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The Discrete Infinite Logistic Normal
Distribution

John Paisley∗, Chong Wang† and David M. Blei‡

Abstract. We present the discrete infinite logistic normal distribution (DILN),
a Bayesian nonparametric prior for mixed membership models. DILN generalizes
the hierarchical Dirichlet process (HDP) to model correlation structure between
the weights of the atoms at the group level. We derive a representation of DILN
as a normalized collection of gamma-distributed random variables and study its
statistical properties. We derive a variational inference algorithm for approximate
posterior inference. We apply DILN to topic modeling of documents and study
its empirical performance on four corpora, comparing performance with the HDP
and the correlated topic model (CTM). To compute with large-scale data, we
develop a stochastic variational inference algorithm for DILN and compare with
similar algorithms for HDP and latent Dirichlet allocation (LDA) on a collection
of 350, 000 articles from Nature.

Keywords: mixed-membership models, Dirichlet process, Gaussian process

1 Introduction

The hierarchical Dirichlet process (HDP) has emerged as a powerful Bayesian nonpara-
metric prior for grouped data (Teh et al. 2006), particularly in its role in Bayesian
nonparametric mixed-membership models. In an HDP mixed-membership model, each
group of data is modeled with a mixture where the mixture proportions are group-
specific and the mixture components are shared across the data. While finite models
require the number of mixture components to be fixed in advance, the HDP model
allows the data to determine how many components are needed; and that number is
variable: With an HDP model, new data can induce new components.

The HDP mixed-membership model has been widely applied to probabilistic topic
modeling, where hierarchical Bayesian models are used to analyze large corpora of doc-
uments in the service of exploring, searching, and making predictions about them (Blei
et al. 2003; Erosheva et al. 2004; Griffiths and Steyvers 2004; Blei and Lafferty 2007,
2009). In topic modeling, documents are grouped data—each document is a group
of observed words—and we analyze the documents with a mixed-membership model.
Conditioned on a collection, the posterior expectations of the mixture components are
called “topics” because they tend to resemble the themes that pervade the documents;
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the posterior expectations of the mixture proportions identify how each document ex-
hibits the topics. Bayesian nonparametric topic modeling uses an HDP to try to solve
the model selection problem; the the number of topics is determined by the data and
new documents can exhibit new topics.

For example, consider using a topic model to analyze 10,000 articles from Wikipedia.
(This is a data set that we will return to.) At the corpus level, the posterior of one
component might place high probability on terms associated with elections; another
might place high probability on terms associated with the military. At the document
level, articles that discuss both subjects will have posterior proportions that place weight
on both topics. The posterior of these quantities over the whole corpus can be used to
organize and summarize Wikipedia in a way that is not otherwise readily available.

Though powerful, the HDP mixed-membership model is limited in that it does not
explicitly model the correlations between the mixing proportions of any two components.
For example, the HDP topic model cannot capture that the presence of the election topic
in a document is more positively correlated with the presence of the military topic than
it is with a topic about mathematics. Capturing such patterns, i.e., learning that one
topic might often co-occur with another, can provide richer exploratory variables to
summarize the data and further improve prediction.

To address this, we developed the discrete infinite logistic normal distribution (DILN,
pronounced “Dylan”), a Bayesian nonparametric prior for mixed-membership mod-
els (Paisley et al. 2011).1 As with the HDP, DILN generates discrete probability distri-
butions on an infinite set of components, where the same components are shared across
groups but have different probabilities within each group. Unlike the HDP, DILN also
models the correlation structure between the probabilities of the components.

Figure 1 illustrates the DILN posterior for 10,000 articles from Wikipedia. The
corpus is described by a set of topics—each topic is a distribution over words and is
visualized by listing the most probable words—and the topics exhibit a correlation
structure. For example, topic 3 (“party, election, vote”) is positively correlated with
topic 12 (“constitution, parliament, council”) and topic 25 (“coup, army, military”). It
is negatively correlated with topic 20 (“food, meat, drink”).

In DILN, each component is associated with a parameter (e.g., a topical distribu-
tion over terms) and a location in a latent space. For group-level distributions (e.g.,
document-specific distributions over topics), the correlation between component weights
is determined by a kernel function of latent locations of these components. Since the
correlation between occurrences is a posterior correlation, i.e., one that emerges from
the data, the locations of the components are also latent. For example, we do not en-
force a priori what the topics are and how they are correlated—this structure comes
from the posterior analysis of the text.

1In this paper we expand on the ideas of Paisley et al. (2011), which is a short conference paper.
We report on new data analysis, we describe a model of the latent component locations that allows for
variational inference, we improve the variational inference algorithm (see Section 3.4), and we expand
it to scale up to very large data sets.
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Topic 1: economy, economic, growth, industry, sector, rate, export, production, million, billion
Topic 2: international, nations, republic, agreement, relation, foreign, union, nation, china, economic
Topic 3: party, election, vote, elect, president, democratic, political, win, minister, seat
Topic 4: season, team, win, league, game, championship, align, football, stadium, record
Topic 5: treatment, patient, disease, drug, medical, health, effect, risk, treat, symptom
Topic 6: album, music, band, record, song, rock, release, artist, recording, label
Topic 7: philosophy, philosopher, thing, argument, philosophical, mind, true, truth, reason, existence
Topic 8: law, court, legal, criminal, person, rule, jurisdiction, judge, crime, rights
Topic 9: math, define, function, theorem, element, definition, space, property, theory, sub
Topic 10: church, christian, christ, jesus, catholic, roman, john, god, orthodox, testament
Topic 11: climate, mountain, land, temperature, range, region, dry, south, forest, zone
Topic 12: constitution, parliament, council, appoint, assembly, minister, head, legislative, house
Topic 13: cell, protein, acid, molecule, structure, process, enzyme, dna, membrane, bind
Topic 14: atom, element, chemical, atomic, electron, energy, hydrogen, reaction, sup, sub
Topic 15: computer, memory, processor, design, hardware, machine, unit, chip, ibm, drive
Topic 16: president, congress, washington, governor, republican, john, george, federal, senator, senate
Topic 17: military, army, air, unit, defense, navy, service, operation, armed, personnel
Topic 18: university, student, school, education, college, program, degree, institution, science, graduate
Topic 19: math, value, values, measure, equal, calculate, probability, define, distribution, function
Topic 20: food, meat, drink, fruit, eat, vegetable, water, dish, traditional, ingredient
Topic 21: battle, commander, command, army, troop, victory, attack, british, officer, campaign
Topic 22: sport, ball, team, score, competition, match, player, rule, tournament, event
Topic 23: airport, rail, traffic, road, route, passenger, bus, service, transportation, transport
Topic 24: religion, god, spiritual, religious, belief, teaching, divine, spirit, soul, human
Topic 25: coup, army, military, leader, overthrow, afghanistan, armed, kill, rebel, regime
Topic 26: god, goddess, greek, kill, myth, woman, story, sacrifice, ancient, away
Topic 27: economic, political, argue, society, social, revolution, free, economics, individual, capitalism
Topic 28: radio, service, television, network, station, broadcast, telephone, internet, channel, mobile
Topic 29: equation, math, linear, constant, coordinate, differential, plane, frac, solution, right
Topic 30: university, professor, prize, award, nobel, research, publish, prise, science, society

Figure 1: Topic correlation for a 10K document Wikipedia corpus: The ten most prob-
able words from the 30 most probable topics. At top are the positive and negative
correlation coefficients for these topics (separated for clarity) as learned by the topic
locations (see text for details).
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We formulate two equivalent representations of DILN. We first formulate it as an
HDP scaled by a Gaussian process (Rasmussen and Williams 2006). This gives an intu-
itive picture of how the correlation between component weights enters the distribution
and makes clear the relationship between DILN and the HDP. We then formulate DILN
as a member of the normalized gamma family of random probability distributions. This
lets us characterize the a priori correlation structure of the component proportions.

The central computational problem for DILN is approximate posterior inference.
Given a corpus, we want to compute the posterior distribution of the topics, per-
document topic proportions, and the latent locations of the topics. Using the normalized
gamma construction of a random measure, we derive a variational inference algorithm
(Jordan et al. 1999) to approximate the full posterior of a DILN mixed-membership
model. (Moreover, this variational algorithm can be modified into a new posterior in-
ference algorithm for HDP mixed-membership models.) We use variational inference
to analyze several collections of documents, each on the order of thousands of articles,
determining the number of topics based on the data and identifying an explicit correla-
tion structure among the discovered topics. On four corpora (collected from Wikipedia,
Science, The New York Times, and The Huffington Post), we demonstrate that DILN
provides a better predictive model and an effective new method for summarizing and
exploring text data. (Again, see Figure 1 and also Figures 5, 4 and 6.)

Variational inference turns the problem of approximating the posterior into an opti-
mization problem. Recent research has used stochastic optimization to scale variational
inference up to very large data sets (Hoffman et al. 2010; Armagan and Dunson 2011),
including our own research on HDP mixed-membership models (Wang et al. 2011).
We used the same strategy here to develop a scalable inference algorithm for DILN.
This further expands the scope of stochastic variational inference to models (like DILN)
whose latent variables do not enjoy pair-wise conjugacy. Using stochastic inference,
we analyze 352,549 thousand articles from Nature magazine, a corpus which would be
computationally expensive with our previous variational algorithm.

Related research. The parametric model most closely related to DILN is the correlated
topic model (CTM) (Blei and Lafferty 2007). The CTM is a mixed-membership model
that allows topic occurrences to exhibit correlation. The CTM replaces the Dirich-
let prior over topic proportions, which assumes near independence of the components,
with a logistic normal prior (Aitchison 1982). Logistic normal vectors are generated
by exponentiating a multivariate Gaussian vector and normalizing to form a probabil-
ity vector. The covariance matrix of the multivariate Gaussian distribution provides
a means for capturing correlation structure between topic probabilities. Our goal in
developing DILN was to form a Bayesian nonparametric variant of this kind of model.

The natural nonparametric extension of the logistic normal is a normalized expo-
nentiated Gaussian process (Lenk 1988; Rasmussen and Williams 2006). However, this
cannot function as a prior for nonparametric correlated topic modeling. The key prop-
erty of the HDP (and DILN) is that the same set of components is shared among the
groups. This sharing arises because the group-level distributions on the infinite topic
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space are discrete probability measures over the same set of atoms. Using the model
of Lenk (1988) in a hierarchical setting does not provide such distributions. The “infinite
CTM” is therefore not a viable alternative to the HDP.

In the Bayesian nonparametric literature, another related line of work focuses on
dependent probability distributions where the dependence is defined on predictors ob-
served for each data point. MacEachern (1999) introduced dependent Dirichlet pro-
cesses (DDPs), which allow data-dependent variation in the atoms of the mixture, and
have been applied to spatial modeling (Gelfand et al. 2005; Rao and Teh 2009). Other
dependent priors allow the mixing weights themselves to vary with predictors (Griffin
and Steel 2006; Duan et al. 2007; Dunson and Park 2008; Ren et al. 2011). Still other
methods consider the weighting of multiple DP mixture models using spatial informa-
tion (Müller et al. 2004; Dunson et al. 2007).

