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Using Individual-Level Models for Infectious
Disease Spread to Model Spatio-Temporal

Combustion Dynamics

Irene Vrbik∗, Rob Deardon†, Zeny Feng‡, Abbie Gardner§ and John Braun¶

Abstract. Individual-level models (ILMs), as defined by Deardon et al. (2010),
are a class of models originally designed to model the spread of infectious disease.
However, they can also be considered as a tool for modelling the spatio-temporal
dynamics of fire. We consider the much simplified problem of modelling the com-
bustion dynamics on a piece of wax paper under relatively controlled conditions.
The models are fitted in a Bayesian framework using Markov chain Monte Carlo
(MCMC) methods. The focus here is on choosing a model that best fits the com-
bustion pattern.

Keywords: individual-level models, Markov chain Monte Carlo, fire spread mod-
elling, Bayesian inference, spatio-temporal dynamics

1 Introduction

The importance of understanding the dynamics of fire has inspired the development of
a number of models and methods of predicting fire spread. Statistical models could
be used to provide insight on these dynamics, and hence be used in the prevention
and containment of fire spread. Modelling such phenomena is a difficult task, however,
and often requires the use of simplified assumptions to help provide insight on how fire
behaves.

There are various mathematical models that have been used to describe the spread of
forest fires. Two popular mathematical models that are similar in nature are FARSITE
(Finny 1998) and Prometheus (Tymstra et al. 2010). These are complex vector models
that assume that if fire burns in an undefined uniform fuel type it spreads according to
a defined growth law and takes on a geometrical shape such as an ellipse (Berjak and
Hearne 2002). FARSITE and Prometheus are based on wave propagation techniques of
the Huygens principle where waves propagate from points on the outer edge to determine
the position of the fire front at specific times. These models require information about
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616 Combustion Modelling Using ILMs

the direction, time and rate of fire spread (Berjak and Hearne 2002). Weather conditions
in these models vary spatially and temporally, while topographical and fuel conditions
only vary spatially. The FARSITE and Prometheus models differ in the danger rating
system used, as well as in the fuel models. For instance, FARSITE is applied within the
United States of America and uses the National Fire Danger Rating System, whereas
Prometheus uses the Canadian Forest Fire Danger Rating System (Tymstra et al. 2010).

Another well established mathematical model used to predict the behaviour of fire
spread in a variety of fuel beds and ecosystems is the Rothermel model (Rothermel
1972). This model has given rise to the development of the National Fire Danger Rating
System and the BEHAVE fire prediction system. Here weather, topographic and fuel
conditions are treated as environmental parameters in order to model the rate of spread
of the flaming front. The Rothermel model can describe the spread of fire through a
range of fuel surfaces such as brush, litter, grass and logging slush, however, it cannot be
applied to crown fires (Perry 1998). This forest fire model is often used in conjunction
with Byram’s fireline intensity (Byram 1959), which is a function of availability of fuel,
heat yield and rate of fire spread.

Another set of models used to describe forest fire spread are simulation-based models
which computationally model two dimensional fire spread. These can be used to over-
come the limitations associated with analytical methods of modelling fire spread. A few
examples of fire growth simulation models are cellular automata models (e.g. Berjak
and Hearne 2002), percolation models (e.g. Beer and Enting 1990) and discrete event
system specification models (DEVS) (e.g. Ntaimo et al. 2004).

In this paper, we take an alternative approach, and consider the use of statistical
models that have previously been used to model the spread of infectious diseases. Dear-
don et al. (2010) detailed a class of models for infectious disease spread they termed
individual-level models (ILMs). The ILM framework assumes that individuals in the
population through which disease progresses are discrete points in time and space. Here
ILMs are considered as a tool for modelling the dynamics of fire-spread through time
and space, the individuals now being a set of cells that make up a rectangular piece of
wax paper.

The ILMs being considered use the Euclidean (straight-line) distance between cells
as a measure of the spatial risk factor associated with the fire spread. The models are
applied to data collected from an experimental fire in which a piece of wax paper was
ignited under controlled conditions (i.e. no wind, flat surface, and uniform fuel). The
ILMs are fitted to the digitalized combustion pattern and assessed for goodness of fit.
The purpose of this paper is to consider a series of ILMs for modelling dynamics of
combustion pattern.

