
ommend the use of the HC3-based test whereas the numerical evidence in Cribari-
Neto (2004) favors HC4-based testing inference.

The chief purpose of this paper is to propose alternative heteroskedasticity-
consistent covariance matrix estimators. As shown by our numerical evaluations,
the proposed estimators deliver more reliable finite sample testing inference in
small samples under both homoskedasticity and unequal error variances. The pro-
posed estimators are based on a class of consistent estimators given in Cribari-Neto
and Lima (2010). They are sandwich-like estimators: a slice of bread (involving
the matrix of covariates), meat (involving squared regression residuals, which are
taken as estimators for the underlying unknown variances) and another slice of
bread (the transpose of the first slice of bread). Unlike the estimators of Cribari-
Neto and Lima (2010), our estimators include finite sample correction factors in
both the “bread” and the “meat.” As a result, the proposed estimators yield more
reliable testing inference in small samples and under leveraged data in the sense
that hypothesis tests whose statistics employ standard errors obtained from them
have small size distortions in small samples, even when the data contain high lever-
aged observations. The results of numerical evaluations we present clearly favor
hypothesis testing inference based on two estimators we propose. Inferences drawn
from tests whose statistics employ standard errors from such estimators are consid-
erably more reliable than those drawn from tests based on competing estimators,
including tests based on the estimators of Cribari-Neto and Lima (2010). For ex-
ample, in the first numerical evaluation discussed Section 4 the null rejection rate
of the test based on White’s estimator (HC0) at the 5% nominal level under strong
heteroskedasticity exceeds 40% (eight times the nominal level!) whereas our best
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performing test displays nearly correct size (4%). This is a substantial improve-
ment.

The paper unfolds as follows. Section 2 introduces the regression model and
some covariance matrix estimators that are consistent under both homoskedas-
ticity and heteroskedasticity of unkown form. New heteroskedasticity-consistent
covariance matrix estimators are proposed in Section 3. Section 4 contains the re-
sults of several numerical evaluations. As we shall see, the numerical evidence
favors hypothesis testing inference based on the estimators proposed in this paper.
Such tests display better control of the type I error probability than competing tests
(e.g., HC0, HC3 and HC4 tests and also the tests based on the estimators proposed
in Furno, 1996 and Cribari-Neto and Lima, 2010). Finally, Section 5 offers some
concluding remarks.

2 The model and heteroskedasticity-robust standard errors

The linear regression model is written as y = Xβ + ε, where y and ε are n-vectors
of responses and errors, respectively, X is an n × p matrix of fixed regressors
(rank(X) = p < n) and β = (β1, . . . , βp)′ is a p-vector of unknown regression
parameters, n being the sample size, that is, the number of observations in the
sample. Each error εi has mean zero, variance 0 < σ 2

i < ∞, i = 1, . . . , n, and is
uncorrelated with εj whenever j �= i. The errors covariance matrix is thus � =
cov(ε) = diag{σ 2

1 , . . . , σ 2
n }.

Estimation of β can be carried out by ordinary least squares (OLS), the resulting
estimator being β̂ = (X′X)−1X′y. Its covariance matrix is � = cov(β̂) = P�P ′,
where P = (X′X)−1X′. Under homoskedasticity, σ 2

i = σ 2, i = 1, . . . , n, where
σ 2 > 0, and hence � = σ 2(X′X)−1. The covariance matrix � can then be eas-
ily estimated as �̂ = σ̂ 2(X′X)−1, where σ̂ 2 = (y − Xβ̂)′(y − Xβ̂)/(n − p) =
ε̂′̂ε/(n − p). The vector of least squares residuals is given by ε̂ = (̂ε1, . . . , ε̂n)

′ =
(I − H)y, where H = X(X′X)−1X′ = XP and I is the n × n identity matrix. (H
is known as “the hat matrix,” since the Hy yields ŷ, the vector of fitted values.)