These methods all use the spatial dependence between observations to construct
observation-specific probability distributions. Thus they condition on known locations
(often geospatial) for the data. In contrast, the latent locations of each component in
DILN do not directly interact with the data, but with each other. That is, the corre-
lations induced by these latent locations influence the mixing weights for a data group
prior to producing its observations in the generative process. Unlike DDP models, our
observations are not equipped with locations and do not a priori influence component
probabilities. The modeling ideas behind DILN and behind DDPs are separate, though
it is possible to develop dependent DILN models, just as dependent HDP models have
been developed (MacEachern 1999).

This paper is organized as follows. In Section 2 we review the HDP and discuss its
representation as a normalized gamma process. In Section 3 we present the discrete
infinite logistic normal distribution, first as a scaling of an HDP with an exponentiated
Gaussian process and then using a normalized gamma construction. In Section 4 we
use this gamma construction to derive a mean-field variational inference algorithm for
approximate posterior inference of DILN topic models, and we extend this algorithm to
the stochastic variational inference setting. Finally, in Section 5 we provide an empirical
study of the DILN topic model on five text corpora.

2 Background: The Hierarchical Dirichlet Process

The discrete infinite logistic normal (DILN) prior for mixed-membership models is an
extension of the hierarchical Dirichlet process (HDP) (Teh et al. 2006). In this section,
we review the HDP and reformulate it as a normalized gamma process.

2.1 The original formulation of the hierarchical Dirichlet process

The Dirichlet process (Ferguson 1973) is useful as a Bayesian nonparametric prior for
mixture models since it generates distributions on infinite parameter spaces that are
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almost surely discrete (Blackwell and MacQueen 1973; Sethuraman 1994). Given a
space Ω with a corresponding Borel σ-algebra B and base measure αG0, where α > 0
and G0 is a probability measure, Ferguson (1973) proved the existence of a process G
on (Ω,B) such that for all measurable partitions {B1, . . . , BK} of Ω,

(G(B1), . . . , G(BK)) ∼ Dirichlet(αG0(B1), . . . , αG0(BK)). (1)

This is called a Dirichlet process and is denoted G ∼ DP(αG0). Sethuraman (1994)
gave a proof of the almost sure (a.s.) discreteness of G by way of a stick-breaking rep-
resentation (Ishwaran and James 2001); we will review this stick-breaking construction
later. Blackwell and MacQueen (1973) gave an earlier proof of this discreteness using
Pólya urn schemes. The discreteness of G allows us to write it as

G =
∞∑
k=1

pkδηk ,

where each atom ηk is generated i.i.d. from the base distribution G0, and the atoms
are given random probabilities pk whose distribution depends on a scaling parameter
α > 0 such that smaller values of α lead to distributions that place more mass on fewer
atoms. The DP is most commonly used as a prior for a mixture model, where G0 is a
distribution on a model parameter, G ∼ DP(αG0) and each data point is drawn from a
distribution family indexed by a parameter drawn from G (Ferguson 1983; Lo 1984).

When the base measure G0 is non-atomic, multiple draws from the DP prior place
their probability mass on an a.s. disjoint set of atoms. That is, for G1, G2

iid∼ DP(αG0),
an atom ηk in G1 will a.s. not appear in G2, i.e., G1({ηk}) > 0 =⇒ G2({ηk}) = 0 a.s.
The goal of mixed-membership modeling is to use all groups of data to learn a shared
set of atoms. The hierarchical Dirichlet process (Teh et al. 2006) was introduced to
allow multiple Dirichlet processes to share the same atoms. The HDP is a prior for a
collection of random distributions (G1, . . . , GM ). Each Gm is i.i.d. DP distributed with
a base probability measure that is also a Dirichlet process,

G ∼ DP(αG0), Gm |G
iid∼ DP(βG). (2)

The hierarchical structure of the HDP ensures that each Gm has probability mass dis-
tributed across a shared set of atoms, which results from the a.s. discreteness of the
second-level base measure βG. Therefore, the same subset of atoms will be used by
all groups of data, but with different probability distributions on these atoms for each
group.

Where the DP allows us to define a mixture model, the HDP allows us to define a
mixed-membership model. Given an HDP (G1, . . . , GM ), each Gm generates its associ-
ated group of data from a mixture model,

X(m)
n | θ(m)

n
ind∼ f(X|θ(m)

n ), n = 1, . . . , Nm, (3)

θ(m)
n |Gm

iid∼ Gm, n = 1, . . . , Nm. (4)
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The datum X
(m)
n denotes the nth observation in the mth group and θ

(m)
n denotes its

associated parameter drawn from the mixing distribution Gm, with Pr(θ(m)
n = ηk|Gm) =

Gm({ηk}). The HDP can be defined to an arbitrary depth, but we focus on the two-level
process described above.

When used to model documents, the HDP is a prior for topic models. The observa-
tion X(m)

n is the nth word in the mth document and is drawn from a discrete distribution
on words in a vocabulary, X(m)

n |θ(m)
n ∼ Discrete(θ(m)

n ), where θ(m)
n is the V -dimensional

word probability vector selected according to Gm by its corresponding word. The base
probability measure G0 is usually a symmetric Dirichlet distribution on the vocabulary
simplex. Given a document collection, posterior inference yields a set of shared top-
ics and per-document proportions over all topics. Unlike its finite counterpart, latent
Dirichlet allocation (Blei et al. 2003), the HDP topic model determines the number of
topics from the data (Teh et al. 2006).

2.2 The HDP as a normalized gamma process

The DP has several representations, including a gamma process representation (Fer-
guson 1973) and a stick-breaking representation (Sethuraman 1994). In constructing
HDPs, we will take advantage of each of these representations at different levels of the
hierarchy.

We construct the top-level DP using stick-breaking (Sethuraman 1994),

G =
∞∑
k=1

Vk

k−1∏
j=1

(1− Vj)δηk , Vk
iid∼ Beta(1, α), ηk

iid∼ G0. (5)

The name comes from an interpretation of Vk as the proportion broken from the re-
mainder of a unit-length stick

∏k−1
j=1 (1−Vj). The resulting absolute length of this stick

forms the probability of atom ηk. Letting pk := Vk
∏k−1
j=1 (1−Vj), this method of gener-

ating DPs produces probability measures that are size-biased according to index k since
E[pk] > E[pj ] for k < j.

Turning to the second-level DP Gm, we now use a normalized gamma process. Recall
that a K-dimensional Dirichlet-distributed vector (Y1, . . . , YK) ∼ Dirichlet(c1, . . . , cK)
with ci > 0 and

∑
j cj < ∞ can be generated for any value of K by drawing Zi

ind∼
Gamma(ci, 1) and defining Yi := Zi/

∑
j Zj (Ishwaran and Zarepour 2002). Ferguson

(1973) focused on the infinite extension of this representation as a normalized gamma
process. Since pk > 0 for all atoms ηk in G, and also because

∑∞
j=1 βpj = β < ∞, we

can construct each Gm using the following normalization of a gamma process,

Gm |G,Z =
∞∑
k=1

Z
(m)
k∑∞

j=1 Z
(m)
j

δηk , Z
(m)
k |G ind∼ Gamma(βpk, 1). (6)

The gamma process representation of the DP is discussed by Ferguson (1973), Kingman
(1993) and Ishwaran and Zarepour (2002), but it has not been applied to the HDP. In
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DILN we will mirror this type of construction of the HDP—a stick-breaking construction
for the top-level DP and a gamma process construction for the second-level DPs. This
will let us better articulate model properties and also make inference easier.

3 The Discrete Infinite Logistic Normal Distribution

The HDP prior has the hidden assumption that the presence of one atom in a group
is not a priori correlated with the presence of another atom (aside from the negative
correlation imposed by the probability simplex). At the group level the HDP cannot
model correlation structure between the components’ probability mass. To see this, note
that the gamma process used to construct each group-level distribution is an example
of a completely random measure (Kingman 1993). That is, the unnormalized masses
(Z(m)

1 , Z
(m)
2 , . . . ) of the atoms (η1, η2, . . . ) of Gm are independently drawn, and for all

partitions {B1, . . . , BK} of Ω and given Sm :=
∑
j Z

(m)
j , the scaled random variables

SmGm(B1), . . . , SmGm(BK) are independent. Thus, no correlation between per-group
probabilities can be built into the HDP.

We introduced the discrete infinite logistic normal (DILN) as a modification of the
HDP that can express such correlations (Paisley et al. 2011). The idea is that each atom
lives in a latent location, and the correlation between atom probabilities is determined
by their relative locations in the latent space. When analyzing data, modeling these
correlations can improve the predictive distribution and provide more information about
the underlying latent structure. DILN has two equivalent representations; we first
describe it as a scaled HDP, with scaling determined by an exponentiated Gaussian
process (Rasmussen and Williams 2006). We then show how DILN fits naturally within
the family of normalized gamma constructions of discrete probability distributions in a
way similar to the discussion in Section 2.2 for the HDP.

3.1 DILN as a scaled HDP

DILN shares the same hierarchical structure described in Section 2.2 for the HDP—there
is an infinite set of components and each group exhibits those components with different
probabilities. In DILN, we further associate each component with a latent location in
Rd. (The dimension d is predefined.) The model then uses these locations to influence
the correlations between the probabilities of the components for each group-level distri-
bution. In posterior inference, we infer both the components and their latent locations.
Thus, through the inferred locations, we can estimate the correlation structure among
the components.

Let G0 be a base distribution over parameter values η ∈ Ω, and let L0 be a non-
atomic base distribution over locations, ` ∈ Rd. We first draw a top-level Dirichlet
process with a product base measure αG0 × L0,

G ∼ DP(αG0 × L0). (7)

Here, G is a probability measure on the space Ω× Rd. For each atom (η, `) ∈ Ω× Rd,
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notation descr iption

m , K mean and kernel f unctions for GP
w a draw f rom GP(m,K)
α , β concentration parameters
V1:∞ top-level sti ck -break ing proportions
Z atom proportions f rom gamma process
ηi , topic and i ts location
G0× L0 base distribution for topics and locations
C topic index for words
X observed words

li

C X

N
M

β

∞
η G0Vl α

w
Zm

K

∞
L 0

Figure 2: A graphical model of the normalized gamma construction of the DILN topic
model. The shorthand GP stands for Gaussian process.

we think of η ∈ Ω as living in the parameter space, and ` ∈ Rd as living in the location
space.

In the second level of the process, the model uses both the probability measure G
and the locations of the atoms to construct group-level probability distributions. This
occurs in two steps. In the first step, we independently draw a Dirichlet process and a
Gaussian process using the measure and atoms of G,

GDP
m |G ∼ DP(βG), Wm(`) ∼ GP(µ(`),K(`, `′)). (8)

The Dirichlet process GDP
m provides a new, initial distribution on the atoms of G for

group m. The Gaussian process Wm is defined on the locations of the atoms of G and
results in a random function that can be evaluated using the location of each atom.
The covariance between Wm(`) and Wm(`′) is determined by a kernel function K(`, `′)
on their respective locations.

