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Abstract. We introduce new applications of the skew-probit IRT model by
considering a flexible skew-normal distribution for the latent variables and
by extending this model to include an additional random effect for modeling
dependence between items within the same testlet. A Bayesian hierarchical
structure is presented using a double data augmentation approach. This can
be easily implemented in WinBUGS or SAS by considering MCMC algo-
rithms. Several Bayesian model selection criteria, such as DIC, EAIC and
EBIC, have been considered; in addition, we use posterior sum of squares
of the latent residuals as a global discrepancy measure to model comparison.
Two applications illustrate the methodology, one data set related to a math-
ematical test and another related to reading comprehension, both applied to
Peruvian students. Results indicate better performance of the more flexible
models proposed in this paper.

1 Introduction

Typically, Item Response Theory (IRT) for multivariate dichotomous responses
resulting from n individuals evaluated in a test with k items considers a unidimen-
sional latent variable θ associated with individual abilities. Moreover, statistical
models for IRT consider a set of parameters associated with the items under con-
sideration that are related with the probability that the ith examinee is able to
answer the j th item correctly.

Usually a symmetric Item Characteristic Curve (ICC) is considered for IRT
models. The supposition of symmetry for the ICC implies that, the probability
to answer correctly an item approaches zero with the same rate as it approaches
one. Therefore, individuals with high or low abilities are discriminated in a similar
fashion. However, when the interest of the test is more directed to discriminate
among individuals with high abilities and not as much to discriminate among those
with low abilities (or vice-versa) an asymmetric ICC can be more appropriate.

Samejima (1997, 2000) exhibits inconsistencies of symmetric ICCs under some
philosophical principles. For example, when the goal is to detect student’s bright-
ness it is reasonable to consider two principles: (1) more credit (reward) should be
given to a person who is successful with difficult items, and (2) a person who fails
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in an easy item should be penalized more. Since an asymmetric ICC deals bet-
ter with these two principles, Samejima proposed a family of asymmetric ICCs.
This family, termed logistic positive exponential, has the logit link as a special
case. A new item parameter associated with skewness is introduced with the in-
tention of adjusting the above principle. Estimation of this model together with a
new IRT model, namely the reciprocal logistic positive exponential, is presented
in Bolfarine and Bazán (2010).

Bazán, Branco and Bolfarine (2006) proposed another skew item response
model, namely here the skew-normal ogive model. In this model, a new asym-
metric ICC curve is assumed by considering the cumulative distribution function
of the standard skew-normal distribution (Azzalini, 1985). Thus, a new skewness
item parameter is introduced over normal curves and the symmetric normal ogive
model (Albert, 1992) is a particular case. In this paper, we study extensions and
additional properties of the skew-normal ogive model (SNO model).

Statistical assumptions in modeling academic achievement and other latent vari-
ables associated with human behavior are based on the normality assumption for
these variables. Several authors have questioned this assumption (see Samejima,
1997; Micceri, 1989) since it is somewhat restrictive for modeling human behav-
ior. Micceri (1989) presents many examples of situations where the latent variables
can be assumed not to be normally distributed. For instance, when the focus is on
item calibration, it is important to cover all levels of abilities in the population, in
this case it is reasonable to consider a uniform distribution for the abilities.

For some authors, the parametric distributional assumptions for the latent vari-
able is not part of the Item Response modeling and also a nonparametric model
can be assumed for the latent variable (see, e.g., Duncan and MacEachern, 2008).
However from a Bayesian perspective, which is assumed in this paper, the com-
plete specification of the IRT model is given by the specification of the likelihood
function and all prior distributions, in particular the prior distribution for the latent
variable θ . It is a common practice to consider the normal distribution as a prior
for latent variables (see, e.g., Albert, 1992; Patz and Junker, 1999). However, we
find it important to explore the possibility of using flexible distributional assump-
tions for the latent variables, such as the skew-normal distribution. This flexible
assumption can be an alternative between the restrictive normal model and a full
nonparametric model. As we will show here the procedure to estimate the param-
eters using that distribution is a natural extension of the normal assumption for the
latent variables.

On the other hand, in reading comprehension tests the design of testlets or item
bundles has been adopted recently in educational and psychological tests (see,
e.g., Wainer, Bradlow and Wang, 2001). Additionally, new applications are being
considered as, for example, in Wainer et al. (2001) and Wang et al. (2010).

Fitting standard item response models to testlet responses ignores the possible
dependence between the items within a testlet. As indicated by Wang and Wil-
son (2005), not considering this dependence tends to overestimate the precision
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of measures obtained from testlets and yields biased estimation for item difficulty
and discrimination parameters. Overstatement of precision and biased estimation
lead to inaccurate inferences about the parameters (Wainer and Wang, 2000). Thus,
Bradlow, Wainer and Wang (1999) extend the ogive normal model to include an
additional random effect to model the dependence between items within the same
testlet. The variances of the random testlet effects were assumed to be constant
across testlets. This model has been successfully used in multiple applications (see
Wainer, Bradlow and Wang, 2001). However, to the best of our knowledge we are
no ware of studies on the use of asymmetric links to item characteristic curves in
the context of tests with testlets.

The paper is organized as follows. In Section 2, we present a review of the skew-
normal ogive IRT model and the data augmentation approach. In the third section,
we extend the SNO IRT model by considering asymmetrically distributed latent
variables. In Section 4, we present the skew-normal ogive testlet model. Section 5
presents two applications to illustrate the good performance of the approach devel-
oped here by considering different criteria for model comparison. The paper ends
with a discussion in Section 6 and two appendices. In Appendix A.1, we present
properties of the skew-normal distribution, and in Appendix A.2, we present the
program code to implement the new model proposed.