When the errors are heteroskedastic, one can use the OLSE of β coupled with a
consistent covariance matrix estimator in order to perform hypothesis testing infer-
ence. In an influential paper, White (1980) obtained a consistent estimator for � .
His estimator is consistent under both homoskedasticity and heteroskedasticity of
unknown form, and can be written as

HC0 = �̂0 = P�̂P ′,

where �̂ = diag{̂ε2
1, . . . , ε̂

2
n}. Using HC0, one can then obtain standard errors for

the parameter estimates that are robust against heteroskedasticity. A noteworthy
shortcoming of HC0 lies in its finite-sample behavior: HC0 is typically quite bi-
ased, especially when the data contain high leverage points; see, for example,
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Chesher and Jewitt (1987). In particular, HC0 tends to understimate the true vari-
ances and, as a result, associated hypothesis tests tend to be considerably liberal
when the sample size is small.

Several variants of White’s estimators were proposed in the literature; for in-
stance, HCs = �̂s = P�̂sP

′, for s = 1, . . . ,4, where �̂s is a diagonal matrix of
the form {̂ε2

1/δ1, . . . , ε̂
2
n/δn}. For HC1, δi = (n − p)/n; for HC2, δi = 1 − hi ;

for HC3, δi = (1 − hi)
2 and for HC4, δi = (1 − hi)

γi , with γi = min{4, nhi/p}
(i = 1, . . . , n). Here, hi denotes the ith diagonal element of H .

A sequence of bias-corrected HC0 estimators was derived by Cribari-Neto, Fer-
rari and Cordeiro (2000). They used an iterative bias correction mechanism. Their
chain of estimators was obtained by correcting HC0, then correcting the resulting
adjusted estimator, and so on. Let (A)d denote the diagonal matrix obtained by set-
ting the nondiagonal elements of the square matrix A equal to zero and consider
the following recursive function of an n × n diagonal matrix A:

M(k+1)(A) = M(1)(M(k)(A)
)
, k = 0,1, . . . ,

where M(0)(A) = A, M(1)(A) = {HA(H − 2I )}d . It can be shown that

E(�̂) = {
(I − H)�(I − H)

}
d = M(1)(�) + �. (2.1)

Therefore, the biases of �̂ and �̂ as estimators of � and � are

B�̂(�) = E(�̂) − � = {
H�(H − 2I )

}
d = M(1)(�)

and

B�̂(�) = E(�̂) − � = PB�̂(�)P ′.
Cribari-Neto, Ferrari and Cordeiro (2000) defined the following bias-corrected

estimator:

�̂(1) = �̂ − B�̂(�̂).

This estimator can be adjusted for bias as well: �̂(2) = �̂(1) − B�̂(1) (�̂). After k

iterations of the bias-correcting scheme one obtains �̂(k) = �̂(k−1) − B�̂(k−1) (�̂).

The authors have shown that the kth order bias-corrected estimator and its bias
can be written as �̂(k) = ∑k

j=0(−1)jM(j)(�̂) and B�̂(k)(�) = (−1)kM(k+1)(�),
for k = 1,2, . . . . They then defined a sequence of bias-corrected covariance matrix
estimators as {�̂(k), k = 1,2, . . .}, where �̂(k) = P�̂(k)P ′. The bias of �̂(k) is
B�̂(k)(�) = (−1)kPM(k+1)(�)P ′, k = 1,2, . . . .

They have shown also that the bias of HC0 is B�̂(�) = PB�̂(�)P ′ = O(n−2)

and B�̂(k)(�) = O(n−(k+2)). That is, the bias of the kth corrected estimator is of
order O(n−(k+2)), whereas the bias of Halbert White’s estimator is O(n−2).

Yet another alternative estimator was proposed by Qian and Wang (2001). Let
K = (H)d = diag{h1, . . . , hn} and let Ci = X(X′X)−1x′

i denote the ith column of
H , xi being the ith row of X. Define

D(1) = diag{di} = diag
{(̂

ε2
i − b̂i

)
gii

}
,
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where gii = (1 + C′
iKCi − 2h2

i )
−1

and b̂i = C′
i (�̂ − 2̂ε2

i I )Ci. The Qian–Wang
estimator can be written as

V̂ (1) = PD(1)P ′.

Cribari-Neto and Lima (2010) have shown that

D(1) = [
�̂ − {

H�̂(H − 2I )
}
d

]
G,

where

G = {I + HKH − 2KK}−1
d .

They then derived a sequence of bias-corrected covariance matrix estimators that
starts at V̂ (1).

