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of transformations of normal variables
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Abstract. This note examines the infinite divisibility of density-based trans-
formations of normal random variables. We characterize a class of such trans-
formations of normal variables which produces non-infinitely divisible distri-
butions. We relate our result with some known skewing mechanisms.

1 Introduction

In recent years, the use of skewed distributions has attracted the attention of statis-
ticians both from the applied and theoretical points of view, see, for example,
http://azzalini.stat.unipd.it/SN/list-publ.pdf for the case of skew-normal distribu-
tions. Several skewing mechanisms have been proposed to obtain skewed distri-
butions by transforming symmetric ones (Marshall and Olkin, 1997; Jones, 2004;
Wang et al., 2004; Arellano-Valle et al., 2005). Thus, it is of interest per se to
analyze theoretical properties of the transformed distributions. Here, we present
a characterization (see Theorem 1 below) for a class of density-based transfor-
mations that produces non-infinitely divisible distributions when applied to the
normal distribution. This characterization can be easily related to some skewing
mechanisms. It is important to note that, although the method of proof used in this
note is similar to the one used in Domínguez-Molina and Rocha-Arteaga (2007),
our result is general enough to cover several known skewing mechanisms. It is
worth mentioning that our result has implications in statistical modeling because
it rules out the use of several skew-normal distributions in models defined in terms
of infinitely divisible distributions (cf. Steutel et al., 1979). In particular, having
an infinitely divisible distribution opens the door to the use of Lévy processes,
which is a well-studied class of stochastic processes. For instance, applications
of Lévy processes in finance have received great attention (see, e.g., Schoutens,
2003). However, Theorem 1 below points out that some attention has to be paid
when dealing with the kind of skewing mechanisms studied in this note.

In Section 2, a general representation of density-based transformations pro-
posed in Ferreira and Steel (2006) and its relationship with four skewing mech-
anisms is presented. Using this representation, in Section 3 we offer a sufficient
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condition on such density-based transformations which destroys the property of
infinite divisibility of normal distributions. Our results partially extends the work
of Domínguez-Molina and Rocha-Arteaga (2007), Kozubowski and Nolan (2008)
and Abtahi et al. (2012). We specialize our characterization to some skewing mech-
anisms which are of interest in the statistical literature.

2 Skewing mechanisms

Let S and F be any two distribution functions on the real line and let P be a dis-
tribution function on (0,1), densities (which are assumed to exist) will be denoted
by the corresponding lowercase letters. Ferreira and Steel (2006) show that for any
pair of absolutely continuous distributions S and F with support on R, there exists
a distribution P such that S = P ◦ F . This implies that the transformation from
a random variable X, with distribution function F , to a random variable Y , with
distribution function S, can be represented as a density-based transformation as
follows

s(y|F,P ) = f (y)p[F(y)], y ∈ R. (2.1)

Ferreira and Steel (2006) prove that S is equal to F only when P is the uniform
distribution on (0,1) and that, for a fixed F , it is possible to obtain any S by using
an appropriate P . If the distribution F is symmetric and S is asymmetric, then S

is said to be an asymmetric version of F generated by the skewing mechanism
P (Ferreira and Steel, 2006). Several related skewing mechanisms have been pro-
posed in the statistical literature. Next, we provide the relationship of four known
skewing mechanisms with representation (2.1):

(i) Skew-symmetric construction (Wang et al., 2004). Such transformation is de-
fined as follows

s(y|F,P ) = 2f (y)π(y),

p(x) = 2π(F−1(x)),

where π is a function that satisfies 0 ≤ π(y) ≤ 1, π(−y) = 1 − π(y) and
x ∈ [0,1].

Particular cases of this transformation are the Hidden Truncation skewing
mechanism (Arnold and Beaver, 2000) and Azzalini’s skew-normal (Azzalini,
1985).

(ii) Order Statistics (Jones, 2004). This transformation introduces two new pa-
rameters ψ1 > 0 and ψ2 > 0 as follows

s(y|F,P ) = [β(ψ1,ψ2)]−1f (y)F (y)ψ1−1(
1 − F(y)

)ψ2−1
,

p(x|ψ1,ψ2) = [β(ψ1,ψ2)]−1xψ1−1(1 − x)ψ2−1,

where β denotes the beta function and x ∈ [0,1].
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(iii) Marshall–Olkin transformation (Marshall and Olkin, 1997). Such transforma-
tion is given through a positive parameter γ as follows

s(y|F,P ) = γf (y)

[F(y) + γ (1 − F(y))]2 ,

p(x|γ ) = γ

[x + γ (1 − x)]2 ,

where x ∈ [0,1].
(iv) Two-piece distributions (Arellano-Valle et al., 2005). This transformation

consists of scaling by different factors, a(γ ) and b(γ ), either side of the
symmetry point of a unimodal density f . If f is symmetric about 0, this
transformation is given by

s(y|F,P ) = 2

a(γ ) + b(γ )

[
f

(
y

b(γ )

)
I (y < 0) + f

(
y

a(γ )

)
I (y ≥ 0)

]
,

p(x|γ ) = 2

a(γ ) + b(γ )

× f (F−1(x)/b(γ ))I (x < 0.5) + f (F−1(x)/a(γ ))I (x ≥ 0.5)

f (F−1(x))
,

with x ∈ [0,1], a(γ ) and b(γ ) are positive functions of the parameter γ ∈ �;
where � depends on the choice of the functions {a(γ ), b(γ )}.

This class of transformations includes the Inverse Scale Factors presented
in Fernández and Steel (1998) and the ε-skew normal given in Mudholkar
and Hutson (2000).