The second step is to form each group-level distribution by scaling the probabilities
of each second-level Dirichlet process by the exponentiated values of its corresponding
Gaussian process,

Gm({η, `}) |GDP
m ,Wm ∝ GDP

m ({η, `}) exp{Wm(`)}. (9)

Since we define G0 and L0 to be non-atomic, all η and ` in G are a.s. distinct, and eval-
uating the Gaussian process Wm at a location ` determines its atom (η, `). We satisfy
two objectives with this representation: (i) the probability measure Gm is discrete, ow-
ing to the discreteness of GDP

m , and (ii) the probabilities in Gm are explicitly correlated,
due to the exponentiated Gaussian process. We emphasize that these correlations arise
from latent locations and in posterior inference we infer these locations from data.

3.2 A normalized gamma construction of DILN

We now turn to a normalized gamma construction of DILN. We show that the DILN
prior uses the second parameter of the gamma distribution in the normalized gamma
construction of the HDP to model the covariance structure among the components
of Gm. This representation facilitates approximate posterior inference described in
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Section 4, and helps clarify the covariance properties of the group-level distributions
over atoms.

We use a stick-breaking construction of the top-level Dirichlet process (Equation 7),

G =
∞∑
k=1

Vk

k−1∏
j=1

(1− Vj)δ(ηk,`k), Vk
iid∼ Beta(1, α), ηk

iid∼ G0, `k
iid∼ L0. (10)

This is nearly the same as the top-level construction of the HDP given in Equation (5).
The difference is that the product base measure is defined over the latent location `k as
well as the component ηk to form the atom (ηk, `k).

We pattern the group-level distributions after the gamma process construction of
the second-level DP in the HDP,

Gm |G,Z =
∞∑
k=1

Z
(m)
k∑∞

j=1 Z
(m)
j

δ(ηk,`k), (11)

Z
(m)
k |G,Wm ∼ Gamma(βpk, exp{−Wm(`k)}), Wm |G

iid∼ GP(µ(`),K(`, `′)),

with pk := Vk
∏k−1
j=1 (1 − Vj). Here, DILN differs from the HDP in that it uses the

second parameter of the gamma distribution. In the appendix, we give a proof that the
normalizing constant is almost surely finite.

We note that the locations `k contained in each atom no longer serve a function in the
model after Gm is constructed, but we include them in Equation (11) to be technically
correct. The purpose of the locations `k is to generate sequences Z(m)

1 , Z
(m)
2 , . . . that

are correlated, which is not achieved by the HDP. After constructing the weights of Gm,
the locations have fulfilled their role and are no longer used downstream by the model.

We derive Equation (11) using a basic property of gamma distributed random vari-
ables. Recall that the gamma density is f(z|a, b) = baza−1 exp(−bz)/Γ(a). Consider a
random variable y ∼ Gamma(a, 1) that is scaled by b > 0 to produce z = by. Then
z ∼ Gamma(a, b−1). In Equation (9) we scale atom (η, `) of the Dirichlet process
GDP
m by exp{Wm(`)}. Using the gamma process representation of GDP

m given in Equa-
tion (6) and the countably infinite G in Equation (10), we have that Gm({ηk, `k}) ∝
Y

(m)
k exp{Wm(`)}, where Y (m)

k ∼ Gamma(βpk, 1). Since Z(m)
k := Y

(m)
k exp{Wm(`)} is

distributed as Gamma(βpk, exp{−Wm(`k)}) by the above property of scaled gamma
random variables, the construction in Equation (11) follows.

For the topic model, drawing an observation proceeds as for the HDP. We use a
latent indicator variable C(m)

n , which selects the index of the atom used by observation
X

(m)
n . This indicator variable gives a useful hidden-data representation of the process

for inference in mixture models (Escobar and West 1995),

X(m)
n |Gm, C(m)

n
ind∼ Discrete(η

C
(m)
n

), C(m)
n |Gm

iid∼
∞∑
k=1

Z
(m)
k∑∞

j=1 Z
(m)
j

δk , (12)
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where the discrete distribution is on word index values {1, . . . , V }. We note that this
discrete distribution is one of many possible data generating distributions, and changing
this distribution and G0 will allow for DILN to be used in a variety of other mixed-
membership modeling applications (Erosheva et al. 2007; Airoldi et al. 2008; Pritchard
et al. 2000). Figure 2 shows the graphical model of the DILN topic model.

3.3 The covariance structure of DILN

The two-parameter gamma representation of DILN permits simple calculation of the
expectation, variance and covariance prior to normalization. We first give these values
conditioning on the top-level Dirichlet process G and integrating out the Gaussian
process Wm. In the following calculations, we assume that the mean function of the
Gaussian process is µ(·) = 0 and we define kij := K(`i, `j). The expectation, variance
and covariance of Z(m)

i and Z
(m)
j are

E
[
Z

(m)
i |β,p,K

]
= βpie

1
2kii , (13)

V
[
Z

(m)
i |β,p,K

]
= βpie2kii + β2p2

i e
kii
(
ekii − 1

)
,

Cov
[
Z

(m)
i , Z

(m)
j |β,p,K

]
= β2pipje

1
2 (kii+kjj)

(
ekij − 1

)
.

Observe that the covariance is similar to the unnormalized logistic normal (Aitchison
1982), but with the additional term β2pipj . In general, these pi terms show how sparsity
is enforced by the top-level DP, since both the expectation and variance terms go to
zero exponentially fast as i increases.

These values can also be calculated with the top-level Dirichlet process integrated
out using the tower property of conditional expectation. They are

E
[
Z

(m)
i |α, β,K

]
= βE[pi]e

1
2kii , (14)

V
[
Z

(m)
i |α, β,K

]
= βE[pi]e2kii + β2E[p2

i ]e
2kii − β2E[pi]2ekii ,

Cov
[
Z

(m)
i , Z

(m)
j |α, β,K

]
= β2E[pipj ]e

1
2 (kii+kjj)+kij − β2E[pi]E[pj ]e

1
2 (kii+kjj).

The values of the expectations in Equation (14) are

E[pi] =
αi−1

(1 + α)i
, E[p2

i ] =
2αi−1

(1 + α)(2 + α)i
, E[pipj ] =

αi−1

(2 + α)j(1 + α)i−j+1
, i > j.

Note that some covariance remains when kij = 0, since the conditional independence
induced by p is no longer present. The available covariance structure depends on the
kernel. For example, when a Gaussian kernel is used, a structured negative covariance
is not achievable since kij ≥ 0. We next discuss one possible kernel function, which we
will use in our inference algorithm and experiments.
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3.4 Learning the kernel for DILN

In our formulation of DILN, we have left the kernel function undefined. In principle,
any kernel function can be used, but in practice some kernels yield simpler inference
algorithms than others. For example, while a natural choice for K(`, `′) is the Gaussian
kernel, we found that the resulting variational inference algorithm was computationally
expensive because it required many matrix inversions to infer the latent locations.2 In
this section, we define an alternative kernel. In the next section, we will see that this
leads to simple algorithms for approximate inference of the latent locations `.

We model the location of a component with a zero-mean Gaussian vector in Rd. We
then form the kernel by taking the dot product of these vectors. That is, for components
k and j, we draw locations and parameterize the Gaussian process for Wm as

`k
iid∼ Normal(0, cId), µ(`k) = 0, K(`k, `j) = `Tk `j . (15)

With this specification, all p-dimensional (p ≤ d) sub-matrices of K are Wishart-
distributed with parameters p and cIp (Dawid 1981). However, this kernel is problem-
atic. When the number of components p is greater than d, it will produce singular
covariance matrices that cannot be inverted in the Gaussian likelihood function of Wm,
an inversion that is required during inference. While in parametric models we might
place constraints on the number of components, our prior is nonparametric. We have
an infinite number of components and therefore K must be singular.

We solve this problem by forming an equivalent representation of the kernel in Equa-
tion (15) that yields a more tractable joint likelihood function. This representation
uses auxiliary variables as follows. Let u ∼ Normal(0, Id) and recall that for a vector
z = BTu, the marginal distribution of z is z|B ∼ Normal(0, BTB). In our case, BTB
is the inner product kernel and the columns of B correspond to component locations,
B = [`1, `2, · · · ].

With this in mind, we use the following construction of the Gaussian process Wm,

Wm(`k) = `Tk um, um ∼ Normal(0, Id). (16)

Marginalizing the auxiliary vector um gives the desired Wm(`k) ∼ GP(0,K(`k, `j)).

The auxiliary vector um allows for tractable inference of Gaussian processes that lie
in a low-dimensional subspace. Aside from analytical tractability, the vector um can
be interpreted as a location for group m. (This is not to be confused with the location
of component k, `k.) The group locations let us measure similarity between groups,
such as document similarity in the topic modeling case. In the following sections, we no
longer work directly with Wm(`k), but rather the dot product `Tk um through inference
of ` and u.

2In Paisley et al. (2011) we side-stepped this issue by learning a point estimate of the matrix K,
which was finite following a truncated approximation introduced for variational inference. We suggested
finding locations by using an eigendecomposition of the learned K. The approach outlined here is more
rigorous in that it stays closer to the model and is not tied to a particular approximate inference
approach.
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4 Variational Inference for DILN

In Bayesian nonparametric mixed-membership modeling, the central computational
problem is posterior inference. However, computing the exact posterior is intractable.
For HDP-based models, researchers have developed several approximate methods (Teh
et al. 2006; Liang et al. 2007; Teh et al. 2007; Wang et al. 2011).

In this paper, we derive a mean-field variational inference algorithm (Jordan et al.
1999; Wainwright and Jordan 2008) to approximate the posterior of a DILN mixed-
membership model. We focus on topic modeling but note that our algorithm can be
applied (with a little modification) to any DILN mixed-membership model. In addition,
since the HDP is an instance of DILN, this algorithm also provides an inference method
for HDP mixed-membership models.

Variational methods for approximate posterior inference attempt to minimize the
Kullback-Leibler divergence between a factorized distribution over the hidden variables
and the true posterior. The hidden variables in the DILN topic model can be broken into
document-level variables (those defined for each document), and corpus-level variables
(those defined across documents); the document-level variables are the unnormalized
weights Z(m)

k , topic indexes C(m)
n , and document locations um; the corpus-level variables

are the topic distributions ηk, proportions Vk, concentration parameters α and β, and
topic locations `k. Under the mean-field assumption the variational distribution that
approximates the full posterior is factorized,

Q := q(α)q(β)
T∏
k=1

q(ηk)q(Vk)q(`k)
∏M
m=1 q(Z

(m)
k )q(C(m)

n )q(um). (17)

We select the following variational distributions for each latent variable,

q(C(m)
n ) = Multinomial(C(m)

n |φ(m)
n )

q(Z(m)
k ) = Gamma(Z(m)

k |a(m)
k , b

(m)
k )

q(ηk) = Dirichlet(ηk|γk,1, . . . , γk,D)
q(`k)q(um) = δˆ̀

k
· δûm

q(Vk) = δV̂k
q(α)q(β) = δα̂ · δβ̂ . (18)

The set of parameters to these distributions contains the variational parameters, rep-
resented by Ψ. The goal of variational inference is to optimize these parameters to
make the distribution Q close in KL divergence to the true posterior. Minimizing this
divergence is equivalent to maximizing a lower bound on the log marginal likelihood
obtained from Jensen’s inequality,

ln
∫
p(X,Θ) dΘ ≥

∫
Q(Ψ) ln

p(X,Θ)
Q(Ψ)

dΘ, (19)

where Θ stands for all hidden random variables. This objective has the form

L(X,Ψ) = EQ[ln p(X,Θ)] + H[Q], (20)
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Algorithm 1 Batch variational Bayes for DILN
Batch optimization of the variational lower bound L
Optimize corpus-wide and document-specific variational parameters Ψ′ and Ψm

1: while Ψ′ and Ψm have not converged do
2: for m = 1, . . . ,M do
3: Optimize Ψm (Equations 22–24)
4: end for
5: Optimize Ψ′ (Equations 25–29)
6: end while

where H denotes the entropy of the input distribution. We will find a locally optimal
solution of this function using coordinate ascent, as detailed in the next section.