An estimator that does not employ OLS residuals was proposed by Furno
(1996). It is given by

HC0R = (
X′WX

)−1
X′W�̂RWX

(
X′WX

)−1
,

where W is an n × n diagonal matrix whose ith diagonal element is wi =
min(1, c/hi). She suggests using c = 1.5p/n. Here,

�̂R = diag
{
ẽ2

1, . . . , ẽ
2
n

}
, (2.2)

where ẽi is the ith weighted least squares residual. A robustified HC3-like
estimator (HC3R) is obtained by replacing �̂R in (2.2) by �̂3R = diag{̃e1/

(1 − h∗
1)

2, . . . , ẽn/(1 − h∗
n)

2}, where h∗
i is the ith diagonal element of√

WX(X′WX)
−1

X′√W .

3 New covariance matrix estimators

In what follows, we shall propose new heteroskedasticity-consistent covariance
matrix estimators. At the outset, note that Halbert White’s HC0 estimator can be
written as

HC0 = �̂0 = P�̂0P
′ = PD0�̂P ′,

where D0 = I . Additionally, note that

(i) HC1 = �̂1 = P�̂1P
′ = PD1�̂P ′, D1 = (n/(n − p))I ;

(ii) HC2 = �̂2 = P�̂2P
′ = PD2�̂P ′, D2 = diag{1/(1 − hi)};

(iii) HC3 = �̂3 = P�̂3P
′ = PD3�̂P ′, D3 = diag{1/(1 − hi)

2};
(iv) HC4 = �̂4 = P�̂4P

′ = PD4�̂P ′, D4 = diag{1/(1 − hi)
γi } and γi = min{4,

nhi/p}.
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In what follows, we shall denote these estimators by HCs, s = 0,1,2,3,4.
We have seen in (2.1) that E(�̂) = M(1)(�) + �. Then,

E(�̂s) = E(Ds�̂) = DsE(�̂) = DsM
(1)(�) + Ds�

and

B�̂s
(�) = E(�̂s) − � = DsM

(1)(�) + (Ds − I )�.

Cribari-Neto and Lima (2010) introduced the following estimator:

�̂(1)
s = P�̂(1)

s P ′,

where �̂
(1)
s = �̂s − B�̂s

(�̂) = �̂ − DsM
(1)(�̂). Thus,

E
(
�̂(1)

s

) = E(�̂) − DsM
(1)(

E(�̂)
)

= M(1)(�) − DsM
(1)(�) + � − DsM

(2)(�).

Hence, under homoskedasticity, E(�̂
(1)
s ) = σ 2As , where As = (I −K)+Ds{K +

HKH − 2KK}d .
It then follows that the expected value of �̂

(1)
s when � = σ 2I (homoskedastic

errors) is given by E(�̂
(1)
s ) = E(P �̂

(1)
s P ′) = σ 2PAsP

′. They then proposed a
second estimator:

�̂sA = P�̂(1)
s A−1

s P ′, (3.1)

which is unbiased under equal error variances: E(�̂sA) = E(P �̂
(1)
s A−1

s P ′) = �.

It is noteworthy that the Qian-Wang estimator introduced in Section 2 is a par-
ticular case of �̂sA; it is obtained by setting s = 0, that is, when D0 = I . Note that
A0 = G−1.

We shall now introduce two new classes of heterokedasticity-consistent covari-
ance matrix estimators. They are based on the estimators proposed by Cribari-Neto
and Lima (2010). Our estimators use the “meat” of such estimators, but employ
different slices of “bread.” The motivation behind them is that the “bread” should
also include finite sample corrections based on the different leverage measures, as
it is done in the “meat.” The corrections we employ are different from that used
by Furno (1996); they are similar to the corrections used in “meat” of the HC2,
HC3 and HC4 estimators. We also note that, unlike Furno’s (1996) estimator, the
estimators we propose use standard OLS residuals.

