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We analyze the statistical properties of nonparametric regression estima-
tors using covariates which are not directly observable, but have be estimated
from data in a preliminary step. These so-called generated covariates appear
in numerous applications, including two-stage nonparametric regression, es-
timation of simultaneous equation models or censored regression models. Yet
so far there seems to be no general theory for their impact on the final esti-
mator’s statistical properties. Our paper provides such results. We derive a
stochastic expansion that characterizes the influence of the generation step
on the final estimator, and use it to derive rates of consistency and asymptotic
distributions accounting for the presence of generated covariates.

1. Introduction. A wide range of statistical applications requires nonpara-
metric estimation of a regression function when some of the covariates are not
directly observed, but have themselves only been estimated in a (possibly non-
parametric) preliminary step. Examples include triangular simultaneous equation
models [e.g., Newey, Powell and Vella (1999), Blundell and Powell (2004), Imbens
and Newey (2009)], sample selection models [Das, Newey and Vella (2003)], treat-
ment effect models [Heckman, Ichimura and Todd (1998), Heckman and Vyt-
lacil (2005)], censored regression models [Lewbel and Linton (2002)], general-
ized Roy models [d’Haultfoeuille and Maurel (2009)], stochastic volatility models
[Kanaya and Kristensen (2009)] and GARCH-in-Mean models [Conrad and Mam-
men (2009)], amongst many others. In contrast to fully parametric settings [Pagan
(1984)], there seems to be no general theoretical results on how to derive the statis-
tical properties of such nonparametric two-step estimators. Instead, most available
results in the literature typically exploit peculiarities of a specific model, and can
thus not easily be transferred to other applications.

In this paper, we study the statistical properties of a nonparametric estimator
m̂LL of a conditional mean function m0(x) = E(Y |r0(S) = x) when the function
r0 is unknown, but can be estimated from data. While we are specific about esti-
mating m0 by local linear regression [Fan and Gijbels (1996)] to simplify technical
arguments, we neither require the generated regressors R̂ = r̂(S) to emerge from a
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specific type of model, nor do we require a specific procedure to estimate them. We
only impose high-level conditions on the accuracy and complexity of the first step
estimate. In particular, our main result holds irrespectively of whether the function
r0 is, for example, a density, a conditional mean function or a quantile regression
function, or whether it is estimated by kernel methods, orthogonal series or sieves.
Moreover, our results are not confined to nonparametrically generated covariates,
but also apply in settings where r0 is estimated using parametric or semiparametric
restrictions.

Our main result uses techniques from empirical process theory to show that the
presence of generated covariates affects the first-order asymptotic properties of
m̂LL only through a smoothed version of the estimation error r̂(s) − r0(s). This
additional smoothing typically improves the rate of convergence of the estimator’s
stochastic part, reducing the “curse of dimensionality” from estimating r0 to a sec-
ondary concern in this context. It does not, however, affect the order of magnitude
of the deterministic component. Still, the estimator m̂LL can have a faster overall
rate of convergence than the first step estimator r̂ if the latter has a sufficiently
small bias.

We extensively illustrate the implications of our main result for the important
special case that r0 is the conditional mean function in an auxiliary nonparamet-
ric regression. For this setting, we derive simple and explicit stochastic expan-
sions that can not only be used to establish asymptotic normality or the rate of
consistency of the estimated regression function itself, but also study the prop-
erties of more complex estimators, in which estimation of a regression function
merely constitutes an intermediate step, such as structured nonparametric models
imposing additive separability [Stone (1985)]. Our results thus cover a wide range
of models, and should therefore be of general interest. We use our techniques to
study two such examples in greater detail: nonparametric estimation of a simul-
taneous equation model and nonparametric estimation of a censored regression
model.

To the best of our knowledge, there are only few papers on nonparametric re-
gression with estimated covariates not tailored to a specific application. Andrews
(1995) derives some results for generated covariates converging at a parametric
rate. Sperlich (2009) uses restrictive assumptions which lead to asymptotic re-
sults that are different from the ones obtained in the present paper. Song (2008)
considers series estimation of the functional g(x, r) = E(Y |r(X) = x) indexed by
x ∈ X ⊂ R and r ∈ �, where � is a function space with finite integral bracketing
entropy, and derives a rate of consistency uniformly over (x, r) ∈ X × �; see also
Einmahl and Mason (2000) for a related problem.