2 The skew-normal ogive model

Let Yij denotes the dichotomous variable corresponding to the response of the ith
individual, i = 1, . . . , n, on the j th item, j = 1, . . . , k. Yij takes the value 1 if the
response is correct and 0, otherwise. The skew-normal ogive IRT model proposed
by Bazán, Branco and Bolfarine (2006) follows by considering:

Yij |θi, ηj ∼ Bern(pij ), (2.1)

pij = Fdj
(mij ), (2.2)

mij = αj (θi − βj ) (2.3)

with αj > 0,−∞ < βj < ∞,−1 < dj < 1, and −∞ < θ < ∞ and Bern(·) denot-
ing a Bernoulli distribution. The probability pij = P(Yij = 1|θi, ηj ) is the condi-
tional probability of correct response given the ith ability value θi and the j th item
parameter ηj = (αj , βj , dj ). Moreover, Fdj

(·) denotes the cumulative distribution
function (c.d.f.) of the standard skew-normal distribution (see Appendix A.1) and
mij is the latent linear component relating θi and the item parameter ηj .

Note that Fdj
(·) is an asymmetric ICC and F−1

dj
(·) is the BBB skew-probit

link (see Bazán, Bolfarine and Branco, 2010). The SNO model satisfies the latent
monotonicity property (Holland and Rosenbaum, 1986), that is, it is a monotone in-
creasing function of the unidimensional quantity θi . Thus, the SNO model is a uni-
dimensional monotone latent variable model (Junker and Ellis, 1997). Moreover,
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it satisfies the latent conditional independence principle or the local independence
principle, which considers that for the ith examinee, {Yij : j ≥ 1} are conditionally
independent given θi . It is assumed that responses from different individuals are
also independent.

Let YT
i = (Yi1, . . . , Yik), θT = (θ1, . . . , θn) and ηT = (ηj , . . . , ηk) and suppose

that the assumptions mentioned earlier hold. The multivariate joint probability
distribution of Y = (Y T

1 , . . . , Y T
n )T , given the vector of latent variables θT and the

item parameter vector ηT , can be written as

p(Y |θ, η) =
n∏

i=1

k∏
j=1

[pij ]Yij [1 − pij ]1−Yij , i = 1, . . . , n, j = 1, . . . , k. (2.4)

For dj = 0 it follows that pij = �(mij ), where �(·) is the c.d.f. of the standard
normal distribution. The symmetric ogive normal IRT model then follows. Addi-
tionally, an approximation for the logistic IRT model is obtained when �(·/1.7) is
considered (see Camilli, 1994).

Figure 1 depicts skew-probit ICCs for different values of the shape parameter
dj and fixed item parameters αj = 1 and βj = 0. Six different ICCs are consid-
ered taking dj = −0.9,−0.7,−0.5,0.5,0.7,0.9 for comparison with dj = 0 (the
symmetric ICC). For dj > 0 the ICC presents positive skewness, and for dj < 0 it

Figure 1 Skew-probit ICCs for α = 1, β = 0 and different values of the shape parameter d .
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presents negative skewness. As in the positive exponent logistic models considered
by Samejima (1997, 2000), the skew-probit ICC also considers a new item param-
eter to control the asymmetry of the curve; however, now we have an extension for
the probit ICC and not for the logistic ICC.

The item shape parameter can be psychometrically interpreted as a penalty (re-
ward) on the probability of correct response. Hence, an item with negative shape
parameter penalizes (rewards) students with larger (smaller) levels of the latent
variable and an item with positive shape parameter rewards (penalizes) individuals
with larger (smaller) levels of the latent variable (see Figure 1). We call the shape
parameter d the item penalization parameter.

As in the usual symmetric IRT model, the parameters αj and βj are called dis-
crimination (or slope) item parameter and difficulty (or intercept) item parameter,
respectively. A steeper item response curve corresponds to an item that highly dis-
criminates students of smaller and greater levels of the latent variable. An item with
a small value of αj is a relatively poor discriminator between students for chang-
ing values of the latent variable. Moreover, an item of a test with a highly negative
value of βj corresponds to an easy item in which individuals with smaller aver-
ages in the latent variable show relatively low probabilities of correct responses.
In contrast, an item with a large value of βj is a difficult item since individuals
with larger levels of the latent variable show relatively low probabilities of correct
responses.

Following different proposals in the literature, we reparameterize the model in-
troduced by considering aj = αj and bj = −αjβj such that mij = aj θi − bj ,
with ηj = (aj , bj ) the item parameter corresponding to the j th item. According to
Baker and Kim (2004), this parameterization may result in more stable computa-
tions. We use the notation a = (a1, . . . , ak)

T and b = (b1, . . . , bk)
T .

2.1 Data augmentation approach

Denoting Dobs = y the observed data, the likelihood function for the SNO can be
written as

L(θ, η, |Dobs) =
n∏

i=1

k∏
j=1

[
Fdj

(mij )
]yij

[
1 − Fdj

(mij )
]1−yij . (2.5)

Following Albert (1992), for n examinees responding a test with k items, it is
known that the probit link can be rewritten as

Yij =
{

1, Zij > 0,
0, Zij ≤ 0,

where Zij = mij +eij with eij ∼ N(0,1), i = 1, . . . , n and j = 1, . . . , k. It follows
that

pij = P(Yij = 1|θi = ui, ηj ) = �(mij ).
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This representation shows a linear structure in the auxiliary latent variable Zij ,
which produces an equivalent model with a probit link. Further, eij ’s are latent
residuals which are independent and identically distributed (see Albert and Chib,
1995) and this fact can be used for model checking.