Our first class of estimators is given by

�̂δ
s = PδDs�̂P ′

δ = Pδ�̂sP
′
δ, (3.2)

where Ds is as in the definition of HCs, s = 0, . . . ,4, Pδ = (X′DδX)
−1

X′ and
Dδ = diag{(1 − h1)

δ, . . . , (1 − hn)
δ}, 0 ≤ δ ≤ 1. Our second class of estimators is

�̂δ
sA = Pδ�̂

(1)
s A−1

s P ′
δ. (3.3)
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It is defined using the “meat” of estimator �̂sA, which is given in (3.1). It is note-
worthy that none of our estimators is unbiased under homoskedasticity, unlike
the estimator in (3.1), since we modified the bread part of the estimator by mak-
ing it include a finite sample correction factor. The well known HCs estimators
(s = 0, . . . ,4) are special cases of (3.2); these estimators are obtained by setting
δ = 0. Likewise, the estimators in (3.1) proposed by Cribari-Neto and Lima (2010)
are obtained as special cases of the estimators given in (3.3) when δ = 0. As we
shall see in the next section, values of δ between 0.5 and 1.0 usually yield reliable
inferences in small samples.

Heteroskedasticity-consistent covariance matrix estimators are typically used to
perform testing inferences on the parameters that index the regression model. As
noted earlier, heteroskedasticity-robust standard errors (square roots of the diago-
nal elements) are used in quasi-t test statistics. The resulting tests have the correct
size asymptotically regardless of whether or not the error variances are constant.
The results of numerical evaluations that compare the finite sample performances
of different quasi-t tests are presented in the next section.

4 Numerical results

We shall now present Monte Carlo simulation results on the finite-sample perfor-
mance of hypothesis tests based on different heteroskedasticity-consistent standard
errors. We shall consider quasi-t tests whose statistics employ standard errors ob-
tained from the following estimators: OLS (i.e., σ̂ 2(X′X)−1), HC0 (White, 1980),
HC0R (Furno, 1996), HC3 (Davidson and MacKinnon, 1993), �̂0.5

3 , HC4 (Cribari-
Neto, 2004), �̂0.5

4 , �̂4A (Cribari-Neto and Lima, 2010), �̂3A (Cribari-Neto and
Lima, 2010), �̂0.5

4A , �̂0.5
3A , �̂0.8

4A and �̂0.8
3A . Note that the estimators �̂0.5

3 , �̂0.5
4 , �̂0.5

4A ,
�̂0.5

3A , �̂0.8
4A and �̂0.8

3A were introduced in Section 3. Superscripts indicate the value
of δ used: δ = 0.5 and δ = 0.8. In what follows, we shall denote the maximal
leverage by hmax, that is, hmax = max(h1, . . . , hn). In each simulation scenario,
we report the ratio between hmax and 3p/n; the latter is generally used as a thresh-
old for identifying leverage points. In all simulations, the errors are uncorrelated
and normally distributed.

The first numerical evaluation uses the following regression model: yi = β1 +
β2xi + σiεi , i = 1, . . . , n. Each random error εi has mean zero and unit variance;
here, σ 2

i = exp{αxi}. The covariate values are n equally spaced points between
zero and one. The sample size is set at n = 40. We gradually increase the last
covariate value (x40) in order to increase the maximal leverage. We set α at differ-
ent values in order to vary the heteroskedasticity strength, which we measure as
λ = max{σ 2

i }/min{σ 2
i }, i = 1, . . . , n. Under homoskedasticity, λ = 1; otherwise,

λ > 1. The interest lies in testing H0 :β2 = 0. The null hypothesis is rejected at
nominal level η if τ = (β̂2 − 0)2/v̂ar(β̂2) is greater than χ2

1,1−η, the 1 − η χ2
1

quantile. The variance estimate in the test statistic denominator is obtained from
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a heteroskedasticity-consistent covariance matrix estimator.1 Data generation was
performed using β1 = 1, β2 = 0 and normal errors. All simulations were carried
out using the OX matrix programming language (Doornik, 2006) and are based on
10,000 replications. We use the threshold value 3p/n to identify leverage points.
The null rejection rates of the different quasi-t tests at the 5% nominal level are
presented in Table 1.

The figures in Table 1 show that HC0-based tests can be quite liberal, espe-
cially under heavily leveraged data. For instance, under the strongest leverage and
λ ≈ 49, the null rejection rate of the test (at the 5% nominal level) exceeds 42%.
The same holds true for the test that employs the standard error proposed by Furno
(1996), which also incorrectly rejects the null hypothesis in excess of 42%. The
HC3 test is liberal and the HC4 test is conservative under leveraged data and het-
eroskedasticity (9.75% and 3.47%, respectively, when λ ≈ 49 and the leverage ra-
tio equals 3.73). It is noteworthy that the test based on our HC3 variant (�̂0.5

3 ) out-
performs the HC3 test; under the same conditions, its null rejection rate is 5.48%.
We also note the excellent finite sample behavior of the test based on another es-
timator proposed in this paper, namely: �̂0.8

4A (corresponding null rejection rate:
4.18%).