Note that we truncate the number of components at T in the top-level Dirichlet
process (Blei and Jordan 2005). Kurihara et al. (2006) show how infinite-dimensional
objective functions can be defined for variational inference, but the conditions for this
are not met by DILN. The truncation level T should be set larger than the total number
of topics expected to be used by the data. A value of T that is set too small is easy to
diagnose: the approximate posterior will use all T topics. Setting T large enough, the
variational approximation will prefer a corpus-wide distribution on topics that is sparse.
We contrast this with the CTM and other finite topic models, which fit a pre-specified
number of topics to the data and potentially overfit if that number is too large.

We have selected several delta functions as variational distributions. In the case of
the top-level stick-breaking proportions Vk and second-level concentration parameter
β, we have followed Liang et al. (2007) in doing this for tractability. In the case of
the top-level concentration parameter α, and topic and document locations `k and um,
these choices simplify the algorithm.

4.1 Coordinate ascent variational inference

We now present the variational inference algorithm for the DILN topic model. We
optimize the variational parameters Ψ with respect to the variational objective function
of Equation (20). For DILN, the variational objective expands to

L =
M∑
m=1

Nm∑
n=1

T∑
k=1

φ
(m)
n,k Eq[ln p(X(m)

n |ηk)] +
M∑
m=1

Nm∑
n=1

T∑
k=1

φ
(m)
n,k Eq[ln p(C(m)

n = k|Z(m)
1:T )]

+
M∑
m=1

T∑
k=1

Eq[ln p(Z(m)
k |βpk, `k, um)] +

T∑
k=1

Eq[ln p(ηk|γ)] +
T∑
k=1

Eq[ln p(Vk|α)]

+
T∑
k=1

Eq[ln p(`k)] +
M∑
m=1

Eq[ln p(um)] + Eq[ln p(α)] + Eq[ln p(β)]− EQ[lnQ]. (21)
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We use coordinate ascent to optimize this function, iterating between two steps. In the
first step we optimize the document-level parameters for each document; in the second
step we optimize the corpus-level parameters. Algorithm 1 summarizes this general
inference structure.

Document-level parameters

For each document, we iterate between updating the variational distribution of per-word
topic indicators C(m)

n , unnormalized weights Z(m)
k , and document locations ûm.

Coordinate update of q(C(m)
n ) The variational distribution on the topic index for word

X
(m)
n is multinomial with parameter φ. For k = 1, . . . , T topics

φ
(m)
n,k ∝ exp

{
EQ[ln ηk(X(m)

n )] + EQ[lnZ(m)
k ]

}
. (22)

Since φ(m)
n = φ

(m)
n′ when X

(m)
n = X

(m)
n′ , we only need to compute this update once for

each unique word occurring in document m.

Coordinate update of q(Z(m)
k ) This variational gamma distribution has parameters

a
(m)
k and b

(m)
k . Let Nm be the number of observations (e.g., words) in group m. Af-

ter introducing an auxiliary parameter ξm for each group-level distribution (discussed
below), the updates are

a
(m)
k = β̂pk +

Nm∑
n=1

φ
(m)
n,k ,

b
(m)
k = exp{−ˆ̀T

k ûm}+
Nm
ξm

. (23)

We again denote the top-level stick-breaking weights by pk = V̂k
∏k−1
j=1 (1 − V̂j). The

expectations from this distribution that we use in subsequent updates are EQ[Z(m)
k ] =

a
(m)
k /b

(m)
k and EQ[lnZ(m)

k ] = ψ(a(m)
k )− ln b(m)

k .

The auxiliary parameter allows us to approximate the term EQ[ln p(C(m)
n = k|Z(m)

1:T )]
appearing in the lower bound. To derive this, we use a first order Taylor expansion on
the following intractable expectation,

−EQ

[
ln

T∑
k=1

Z
(m)
k

]
≥ − ln ξm −

∑T
k=1 EQ[Z(m)

k ]− ξm
ξm

.

The update for the auxiliary variable ξm is ξm =
∑T
k=1 EQ[Z(m)

k ]. See the appendix for
the complete derivation.
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Coordinate update of q(um) We update the location of the mth document using gra-
dient ascent, which takes the general form û′m = ûm + ρ∇ûmL. We take several steps
in updating this value within an iteration. For step s we update ûm as

û(s+1)
m = (1− ρs)û(s)

m + ρs

T∑
k=1

(
EQ[Zk]e−ˆ̀T

k û
(s)
m − β̂pk

)
ˆ̀
k. (24)

We let the step size ρ be a function of step number s, and (for example) set it to
ρs = 1

T (3 + s)−1 for s = 1, . . . , 20. We use 1/T to give a per-topic average, which helps
to stabilize the magnitude of the gradient by removing its dependence on truncation
level T , while (3 + s)−1 shrinks the step size. For each iteration, we reset s = 1.

Corpus-level parameters

After optimizing the variational parameters for each document, we turn to the corpus-
level parameters. In the coordinate ascent algorithm, we update each corpus-level pa-
rameter once before returning to the document-level parameters.

Coordinate update of q(ηk) The variational distribution for the topic parameters is
Dirichlet with parameter vector γk. For each of d = 1, . . . , D vocabulary words

γk,d = γ0 +
M∑
m=1

Nm∑
n=1

φ
(m)
n,k I

(
X(m)
n = d

)
, (25)

where γ0 is the parameter for the base distribution ηk ∼ Dirichlet(γ0). Statistics needed
for this term can be updated in unison with updates to q(C(m)

n ) for faster inference.

Coordinate update of q(Vk) For k = 1, . . . , T − 1, the q distribution for each Vk is a
delta function, δV̂k . The truncation of the top-level DP results in VT := 1. We use
steepest ascent to jointly optimize V̂1, . . . , V̂T−1. The gradient of each element is

∂L(·)
∂V̂k

= − α̂− 1
1− V̂k

+ β̂

[∑
m

(
EQ[lnZ(m)

k ]− ˆ̀T
k ûm

)
−Mψ(β̂pk)

] pk
V̂k
−
∑
j>k

pj

1− V̂k

 .
(26)

We observed similar performance using Newton’s method in our experiments.

Coordinate update of q(`k) We update the location of the kth topic by gradient ascent,
which has the general form ˆ̀′

k = ˆ̀
k + ρ∇ˆ̀

k
L. We use the same updating approach as

discussed for ûm. For step s within a given iteration, the update is

ˆ̀(s+1)
k = (1− ρs/c)ˆ̀

k + ρs

M∑
m=1

(
EQ[Zk]e−û

T
m

ˆ̀(s)
k − β̂pk

)
ûm. (27)
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As with ûm, we let the step size ρ be a function of step number s, and set it to
ρs = 1

M (3 + s)−1.

Coordinate updates of q(α) and q(β) We place a Gamma(τ1, τ2) prior on α and model
the posterior with a delta function. The update for this parameter is

α̂ =
K + τ1 − 2

τ2 −
∑K−1
k=1 ln(1− V̂k)

. (28)

In our empirical study we set τ1 = 1 and τ2 = 10−3.

We also place a Gamma(κ1, κ2) prior on the second-level concentration parameter
β and optimize using gradient ascent. The first derivative is

∂L(·)
∂β̂

=
∑
m,k

pk

(
ψ(a(m)

k )− ln b(m)
k − `Tk um − ψ(β̂pk)

)
− κ1 − 1

β̂
− κ2. (29)

We set κ1 = 1 and κ2 = 10−3.

4.2 Stochastic variational inference

The algorithm of Section 4.1 can be called a batch algorithm because it updates all
document-level parameters in one “batch” before updating the global parameters. A
potential drawback of this batch inference approach for DILN (as well as potential
Monte Carlo sampling algorithms) is that the per-iteration running time increases with
an increasing number of groups. For many modeling applications, the algorithm may
be impractical for large-scale problems.

One solution to the large-scale data problem is to sub-sample a manageable number
of groups from the larger collection, and assume that this provides a good statistical
representation of the entire data set. Indeed, this is the hope with batch inference,
which views the data set as a representative sample from the larger, unseen population.
However, in this scenario information contained in the available data set may be lost.
Stochastic variational inference methods (Hoffman et al. 2010; Wang et al. 2011; Sato
2001) aim for the best of both worlds, allowing one to fit global parameters for massive
collections of data in less time than it takes to solve problems of moderate size in the
batch setting.

The idea behind stochastic variational inference is to perform stochastic optimiza-
tion of the variational objective function in Equation (21). In topic modeling, we can
construe this objective function as a sum over per-document terms and then obtain
noisy estimates of the gradients by evaluating them on sets of documents sampled from
the full corpus. By following these noisy estimates of the gradient with a decreasing
step size, we are guaranteed convergence to a local optimum of the variational objective
function (Robbins and Monro 1951; Sato 2001; Hoffman et al. 2010).

Algorithmically, this gives an advantage over the optimization algorithm of Section
4.1 for large-scale machine learning. The bottleneck of that algorithm is the variational
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“E step,” where the document-level variational parameters are optimized for all doc-
uments using the current settings of the corpus-level variational parameters (i.e., the
topics and their locations, and α, β). This computation may be wasteful, especially
in the first several iterations, where the initial topics likely do not represent the cor-
pus well. In contrast, the structure of a stochastic variational inference algorithm is
to repeatedly subsample documents, analyze them, and then use them to update the
corpus-level variational parameters. When the data set is massive, these corpus-level
parameters can converge before seeing any document a second time.