The paper is outlined as follows. Section 2 provides the reader with an introduc-
tion to the study topic by describing the data being considered, the general model, and
the pre-analysis data-cleaning carried out. The eight models being considered are de-
scribed in Section 3 along with a brief introduction to the methodology used to estimate
the model parameters. Section 4 summarizes the results of this paper, and Section 5
concludes with the discussion of possible future work.
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2 Fire Data and the General Model

The models being considered in this paper fall into the framework of a class of statistical
models termed individual-level models (ILMs), as considered in Deardon et al. (2010).
These models were originally designed for the modelling of infectious disease spread
across time and space. Here we adapt these models for the purpose of modelling the
spread of fire.

2.1 Data Collection

The fire pattern being considered here was obtained by igniting a piece of wax paper un-
der controlled conditions. The area of the paper under observation was approximately
28.5cm by 38cm in size. The paper was laid flat in a closed room with no noticeable
air flow. The centre of the paper was ignited and the combustion pattern was video
recorded for the duration of the fire. Snap shots of the paper were taken at fourteen dif-
ferent observation times after ignition (measured in seconds): τ1 = 1.64, τ2 = 2.04, τ3 =
2.51, τ4 = 2.97, τ5 = 4.97, τ6 = 5.97, τ7 = 6.51, τ8 = 7.04, τ9 = 7.51, τ10 = 7.97, τ11 =
8.51, τ12 = 8.97, τ13 = 9.51, and τ14 = 10.04. The digitalized snapshot image at each
time point was divided into a grid of squares or cells. The burning state of each in-
dividual cell was ascertained initially by thresholding the RBG values in R and then
correcting the errors via eye (R Development Core Team 2009). The state of each cell
for every time point was recorded thus: (C), if the cell was untouched or cold; (B), if
the cell was burning; and (O) if the cell was burnt out. From here on in, we assume
that the state of each cell is recorded without the presence of measurement error – see
Section 5 for further discussion.

2.2 The General Model

Deardon et al.(2010) introduced a framework of individual-level models (ILMs) for infec-
tious diseases. Here we recap this framework in the context of a fire spreading through
a landscape that has been divided into a grid of cells (see Section 2.1).

A discrete time model is considered wherein an individual cell can be in state C
(cold or untouched), B (burning) or O (burnt out); this would be akin to a suscpetible-
infectious-removed (SIR) model for infectious disease (Waltman and Hoppensteadt
1970, 1971). Likewise, we define the sets C(t), B(t), and O(t) as the sets of cold,
burning, and burnt out cells at observation t, respectively, where t = 1, ..., tmax, and
tmax is the number of time points observed. We also define τt as the point in continuous
time when observation t is taken.

In this paper, we assume that the state of each cell is known at each observation
point. The likelihood for our model is simply the probability of observing all the newly
ignited cells, and all the untouched cells, at each observation, t = 1, ..., tmax. The
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log-likelihood function for our model is then given by

`(D|θ) =
tmax∑
t=1


 ∑

i∈Ct+1

log(1− Pit) +
∑

i∈Bt+1\Bt

log(Pit)


 (1)

where Pit is the probability that cold cell i is ignited in the continuous time interval
[τt, τt+1) (or, equivalently, first observed in the burning state at observation t+1); D is
the observed data; θ is the vector of parameters to be estimated; Ct+1 is the set of cold
cells at time t + 1; and Bt+1\Bt is the set of newly burning cells at time t + 1.

Modifying the notation of Deardon et al.(2010) to fit the above framework, we let

P (i, t) = 1− exp


−ΩS(i)

∑

j∈B(t)

ΩT (j)κ(i, j) + ε(i, t)


 (2)

where ΩS(i) is the susceptibility function representing the risk factors associated with
cold cell i becoming ignited; ΩT (j) is the transmissibility function representing the risk
factors associated with burning cell j transmitting the fire; κ(i, j) is an “infection”
kernel that characterizes the risk of combustion due to risk factors shared by a cold
cell, i, and burning cell, j; B(t) is the set of burning cells at time t; and ε(i, t) describes
random behaviour not explained by the basic framework of our model. For example,
ε(i, t) = ε(t) could be used to represent spontaneous combustion in dry conditions at
given points in time in a forest fire model. However, with little reason to expect such
characteristics in the simple system being explored here, we set ε(i, t)= 0 in all ILMs
described in this paper.