The following regression model was used in our second numerical evaluation:
yi = β1 + β2x2i + β3x3i + β4x

2
3i + σiεi , i = 1, . . . , n. The ith error has mean zero

and unit variance, and σ 2
i = exp{αx2i}. The covariate values are obtained as n = 40

random draws from the standard lognormal distribution. Data generation was car-
ried out under both homoskedasticity (λ = 1) and heteroskedasticity (λ ≈ 9 and
λ ≈ 50); the errors are normally distributed. Here, hmax/(3p/n) = 2.475 (lever-
aged data). The interest lies in testing H0 :β4 = 0 against H1 :β4 �= 0. The param-
eter values were set at β1 = β2 = β3 = 1 and β4 = 0. The null rejection rates of the
different quasi-t tests are given in Table 2.

The figures in Table 2 show that the HC0 test is liberal, although not as much as
in the previous numerical evaluation. Its null rejection rates at the 5% nominal level
range from 9.52% to 11.90%. The test based on Furno’s (1996) estimator, HC0R ,
displays good finite sample behavior (null rejection rates ranging from 5.53% to
6.66%). It is interesting to note that the HC3 and HC4 tests are quite conservative,
especially the latter (null rejection rates around 1%). It is also noteworthy that the
best overall performance once again belongs to the test based on �̂0.8

4A , whose null
rejection rates at the 5% nominal level range from 3.94% to 4.46%. The test based
on �̂0.5

4A also performs well.
The next set of simulations is based on the following regression model:

yi = β1 + β2xi + β3x
2
i + σiεi, i = 1, . . . ,50.

1We also consider the test in which this variance is obtained from the standard OLS estimator,

namely σ̂ 2(X′X)−1. Note that this test does not have the correct size asymptotically.
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Table 1 Null rejection rates at the 5% nominal level of quasi-t tests with covariate values chosen as a sequence of equally spaced points in the standard
unit interval; the last point is gradually increased in order to increase the maximal leverage; here 3p/n = 0.15

λ hmax/(3p/n) OLS HC0 HC0R HC3 �̂0.5
3 HC4 �̂0.5

4 �̂4A �̂3A �̂0.5
4A �̂0.5

3A �̂0.8
4A �̂0.8

3A

1 0.64 4.91 7.2 6.75 5.59 4.68 5.96 5.11 6.41 6.42 5.60 5.60 5.08 5.07
1.70 4.73 8.09 5.25 5.71 4.44 5.04 3.95 7.66 7.38 6.30 6.04 5.61 5.25
3.73 4.79 13.75 1.91 7.03 3.24 3.31 1.58 7.87 14.01 5.72 9.80 4.79 8.23

≈ 9 0.64 6.88 7.90 7.84 5.90 4.97 6.37 5.46 6.80 6.80 5.89 5.89 5.33 5.33
1.70 11.52 10.89 11.29 7.16 5.81 5.70 4.58 9.10 8.99 7.60 7.44 6.80 6.62
3.73 28.15 30.11 18.00 11.58 6.43 4.81 2.65 9.89 14.10 6.76 9.98 5.28 8.13

≈ 49 0.64 9.89 8.54 8.63 6.48 5.54 6.88 5.98 7.24 7.24 6.40 6.40 5.87 5.87
1.70 22.36 12.05 19.53 7.06 5.76 4.99 3.90 8.91 8.89 7.29 7.20 6.50 6.40
3.73 53.62 42.54 42.02 9.75 5.48 3.47 2.21 8.34 11.38 5.31 7.58 4.18 6.10
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Table 2 Null rejection rates at the 5% nominal level of quasi-t tests with covariate values obtained
as n = 40 random draws from the standard lognormal distribution; here hmax/(3p/n) = 2.475