The skew-normals obtained with these skewing mechanisms have been used
for modeling data presenting departures from symmetry in medicine, psychol-
ogy, genetics, engineering, finance, among others (for a compendium of literature
about applications of these models see, for example, http://azzalini.stat.unipd.it/
SN/list-publ.pdf).

3 On infinite divisibility

The goal of this section is twofold. Firstly, we consider f = φ in (2.1), where φ

denotes the normal density, then we derive a sufficient condition on the density p

such that the skewed distribution S is not infinitely divisible. Secondly, we relate
this result with the skewing mechanisms described in Section 2.

Theorem 1. Let 	 and φ be the distribution and density functions of a standard
normal variable, respectively. Consider the transformation given in (2.1), with f =
φ, F = 	 and p bounded almost everywhere. Under these conditions, we have that
S is not infinitely divisible when p is not the density of a uniform variable on (0,1).

http://azzalini.stat.unipd.it/SN/list-publ.pdf
http://azzalini.stat.unipd.it/SN/list-publ.pdf
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Before we proceed to the proof of this theorem, we cite the following result
which plays a key role in what follows.

Lemma 1 (Steutel and Van Harn, 2004, Corollary 9.9). A non-degenerate in-
finitely divisible random variable X has a normal distribution if and only if it
satisfies

lim sup
x→∞

− log P(|X| > x)

x logx
= ∞.

Proof of Theorem 1. Let us assume that S is infinitely divisible. By assumption,
there exists a positive constant M such that p ≤ M , almost everywhere. Note that
for y > 0

S(−y|	,P ) =
∫ −y

−∞
φ(t)p[	(t)]dt ≤ M

∫ −y

−∞
φ(t) dt = M	(−y),

1 − S(y|	,P ) =
∫ ∞
y

φ(t)p[	(t)]dt ≤ M

∫ ∞
y

φ(t) dt = M[1 − 	(y)].

Then

S(−y|	,P ) + 1 − S(y|	,P ) ≤ M[	(−y) + 1 − 	(y)].
Therefore, for y > 1

− log[S(−y|	,P ) + 1 − S(y|	,P )]
y log(y)

≥ − log[M[	(−y) + 1 − 	(y)]]
y log(y)

.

Hence, taking limits on both sides we get

lim sup
y→∞

− log[S(−y|	,P ) + 1 − S(y|	,P )]
y log(y)

≥ lim sup
y→∞

− log[M[	(−y) + 1 − 	(y)]]
y log(y)

= ∞,

which together with the characterization of the normal distribution given in
Lemma 1 implies that S is normal. This contradicts the fact that S is not nor-
mal as p is not the uniform density in (0,1), see Theorem 1 in Ferreira and Steel
(2006). Therefore, S is not infinitely divisible. �

Theorem 1 has the following immediate.

Corollary 1. Skew normals obtained by the skew-symmetric construction, the
Marshall–Olkin transformation and the Order Statistics transformation for ψ1 > 1
and ψ2 > 1, are non-infinitely divisible.
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Proof. It is enough to note that, in each case, the corresponding density p is
bounded. �

Domínguez-Molina and Rocha-Arteaga (2007) and Kozubowski and Nolan
(2008) prove that, in particular, Azzalini’s skew normal is not infinitely divisi-
ble. Theorem 1 together with Corollary 1 extend this result to the family of skew-
normal distributions obtained by the skew-symmetric construction (Wang et al.,
2004), from which Azzalini’s skew-normal is a particular case. Another example
of this is the skew-normal analyzed in Abtahi et al. (2012). Moreover, the skewed
normal distribution obtained by any skewing mechanism which satisfies the con-
dition given in Theorem 1 will lose the infinite divisibility property.

Note that, for the skewing mechanism that produces two-piece distributions, the
corresponding p is not necessarily bounded. Thus, an ad hoc proof of the non-
infinite divisibility of the skew-normals obtained with this sort of transformation
is presented in the following

Theorem 2. The two-piece skew normal is non-infinitely divisible for a(γ ) �=
b(γ ).

Proof. Let us assume that a(γ ) �= b(γ ). Jones (2006) proves that the elements of
the class of two-piece distributions are reparameterizations of each other. There-
fore, it is enough to prove the result for the particular choice {a(γ ), b(γ )} =
{1 − γ,1 + γ }, γ ∈ (−1,1), analyzed in Arellano-Valle et al. (2005). Note that
a(γ ) = b(γ ) if and only if γ = 0, which corresponds to the symmetric normal
which is infinitely divisible. In addition, the density s obtained with a particular γ ,
corresponds to reflecting the density s with parameter −γ around 0. Hence, it is
enough to prove the result for −1 < γ < 0.

Note that

S(y|	,P ) = (1 + γ )	

(
y

1 + γ

)
I (y < 0) +

[
−γ + (1 − γ )	

(
y

1 − γ

)]
I (y ≥ 0).

Then, given that −1 < γ < 0 and for any y > 0 we have that

S(−y|	,P ) + 1 − S(y|	,P ) = (1 + γ )	

(
− y

1 + γ

)

+ 1 + γ − (1 − γ )	

(
y

1 − γ

)

< 2(1 − γ )	

(
− y

1 − γ

)

< 4	

(
−y

2

)
.
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Then, for y > 1 we have

− log[S(−y|	,P ) + 1 − S(y|	,P )]
y log(y)

> − log[4	(−y/2)]
y log(y)

= − log[2(	(−y/2) + 1 − 	(y/2))]
y log(y)

.

The result follows by taking limits in both sides of this expression and following
the same reasoning as in the proof of Theorem 1. �
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