Since there are no known covariates in the wax paper combustion data set, we also
set ΩS(i)ΩT (j) = α, where α can be thought of as combustibility constant. Of course,
in, say, the context of a forest fire, geographical or topographical risk factors might well
be considered in one or both of these functions.

A natural choice for the distance metric used in the kernel κ(i, j), is the Euclidean
(straight line) distance between the centres of susceptible cell i and burning cell j. We
shall refer to the kernels that use the Euclidean distance, dij as a metric as distance
kernels denoted κ(dij). Thus, Equation (2) can be reduced to the form of

P (i, t) = 1− exp


−α

∑

j∈B(t)

κ(dij)


 . (3)

Note that the temporal dependence in the system is modelled via the conditional
independence assumption exhibited in the log-likelihood, while spatial dependence is
modelled as part of P (i, t). This spatial dependence is not symmetric. That is, a
burning cell can affect the state of a cold cell, but not the other way round. Note also
that the probabilities defined by the models of (2) and (3) are the probabilities of a
cold cell igniting in the time interval [t, t + 1). Although, conceptually, this combustion
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Figure 1: Digitalized snap shots of the fire data after aggregation and cleaning.

occurs within this interval, it would not be observed until time t+1 in the data. Hence,
the summations in the log-likelihood are over Ct+1 and Bt+1\Bt, rather than Ct and
Bt\Bt−1. For both reasons, this model is inherently different from autologistic models,
another popular class of model for dealing with spatial (Besag 1972; Caragea and Kaiser
2009) and spatiotemporal (Zheng and Zhu 2008) data. These two differences also mean
that (1) gives the full log-likelihood for the ILM, and not a pseudo-log-likelihood, as is
often used when fitting an autologistic model.

2.3 Data Aggregation

Originally the data set consisted of 76,800 cells corresponding to a grid of 240 by 320.
With a large “population” such as this, calculation of the likelihood can become com-
putationally prohibitive. Therefore the data set was aggregated to reduce the number
of cells. Each set of 5 by 5 cells were aggregated to obtain a 48 by 64 grid composed
of 3072 aggregated cells. The state of the aggregated cell was defined via a threshold
classifying the aggregated cell as state B (burning) if 5 or more of the 25 smaller cells
were burning; state O (burnt out) if there were more burnt out than untouched, and
fewer than 5 burning smaller cells; and C (cold) if there were more untouched than burnt
out, and fewer than 5 burning cells. Finally, the data set was cleaned in order to ensure
that the state of a cell could take on the following transitions only: C → B, B → O, or
C → O. It would be possible to relax these assumptions (e.g. allow C → B → C) but
this is not considered here. The snap shots from the aggregated fire spread are shown
in Figure 1.
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Various aggregation schemes were tested, and the models fitted produced qualita-
tively similar results (e.g. combustion simulations). For example, under an alternative
aggregation scheme the original cell count of 76,800 cells was reduced to 19,200 aggre-
gated cells. The state of these cells (corresponding to a coarser aggregation grid of 120
by 160) was found using a similar threshold technique as described above. The analysis
of the data under this alternative aggregation scheme led to very similar conclusions as
under the scheme used throughout the rest of this paper; e.g. rankings of the deviance
information criterion (DIC) (Spiegelhalter et al. 2002) under each model – see Section
4 – were identical under both aggregation schemes.

3 Modelling

In this section, eight different models are considered for fitting the combustion pattern
data described in Section 2.1. As discussed previously, the combustion pattern was
digitalized at 14 time points through the course of the fire. These observations points
were separated by time intervals (measured in seconds): 1.64, 0.40, 0.47, 0.46, 2.00, 1.00,
0.54, 0.53, 0.47, 0.46, 0.54, 0.46, 0.54, and 0.53. Some of the models described here do
not account for differences between these time intervals. In effect, this is equivalent to
assuming that the time intervals are identical and – in the context of the notation to
be introduced in Section 3.3 – equal to ∆(t) = 1, (i.e. τt+1 − τt = 1).

3.1 Basic Geometric Kernel Model

The distance kernel for this first model is based on the simple power law, κ(dij) = dij
−β .

With the equal time intervals assumption, the probability that cold cell i will become
ignited at time t is given by

P (i, t) = 1− exp


−α

∑

j∈B(t)

d−β
ij


 , α > 0, β > 0 (4)

where α is the combustibility constant and β is the power-law or decay parameter. An
increase (decrease) in α represents an increase (decrease) in the overall strength of the
fire, whereas a decrease (increase) in β represents a fire which spreads more quickly
(slowly) through space.