Similarly, as shown in Bazán, Branco and Bolfarine (2006), it is possible to
define a latent linear error structure for the skew-normal ogive model replacing
the normality assumption of the error terms by the skew-normality assumption.
Following notation from Appendix A.1, when eij ∼ SN(0,1,−λj ) we have

pij = P(Yij = 1|θi, ηj ) = Fdj
(mij ).

Note that, the parameter dj = λj√
1+λ2

is a reparametrization of the shape pa-

rameter λj . In addition, using the stochastic representation (Henze, 1986) for a
skew-normal distribution we can write

eij = −djVij − (
1 − d2

j

)1/2
Wij ,

with Wij ∼ N(0,1) and Vij ∼ HN(0,1) (the half-normal distribution). It follows
that the conditional distribution of the eij given Vij = vij is a normal distribution
with mean −djvij and variance 1 − d2

j (see Appendix A.1).
Simulation of the latent variables Zij should be considered in two steps. First

simulate Vij ∼ HN(0,1) and then, simulate from the conditional distribution Z∗
ij ≡

Zij |Vij = vij where Z∗
ij ∼ N(mijdjvij ,1 − dj). Additionally, the latent residuals

eij ’s (all independent) in the skew probit link can be used also for model checking.
We consider now the complete data likelihood function involving the con-

ditional auxiliary latent variables Z∗ = (Z∗T
1 , . . . ,Z∗T

n )T , with Z∗T
i = (Z∗

i1,

. . . ,Z∗
ik), i = 1, . . . , n, and V = (V T

1 , . . . , V T
n )T , with V T

i = (Vi1, . . . , Vik),
i = 1, . . . , n. The complete-data likelihood function for the SNO IRT model with
D = (Z∗,V,y) is given by

L(μ,η,λ|D) =
n∏

i=1

k∏
j=1

φ∗(
Z∗

ij

)
I
(
Z∗

ij , Yij

)
φ(Vij )I (Vij > 0), (2.6)

where φ∗(·) denotes the probability density function of the normal distribution
with mean mij − djvij , variance 1 − d2

j and I (Z∗
ij , Yij ) = I (Z∗

ij > 0)I (Yij = 1)+
I (Z∗

ij ≤ 0)I (Yij = 0). Note that, when dj = 0 the likelihood function above is the
one given in Albert (1992).

2.2 Prior specification

We start considering the following general class of independent prior distributions:

π(θ, η) =
n∏

i=1

g1(θi)

k∏
j=1

g2(ηj ), (2.7)
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where g1 and g2 are specified probability density functions for θi and ηj , respec-
tively, i = 1, . . . , n and j = 1, . . . , k.

Additionally, for simplicity we assume independence between aj , bj , dj , so that

g2(ηj ) = g21(aj )g22(bj )g23(dj ).

For the normal ogive model, Ghosh et al. (2000) and Albert and Ghosh (2000)
showed that g21 should be proper in order to guarantee a proper posterior distribu-
tion, however g22 can be improper. We consider proper prior densities of probabil-
ities for all item parameters to avoid possible problems. Following Rupp, Dey and
Zumbo (1992) and Sahu (2002), we take a normal with positive values for g21 de-
noted by N(μa,σ

2
a )I (·, ·) and N(μb,σ

2
b ) for g22. For the new item parameters dj ,

we consider a noninformative prior uniform on [−1,1]. The prior specification for
the parameters associated with the individuals θi will be discuss in the next section.

3 Extending the SNO IRT model by considering asymmetrically
distributed latent variables

In the classical formulation of the IRT models one assumption typically added to
the model, although not widely accepted, is that θi ∼ N(μ,σ 2). This establishes
that the latent variables associated with the individuals taking the test are well
behaved and that their abilities are a random sample from this distribution. We can
specify, for μ and σ 2, μ = 0 and σ 2 = 1 (as in Albert, 1992), or specify probability
distributions for μ and σ 2 (as Patz and Junker, 1999) to solve the identifiability
problem of the IRT model.

From a Bayesian perspective, the specification of a probability distribution for
the latent variables θi is the same as the specification of a prior distribution. We
propose here an asymmetric class of prior distributions for the ith individual latent
variable θi , given by

θi ∼ SN
(
μ,σ 2, γ

)
, i = 1, . . . , n (3.1)

with −∞ < μ < ∞, σ 2 > 0,−∞ < γ < ∞.

This skew-normal probability density function (p.d.f.) will be denoted by g1(θi).
Notice that, considering a priori equal asymmetry for all the abilities, does not

imply that, a posteriori, equal asymmetry will result. That is, after we observe the
results of the tests, the posterior distributions of the asymmetry for the abilities can
take different values for each individual.

As before, we prefer to use the alternative parametrization for the shape param-
eter given by ω = γ√

1+γ 2
, which takes values in [−1,1].

Figure 2 depicts the density functions of the latent variables for different values
of the shape parameter γ . The three curves on the right-hand side are examples
with positive shape parameter γ modeling latent variables concentrated on lower
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Figure 2 Different skew-normal density functions, with μ = 0 and σ 2 = 1.

values. The three curves on the left side are examples with a negative shape pa-
rameter γ modeling latent variables concentrated on higher values. As a reference,
in all cases the N(0,1) curve is also presented.