λ OLS HC0 HC0R HC3 �̂0.5
3 HC4 �̂0.5

4 �̂4A �̂3A �̂0.5
4A �̂0.5

3A �̂0.8
4A �̂0.8

3A

1 5.00 11.90 6.66 3.87 1.74 1.20 0.52 8.70 8.40 5.24 4.94 4.46 4.01
≈ 9 2.91 11.07 6.35 3.73 1.59 1.11 0.48 8.19 8.06 5.16 4.88 4.49 4.05
≈ 50 1.39 9.52 5.53 2.88 1.17 0.93 0.31 7.07 7.00 4.50 4.22 3.94 3.42

Table 3 Null rejection rates at the 5% nominal level of quasi-t tests with covariate values chosen
as per capita spending on public schools in the USA

n λ OLS HC0 HC0R HC3 HC4 �̂0.5
4A �̂0.8

4A

50 1 4.70 14.01 2.20 5.88 2.02 9.06 5.98
≈ 9 17.51 25.55 9.13 10.60 3.31 7.55 5.25
≈ 50 35.64 35.83 19.72 13.45 4.42 7.23 5.09

47 1 4.92 7.58 6.41 5.19 4.86 5.25 4.55
≈ 9 8.34 9.07 8.05 5.85 5.41 6.13 5.22
≈ 50 12.42 10.70 10.20 7.08 6.38 7.25 6.53

Each εi has mean zero and unit variance; here, σ 2
i = exp{αxi}. The covariate val-

ues (values of xi ) are per capita income by state in 1979 in the United States (scaled
by 10−4). The response (y) is per capita spending on public schools. The data are
presented in Greene (1997, Table 12.1, page 541) and their original source is the
U.S. Department of Commerce. Here, however, the response values are generated
in the Monte Carlo experiment. That is, we use the observed covariate values, but
not the response values. The latter are generated in the numerical exercise. We test
H0 :β3 = 0 (linear specification) against H1 :β3 �= 0 (quadratic specification). We
consider two situations:

(i) All 50 observations are used; hmax/(3p/n) = 3.62.
(ii) Alaska, Washington DC and Mississippi (the three leverage points) are re-

moved from the data (n = 47); hmax/(3p/n) = 1.09.

In both cases, the random errors are normally distributed. Hereafter, we shall focus
on the following tests: OLS, HC0, HC0R , HC3, HC4, �̂0.5

4A and �̂0.8
4A . Their null

rejection rates are given in Table 3.
We note from the results reported in Table 3 that the HC0 test is quite liberal, es-

pecially under strong heteroskedasticity and leveraged data and that Furno’s (1996)
variant, HC0R , is also liberal. When n = 50 and λ ≈ 50, their empirical sizes at
the 5% nominal level are, respectively, 35.83% and 19.72%. These are quite large
size distortions. These tests are also liberal even when the three leverage points are
not in the data and heteroskedasticity is intense (λ ≈ 50); both tests reject the null
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hypothesis in excess of 10% (i.e., more than twice the nominal size). Under lever-
aged data, the HC3 test is liberal and the HC4 test is conservative. For instance, the
HC3-based test null rejection rate when n = 50 and λ ≈ 50 equals 13.45%. Once
again, the test with the best overall performance is that based on �̂0.8

4A : its null
rejection rates range from 5.09% to 5.98% when n = 50 (leverage points in the
data) and from 4.55% to 6.53% when the n = 47 (leverage points removed from
the data). The test based on �̂0.5

4A performs well under unequal error variances.
Next, we shall consider nonnormal data generating processes. The model is

yi = β1 + β2xi2 + · · · + βpxip + σiεi,

where εi has mean zero, variance one and is uncorrelated with εj for all i �= j .
Additionally, σ 2

i = exp{αx2i}. We test H0 :β4 = 0 against H1 :β4 �= 0 at the 5%
nominal level. The sample size is set at 40 and the covariate values are obtained as
random draws from the standard lognormal distribution. We consider the following
distributions for εi : t5 (fat tailed, normalized to have unit variance), χ2

5 (asymmet-
ric, normalized to have unit variance) and exponential with unit mean (asymmetric,
normalized to have zero mean). The null rejection rates of the OLS, HC0, HC0R ,
HC3, HC4, �̂0.5