Our paper is also related to a recent literature on semiparametric estimation
problems with generated covariates. Li and Wooldridge (2002) consider a par-
tial linear model with generated covariates. Hahn and Ridder (2011) use pathwise
derivatives to derive the influence function of semiparametric linear GMM-type
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estimators. Escanciano, Jacho-Chávez and Lewbel (2011) provide stochastic ex-
pansions for sample means of weighted semiparametric regression residuals with
potentially generated regressors, and study their application to certain index mod-
els. Compared to the nonparametric problems studied in this paper, semiparametric
applications typically exhibit several additional technical issues. In particular, dif-
ferent techniques are needed to control the magnitude of certain remainder terms.
Addressing these issues would require substantial refinements our results, which
are not needed for the class of nonparametric problems we are focusing on. To
keep the present paper more readable, we study semiparametric estimators with
generated covariates separately in Mammen, Rothe and Schienle (2011).

The outline of this paper is as follows. In the next section, we describe our
setup in detail. Section 3 gives some motivating examples. Section 4 establishes
the asymptotic theory and states the main results. In Section 5, we apply our results
to some of the examples given in Section 3, thus illustrating their application in
practice. Finally, Section 6 concludes. All proofs are collected in the Appendix.

2. Nonparametric regression with generated covariates. The nonparamet-
ric regression model with generated regressors can be written as

Y = m0(r0(S)) + ε with E(ε|r0(S)) = 0,(2.1)

where Y is the dependent variable, S is a p-dimensional vector of covariates,
m0 : Rd → R and r0 : Rp → R

d are unknown functions and ε is an error term that
has mean zero conditional on the true value of covariates to covariates r0(S).1

We assume that there is additional information available outside of the basic
model (2.1) such that the function r0 is identified. For example, r0 could be (some
known transformation of) the mean function in an auxiliary nonparametric regres-
sion, which might involve another random vector, say T , in addition to Y and S.

Our aim is to estimate the function m0(x) = E(Y |r0(S) = x). Since r0 is unob-
served, obtaining a direct estimator based on a nonparametric regression of Y on
R = r0(S) is clearly not feasible. We therefore consider the following two-stage
procedure. In the first stage, an estimate r̂ of r0 is obtained. We do not require a
specific estimator for this step. Instead, we only impose the high-level restrictions
that the estimator r̂ is uniformly consistent, converging at a rate specified below,
and takes on values in a function class that is not too complex. Depending on the
nature of the function r0, these kind of regularity conditions are typically satisfied
by various common nonparametric estimators, such as kernel-based procedures or
series estimators, under suitable smoothness restrictions. In the second step, we
then obtain our estimate m̂LL of m0 through a nonparametric regression of Y on

1Note that in contrast to an earlier working paper version of this paper, we do no longer assume that
the “index” r0(S) is a sufficient statistic for the covariates S, which would imply that E(Y |r0(S)) =
E(Y |S).
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the generated covariates R̂ = r̂(S), using local linear smoothing. That is, our esti-
mator is given by m̂LL(x) = α̂ obtained from

(α̂, β̂) = argmin
α,β

n∑
i=1

(
Yi − α − βT (R̂i − x)

)2
Kh(R̂i − x),

where Kh(u) = ∏d
j=1 K(uj/hj )/hj is a d-dimensional product kernel with uni-

variate kernel function K, and h = (h1, . . . , hd) is a vector of bandwidths that tend
to zero as the sample size n increases to infinity.

For the later asymptotic analysis, it will also be useful to compare m̂LL to an
infeasible estimator m̃LL that uses the true function r0 instead of an estimate r̂ .
Such an estimator can be obtained by local linear smoothing of Y versus R =
r0(S), that is, it is given by m̃LL(x) = α̃, where

(α̃, β̃) = argmin
α,β

n∑
i=1

(
Yi − α − βT (Ri − x)

)2
Kh(Ri − x).

In order to distinguish these two estimators, we refer to m̂LL in the following as
the real estimator, and to m̃LL as the oracle estimator.

Our use of local linear estimators in this paper is based on the following con-
siderations. First, in a classical setting with fully observed covariates, estimators
based on local linear regression are known to have attractive properties with regard
to boundary bias and design adaptivity [see Fan and Gijbels (1996) for an extensive
discussion], and they allow a complete asymptotic description of their distribu-
tional properties. In the present setting with generated covariates, these properties
simplify the asymptotic treatment. The design adaptivity leads to a discussion of
bias terms that does not require regular densities for the randomly perturbed co-
variates, and the complete asymptotic theory allows a clear description of how the
final estimator is affected by the estimation of the covariates. On the other hand,
our assumptions on the estimation of the covariates are rather general and can be
verified for a broad class of smoothing methods, including sieves and orthogonal
series estimators.