3.2 Basic Exponential Kernel Model

In the second model the distance kernel is changed to κ(dij) = exp{−βdij} where once
again, β is the shape parameter of the kernel. Once again, assuming the time intervals
between two consecutive observed times are equal, the probability that cold cell j ignites
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within the time interval [t, t + 1) is given by

P (i, t) = 1− exp


−α

∑

j∈B(t)

exp{−βdij}

 , α > 0, β > 0 (5)

where α and β are parameters to be estimated. Since the exponential kernel was found
to outperform the geometric kernel in terms of DIC, in the remainder of this section,
models incorporating the geometric kernel are not presented.

3.3 Interval-Dependent Exponential Kernel Model

In the above models no attempt is made to account for the fact that the time intervals
in between which the data were collected are not equal. The model here incorporates
the fact that the data analyzed here was not collected at regular time points. The
probability that cell i ignites within time interval [τt, τt+1) is now defined by

P (i, t) = 1− exp


−α ∆(t)

∑

j∈B(t)

exp{−βdij}

 (6)

where ∆(t) = τt+1−τt. The ∆(t) acts as a weight, making the probability of combustion,
P (i, t), larger for longer time periods. This model with the geometric kernel replacing
the exponential kernel was also fitted (results not shown).

3.4 Change Point, Exponential Kernel Model

A visual inspection of the data suggests that the combustion rate slows down at some
point in time. Therefore, a model is considered that allows α and β to change at some
time point k. The probability that cell i ignites within time interval [τt, τt+1) is now
defined by

P (i, t) =





1− exp
[
−α1∆(t)

∑
j∈B(t) exp{−β1dij}

]
if t < k

1− exp
[
−α2∆(t)

∑
j∈B(t) exp{−β2dij}

]
if t ≥ k

(7)

where α1, α2, β1 and β2 are all parameters to be estimated. This model is fitted for
k = 2, ..., 13. Once again, the equivalent model with the geometric kernel replacing the
exponential kernel was fitted but the geometric kernel did not perform as well as the
exponential kernel according to their DIC values (results not shown).

3.5 Nearest Neighbour Kernel Model

An intuitive alternative to the exponential kernel is the nearest neighbour (NN) kernel.
This leads to a model in which the probability that cell i ignites in the interval [τt, τt+1)
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is now defined as

P (i, t) = 1− exp



−α

∑

j∈B(t)

I [dij < r]



 (8)

where α is the only parameter to be estimated. The neighbourhood radius, r, in which
we classify a nearest neighbour is set to 4 units since combustion patterns in the original
data never exceed a jump of more than 4 cell units away from a burning cell. The
distance kernel is now an indicator function where

I[dij < 4] =
{

1 if dij < 4
0 if dij ≥ 4.

3.6 Nearest Neighbour Exponential hybrid I Model

Here a hybrid of the nearest neighbour model and exponential kernels is considered.
Including the exponential kernel allows the probability of combustion to vary depending
on the distance within the defined neighbourhood. Here the probability of cell i igniting
at interval [τt, τt+1) is

P (i, t) = 1− exp


−α

∑

j∈B(t)

I[dij < r] exp{−βdij}

 (9)

where once again r = 4 is used and α and β are parameters to be estimated.

3.7 Nearest Neighbour Exponential hybrid II Model

A potential problem with the previous model is that the probability of combustion for
“long distance” cells (i.e. cells farther away than 4 units) is set to be 0. Here, a model
is considered that still allows for long distance combustion with the added component
of the nearest neighbour indicator function to add an extra weight to the neighbouring
cells. The probability of individual i igniting within interval [τt, τt+1) is now

P (i, t) = 1− exp


−α

∑

j∈B(t)

I[dij < r] + exp{−βdij}

 (10)

where I[dij < r] is the indicator function described in the previous section; α and β are
parameters to be estimated; and the nearest neighbour radius r is set to 4.
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Figure 2: Marginal posterior distributions and trace plots under the basic exponential
distance kernel model.