In more detail, let X be a very large collection of M documents. We separate the
hidden variables Θ into those for the top-level Θ′ = {η1:T , V1:T−1, `1:T , α, β} and the
document-level Θm = {C(m)

1:Nm
, um, Z

(m)
1:T } for m = 1, . . . ,M . These variables have vari-

ational parameters Ψ′ = {γ1:T,1:D, `1:T , V̂1:T−1, α̂, β̂} and Ψm = {φ(m)
1:Nm

, a
(m)
1:T , b

(b)
1:T , um}

for their respective Q distributions. Because of the independence assumption between
documents, the variational objective decomposes into a sum over documents,

L(X,Ψ) =
M∑
m=1

EQ[ln p(Xm,Θm,Θ′)] +
M∑
m=1

H[Q(Θm)] + H[Q(Θ′)]. (30)

As we discussed, in batch inference we optimize variational distributions on Θ1, . . . ,ΘM

before updating those on Θ′. Now, consider an alternate objective function at iteration
t of inference,

L(t)(Xmt ,Ψmt ,Ψ
′) = MEQ[ln p(Xmt ,Θmt |Θ′)]+MH[Q(Θmt)]+EQ[ln p(Θ′)]+H[Q(Θ′)],

(31)
where mt is selected uniformly at random from {1, . . . ,M}. An approach to optimize
this objective function would be to first optimize the variational parameters of Q(Θmt),
followed by a single gradient step for those of Q(Θ′). In determining the relationship
between Equation (31) and Equation (30), note that under the uniform distribution
p(mt) on which document is selected,

Ep(mt)[L
(t)(Xmt ,Ψmt ,Ψ

′)] = L(X,Ψ). (32)

We are thus stochastically optimizing L. In practice, one document is not enough
to ensure fast convergence of Q(Θ′). Rather, we select a subset Bt ⊂ {1, . . . ,M} at
iteration t and optimize

L(t)(XBt ,ΨBt ,Ψ
′) =

M

|Bt|
∑
i∈Bt

EQ[ln p(Xi,Θi|Θ′)] +
M

|Bt|
∑
i∈Bt

H[Q(Θi)]

+ EQ[ln p(Θ′)] + H[Q(Θ′)], (33)

over the variational parameters of Q(ΘBt). We again follow this with a step for the
variational parameters of Q(Θ′), but this time using the information from documents
indexed by Bt. That is, for some corpus-level parameter ψ ∈ Ψ′, the update of ψ at
iteration t+ 1 given ψ at iteration t is

ψ(t+1) = ψ(t) + ρtAψ∇ψL(t)(XBt ,ΨBt ,Ψ
′), (34)
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Algorithm 2 Stochastic variational Bayes for DILN
Stochastically optimize the variational lower bound L
Primary goal: Optimize corpus-wide variational parameters Ψ′

Secondary goal: Optimize document-specific parameters Ψm for m = 1, . . . ,M
1: while Ψ′ has not converged do
2: Select random subset Bt ⊂ {1, . . . ,M}
3: for m ∈ Bt do
4: Optimize Ψm (Equations 22–24)
5: end for
6: Set gradient step size ρt = (ζ + t)−κ, κ ∈ ( 1

2 , 1]
7: Update Ψ′ using gradient of L(t) constructed from documents m ∈ Bt

(Equations 26, 27, 29, 34, 36–38)
8: end while
9: Optimize Ψm for m = 1, . . . ,M using optimized Ψ′

where Aψ is a positive definite preconditioning matrix and ρt > 0 is a step size satisfying

∞∑
t=1

ρt =∞,
∞∑
t=1

ρ2
t <∞. (35)

In our experiments, we select the form ρt = (ζ + t)−κ with κ ∈ (0.5, 1] and ζ > 0.

In some cases, the preconditioner Aψ can be set to give simple and clear updates. For
example, in the case of topic modeling, Hoffman et al. (2010) show how the inverse Fisher
information leads to very intuitive updates (see the next section). This is a special case
of the theory outlined in Sato (2001) that arises in conjugate exponential family models.
However, the Fisher information is not required for stochastic variational inference; we
can precondition with the inverse negative Hessian or decide not to precondition.

The stochastic variational inference algorithm for DILN

The stochastic algorithm selects a subset of documents at step t, coded by a set of index
values Bt, and optimizes the document-level parameters for these documents while
holding all corpus-level parameters fixed. These parameters are the word indicators
C

(m)
k , the unnormalized topic weights Z(m)

k and the document locations uk. (See Section
4.1 for discussion on inference for these variables.) Given the values of the document-
level variational parameters for documents indexed by Bt, we now describe the corpus-
level updates in the stochastic inference algorithm. Algorithm 2 summarizes this general
inference structure.
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Stochastic update of q(ηk) This update follows from Hoffman et al. (2010) and Wang
et al. (2011). We set Aγk to be the inverse Fisher information of q(ηk),

Aγk =
(
−∂

2 ln q(ηk)
∂γk∂γTk

)−1

.

With this quantity, we take the product Aγk∇γkL(t)(XBt ,ΨBt ,Ψ
′). This leads to the

following update for each γk,d,

γ
(t+1)
k,d = (1− ρt)γ(t)

k,d + ρt

γ0 +
M

|Bt|
∑

n,m∈Bt

φ
(m)
n,k I(X(m)

n = d)

 . (36)

In this case, premultiplying the gradient by the inverse Fisher information cancels the
Fisher information in the gradient and thus removes the cross-dependencies between the
components of γk. We use preconditioning to simplify the computation, rather than to
speed up optimization. See Hoffman et al. (2010), Wang et al. (2011) and Sato (2001)
for details.

Stochastic update of q(Vk) and q(`k) The stochastic updates of the delta q distributions
do not use the Fisher information. Rather, we update the vectors V = [V1, . . . , VT−1]T

and `k for k = 1, . . . , T by taking steps in their Newton directions using the data in
batch Bt to determine this direction. The gradients ∇L for these parameters are given
in the batch algorithm and their form is unchanged here. The key difference is that
the gradient of these parameters at step t is only calculated over documents with index
values in Bt. We use the inverse negative Hessian as a preconditioning matrix for ˆ̀

k

and (V̂1, . . . , V̂T−1). For `k, the preconditioning matrix is

A−1
ˆ̀
k

= c−1I +
M∑
m=1

(EQ[Zk]e−ˆ̀
kûm)ûmûTm. (37)

For (V̂1, . . . , V̂T−1) the values of (A−1

V̂
)kk and (A−1

V̂
)kr are found from the second deriva-

tives (with the second derivatives written for r < k)

− ∂2L(·)
∂V̂ 2

k

=
α̂− 1

(1− V̂k)2
+ β̂2Mψ′(β̂pk)

pk

V̂k

 pk

V̂k
−
∑
j>k

pj

1− V̂k

 , (38)

− ∂2L(·)
∂V̂k∂V̂r

= − β̂2Mψ′(β̂pk)
pk

(1− V̂r)

 pk

V̂k
−
∑
j>k

pj

1− V̂k

 + (39)

β̂

[∑
m

(
EQ[lnZ(m)

k ]− ˆ̀T
k ûm

)
−Mψ(β̂pk)

] pk

V̂k(1− V̂r)
−
∑
j>k

pj

(1− V̂k)(1− V̂r)

 .
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Online update of q(α) and q(β) The stochastic updates for β̂ move in the direction
of steepest ascent, calculated using the documents in the batch. Since this is a one-
dimensional parameter, we optimize a batch-specific value for this parameter at step t,
β̃t, and set β̂t+1 = (1−ρt)β̂t+ρtβ̃t. The update for α̂ does not consider document-level
parameters, and so this value follows the update given in Equation (28).

4.3 A new variational inference algorithm for the HDP

The variational inference algorithm above relates closely to one that can be derived
for the HDP using the normalized gamma process representation of Section 2.2. The
difference lies in the update for the topic weight q(Z(m)

k ) in Equation (23). In both
algorithms, the update for its variational parameter a(m)

k contains the prior from the
top-level DP, and the expected number of words in document m drawn from topic k.
The variational parameter b(m) distinguishes DILN from the HDP.

We can obtain a variational inference algorithm for the HDP by setting the first term
in the update for b(m)

k equal to one. In contrast, the first term for DILN is exp{−ˆ̀T
k ûm},

which is the Gaussian process that generates the covariance between component prob-
ability weights. Including or excluding this term switches between variational inference
for DILN and variational inference for the HDP. See the appendix for a fuller derivation.

4.4 MCMC inference

Markov chain Monte Carlo (MCMC, Robert and Casella 2004) sampling is a more
common strategy for approximate posterior inference in Bayesian nonparametric models,
and for the hierarchical Dirichlet process in particular. In MCMC methods, samples
are drawn from a carefully designed Markov chain, whose stationary distribution is the
target posterior of the model parameters. MCMC is convenient for the many Bayesian
nonparametric models that are amenable to Gibbs sampling, where the Markov chain
iteratively samples from the conditional distribution of each latent variable given all of
the other latent variables and the observations.

However, Gibbs sampling is not an option for DILN because the Gaussian pro-
cess component does not have a closed-form full conditional distribution. One possible
sampling algorithm for DILN inference would use Metropolis-Hastings (Hastings 1970),
where samples are drawn from a proposal distribution and then accepted or rejected.
Designing a good proposal distribution is the main problem in designing Metropolis-
Hastings algorithms, and in DILN this problem is more difficult than usual because the
hidden variables are highly correlated.

Recently, slice sampling has been applied to sampling of infinite mixture models by
turning the problem into a finite sampling problem (Griffin and Walker 2010; Kalli et al.
2011). These methods apply when the mixture weights are either from a simple stick-
breaking prior or a normalized random measure that can be simulated from a Poisson
process. Neither of these settings applies to DILN because the second-level DP is a



1018 The Discrete Infinite Logistic Normal Distribution

Table 1: Data sets. Five training/testing sets were constructed by selecting the number
of documents shown for each corpus from larger data sets.

Corpus # training # testing vocabulary size # total words
Huffington Post 3,000 1,000 6,313 660,000
New York Times 5,000 2,000 3,012 720,000
Science 5,000 2,000 4,403 1,380,000
Wikipedia 5,000 2,000 6,131 1,770,000

product of a DP and an exponentiated GP. Furthermore, it is not clear how to extend
slice sampling methods to hierarchical models like the HDP or DILN.

Variational methods mitigate all these issues by using optimization to approximate
the posterior. Our algorithm sacrifices the theoretical (and eventual) convergence to the
full posterior in favor of a simpler distribution that is fit to minimize its KL-divergence
to the posterior. Though we must address issues of local minima in the objective, we do
not need to develop complicated proposal distributions or solve the difficult problem of
assessing convergence of a high-dimensional Markov chain to its stationary distribution.3

Furthermore, variational inference is ideally suited to the stochastic optimization setting,
allowing for approximate inference with very large data sets.

5 Empirical study

We evaluate the DILN topic model with both batch and stochastic inference. For batch
inference, we compare with the HDP and correlated topic model (CTM) on four text
corpora: The Huffington Post, The New York Times, Science and Wikipedia. We divide
each corpus into five training and testing groups selected from a larger set of documents
(see Table 1).

For stochastic inference, we use the Nature corpus to assess performance. This
corpus contains 352,549 documents spanning 1869-2003; we used a vocabulary of 4,253
words. We compare stochastic DILN with a stochastic HDP algorithm and with online
latent Dirichlet allocation (online LDA) (Hoffman et al. 2010).