The curves shown in Figure 2 are reasonable assumptions for the distribution
of the latent variables associated with human behavior in different contexts, as
observed in Micceri (1989). Examples of such behavior are anxiety (see Zaider
et al., 2001) and depression (see Riddle, Blais and Hess, 2002), where certain
skewness is expected considering a non-clinic population. Moreover, as noted in
Hashimoto (2002), in educational contexts several predictor variables related to
school proficiency can be asymmetrically distributed.

Another situation to motivate the assumption of asymmetry for latent variables
is obtained by a selection process where a bias is induced in the sample process
which induces skewness in the original distribution as discussed in Arellano-Valle,
Branco and Genton (2006).

Hence, the specification in (3.1) is flexible and also accommodates the normal
distribution as a special case. Note that, the asymmetry considered here is different
from the ICC asymmetry, which is related to a latent error for the definition of
threshold to correct response.

The idea of the formulation considered here for the latent variable in (3.1) was
originally presented in Arellano-Valle, Branco and Genton (2006). As noted by
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Azevedo, Bolfarine and Andrade (2010) the model is not identifiable. However,
differently from their formulation which considers a centered parameterization to
overcome this issue, we consider the use of priors distributions for the hyperpa-
rameter.

A particular specification for the abilities is to consider the SN(0,1, γ ). In this
case, the usual normal specification is a particular case (γ = 0). In that case, the
mean and variance are not centered, that is, they are not 0 and 1, respectively.
A centered parametrization can be obtained by considering μ = −0.7978846γ√

(1−0.6366198γ 2)

and σ 2 = 1
1−0.6366198γ 2 , then E(θi) = 0 and V (θi) = 1. It is equivalent to the use

of a centered parametrization (see Azevedo, Bolfarine and Andrade, 2010).
By considering two or just one type of asymmetry on the specification of the

ICC curve or on the specification of the distribution of the latent variable, four
scenarios are possible:

(a) skew-normal distribution for ICC and skew-normal distribution for abilities,
namely Skew-Probit Skew-Normal (SPSN) model;

(b) skew-normal distribution for ICC and normal distribution for abilities, namely
Skew-Probit Normal (SPN) model;

(c) normal distribution for ICC and skew-normal distribution for abilities, namely
Probit Skew-normal (PSN) model and

(d) normal distribution for ICC and normal distribution for abilities, namely Pro-
bit normal (PN) model.

Notice that, (a) and (b) are skew-normal ogive models and (c) and (d) are nor-
mal ogive models where (d) is the usual model (Albert, 1992). We call these four
scenarios the SN-IRT family (see also Bazán, Bolfarine and Branco, 2004).

An interesting aspect of the models formulated above is the flexibility in detect-
ing items specified according to ICCs with skew-probit links and items specified
according to ICCs with probit links. Thus, the SN-IRT family is a very flexible
model.

The model in (a) is more general and it involves a total of n + 3 + 3k unknown
parameters. In contrast, the model in (d) is simpler and it involves n+2K unknown
parameters. As a consequence of the introduction of new parameters, these mod-
els become overparameterized and then nonidentifiable. In such cases, a potential
advantage of the Bayesian analysis over likelihood-based one is that if informative
priors are available, as is the case here, proper inferences can be obtained despite
of having an overparameterized (Rannala, 2007) model. In addition, as indicated in
Poleto et al. (2011), the use of proper prior distributions in the Bayesian framework
readily allows us to obtain valid inferences even for nonidentifiable models.

3.1 Fully Bayesian specification

Considering the augmented likelihood given in (2.6) and the prior specification
discussed before, the fully Bayesian set-up for the most general ogive skew-normal
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IRT model is given by the following hierarchical structure:

Z∗|vij , yij , θi, aj , bj , dj ∼ N
(
mij − djvij ,1 − d2

j

)
I
(
Z∗

ij , Yij

)
,

vij ∼ HN(0,1),

θi ∼ SN
(
μ,σ 2,ω

)
,

aj ∼ N
(
μa,σ

2
a

)
I (·, ·), bj ∼ N

(
μb,σ

2
b

)
,

dj ∼ U(−1,1),

μ ∼ N(0,1), 1/σ 2 ∼ Gamma(0.01,0.01),

ω ∼ U(−1,1).

By considering the hierarchical structure, this formulation can be easily imple-
mented in WinBUGS (Lunn et al., 2000). Alternatively, one can use the MCMC
procedure in SAS (SAS Institute Inc., 2009).

Particular cases of this more general SNO model can be derived by eliminating
some lines in the hierarchical structure.

4 Extending the SNO IRT model by considering testlets

Wainer and Kiely (1987) introduced the testlet terminology and defined that as a
group of items related to a single content area, developed as a unit. It contains a
fixed number of predetermined paths that an examinee may follow. Examples of
testlets include a set of reading items associated with a common passage, a group
of social studies items referring to a map, or a collection of mathematics items
based on a graph or a table. Thus, items that are part of a testlet are not statistically
independent. Item responses within a testlet are not locally independent because
they are related through a common stimulus. Therefore, in this case, the usual IRT
models can lead to an inaccurate estimation of examinees’ and items’ parameters,
and also overestimate the precision of these parameters (Tuerlinckx and De Boeck,
2001). Bradlow, Wainer and Wang (1999) propose to retain the item as the unit of
measurement and add a person-specific random effect parameter, to account for the
shared variance among items within a testlet. This parameter is called the testlet
effect parameter and is denoted γil .