3.8 Log-Normal Beta

Finally, a model in which β can vary over time in a flexible or natural manner is
considered. This flexible model now defines βt = f(t) where f(t) is a log-normal curve.
A non-negative truncated normal prior with variance 5000 is put on the parameters of
the lognormal curve; µ, σ and A. The probability that cell i ignites within time interval
[τt, τt+1) is now defined by

P (i, t) = 1− exp


−α

∑

j∈B(t)

exp{−βtdij}

 (11)

where βt = A exp{−(log t−µ)2

σ2 }; now θ = (α,A, µ, σ) are to be estimated.
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Figure 3: Typical simulation for the exponential kernel model with the marginal poste-
rior means substituted in for parameters.

3.9 Fitting the Models and the Data

The models are fitted in a Bayesian framework which combines the likelihood with the
prior distribution to obtain the posterior distribution for θ. Since we want to restrict
the parameter space to that of R+, with little prior knowledge, we assume the prior
distribution for all parameters follow a normal distribution with mean 0 and variance
5000 and truncate the normal distribution to include only non-negative values. Random
walk Metropolis-Hastings MCMC (e.g. Gamerman and Lopes 2006) is used in order to
obtain a sequence of random samples from the posterior distribution. The random-walk
proposal used for all parameters is the uniform, with range tuned to produce acceptably
efficient mixing.

For all models, the random-walk Metropolis Hastings MCMC algorithm was run
for 100,000 iterations including a burn-in period of 2000 iterations. Convergence was
verified visually. For illustration, see Figure 2(a) for the marginal posterior distributions,
and Figure 2(b) for the trace plots, of the parameters of the exponential kernel model
after convergence, as well as a typical simulation of that model under the posterior
means of the parameters shown in Figure 3.
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Table 1: Parameter posterior mean values.
Model Parameter Posterior Mean 95% PI
Geometric Kernel Model α 1.937 (1.717, 2.177)

β 3.665 (3.568, 3.759)
Exponential Kernel Model α 2.079 (1.725, 2.471)

β 1.149 (1.091, 1.208)
Interval-dependent Model α 4.050 (3.343, 4.876)

β 1.183 (1.123, 1.244)
†Change Point Model k = 5 α1 1.369 (0.900, 1.965)

α2 5.570 (4.480, 6.767)
β1 0.923 (0.826, 1.019)
β2 1.274 (1.201, 1.344)

NN Kernel α 0.202 (0.188, 0.216)
NN Exponential hybrid I α 4.327 (3.184, 5.698)

β 1.155 (1.0344, 1.273)
NN Exponential hybrid II α 0.092 (0.085, 0.099)

β 0.628 (0.594, 0.662)
Log-Normal Beta α 2.103 (1.716, 2.519)

A 2.707 (1.187, 5.773)
µ 60.621 (9.186, 142.341)
σ 70.415 (25.447, 143.493)

†The results for other change points (k = 2, ..13) can be found in Figure 4.

4 Results

The mean posterior parameter values and their 95% percentile intervals are given in
Table 1 and Figure 4.

Models were compared in three ways. First, a comparison between plots of sim-
ulated data from each model under the posterior means, and the observed data, was
made. Second, models were compared using the deviance information criterion (DIC)
(Spiegelhalter et al. 2002). The DIC values obtained for each model, along with the
ranks (1 being the model with the lowest DIC), are given in Table 2. The third method
of comparison consisted of considering the one-step-ahead posterior predictive distribu-
tion of the number of burning cells over the course of the experiment for each model.
This is discussed in Section 4.8. First, we consider comparing the models via direct
simulation and the DIC.

4.1 Exponential and Geometric Kernel Model

When the basic distance kernel models are compared, the exponential model performs
better in terms of DIC. In Figure 5(a) the probability of susceptible cell i catching
fire from single burning cell j is plotted against the Euclidean distance dij (the kernels
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Figure 4: Posterior mean estimates and 95% credible intervals of the Change Point,
Exponential Kernel Model parameters for different values of the change-point parameter,
k = 1, ...12.