3. Motivating examples. There are many statistical applications which in-
volve nonparametric estimation of a regression function using nonparametrically
generated covariates. In this section, we give an overview of some of the most
popular examples and explain how they fit into our framework. In Section 4, we
revisit the first three of these examples, studying their asymptotic properties in de-
tail. A thorough treatment of the remaining examples involves several additional
technical issues beyond dealing with the presence of estimated covariates, such
as boundary problems, and is thus omitted for brevity. See also Mammen, Rothe
and Schienle (2011) for an extensive discussion of semiparametric problems with
generated covariates.
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3.1. The generic example: Nonparametric two-stage regression. In many ap-
plications, the unknown function r0 is a conditional expectation function from an
auxiliary nonparametric regression. As a first motivating example, we therefore
consider a “two-stage” nonparametric regression model given by

Y = m0(r0(S)) + ε,

T = r0(S) + ζ,

where ζ is an unobserved error term that satisfies E[ζ |S] = E[ε|r0(S)] = 0. As
the structure of this example is particularly simple, it is used extensively in Sec-
tion 4 below to illustrate the application of our main result. Proceeding like this
is instructive, as the types of technical difficulties encountered in this example are
representative for those in a wide range of other statistical applications.

3.2. Nonparametric censored regression. Consider a nonparametric regres-
sion model with fixed censoring, that is,

Y = max
(
0,μ0(X) − U

)
,(3.1)

where U is an unobserved mean zero error term that is assumed to be indepen-
dent of the covariates X. Fixed censoring is a common phenomenon in many
applications, for example, the analysis of wage data. Note that the censoring
threshold could be different from zero, as long as it is known. Lewbel and Lin-
ton (2002) establish identification of the function μ0 under the tail condition
limu→−∞ uFU(u) = 0 on the distribution function FU of U . In particular, they
show that the function μ0 can be written as

μ0(x) = λ0 −
∫ λ0

r0(x)

1

q0(r)
dr,(3.2)

where r0(x) = E(Y |X = x), q0(r) = E(I{Y > 0}|r0(X) = r), and λ0 is some
suitably chosen constant. An estimate of the function μ0 can then be obtained
from a sample analog of (3.2), that is, through numerical integration of a non-
parametric estimate of the function q0(r)

−1. Nonparametric estimation of q0 in-
volves nonparametrically generated regressors, and thus fits into our framework
with (Y, S) = (I{Y > 0},X) and r0(S) = r0(X).

3.3. Nonparametric triangular simultaneous equation models. Covariates
that are correlated with disturbance terms appear in many economic models and
are denoted as endogenous. When, for example, analyzing the relationship be-
tween wages and schooling, unobserved individual characteristics like ability or
motivation might affect both the outcome and the explanatory variable. A common
approach is to model these quantities jointly, achieving identification by using so-
called instrumental variables, that are independent of unobservables, affect the
endogenous variable, but exert no direct influence on the outcome. Consider, for
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example, the nonparametric triangular simultaneous equation model discussed in
Newey, Powell and Vella (1999), which is of the form

Y = μ1(X1,Z1) + U,(3.3)

X1 = μ2(Z1,Z2) + V.(3.4)

Here the interest is in estimating the function μ1. To achieve identification,
one imposes the restrictions E(V |Z1,Z2) = 0, E(U) = 0 and E(U |Z1,Z2,V ) =
E(U |V ), which follow, for example, if the vector of exogenous covariates and in-
struments Z = (Z1,Z2) is jointly independent of the disturbances (U,V ). Now let
m(x1, z1, v) = E(Y |X1 = x1,Z1 = z1,V = v). Under the above assumptions, it is
straightforward to show that

m(x1, z1, v) = μ1(x1, z1) + λ(v),

where λ(v) = E(U |V = v). The first component of this additive model could,
for example, be estimated by marginal integration [Newey (1994a), Linton and
Nielsen (1995)], which relies on the fact that∫

m(x1, z1, v)fV (v) dv = μ1(x1, z1),(3.5)

where fV is the probability density function of V . Implementing a sample ver-
sion of (3.5) requires estimating the function m. Since the residuals V are not di-
rectly observed but must be estimated by some nonparametric method, this fits into
our framework with (Y, S) = (Y, (X1,Z1,Z2),X1) and r0(S) = (X1,Z1,X1 −
μ2(Z1,Z2)).