In order to extend the model by considering the testlets, we consider the hier-
archical structural specification of the most general SNO IRT model later in this
section. The following modification of the latent linear component presented in
(2.3) is considered, that is,

mij = αj (θi − βj + γil), i = 1, . . . , n, j = 1, . . . , k, l = 1, . . . , t, (4.1)

where γil is a person-specific testlet effect or the random effect for person i on
testlet l. Thus, γil describes the interaction between persons and items (local item
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dependence) within the testlet independent of the ability and item parameters. The
prior specification for these parameters is given by

γil ∼ N
(
0, σ 2

γl

)
. (4.2)

The testlet effects were centered at zero to emphasize their status as deviations
from the SNO IRT model and to identify the model and σ 2

γl
indicates the amount

of the testlet effect for testlet l.

4.1 Fully Bayesian specification

The hierarchical structure specification of the SNO testlet model is given by

Z∗|vij , yij , θi, aj , bj , dj ∼ N
(
mij − djvij ,1 − d2

j

)
I (Zsij , Yij ),

vij ∼ HN(0,1),

θi ∼ N(0,1),

γil ∼ N
(
0, σ 2

γl

)
,

aj ∼ N
(
μa,σ

2
a

)
, bj ∼ N

(
0, σ 2

b

)
, dj ∼ U(−1,1),

1/σ 2
γk

∼ χ(s),

where χ(s) corresponds to a chi-square distribution with s degrees of freedom.
This formulation can be easily implemented in WinBUGS or with the MCMC

procedure in SAS.
When σ 2

γl
= σ 2

γ (the same variance for all testlets) the model reduces to the two-
parameter testlet model proposed by Bradlow, Wainer and Wang (1999). When
ai = 0 the model reduces to the one-parameter Rasch testlet model proposed by
Wang and Wilson (2005). If a skew-normal distribution is considered for the abil-
ities, then corresponding prior must be considered for the hyperparameters.

5 Applications

We illustrate the methodology developed in the earlier sections using two data sets
from Peruvian students. The first data set shows results from a mathematical test
applied in rural schools in Peru. The second data set, is related to reading compre-
hension test applied to Peruvian students in some cities in the jungle region of Peru.
Prior specification, starting values for the MCMC algorithm and convergence diag-
nostics are discussed. The MCMC procedure is based on the data augmentation ap-
proach discussed in Sections 3.1 and 4.1, respectively, and it is implemented using
the WinBUGS software. Model comparison between symmetrical and asymmetri-
cal IRT models are developed by using the Deviance Information Criterion (DIC)
described in Spiegelhalter et al. (2002), the Expected Akaike Information Criterion
(EAIC) and the Expected Bayesian Information Criterion (EBIC). Moreover, the
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sum-of-squared-latent residuals (SSR = ∑n
i=1

∑k
j=1 e2

ij ) introduced in Section 2 is
also considered.

EAIC and EBIC are criteria proposed in Brooks (2002) and Carlin and Louis
(2000) and were used by Bolfarine and Bazán (2010) in the context of TRI. These
criteria penalize the posterior expected deviance by using 2p and p logn as penal-
ties function, respectively, where p is the number of parameters in the model and
n is the sample size. On the other hand, DIC penalizes the posterior expected de-
viance by using 2ρD , where ρD is a complexity measure associated with the effec-
tive number of parameters in a model. This is given by the difference between the
posterior mean of the deviance function and the deviance at the posterior estimates
of the parameter of interest. In fact, the posterior expected deviance or Dbar can
also be considered as a model comparison criterion. For all criteria, the smaller
values indicate better fit.

5.1 Math data set

We consider an analysis on the response pattern obtained by the application of a
Mathematical Test for fourth grade students of rural Peruvian Elementary Schools.
Item response vectors are available from the authors upon request and correspond
to the response of 974 students to 18 items qualified as binary response (correct and
incorrect). The scores have mean equal to 8.27, median 8 and standard deviation
4.20. The sample skewness and kurtosis indexes are −0.075 and −0.836, respec-
tively. The test presents a regular reliability index given by Cronbach’s alpha equal
to 0.83, and the mean proportion for the items equal to 0.449. The Mathematical
Test is formed with independent items corresponding to different tasks with differ-
ent definitions. Given the latent ability θi , it is considered that the correct responses
to the items are independent. Furthermore, the autocorrelations within individual
responses seem to be low, which provides additional support for the assumption of
local independence.

As it has been mentioned, proper priors for aj and bj guarantee that the com-
plete posterior for the model is proper. Further, informative prior distributions
placed on aj and bj can be used to reflect the prior belief that the values of the
item parameters are not extreme (in the boundary of the parametric space). In the
common situations where little prior information is available on the difficulty pa-
rameters, we can choose S2

b to be large. This choice will have a modest effect
on the posterior distribution for non-extreme data, and it will result in a proper
posterior distribution in the case of extreme data. Extreme data occurs when stu-
dents get correct (or incorrect) answers for all items. However, Sahu (2002) states
that larger values of the variance led to unstable estimates. We consider here the
same priors given in Sahu (2002) and Bazán, Branco and Bolfarine (2006), that is
aj ∼ N(1;0.5)I (0; ·) and bj ∼ N(0;2), j = 1, . . . , k. For the skew models, a uni-
form prior distribution on (−1,1) is specified for each dj , j = 1, . . . , k. Finally, we
consider θi ∼ SN(μ,σ 2, γ ), i = 1, . . . , n, where it is assumed that w ∼ U(−1,1),
1/σ 2 ∼ Gamma(0.01,0.01) and μ ∼ N(0,1).
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Table 1 Comparing models using different criteria for the Math data

Criterion PN SPN PSN SPSN

Number of parameters 1010 1028 1013 1049
Deviance of the posterior means 16,865 15,139 16,861 15,168
Posterior expected deviance 16,012 14,096 15,999 15,994
ρD effective number of parameters 853 1042 862 −826
DIC 17,718 16,181 17,723 14,341
Expected AIC 18,885 17,195 18,887 17,266
Expected BIC 26,734 25,184 26,760 25,418
SSR posterior mean 17,570 12,800 17,550 12,470

The model considering asymmetry for the ICC and the abilities, denoted by
SPSN, is the more general one. The Math data set involves 54 item parameters and
974 individual traits for the individuals in the sample. Additionally, in the SPSN
model the hyperparameters (μ,σ 2,w) were estimated from the data set. The others
models considered are particular cases and have fewer parameters.