themselves are shown in Figure 5(b)). Naturally it is expected that the farther away
burning cell j is from i the lower the probability of combustion. Both models follow
this assumption. However, it can be seen that the fitted exponential model allows for
probabilities less than 1 when dij = 1, whereas the fitted geometric model produces
a probability plot with a plateau at 1 which then rapidly drops to 0. This results in
the exponential kernel model having a degree of randomness at small distances which
the geometric kernel model does not. It may be this discrepancy that results in the
geometric model having a weaker fit. The heavy tails of the geometric model also may
contribute to its lack of fit since having non-zero probabilities for long distances may
not be realistic for this combustion data.
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Table 2: Deviance Information Criterion (DIC).
Model Submodel DIC Rank
Geometric Kernel Model 3610.202 5
Exponential Kernel Model 3456.496 4
Interval-dependent Model 3390.024 3
Parameter Change Point k = 1 3360.836

k = 2 3356.067
k = 3 3360.338
k = 4 3347.073
k = 5 3343.684 2
k = 6 3355.261
k = 7 3374.983
k = 8 3385.637
k = 9 3385.736
k = 10 3385.804
k = 11 3379.686
k = 12 3357.953

Nearest Neighbour Kernel 7363.945 8
Nearest Neighbour Exponential hybrid I 7133.889 7
Nearest Neighbour Exponential hybrid II 3718.784 6
Log-Normal Beta 3329.293 1

The plots of a typical simulation under the posterior means for the exponential and
geometric kernel models are shown in Figures 3 and Figure 6, respectively. Comparing
these to the aggregated snap shots (Figure 1) the exponential model produces a fire
spread shape with smooth edges and non-circular features that is similar to that of the
original data. The geometric model on the other hand produces spread patterns with
many jumps and jagged edges that are not representative of the original data. For both
models the rate of the fire spread is too fast, with nearly all the cells in the burnt out
state by the last time interval.

4.2 Interval-dependent Model

Compared to the equal interval exponential kernel model, accounting for the varying
time intervals improves the model fit with a reduction of 66.472 in the DIC (3456.496 –
3390.024). This is no surprise, since the time intervals ranged from 0.40s to 2.00s and
it would be expected that the fire would spread more in a longer interval than a shorter
one.
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Figure 5: (a) The probability of susceptible cell i catching fire from burning cell j; and
(b) distance kernel κ(dij); both plotted against dij for the exponential kernel (solid line)
and the geometric kernel (dotted line) under the posterior means.

4.3 Change Point, Exponential Kernel Model

For the parameter change point model, all possible values of the change point k are
considered. The model with k = 5 produces the lowest DIC of 3343.684. This model
also appears to offer an improvement over the interval-dependent model with a DIC that
was reduced by 46.340 (3390.024 – 3343.684). Although the inclusion of change points
results in a model that slows the fire down for the second half of the fire, simulations
under the posterior mean still produce a faster fire spread than seen in the original data
(results not shown). The posterior mean estimates, and 95% credible intervals of the
model parameters are are given in Figure 4.

Another alternative is to treat k as a parameter to be estimated. Using this technique
the same method was conducted on this 5 parameter model and the marginal posterior
mean for k was found to be 6.511438.

4.4 Nearest Neighbour (NN) Kernel Model

The nearest neighbour model, although intuitively sensible for fire spread, did poorly
in terms of the DIC. The NN kernel model results in a two-fold increase in DIC value
compared to that of the change point exponential kernel model. As can be seen in
Figure 7, the NN model typically produces a circular pattern that fails to mimic the
observed data’s elliptical-like pattern.
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Figure 6: Typical simulation for the geometric kernel model with the marginal posterior
means substituted in for parameters.
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Figure 7: Simulation of the nearest neighbour model with the marginal posterior means
substituted in for parameters.
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4.5 NN Exponential hybrid I Model

The first hybrid model that used the exponential kernel in conjunction with the nearest
neighbour indicator function offers a slight improvement over the original nearest neigh-
bour model. The DIC for this model (7133.889) is lower than that of the NN kernel
model (7363.945). However, this model is still poor in terms of DIC value compared to
the other non-NN models considered.

4.6 NN Exponential hybrid II Model

The nearest neighbour exponential hybrid II model produces a much smaller DIC value
(3718.783) comparing to the simple NN model (7363.945). This model allows for long
distance incidence of combustion while providing an added weight to those burning cells
being the nearest neighbour of cell i. However, the DIC values suggest that the second
hybrid model does not perform better than the non-NN models.

4.7 Log-Normal Beta Model

The log-normal beta model with four parameters yields the smallest DIC of 3329.293.
Separate probability curves for each time point t = 1, ...14 do not appear to differ
greatly for different values of t. However, this flexibility seems to offer a better fit over
other models. In addition, this model generates the fire combustion pattern that best
matches the pattern of original data with a much lower combustion rate compared to
other models (although the combustion rate is still not as low as observed in the original
data). The simulated pattern based on the log-normal beta model is shown in Figure 8.