5.1 Evaluation metric

Before discussing the experimental setup and results, we discuss our method for evaluat-
ing performance. We evaluate the approximate posterior of all models by measuring its
predictive ability on held-out documents. Following Asuncion et al. (2009), we randomly
partition each test document into two halves and evaluate the conditional distribution

3Note our evaluation method of Section 5 does not use the divergence of the variational approxi-
mation and the true posterior. Rather, we measure the corresponding approximation to the predictive
distribution. On a pilot study of batch inference, we found that MCMC inference (with its approximate
predictive distribution) did not produce distinguishable results from variational inference.
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of the second half given the first half and the training data. Operationally, we use the
first half of each document to find estimates of document-specific topic proportions and
then evaluate how well these combine with the fitted topics to predict the second half
of the document.

More formally, denote the training data by D, a test document as X, which is divided
into halves X′ and X′′. We want to calculate the conditional marginal probability,

p(X′′|X′,D) =
∫

Ωη,Z

N∏
n=1

{
T∑
k=1

p(X ′′n |ηk)p(C ′′n = k|Z1:T )

}
dQ(Z)dQ(η) (40)

where N is the number of observations constituting X′′, C ′′n is the latent indicator
associated with the nth word in X′′, and η := η1:T and Z := Z1:T .

Since the integral in Equation (40) is intractable, we sample i.i.d. values from the
factorized distributions Q(Z1:T ) and Q(η1:T ) for approximation. We note that the
information regarding the document’s correlation structure can be found in Q(Z1:T ).

We then use this approximation of the marginal likelihood to compute the average
per-word perplexity for the second half of the test document,

perplexity = exp
{
− ln p(X′′|X′)

N

}
, (41)

with lower perplexity indicating better performance. Note that the term ln p(X′′|X′)
involves a sum over the N words in X′′. Also note that this is an objective measure of
the predictive performance of the predictive probability distribution computed from the
variational approximation. It is a good measure of performance (of the model and the
variational inference algorithm) because it does not rely on the closeness of the varia-
tional distribution to the true posterior, as measured by the variational lower bound.
That closeness, much like whether a Markov chain has converged to its stationary dis-
tribution, is difficult to assess.

5.2 Experimental setup and results

Batch variational inference experiments We trained all models using variational in-
ference; for the CTM, this is the algorithm given in Blei and Lafferty (2007); for the
HDP, we use the inference method from Section 4. For DILN, we use a latent space
with d = 20 and set the location variance parameter c = 1/20. For DILN and the HDP,
we truncate the top-level stick-breaking construction at T = 200 components. For the
CTM, we consider K ∈ {20, 50, 150} topics. In our experiments, both DILN and HDP
used significantly fewer topics than the truncation level, indicating that the truncation
level was set high enough. The CTM is not sparse in this sense.

We initialize all models in the same way; to initialize the variational parameters of
the topic Dirichlet, we first cluster the empirical word distributions of each document
with three iterations of k-means using the L1 distance measure. We then reorder these
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Figure 3: Perplexity results for four text corpora and averaged over five training/testing
sets. For a fixed Dirichlet hyperparameter, the DILN topic model typically achieves
better perplexity than both the HDP and CTM models. In all corpora, DILN achieves
the best perplexity overall.

topics by their usage according to the indicators produced by k-means. We scale these
k-means centroids and add a small constant plus noise to smooth the initialization. The
other parameters are initialized to values that favor a uniform distribution on these
topics. Variational inference is terminated when the fractional change in the lower
bound of Equation (21) falls below 10−3. We run each algorithm using five different
topic Dirichlet hyperparameter settings: γ0 ∈ {0.1, 0.25, 0.5, 0.75, 1.0}.

Figure 3 contains testing results for the four corpora. In general, DILN outperforms
both the HDP and CTM. Given that the inference algorithms for DILN and the HDP
are only different in the one term discussed in Section 4.3, this demonstrates that the
latent location space models a correlation structure that helps in predicting words.
Computation time for DILN and the HDP was comparable, both requiring on the order
of one minute per iteration. Depending on the truncation level, the CTM was slightly
to significantly faster than both DILN and the HDP.

We display the learned correlation structure for the four corpora in Figures 5–6. (see
Figure 1 for results on a slightly larger Wikipedia corpus.) In these figures, we represent
the 30 most probable topics by their ten most probable words. Above these lists, we
show the positive and negative correlations learned using the latent locations `k. For
two topics i and j this value is `Ti `j/‖`i‖2‖`j‖2. From these figures, we see that DILN
learns meaningful underlying correlations in topic expression within a document.
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Topic 1: get, really, like, just, know, hes, think, dont, thing, say
Topic 2: percent, year, said, last, prices, economy, quarter, home, economic, housing
Topic 3: day, mother, life, family, father, mothers, love, time, home, fathers
Topic 4: make, like, dont, youre, people, time, get, see, love, just
Topic 5: delegates, obama, superdelegates, democratic, party, states, convention, primaries, michigan
Topic 6: mccain, john, mccains, republican, campaign, bush, hes, just, senator, said
Topic 7: show, song, said, music, night, first, david, like, simon, performance
Topic 8: clinton, obama, clintons, hillary, nomination, democratic, barack, race, obamas, supporters
Topic 9: hillary, obama, president, candidate, shes, win, time, democratic, hillarys, running
Topic 10: iran, nuclear, weapons, states, said, united, attack, bush, president, iranian
Topic 11: democrats, republican, republicans, election, democratic, house, vote, states, gop, political
Topic 12: words, word, people, power, like, language, point, written, person, powerful
Topic 13: iraq, war, american, bush, afghanistan, years, petraeus, troops, new, mission
Topic 14: voters, obama, indiana, carolina, north, clinton, polls, primary, democratic, pennsylvania
Topic 15: america, american, nation, country, americans, history, civil, years, king, national
Topic 16: said, city, people, two, homes, area, water, river, state, officials
Topic 17: media, news, story, coverage, television, new, public, journalism, broadcast, channel
Topic 18: israel, peace, israeli, east, hamas, palestinian, state, arab, middle, israels
Topic 19: poll, chance, gallup, degrees, winning, results, tracking, general, election, august
Topic 20: said, iraqi, government, forces, baghdad, city, shiite, security, sadr, minister
Topic 21: senator, obama, obamas, people, clinton, pennsylvania, comments, bitter, remarks, negative
Topic 22: rights, law, court, justice, constitution, supreme, right, laws, courts, constitutional
Topic 23: company, said, billion, yahoo, stock, share, inc, deal, microsoft, shares
Topic 24: health, care, families, insurance, working, pay, help, americans, plan, people
Topic 25: white, race, voters, obama, virginia, west, percent, states, whites, win
Topic 26: wright, obama, rev, jeremiah, pastor, obamas, reverend, political, said, black
Topic 27: tax, government, economic, spending, taxes, cuts, economy, budget, federal, people
Topic 28: study, cancer, found, drugs, age, risk, drug, heart, brain, medical
Topic 29: people, man, black, america, didnt, god, hope, know, years, country
Topic 30: global, climate, warming, change, energy, countries, new, carbon, environmental, emissions

Figure 4: Huffington Post : The ten most probable words from the 30 most popular
topics. At top are the positive and negative correlation coefficients for these topics
calculated by taking the dot product of the topic locations, `Tk `k′ (separated for clarity).
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Topic 1: campaign, democratic, candidate, republican, election, voter, political, presidential, vote, party
Topic 2: game, victory, second, score, third, win, team, play, season, lose
Topic 3: president, executive, chief, vice, name, director, advertising, chairman, senior, company
Topic 4: team, player, season, coach, game, play, football, league, contract, sign
Topic 5: add, heat, pound, cup, oil, minute, water, large, dry, serve
Topic 6: building, build, house, space, site, project, construction, area, foot, plan
Topic 7: drug, patient, treatment, study, disease, risk, health, treat, cancer, cause
Topic 8: economy, economic, percent, growth, increase, government, states, economist, price, rate
Topic 9: police, officer, arrest, man, charge, yesterday, official, crime, drug, release
Topic 10: share, company, stock, buy, percent, investment, acquire, sell, investor, firm
Topic 11: budget, tax, cut, increase, taxis, state, plan, propose, reduce, pay
Topic 12: shot, point, play, game, hit, ball, night, shoot, player, put
Topic 13: computer, internet, information, site, technology, system, software, online, user, program
Topic 14: art, artist, museum, exhibition, painting, collection, gallery, design, display, sculpture
Topic 15: government, political, country, international, leader, soviet, minister, states, foreign, state
Topic 16: book, story, write, novel, author, life, woman, writer, storey, character
Topic 17: attack, kill, soldier, bomb, bombing, area, official, report, group, southern
Topic 18: song, sing, band, pop, rock, audience, singer, voice, record, album
Topic 19: market, stock, price, fall, trading, dollar, investor, trade, rise, index
Topic 20: trial, lawyer, charge, prosecutor, case, jury, guilty, prison, sentence, judge
Topic 21: play, movie, film, star, actor, character, theater, role, cast, production
Topic 22: dance, stage, perform, dancer, company, production, present, costume, theater, performance
Topic 23: peace, israeli, palestinian, talk, palestinians, territory, arab, leader, visit, settlement
Topic 24: guy, thing, lot, play, feel, kind, game, really, little, catch
Topic 25: science, theory, scientific, research, human, suggest, evidence, fact, point, question
Topic 26: court, law, state, legal, judge, rule, case, decision, appeal, lawyer
Topic 27: image, photograph, picture, view, photographer, subject, figure, paint, portrait, scene
Topic 28: report, official, member, commission, committee, staff, agency, panel, investigate, release
Topic 29: wine, restaurant, food, menu, price, dish, serve, meal, chicken, dining
Topic 30: graduate, marry, father, degree, receive, ceremony, wedding, daughter, son, president

Figure 5: New York Times: The ten most probable words from the 30 most popular
topics. At top are the positive and negative correlation coefficients for these topics
calculated by taking the dot product of the topic locations, `Tk `k′ (separated for clarity).