Table 1 on page 13 shows the number of parameters in each model.
The MCMC procedure is somewhat slow because of the great number of chains

that must be generated. For example, the PSN model takes about 150 seconds to
run 1000 iterations on a Intel Core2 Duo E8400 Processor 3.003 GHz with 3.2 GB
RAM. For the SPSN model it takes twice this time, under the SPN model it takes
about 1.5 times and under the PN model it takes about three times the PSN times.
The time to run the Markov Chains for each model is related to the presence of
dependence structures on the latent variables (Chen, Shao and Ibrahim, 2000),
with the sample size (Sahu, 2002) and also with the prior specification.

We consider 1 and 0 as initial values for the item parameters aj and bj ,
j = 1, . . . , k, respectively. We propose zero as initial values for the skewness pa-
rameters w and dj ’s because it corresponds to the mean of the uniform distribution
on (−1,1). Initial values for the latent variable θi and auxiliary latent variables cor-
responding to the different models (as Vij and Wij ) can be considered as generated
from distributions specified in Section 3.1 but we prefer fixing this value in 0.5 to
improve the performance and stability of the developed software.

When using MCMC, the sampled values for initial iterations of the chains are
discarded because of their dependence on starting states. Also, the presence of au-
tocorrelations between values of the chain is expected when latent variables are
introduced (Chen, Shao and Ibrahim, 2000). Therefore, thinning values up to 100
are recommended. For example, Jackman (1992) consider for the PN model, run-
ning half million iterations and retaining only every thousandth iteration so as to
produce an approximately independent sequence of sampled values from the joint
posterior density.

Chen, Shao and Ibrahim (2000) reported the slow convergence of the Albert–
Chib algorithm. In the mathematics data set, the convergence for the shape pa-
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rameter was found to be slow. Some algorithms to improve the convergence of
the Gibbs sampler in the second data augmentation approach are proposed in the
literature (see Holmes and Held, 2006). A simpler alternate considered here was
to generate a great number of iterations and use large thinning values. Here we
considered a total of 204,000 iterations. Starting with a burn-in of 4000 iterations
and them using thinning = 100, a sample of size 2000 is obtained. Several criteria
computed using the CODA package in the WinBUGS program were used for the
convergence analysis. Results are showed in Table 1.

From Table 1 on page 13, we see that all models in the skew-normal IRT fam-
ily improve the corresponding symmetric probit model. Moreover, the SPSN and
SPN models present the best fit for the data set by considering several criteria.
Spiegelhalter et al. (2002) mention the possibility of negative values of the effec-
tive number of parameters, as we can see in Table 1 for the SPSN model. Some
possible explanations for the negative values are that, the posterior distribution is
extremely asymmetric or symmetric and bimodal, where the posterior mean is a
poor summary statistics. Negative ρD can also indicate conflicting information be-
tween prior and data. Informative prior elicitation using historical data and model
sensitivity to different prior choices will be explored in subsequent studies.

One of the advantages of the proposed model is to be able to extract more infor-
mation from the items, by considering a new item parameter, and more information
from abilities, by considering the hyperparameter in the new specification of the
prior distribution for the latent variables. Figure 3 illustrates the behavior of the
item parameters estimates and Table 2 on page 15 the behavior of hyperparame-
ters of abilities estimates for the SPSN model.

Given the high skewness observed in the posterior distribution for the shape pa-
rameters dj , we prefer median to mean as summary measures. Moreover, a 95%
credible interval for the shape parameter γ results in negative endpoints and,
hence, not containing zero, clearly indicating γ to be different from zero, so that
the PN model is not adequate for fitting this data set. Thus, while perhaps asymme-
try in ICC is not justified and Normal ICC can be sufficient, asymmetry in abilities
was found.

A high and positive value for the penalty parameter corresponding to item 14
(see Table 2 and Figure 3) is observed.

Figure 4(a) compares item 14 ICCs under the PN and SPSN models, clearly
showing differences among them. Figure 4(b) shows that for low ability levels, the
probability of a correct response with the PN model is greater than with the SPSN
model and it is the opposite for high ability levels. The positive value of the d14 im-
plies that, for low ability levels the probability of a correct response increases faster
with the SPSN than with the PN model. For instance, when −1.5 ≤ θ ≤ −0.5, the
change on the probability of a correct response with the SPSN model is 0.28 and
with the PN model is 0.23. The opposite is true, because with high levels of abili-
ties the change in the probability of a correct response increases slower with the PN
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Figure 3 Box-plots for the d parameters for the 18 items of Math test under the SPSN IRT model.