4.8 Posterior Predictive Checks

Further model comparisons can be made via the one-step-ahead posterior predictive
distribution of the number of burning cells over the course of the experiment for each
model. The one-step-ahead posterior predictive distribution of the number of burning
cells at time B is found in the following way. First, model parameters are sampled
from the posterior distribution estimated via MCMC for a given model. Second, the
combustion pattern at time B +1, conditional upon the data up to time B is simulated
from the given model using the posterior-sampled parameter values. Third, the number
of burning cells at time B + 1 is recorded. Note that cells observed to go from the
burning to burnt out states from times B to B + 1 are assumed to burn out in the
one-step simulation.

This three-step procedure is repeated 100 times for each of B = 2, . . . , 13. The
resulting one-step-ahead posterior predictive distributions of the number of burning cells
over time, for six of the eight models fitted, are shown in Figure 9. These distributions
can be compared with the observed data, superimposed on the plots in black. Note that,
one-step-ahead posterior predictive plots of two of the models fitted are not shown for
reasons of brevity. First, the plot for the geometric kernel model is very similar to that
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Figure 8: Simulation of the log-normal beta model with the marginal posterior means
substituted in for parameters.

of the exponential kernel model. Secondly, the plot for the change point exponential
kernel model is very similar to that of the interval-dependent exponential model. In
both cases, only the plots for the latter of the two models are included.

For the most part the posterior predictive plots follow the general trend of the burn-
ing cell count curve. However, as we can see from Figure 9 the non-nearest-neighbour-
based models all tend to overestimate the number of burning cells. It also appears from
the posterior predictive plots that there is little to differentiate between those models
(including the two models for which plots are not shown – see above).

We see from the plots for the NN kernel model and the NN exponential hybrid II
model that both of these models tend to underestimate the number of burning cells for
the second half of the experiment. Of the models tested, the posterior predictive plot
for the NN exponential hybrid I model seems to suggest that this model fits the data
best. However, even this fit could only probably be described as moderately good, and
is not a vast improvement over, say, the log-normal beta model’s.

5 Conclusions

In this paper a variety of ILMs were considered as tools for modelling the spatio-temporal
dynamics of fire spread for a particular data set under controlled conditions. To some
extent, at least some of the fitted models were able to produce simulated data with a
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(a) Exponential Kernel Model
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(b) Interval-dependent Exponential Model
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(c) NN Kernel Model
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(d) NN exponential hybrid I model
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(e) NN exponential hybrid II model
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(f) Log-normal beta model

Figure 9: One-step-ahead posterior predictive distribution of the number of burning cells
for various models; black curves show the observed data and blue curves are posterior
predictive realizations.
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combustion pattern similar in terms of shape and variability to that of the original fire
spread data. However, in general, the combustion patterns generated by these models
tended to burn at a faster rate than the original observed combustion pattern. It was
observed that models with an exponential distance kernel performed better in terms of
minimizing DIC than models with a geometric distance kernel. The preference of an
exponential kernel is consistent with the wave-like progression of the fire observed in
the data; the geometric kernel, having heavier tails than the exponential kernel, tends
to result in more long distance spread.

Models with purely nearest neighbour based kernels performed very poorly in terms
of DIC. It was also observed that models which were, in some respects, heterogeneous
over time, outperformed models which did not allow this heterogeneity. For example,
the time-varying model outperformed the simpler, and otherwise equivalent, exponential
kernel model; and the model that performed best in terms of DIC was the log-normal
beta model, which allows the distance kernel to vary over time. There are a variety of
other models that could be examined, and, indeed, many others were fitted but have
not been included in this paper since they did not perform well (e.g. a model in which
the β parameters follow an exponential curve, rather than a log-normal shaped curve).

A comparison of the models using the one-step-ahead posterior predictive distribu-
tion of the number of burning cells, as well as simple simulation from the posterior
means, seems to suggest that most of the models fitted tended to produce simulated
combustion patterns that are more vigorous than that observed in the data. The three
nearest neighbour based models were tested in the hope that they would produce less
vigorous fires. It would appear that in this they were successful. In fact, in the case
of the nearest neighbour kernel model, and nearest neighbour exponential hybrid II
model, underestimation of the severity of the fire spread occurred. It should be noted
that the model that seems to do best in terms of posterior predictive performance, the
nearest neighbour exponential hybrid I model, had a much higher DIC than all of the
non-nearest neighbour based models. It would appear that although this model seems
to perform well in terms of its global behaviour, at the local level prediction is quite
poor, and this is borne out by a lower log-likelihood.