REMARK 1. An alternative to marginal integration would be an approach
based on smooth backfitting [Mammen, Linton and Nielsen (1999)]. Smooth back-
fitting estimators avoid several problems encountered by marginal integration in
case of covariates with moderate or high dimension, but involves a more involved
statistical analysis which is beyond the scope of the present paper. We are going to
study smooth backfitting with nonparametrically generated covariates in a separate
paper.

3.4. Generalized Roy model. D’Hautfoeuille and Maurel (2009) consider a
generalized Roy model of occupational choice that is related to the previous ex-
ample in the sense that it also leads to an additive regression model. Let Yk

denote the individual’s potential earnings in sector k ∈ {0,1} of an economy,
X = (X0,X1,Xc) a vector of covariates, and assume that E(Yk|X,η1, η2) =
ψk(Xk,Xc) + ηk , where (η0, η1) are sector-specific productivity terms known by
the agent but unobserved by the analyst. Expected utility from working in sector
k is assumed to be Uk = E(Yk|X,η1, η2) + Gk(X), the sum of sector-specific ex-
pected earnings and a nonpecuniary component that depends on X. Along with X,
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the analyst observes the chosen sector D, which satisfies D = I{U1 > U0}, and the
realized earnings Y = DY1 + (1 − D)Y0.

One object of interest in this context is the pair of functions (ψ1,ψ0). Under
some weak additional conditions, d’Haultfoeuille and Maurel (2009) show that

E(Y |D = d,X) = ψd(Xd,Xc) + λd

(
Pr(D = d|X)

)
for d ∈ {0,1}, which is again an additive model involving unobserved covariates,
namely the conditional probabilities Pr(D = d|X) of choosing sector d . This set-
ting fits into our framework in the same way as the previous example.

3.5. Nonparametric nonseparable triangular simultaneous equation models.
Imbens and Newey (2009) consider a generalized version of the above-mentioned
triangular simultaneous equation model with nonadditive disturbances:

Y = μ1(X1,Z1,U),(3.6)

X1 = μ2(Z1,Z2,V ).(3.7)

Nonseparable models have become popular in the recent econometric literature, as
they allow for substantially more general forms of unobserved heterogeneity than
specifications in which the disturbance terms enter additively. The focus here is
typically on averages of the function μ1, such as the average structural function,

ASF(x1, z1) = EU(μ1(x1, z1,U)).

To achieve identification, assume that the function μ2 is strictly monotone in
its last argument, that V is continuously distributed, and that the unobserved
disturbances (U,V ) are jointly independent of Z. Then it can be shown that
U and (X1,Z1) are independently conditional on the so-called control variable
W = FX1|Z(X1,Z), where FX1|Z denotes the distribution function of X1 given Z.
Under an additional support condition, this result implies that the ASF is identified
through the relationship

ASF(x1, z1) =
∫

m(x1, z1,w)dFW,(3.8)

where m(x1, z1,w) = E(Y |X1 = x1,Z1 = z1,W = w). Since the control variable
W is unobserved and has to be estimated in order to implement a sample analog
estimator of (3.8), this setting also fits into the framework of this paper. In particu-
lar, nonparametric estimation of m is covered with (Y, S) = (Y, (X1,Z1,Z2),X1)

and r0(S) = (X1,Z1,FX1|Z(X1,Z)).

4. Asymptotic properties. It is straightforward to show that m̂LL consis-
tently estimates the function m0 under standard conditions. Obtaining refined
asymptotic properties, however, requires more involved arguments. In this sec-
tion, we derive a stochastic expansion of the difference between the real and the
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oracle estimator, in which the leading terms are kernel-weighted averages of the
first stage estimation error. This is our main result. It can be used, for example, to
obtain uniform rates of consistency for the real estimator, or to prove its asymptotic
normality. We demonstrate this in the next section for specific forms of r0 and r̂ .

Throughout this section, we use the notation that for any vector a ∈ R
d the value

amin = min1≤j≤d aj denotes the smallest of its elements, a+ = ∑d
j=1 aj denotes

the sum of its elements, a−k = (a1, . . . , ak−1, ak+1, . . . , ad) denotes the d − 1-
dimensional subvector of a with the kth element removed and ab = (a

b1
1 , . . . , a

bd

d )

for any vector b ∈ R
d . For ease of presentation in the following, we avoid logarith-

mic terms in rates of convergence; that is, we state assumptions and results in the
form oP (nξ ) instead of OP (lognγ ) with ξ, γ > 0.