Table 2 Posterior statistics for latent hyperparameters under the SPSN IRT model for the Math
data set

Parameter Mean SD Median Percentil 2.5 Percentil 97.5

γ −6.420 2.737 −5.886 −13.300 −2.644
μ 0.554 0.250 0.557 0.088 1.044
σ 2 0.739 0.189 0.721 0.427 1.169
E(θ) −1.139 0.3325 −1.111 −1.733 −0.5968
V (θ) 0.3513 0.07661 0.3438 0.2273 0.5101

model than with the SPSN model. For instance, when 1.5 ≤ θ ≤ 2.0 the change in
the probability of a correct response with the PN model is 0.053 and with the SPSN
model is 0.031. Hence, we note that the PN model overestimates the probability
of correct response for lower levels of mathematical ability and underestimates it
for higher levels of mathematical ability. Therefore, considering the information
provided by the SPSN model, item 14 rewards students with lower levels of math-
ematical ability and penalizes students with higher levels of mathematical ability.

By considering the estimates of the hyperparameter to the Mathematical ability
in Table 2 on page 15, we found that the posterior mean and variance for the mean
mathematical ability are −1.144 and 0.354, respectively, substantially differing
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(a) (b)

Figure 4 (a) ICCs for item 14 for the Math data set, under PN and SPSN-IRT models, (b) Differ-
ences between the PN and SPSN probabilities estimative.

from the values when considering the PN model which are assumed as 0 and 1,
respectively. The values found are more in accordance with the distribution for the
scores that presents a proportion mean of 0.4595 (−0.0405 with respect to an ideal
proportion mean of 0.5) and a standard deviation of 0.2335.

5.2 Reading comprehension data set

We consider an analysis on the response pattern obtained by the application of a
Reading Comprehension Test in a group of seventh grade students from Peruvian
elementary schools. Item response data are available from authors upon request
and correspond to the response of the 297 students to 14 items qualified as binary
response (correct and incorrect). The mean score is 10.28, the median 11 and the
standard deviation 2.41. The sample skewness and kurtosis indexes are 0.141 and
0.537, respectively. The test presents a median reliability index given by Cron-
bach’s alpha equal to 0.65, and the mean proportion for the items equal to 0.734.

The original Reading Comprehension Test was to read four comprehension pas-
sages by 1535 students (see Chincaro, 2010). In our analysis, only items from the
three first passages and students from the cities in Peruvian jungle region are con-
sidered. Items in testlet corresponds to different task with different definitions. The
first testlet have 3 items, the second testlet have 6 items and, finally, the third testlet
have 5 items.
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Table 3 Comparing testlet models using different criteria for the Reading Comprehension data

Criteria PN SPN PN testlet SPN testlet

Number of parameters 325 339 1513 1527
Deviance of the posterior means 3434.44 3166.29 3335.6 3138.88
Posterior expected deviance 3236.27 2825.55 3064.98 2852.31
ρD effective number of parameters 198.17 340.739 270.63 286.57
DIC 3632.61 3507.03 3606.23 3425.45
Expected AIC 4084.44 3844.29 6361.6 6192.88
Expected BIC 6142.60 5991.11 15,943.11 15,863.05
SSR posterior mean 4172 2992 4167 3044

The priors considered are ui ∼ N(0,1), γil ∼ N(0, σ 2
γl

), aj ∼ N(1;0.5)I (0; ·),
bj ∼ N(0;2), dj ∼ U [−1,1], 1/σ 2

γk
∼ χ(0.5).

In the SNO testlet model, 42 item parameters, 297 individual traits, 891 param-
eters associated with testlets and 3 hyperparameters corresponding to σ 2

γ1
, σ 2

γ2
and

σ 2
γ3

were estimated from the data set. The WinBUGS code is in Appendix A.2.
Table 3 on page 17 shows the number of parameters in each model.

We consider 54,000 iterations, starting with a burn-in of the 4000 iterations and
them using thinning equal to 25. The MCMC final sample size is 2000. Several
criteria, computed using the CODA package in the WinBUGS program, were used
for the convergence analysis.

We consider initial values 1, 0 and 0 for the item parameters aj , bj and dj ,
respectively. Initial values for the latent variable θi and auxiliary latent variables
corresponding to the different models could be by generated from the distribu-
tions specified in Section 4, however, we prefer to fix this value in 0.5 to im-
prove the performance and stability of the developed software. From Table 3 on
page 17, all criteria seem to indicate that SPN fits better than the PN IRT model
and hence asymmetrical ICCs are justified. However, we found that only item 9 has
a slight asymmetry with the following posterior estimates for the shape parameter:
Median = 0.2975, Percentile 5 = −0.1293 and Percentile 95 = 0.5662.

For the testlet models, considering DIC and SSR, we notice that PN and SPN
models present improvement. The EAIC and EBIC criteria are discarded because
the number of parameters in the models with and without testlet are not comparable
and inadequately penalize the deviance of the posterior mean. The SPN testlet
model presents better fit for the data set than PN testlet model, by considering
the four criteria. However, we found that only item 9 has a significant asymmetry
with the following posterior estimates for the shape parameter: Median = 0.3016,
Percentile 5 = 0.03991 and Percentile 95 = 0.5428 (see Figure 5).

Finally, considering the posterior mean, the estimates for the variance of each
testlet effect are 0.2992,0.3184 and 0.3495. These results indicate a modest effect
of testlet dependence for this particular data set.
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Figure 5 Box-plots for the d parameters of the 14 items of Reading Comprehension test under the
skew-probit testlet IRT model.

6 Concluding remarks

This article introduces new applications of the skew-normal ogive IRT model
proposed by Bazán, Branco and Bolfarine (2006), which extends the work of
Albert (1992) for asymmetrical IRT models. Two extensions are considered for
this model: the standard skew-normal distribution as prior distribution for the latent
variables and the inclusion of an additional random effect for the dependence be-
tween items within the same testlet. The full Bayesian specification by considering
the hierarchical structure can be easily implemented using MCMC methodology
in WinBUGS or SAS.