There are a number of issues that could be explored further. For example, in the
likelihood, we assume that the newly burning cells are igniting independently of each
other, conditional on the present configuration of burning cells. As fires tend to prop-
agate as a wave, this assumption may not be very realistic for a fire. Relaxing this
assumption may be desirable, although it would greatly increase the complexity of the
likelihood function and probably introduce new computational difficulties to overcome.

In this paper, we only consider the transition path C → B and B → O (and in some
cases C → O might be recorded in the data, although this transition is not modelled
as such, but merely recorded). However it is possible that a burning cell could become
extinguished and therefore returns to the cold state C, before maybe reigniting later.
Further, the likelihood of such a transition path for a cell would be expected to increase
the larger the cells are. However, such transition paths are not considered among the
proposed models. It would be interesting to investigate models that incorporate this
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possibility as it is a plausible occurrence in nature.

Another thing that would be worthy of examination might be the rescaling of the
models once the time intervals have been altered. The data was collected at 14 different
time points over the life of the fire and it would be interesting, say, to investigate
what would happen if the data was collected more often. This is especially important
because it is being assumed in the interval-dependent models that a simple multiplicative
rescaling of the α parameter is an adequate adjustment. The validity of the assumption
should be tested in further work.

In this paper, the burning state of each cell was ascertained initially by thresholding
the RBG values in R, and then correcting the errors by eye to give us our observed
data. Of course, a more satisfactory method of dealing with the above possible errors
would be the use of random effects representing measurement error, incorporated into
the analysis via data-augmented MCMC. This augmenting set of parameters would
essentially represent the difference between the true and observed times at which the
transitions from C → B and B → O occur. However, this augmentation would greatly
increase the computational burden involved in the analysis.

To facilitate practicable computation times, the observed data in our study was ag-
gregated. The aggregation method used was very simple, and much more complicated
methods for dealing with high dimensional spatial/spatio-temporal data could be con-
sidered. Three such examples in different settings are given by Higdon (1998), Calder
(2008) and Cressie and Johannesson (2008). Cressie and Johannesson (2008) aim to
approximate the variance-covariance matrix of fine gridded data by a sample of much
more coarsely gridded data via a method based on yielding the best estimators of the
covariance function parameter using the Frobenius norm. Higdon (1998) and Calder
(2008) focus on a process convolution approach to modelling the variance-covariance
matrix of spatio-temporal data to avoid a prohibitively high computational burden.
The methods employed by these authors are designed for continuous responses such as
the total column ozone (TCO) measures (Cressie and Johannesson, 2008); the ocean
temperature (Higdon, 1998); and the concentration of the particulate matter (Calder,
2008). However, in our study, the response is categorical. Extension of one of the above,
or similar, aggregation methods to our problem would, therefore, be non-trivial.

Another issue of interest could be a comparison between empirically-led, ILM-based
fire spread models, and those are derived from more fundamental physical and/or the-
oretical assumptions, such as FARSITE and Prometheus. For example, both of these
models follow the aforementioned Huygens principle in which waves propagate from
points on the outer edge to determine the position of the fire front at specific times.
However, there is no reason why an ILM-based fire spread model should follow this
principle. At best, an ILM, which is of course a stochastic model, could be constructed
to follow the Huygens principle in its mean behaviour. However, in the models tested in
this paper, the fact that the fire spread can occur in all directions from the wave front
means that the Huygens principle is not followed.

Finally, it would be very interesting to apply ILMs to forest fire data. In doing so, the
susceptibility and transmissibility functions of the general form of the ILM could allow
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topographical covariates, and information on things such as forest type and density,
etc., to be included as risk factors. Such models could also be extended to include
meteorological data, either in a static sense where the distance kernel could allow for a
prevailing wind direction, or a dynamic sense in which the kernel could vary over time,
informed by updated meteorological information. It would seem, at least intuitively,
that the use of time-varying parameters would likely provide a better strategy for forest
fire modelling than non-time-varying parameters, as it would be expected that the rate
of fire growth would change over time with varying conditions.
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