J. Paisley, C. Wang and D. M. Blei 1023

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Positive Correlation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
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Topic 1: manager, science, fax, advertising, aaas, sales, recruitment, member, associate, washington
Topic 2: research, science, funding, scientists, university, universities, government, program, year
Topic 3: fault, plate, earthquake, earthquakes, zone, crust, seismic, fig, crustal, large
Topic 4: hiv, virus, infection, infected, viral, viruses, human, immunodeficiency, aids, disease
Topic 5: species, forest, forests, conservation, ecosystems, fish, natural, land, tropical, ecological
Topic 6: climate, changes, temperature, change, global, atmospheric, carbon, years, year, variability
Topic 7: cells, immune, cell, antigen, response, responses, mice, lymphocytes, antibody, specific
Topic 8: transcription, binding, dna, transcriptional, promoter, polymerase, factors, site, protein
Topic 9: says, university, just, colleagues, team, like, researchers, meeting, new, end
Topic 10: structure, residues, helix, binding, two, fig, helices, side, three, helical
Topic 11: proteins, protein, membrane, ras, gtp, binding, bound, transport, guanosine, membranes
Topic 12: pressure, temperature, high, phase, pressures, temperatures, experiments, gpa, melting
Topic 13: rna, mrna, site, splicing, rnas, pre, intron, base, cleavage, nucleotides
Topic 14: protein, cdna, fig, sequence, lane, purified, human, lanes, clone, gel
Topic 15: kinase, protein, phosphorylation, kinases, activity, activated, signaling, camp, pathway
Topic 16: university, students, says, faculty, graduate, women, science, professor, job, lab
Topic 17: new, says, university, years, human, humans, ago, found, modern, first
Topic 18: researchers, found, called, says, team, work, colleagues, new, university, protein
Topic 19: isotopic, carbon, oxygen, isotope, water, values, ratios, organic, samples, composition
Topic 20: disease, patients, diseases, gene, alzheimers, cause, mutations, syndrome, protein, genetic
Topic 21: aids, vaccine, new, researchers, vaccines, trials, people, research, clinical, patients
Topic 22: receptor, receptors, binding, ligand, transmembrane, surface, signal, hormone, extracellular
Topic 23: cells, cell, bone, human, marrow, stem, types, line, lines, normal
Topic 24: united, states, countries, international, world, development, japan, european, nations, europe
Topic 25: proteins, protein, yeast, two, domain, sequence, conserved, function, amino, family
Topic 26: letters, mail, web, end, new, org, usa, science, full, letter
Topic 27: amino, acid, peptide, acids, peptides, residues, sequence, binding, sequences, residue
Topic 28: species, evolution, evolutionary, phylogenetic, biology, organisms, history, different, evolved
Topic 29: ocean, sea, pacific, water, atlantic, marine, deep, surface, north, waters
Topic 30: gene, genes, development, genetic, mouse, function, expressed, expression, molecular, product

Figure 6: Science: The ten most probable words from the 30 most popular topics. At
top are the positive and negative correlation coefficients for these topics calculated by
taking the dot product of the topic locations, `Tk `k′ (separated for clarity).
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1 :: Czech Republic: Grad School Bridges Old Divisions
0.97 :: Central Europe: After Communism: Reinventing Higher Education
0.97 :: A Scientific Community on the Edge
0.96 :: Poland: Teachers Struggle With Low Funds and Morale
0.96 :: Will Profits Override Political Protests
0.96 :: A Second Chance to Make a Difference in the Third World?

1 :: Human Gene Therapy Protocols: RAC Review
0.89 :: Funding of NIH Grant Applications: Update
0.89 :: Lyme Disease Research
0.89 :: AIDS Virus History
0.88 ::
0.88 :: Communication Sciences: A Thriving Discipline

1 :: Is the Universe Fractal?
0.94 :: Extracting Primordial Density Fluctuations
0.94 :: Ages of the Oldest Clusters and the Age of the Universe
0.93 :: The Age and Size of the Universe
0.92 :: From Microwave Anisotropies to Cosmology
0.92 ::

1 :: A Stimulating New Approach To Cancer Treatment
0.96 :: Tumor Cells Fight Back to Beat Immune System
0.95 :: Taming Rogue Immune Reactions
0.95 :: Cancer Vaccines Get a Shot in the Arm
0.94 :: Thyroid Disease: A Case of Cell Suicide?
0.94 :: Concerns Raised About Mouse Models for AIDS

1 :: Did Darwin Get It All Right?
0.98 :: New Skeleton Gives Path From Trees to Ground an Odd Turn
0.97 :: New Hominid Crowds the Field
0.97 :: Amazonian Diversity: A River Doesn't Run Through It
0.97 :: A New Face for Human Ancestors
0.96 :: From Embryos and Fossils, New Clues to Vertebrate Evolution

Guidelines for Xenotransplantation

Multiscaling Properties of Large-Scale Structure in the Universe

1 :: Lighting a Route to the New Physics-With Photons
0.97 :: Conjuring Matter From Light
0.96 ::
0.96 :: Making Waves With Interfering Atoms
0.96 :: First Atom Laser Shoots Pulses of Coherent Matter
0.95 :: Interfering with Atoms to Clear a Path for Lasers

1 :: Small NASA Missions
0.95 :: Analogies with Meaning
0.91 :: NASA Funding for Earth Science
0.90 :: Asking for the Moon
0.90 :: Delaney Reform
0.90 :: New Observations

The Subtle Flirtation of Ultracold Atoms

1 ::
0.97 :: Phase Boundaries and Mantle Convection
0.97 :: Not So Hot Hot Spots in the Oceanic Mantle
0.97 :: Seismic Attenuation Structure of Fast-Spreading Mid-Ocean Ridge
0.96 :: Compositional Stratification in the Deep Mantle
0.96 :: Mantle Plumes and Continental Tectonics

1 :: A Cooler Way to Balance the Sea's Salt Budget
0.94 :: New Crater Age Undercuts Killer Comets
0.94 :: A Piece of the Dinosaur Killer Found?
0.94 :: Reading History from a Single Grain of Rock
0.92 :: Ancient Rocks, Rhythms in Mud, a Tipsy Venus
0.91 :: Deep-Sea Coral Records Quick Response to Climate

The Superswell and Mantle Dynamics Beneath the South Pacific

1 :: Alar's Risks
0.97 :: Depicting Epidemiology
0.94 :: EC Biotechnology Policy
0.94 :: Global Warming
0.94 :: Indirect Costs
0.94 :: Biology Textbooks

1 :: Calculus Reform
0.97 :: Characterizing Scientific Knowledge
0.96 :: Doctoral Entitlement?
0.95 :: Peer-Review Study
0.94 ::
0.94 :: Corrections and Clarifications: Getting to the Front of the Bus

1 :: Transmuting Light Into X-rays
0.86 :: Atomic Mouse Probes the Lifetime of a Quantum Cat
0.86 ::
0.85 :: Knocking Genes In Instead of Out
0.85 :: Laser Pulses Make Fast Work of an Optical Switch
0.85 :: Putting the Infrared Heat on X-rays

1 :: New Knockout Mice Point to Molecular Basis of Memory
0.93 :: Key Protein Found for Brain's Dopamine-Producing Neurons
0.91 ::
0.91 :: Researchers Find Signals That Guide Young Brain Neurons
0.91 :: Knockouts Shed Light on Learning
0.91 :: Synapse-Making Molecules Revealed

1 :: Emergent Properties of Networks of Biological Signaling Pathways
0.90 :: Complexity in Biological Signaling Systems
0.88 :: What Maintains Memories?
0.87 ::
0.87 :: Biological Information Processing: Bits of Progress
0.87 :: The Path to Specificity

Organoids and Genetic Drugs

An Everyman's Free-Electron Laser?

Technical Advances Power Neuroscience

Molecular Code for Cooperativity in Hemoglobin

Figure 7: Several example document searches for Science. The first document is the
query document, followed by the most similar documents according to the cosine simi-
larity measure on their locations (given at left).

As we discussed in Section 3.4, the underlying vectors um ∈ Rd associated with each
document can be used for retrieval applications. In Figure 7, we show recommendation
lists for a 16,000 document corpus of the journal Science obtained using these underlying
document locations. We use the cosine similarity between two documents for ranking,
which for documents i and j is equal to uTi uj/‖ui‖2‖uj‖2. We show several lists of
recommended articles based on randomly selected query articles. These lists show that,
as with the underlying correlations learned between the topics, DILN learns a meaningful
relationship between the documents as well, which is useful for navigating text corpora.
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Figure 8: Stochastic variational inference results on Nature. The number of documents
processed is shown in log scale. We observe improved performance for all algorithms as
κ decreases, and note that DILN is able to obtain a level of performance not reached
by HDP and LDA as a function of parameter settings.

Stochastic variational inference We compare stochastic DILN with stochastic HDP and
online LDA using 352,549 documents from Nature. As for batch inference, we can obtain
a stochastic inference algorithm for the HDP as a special case of stochastic DILN. In
DILN, we again use a latent space of d = 20 dimensions for the component locations and
set the location variance parameter to c = 1/20. We truncate the models at 200 topics,
and we evaluate performance for K ∈ {25, 75, 125} topics with stochastic inference for
LDA (Hoffman et al. 2010). As we discussed in Section 4.2, we use a step sequence
of ρt = (ζ + t)−κ. We set ζ = 25, and run the algorithm for κ ∈ {0.6, 0.75, 0.9}.
We explored various batch sizes, running the algorithm for |Bt| ∈ {250, 750, 1250}.
Following Hoffman et al. (2010), we set the topic Dirichlet hyperparameters to γ0 = 0.01.

For testing, we held out 10, 000 randomly selected documents from the corpus. We
measure the performance of the stochastic models after every 10th batch. Within each
batch, we run several iterations of local variational inference to find document-specific
parameters. We update corpus-level parameters when the change in the average per-
document topic distributions falls below a threshold. On average, roughly ten document-
level iterations were run for each corpus-level update.
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Figure 9: Stochastic learning of Nature. The values of α̂ and β̂ as a function of number
of documents seen for batch size equal to 750 and learning rate κ = 0.6.
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Figure 10: Stochastic learning of Nature. (left) Correlations between 100 randomly
selected pairs of topics as a function of documents seen. (right) The empirical word
count from the posteriors of the top 50 topics after the final iteration. Approximately
50 of the 200 topics are used.