In addition, several model comparisons procedures are used to compare the
symmetrical and asymmetrical IRT models (DIC, EAIC and EBIC). We also in-
troduce latent residuals for the models and global discrepancy measures as the
posterior sum of squares of the latent residuals. All these measurements show that
the SN-IRT model obtained considering combinations of both types of asymmetry
presents better fit than the usual ogive normal IRT model for the observed data.

For the Math data set considered, there is clear indication that the shape param-
eter for the ability distributions is different from zero, indicating the usefulness of
the SN-IRT model in explaining asymmetric abilities. Extensions to more general
models such as SN-IRT multidimensional model, hierarchical SN-IRT model, SN-
IRT multilevel models will be the subject of future work. Other extensions of the
skew probit link for ordinal responses, as in Johnson (2003), will also be studied
in future developments.

For the Reading Comprehension data set, we showed that the version testlet of
the skew-normal model, which combine both the estimation of the penalty param-
eter as well as the random effects associated with the testlet, improves the model
fit.
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It may be interesting to study versions of skew-normal ogive models which
consider Rasch type models or guessing parameter with and without testlet effect.
Also extensions for Polychotomous and multidimensional Item Response Models
can be studied.

Appendix

A.1 The skew-normal distribution (Azzalini, 1985)

A random variable X follows a skew-normal distribution with location parame-
ter μ, scale parameter σ 2 and shape parameter λ, which controls skewness, if the
density function of Xis given by

fλ(x) = 2

σ
φ

(
x − μ

σ

)
�

(
λ

(
x − μ

σ

))
.

φ(·) and �(·) denote, respectively, the density and distribution function of the
standard normal distribution. We use the notation X ∼ SN(μ,σ 2, λ). The parame-
ter λ is also called skewness parameter, the asymmetry is positive when λ > 0 and
negative when λ < 0. If λ = 0, then the skewness vanishes and the density above
reduces to the density of the N(μ,σ 2).

An alternative parametrization of the skewness parameter is given by

d = λ

(1 + λ2)1/2 , (A.1)

where d is in [−1,1].
The mean and variance are given, respectively, by E(X) = μ +

√
2
π
σd and

V (X) = (1 − 2
π
d2)σ 2. The special case with μ = 0 and σ 2 = 1 is called standard

skew-normal distribution. Moreover, the random variable Z = (X − μ)/σ is dis-
tributed according to the standard skew-normal distribution with density function
given by

fλ(z) = 2φ(z)�(λz),

and cumulative distribution function (c.d.f.) give by

Fλ(z) =
∫ z

−∞
2φ(t)�(λt) dt = 2�2

(
(z,0)T ;0,�

)
.

Straightforward algebraic manipulations yield the expression on the right (see
Bazán, Branco and Bolfarine, 2006) with �2(·) denoting the distribution func-
tion of the bivariate standard normal distribution with mean vector 0 = (0,0)T and
correlation matrix � = ( 1

−d
−d
1

)
where d is given by (A.1).

Considering the stochastic representation (see Henze, 1986), the conditional
distribution Z|V = v is normal with mean dv and variance 1 − d2, that is,
Z|V = v ∼ N(dv,1 − d2). In addition, if Z ∼ SN(μ,σ 2, λ) then Zs = aZ + b ∼
SN(aμ + b, a2σ 2, sign(a)λ).
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A.2 Code in WinBUGS for testlet model

model{
for (i in 1:n) { for (j in 1:I) {

m[i,j] <- alpha[j]*(theta[i] - beta[j]+gamma[i,id[j]])
# Probit
# Zs[i,j] ~ dnorm(m[i,j],1)I(lo[y[i,j]+1],up[y[i,j]+1])
# resid[i,j]<-Zs[i,j]-m[i,j]
#SProbit

muz[i,j]<-m[i,j]-d[j]*V[i,j]
Zs[i,j] ~ dnorm(muz[i,j],preczs[j])I(lo[y[i,j]+1],up[y[i,j]+1])
V[i,j] ~ dnorm(0,1)I(0,)

resid[i,j]<-Zs[i,j]-muz[i,j]
res2[i,j]<-pow(resid[i,j],2)

}
}

#prioris latent variable
for(i in 1:n){ u[i]~ dnorm(0,1)

for(k in 1:t){
gamma[i,k] ~ dnorm(0,pgamma[k]) }

gamma[i,t+1]<-0
}

for(k in 1:t){
pgamma[k] ~ dchisqr(0.5)
sigma2gamma[k] <-1/pgamma[k]

}
#priors for item parameters
for (j in 1:I) {

#priors due Sahu (2002)
alpha[j] ~ dnorm(1,2)I(0,)
beta[j] ~ dnorm(0,0.5)
d[j] ~ dunif(-1,1)

preczs[j]<- 1/(1-pow(d[j],2))
lambda[j]<-d[j]*sqrt(preczs[j])

}
lo[1]<- -50; lo[2]<- 0;
## i.e.,Zs*|y=0~N(-delta*V+m,1-delta^2)I(-50,0)
up[1]<- 0; up[2]<-50;
## i.e., Zs*|y=1~N(-delta*V+m,1-delta^2)I(0,50)

for(j in 1:I) { resmean[j]<-sum(res2[,j])}
sse<-sum(resmean[])
mu<-mean(u[])
du<-sd(u[])

}
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