4A and �̂0.8
4A tests for p = 4 and p = 6 are given in Tables 4 and 5,

respectively. The figures in these tables show that the tests rejection rates are ap-
proximately the same under the three error distributions. They also show that the
HC0 and HC0R tests are slightly more oversized when p = 6 relative to the case
where p = 4. It is also noteworthy that the HC4 test is quite undersized (conser-
vative) in both cases (p = 4 and p = 6): its null rejection rates never exceeds 2%,
more often being around 1%. We also note that the HC3 is undersized. The best
performing test is that based on standard errors obtained from �̂0.5

4A , the consistent
estimator we proposed in Section 3; the �̂0.8

4A is the runner-up. For instance, when
the errors are t-distributed, heteroskedasticity is moderate (strong) and p = 6, the

Table 4 Null rejection rates at the 5% nominal level of quasi-t tests with covariate values
obtained as n = 40 random draws from the standard lognormal distribution; here p = 4 and
hmax/(3p/n) = 2.475

errors λ OLS HC0 HC0R HC3 HC4 �̂0.5
4A �̂0.8

4A

t5 1 5.15 11.73 6.61 3.79 1.07 5.45 4.43
≈ 9 3.01 10.72 6.13 3.62 0.98 5.15 4.16
≈ 50 1.58 9.15 5.44 2.89 0.85 4.60 3.87

χ2
5 1 4.93 11.27 6.46 3.55 0.96 4.98 4.02

≈ 9 2.93 10.38 6.03 3.43 1.03 4.88 4.13
≈ 50 1.65 8.75 5.27 2.64 0.75 4.04 3.44

exponential 1 5.36 11.01 6.52 3.17 0.88 4.55 3.67
≈ 9 3.28 10.56 6.22 3.13 0.87 4.70 3.82
≈ 50 1.82 9.74 5.72 2.93 0.81 4.35 3.89
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Table 5 Null rejection rates at the 5% nominal level of quasi-t tests with covariate values
obtained as n = 40 random draws from the standard lognormal distribution; here p = 6 and
hmax/(3p/n) = 1.6535

errors λ OLS HC0 HC0R HC3 HC4 �̂0.5
4A �̂0.8

4A

t5 1 5.27 11.98 8.60 3.92 1.52 5.02 3.91
≈ 9 3.23 11.15 8.20 3.47 1.34 4.85 3.86
≈ 50 1.66 9.72 6.72 2.75 1.10 3.94 3.19

χ2
5 1 5.27 12.27 8.66 3.54 0.97 4.88 3.71

≈ 9 3.46 10.88 7.79 3.36 0.96 4.37 3.36
≈ 50 1.89 8.86 6.19 2.60 0.85 3.44 2.62

exponential 1 5.40 11.05 7.93 3.14 0.86 4.26 3.07
≈ 9 3.58 10.44 7.38 3.06 0.86 4.01 3.04
≈ 50 1.96 9.60 6.57 2.64 0.73 3.72 2.80

null rejection rate of the test based on �̂0.5
4A is 4.85% (3.94%) whereas those of the

HC3 and HC4 tests are 3.47% and 1.34% (2.75% and 1.10%). The test based on
�̂0.8

4A also performs well.

5 Concluding remarks

This paper addressed the issue of performing testing inference in linear re-
gressions under heteroskedasticity of unknown form. The most commonly used
heteroskedasticity-robust test is that based on standard errors obtained from
White’s (1980) estimator, HC0. Such a test tends to be quite liberal in small
samples, especially when the data contain points of high leverage. Tests based
on the HC3 and HC4 estimators are generally viewed as good alternatives. How-
ever, our numerical results show that they may not deliver accurate inferences in
small samples; tests based on the former tend to be liberal whereas those based
on the latter tend to be conservative. Our numerical results have also shown that
testing inference based on Furno’s (1996) estimator may be misleading since
her test can be quite liberal in some situations. In this paper, we proposed two
new classes of heteroskedasticity-robust standard errors. They are based on the
heteroskedasticity-consistent covariance matrix estimators of Cribari-Neto and
Lima (2010). The numerical evidence in Section 4 favored two of the estimators
we proposed, namely: �̂0.5

4A and �̂0.8
4A . The corresponding tests displayed superior

small sample performance in the Monte Carlo simulations. We strongly recom-
mend that practitioners base their inferences on such tests.
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