Figure 8 illustrates the results. In this figure, we show the per-word held-out per-
plexity as a function of the number of documents seen by the algorithm. From these
plots we see that a slower decay in the step size improves performance. Especially for
DILN, we see that performance improves significantly as the decay κ decreases, since
more information is being used from later documents in finding a maximum of the
variational objective function. Slower decays are helpful because more parameters are
being fitted by DILN than by the HDP and LDA. We observed that as κ increases a less
detailed correlation structure was found; this accounts for the decrease in performance.
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Topic 1: author, facts, original, written, hand, text, think, himself, pages, mind
Topic 2: war, england, carried, death, french, german, issued, great-britain, sent, works
Topic 3: equation, flow, sample, average, mantle, rates, distribution, zone, ratios, calculated
Topic 4: million, scientists, policy, britain, social, economic, technology, political, project, organization
Topic 5: gene, genes, expression, mutant, wild-type, sequence, supplementary, embryos, mutants, clones
Topic 6: glass, tube, colour, due, substance, rays, apparatus, substances, action-of, series
Topic 7: serum, labelled, fraction, anti, purified, buffer, fractions, rabbit, extract, extracts
Topic 8: feet, rocks, island, specimens, sea, coast, islands, river, land, geological
Topic 9: membrane, enzyme, concentration, glucose, inhibition, calcium, release, phosphate
Topic 10: population, evolution, selection, genetic, environment, evolutionary, food, birds, breeding
Topic 11: college, secretary, council, cambridge, department, engineering, assistant, mathematics
Topic 12: frequency, wave, spectrum, electron, absorption, band, electrons, optical, signal, peak
Topic 13: binding, proteins, residues, peptide, chain, amino-acid, domain, terminal, sequence
Topic 14: dna, rna, sequence, sequences, mrna, poly, fragments, synthesis, fragment, phage
Topic 15: molecules, compounds, oxygen, molecule, reactions, formation, ion, ions, oxidation, compound
Topic 16: the-sun, solar, the-earth, motion, observatory, stars, comet, star, night, planet
Topic 17: techniques, materials, applications, reader, design, basic, service, computer, fundamental
Topic 18: crystal, structures, unit, orientation, ray, diffraction, patterns, lattice, layer, symmetry
Topic 19: vol, museum, plates, india, journal, ltd, net, indian, series, washington
Topic 20: sea, ice, ocean, depth, deep, the-earth, climate, sediments, earth, global
Topic 21: you, says, her, she, researchers, your, scientists, colleagues, get, biology
Topic 22: mice, anti, mouse, tumour, antigen, antibody, cancer, tumours, antibodies, antigens
Topic 23: disease, blood, bacteria, patients, drug, diseases, clinical, drugs, bacterial, host
Topic 24: radio, ray, emission, flux, stars, disk, sources, star, galaxies, galaxy
Topic 25: brain, receptor, receptors, responses, stimulation, response, stimulus, cortex, synaptic, stimuli
Topic 26: rats, liver, tissue, blood, dose, injection, rat, plasma, injected, hormone
Topic 27: royal, lecture, lectures, engineers, royal-society, hall, institution-of, society-at, annual, january
Topic 28: virus, cultures, culture, medium, infected, infection, viral, viruses, agar, colonies
Topic 29: heat, oil, coal, electric, electricity, electrical, lead, supply, steam, tons
Topic 30: particles, particle, electron, proton, neutron, protons, mev, force, scattering, nuclei
Topic 31: education, universities, training, schools, teaching, teachers, courses, colleges, grants, student
Topic 32: nuclear, radiation, irradiation, radioactive, uranium, fusion, reactor, storage, damage
Topic 33: iron, copper, steel, metals, milk, aluminium, alloys, silicon, ore, haem
Topic 34: soil, nitrogen, leaves, land, agricultural, agriculture, nutrient, yield, growing, content
Topic 35: chromosome, nuclei, hybrid, chromatin, mitotic, division, mitosis, chromosomal, somatic
Topic 36: pulse, spin, magnetic-field, pulses, polarization, orbital, decay, dipole, pulsar, polarized
Topic 37: atoms, quantum, atom, einstein, classical, photon, relativity, bohr, quantum-mechanics
Topic 38: strain, stress, strains, deformation, shear, stresses, failure, viscosity, mechanical, stressed
Topic 39: medical, health, medicine, tuberculosis, schools, education, teaching, infection, bacilli, based
Topic 40: adult, females, males, mating, mature, progeny, adults, maturation, aggressive, matings

Figure 11: Stochastic DILN after one pass through the Nature corpus. The upper left
figure shows the projected topic locations with + marking the origin. The upper right
figure shows topic correlations. We list the ten most probable words for the first 40
topics of the upper-right figure.
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Figure 12: A comparison of stochastic and batch inference for DILN using the Nature
corpus. Results are shown as a function of time (log scale). Stochastic inference achieves
a good posterior approximation significantly faster than batch inference, which pays for
improved performance with an increasing runtime.

In Figure 11 we show the model after one pass through the Nature corpus. The upper
left figure shows the locations of the top 50 topics projected from R20. These locations
are rough approximations since the singular values were large for higher dimensions. The
upper right figure shows the correlations between the topics. Below these two plots, we
show the ten most probable words from the 50 most probable topics. In Figure 9 we
show α̂ and β̂ as a function of the number of documents seen by the model. In Figure
10 we show the correlations between 100 pairs of topics chosen at random; these are also
shown as a function of the number of documents seen. In general, these plots indicate
that the parameters are far along in the process of converging to a local optimum after
just one pass through the entire corpus. Also shown in Figure 10 is the empirical word
count per topic (that is, the values

∑
m,n I(C(m)

n = k) as a function of k) after the final
iteration of the first pass through the data. We see that the model learns approximately
50 topics out of the 200 initially supplied. All results are shown for a batch size of 750.

Stochastic DILN vs batch DILN We also compare stochastic and batch inference for
DILN to show how stochastic inference can significantly speed up the inference process,
while still giving results as good as batch inference. We again use the Nature corpus.
For stochastic inference, we use a subset of size |Bt| = 1000 and a step of (1 + t)−0.75.
For batch inference, we use a randomly selected subset of documents, performing exper-
iments on corpus size M ∈ {25000, 50000, 100000}. All algorithms used the same test
set and testing procedure, as discussed in Section 5.1. All experiments were run on the
same computer to allow for fair time comparisons.
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In Figure 12, we plot the held-out per-word log likelihood as a function of time. We
measured performance every tenth iteration to construct each curve. The stochastic
inference curve represents roughly six passes through the entire corpus. For batch
inference, we see that performance improves significantly as the sub-sampled batch size
increases. However, this improvement is paid for with an increasing runtime. Stochastic
inference is much faster, but still performs as well as batch in predicting test documents.

6 Discussion

We have presented the discrete infinite logistic normal distribution, a Bayesian nonpara-
metric prior for mixed-membership models. DILN overcomes the hidden assumptions
of the HDP and explicitly models correlation structure between the mixing weights at
the group level. We showed how using the second parameter of the gamma process rep-
resentation of the hierarchical Dirichlet process achieves this by varying per-component
according to an exponentiated Gaussian process. This Gaussian process is defined on
latent component locations added to the hierarchical structure of the HDP.

Using batch variational Bayesian inference, we showed an improvement in predictive
ability over the HDP and the CTM in a topic modeling application. Furthermore,
we showed how this algorithm can be modified to obtain a new variational inference
algorithm for HDPs based on the gamma process. We then extended the model to the
stochastic inference setting, which allows for fast analysis of much larger corpora.

DILN can be useful in other modeling frameworks. For example, hidden Markov
models can be viewed as a collection of mixture models that are defined over a shared
set of parameters, where state transitions follow a Markov transition rule. Teh et al.
(2006) showed how the HDP can be applied to the HMM to allow for infinite state
support, thus creating a nonparametric hidden Markov model, where the number of
underlying states is inferred. DILN can be adapted to this problem as well, in this case
modeling correlations between state transition probabilities.

7 Appendix

7.1 Proof of almost sure finiteness of
∑∞

i=1 Zie
wi

We drop the group indexm and define wi := W (`i). The normalizing constant for DILN,
prior to absorbing the scaling factor within the gamma distribution, is S :=

∑∞
i=1 Zie

wi .
We first show that this value is finite almost surely when the Gaussian process has
bounded mean and covariance functions. This case would apply for example when
using a Gaussian kernel. We then give a proof for the kernel in Section 3.4 when the
value of c < 1.

Let ST :=
∑T
i=1 Zie

wi . It follows that S1 ≤ · · · ≤ ST ≤ · · · ≤ S and S = limT→∞ ST .
To prove that S is finite almost surely, we only need to prove that E[S] is finite. From
the monotone convergence theorem, we have that E[S] = limT→∞ E[ST ]. Furthermore,
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E[ST ] can be upper bounded as follows,

E[ST ] =
∑T
i=1 E[Zi]E[ewi ] ≤ emaxi(µi+

1
2σ

2
i )
∑T
i=1 E[Zi]. (42)

E[S] is therefore upper bounded by βemaxi(µi+
1
2σ

2
i ) and S is finite almost surely.

For the kernel in Section 3.4, we prove that E[S] <∞ when c < 1. We only focus on
this case since values of c ≥ 1 are larger than we are interested in for our application. For
example, given that ` ∈ Rd and ` ∼ Normal(0, cId), it follows that E[`T `] = dc, which
is the expected variance of the Gaussian process at this location. In our applications,
we set c = 1/d, which is less than one when d > 1. As above, we have

E[ST ] =
∑T
i=1 E[Zi]E[e`

T
i u] =

∑T
i=1 βpiE[e

c
2u

Tu]. (43)

Since u ∼ Normal(0, Id), this last expectation is finite when c < 1, and therefore the
limit limT→∞ E[ST ] is also finite.

7.2 Variational inference for normalized gamma measures

In DILN, and normalized gamma models in general, the expectation of the log of the
normalizing constant, EQ[ln

∑
k Zk], is intractable. We present a method for approxi-

mate variational Bayesian inference for these models. A Taylor expansion on this term
about a particular point allows for tractable expecations, while still preserving the lower
bound on the log-evidence of the model. Since the log function is concave, the negative
of this function can be lower bounded by a first-order Taylor expansion,

−EQ

[
ln

T∑
k=1

Zk

]
≥ − ln ξ −

∑
k EQ[Zk]− ξ

ξ
. (44)

We have dropped the group index m for clarity. A new term ξ is introduced into the
model as an auxiliary parameter. Changing this parameter changes the tightness of the
lower bound, and in fact, it can be removed by permanently tightening it,

ξ =
T∑
k=1

EQ[Zk]. (45)

In this case EQ[ln
∑
k Zk] is replaced with ln

∑
k EQ[Zk] in the variational objective

function. We do not do this, however, since retaining ξ in DILN allows for analytical
parameter updates, while using Equation (45) requires gradient methods. These ana-
lytical updates result in an algorithm that is significantly faster. For example, inference
for the corpora considered in this paper ran approximately five times faster.

Because this property extends to variational inference for all mixture models using
the normalized gamma construction, most notably the HDP, we derive these updates
using a generic parameterization of the gamma distribution, Gamma(ak, bk). The pos-
terior of Z1:T in this model is proportional to

p(Z1:T |C1:N , a1:T , b1:T ) ∝

 N∏
n=1

T∏
k=1

(
Zk∑
j Zj

)I(Cn=k)
[ T∏

k=1

Zak−1
k e−bkZk

]
. (46)
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Under a factorized Q distribution, the variational lower bound at nodes Z1:T is

EQ[ln p(Z1:T |−)] + H[Q] =
N∑
n=1

T∑
k=1

PQ(Cn = k)EQ[lnZk]−NEQ

[
ln

T∑
k=1

Zk

]

+
T∑
k=1

(EQ[ak]− 1)EQ[lnZk]−
T∑
k=1

EQ[bk]EQ[Zk]

+
T∑
k=1

H[Q(Zk)] + const. (47)

The intractable term, −NEQ[ln
∑
k Zk], is replaced with the bound in Equation (44).

Rather than calculate for a specific q distribution on Zk, we use the procedure
discussed by Winn and Bishop (2005) for finding the optimal form and parameterization
of a given q: We exponentiate the variational lower bound in Equation (47) with all
expectations involving the parameter of interest not taken. For Zk, this gives

q(Zk) ∝ eEQ−Zk [ln p(Zk|C1:N ,a1:T ,b1:T )]

∝ Z
EQ[ak]+

∑N
n=1 PQ(Cn=k)−1

k e−(EQ[bk]+N/ξ)Zk . (48)

Therefore, the optimal q distribution for Zk is q(Zk) = Gamma(Zk|a′k, b′k) with a′k =
EQ[ak] +

∑N
n=1 PQ(Cn = k) and b′k = EQ[bk] + N/ξ. The specific values of a′k and b′k

for DILN are given in Equation (23).
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