4.1. Assumptions. In order to analyze the asymptotic properties of the local
linear estimator with nonparametrically generated regressors, we make the follow-
ing assumptions.

ASSUMPTION 1 (Regularity conditions). We assume the following properties
for the data distribution, the bandwidth, and kernel function K:

(i) The sample observations (Yi, Si) are i.i.d.
(ii) The random vector R = r0(S) is continuously distributed with compact

support IR . Its density function fR is twice continuously differentiable and
bounded away from zero on IR .

(iii) The function m0 is twice continuously differentiable on IR .
(iv) E[exp(l|ε|)|S] ≤ C almost surely for a constant C > 0 and l > 0 small

enough.
(v) The kernel function K is a twice continuously differentiable, symmetric

density function with compact support, say [−1,1].
(vi) The bandwidths h = (h1, . . . , hd) satisfies hj ∼ n−ηj for j = 1, . . . , d and

η+ < 1.

Most conditions in Assumption 1 are standard regularity and smoothness con-
ditions for kernel-type nonparametric regression, with the exception of Assump-
tion 1(iv). The subexponential tails of ε conditional on S assumed there are needed
to apply certain results from empirical process theory in our proofs. Such a condi-
tion is not very restrictive though.

ASSUMPTION 2 (Accuracy). The components r̂j and r0,j of r̂ and r0, respec-
tively, satisfy

sup
s

|r̂j (s) − r0,j (s)| = oP (n−δj )

for some δj > ηj and all j = 1, . . . , d .
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Assumption 2 is a “high-level” restriction on the accuracy of the estimator r̂ . It
requires each component of the estimate of the function r0 to be uniformly con-
sistent, converging at rate at least as fast as the corresponding bandwidth in the
second stage of the estimation procedure. This is typically not a restrictive condi-
tion, and it allows for estimators r̂ that converge at a rate slower than the oracle
estimator m̃LL. Uniform rates of consistency are widely available for all com-
mon nonparametric estimators; see, for example, Masry (1996) for results on the
Nadaraya–Watson, local linear and local polynomial estimators, or Newey (1997)
for series estimators.

ASSUMPTION 3 (Complexity). There exist sequences of sets Mn,j such that:

(i) Pr(r̂j ∈ Mn,j ) → 1 as n → ∞ for all j = 1, . . . , d .
(ii) For a constant CM > 0 and a function rn,j with ‖rn,j − r0,j‖∞ = o(n−δj ),

the set Mn,j = Mn,j ∩ {rj :‖rj − rn,j‖∞ ≤ n−δj } can be covered by at most
CM exp(λ−αj nξj ) balls with ‖ · ‖∞-radius λ for all λ ≤ n−δj , where 0 < αj ≤ 2,
ξj ∈ R and ‖ · ‖∞ denotes the supremum norm.

Assumption 3 requires the first-stage estimator r̂ to take values in a function
space Mn,j that is not too complex, with probability approaching 1. Here the
complexity of the function space is measured by the cardinality of the covering
sets. This is a typical requirement for many results from empirical process theory;
see van der Vaart and Wellner (1996). The second part of Assumption 3 is typically
fulfilled under suitable smoothness restrictions. For example, suppose that Mn,j

is the set of functions defined on some compact set IS ⊂ R
p whose partial deriva-

tives up to order k exist and are uniformly bounded by some multiple of n
ξ∗
j for

some ξ∗
j ≥ 0. Then Assumption 3(ii) holds with αj = p/k and ξj = ξ∗

j αj [van der
Vaart and Wellner (1996), Corollary 2.7.2]. For kernel-based estimators of r0, one
can then verify part (i) of Assumption 3 by explicitly calculating the derivatives.
Consider, for example, the one-dimensional Nadaraya–Watson estimator r̂n,j with
bandwidth of order n−1/5. Choose rn,j equal to r0,j plus asymptotic bias term.
Then one can check that the second derivative of r̂n,j − rn,j is absolutely bounded

by OP (
√

logn) = oP (n
ξ∗
j ) for all ξ∗

j > 0. For sieve and orthogonal series estima-
tors, Assumption 3(i) immediately holds when the set Mn,j is chosen as the sieve
set or as a subset of the linear span of an increasing number of basis functions,
respectively. For a discussion of entropy bounds and further references, we refer
to van de Geer (2000).

ASSUMPTION 4 (Continuity). For any r ∈ Mn = Mn,1 × · · · × Mn,d the
conditional expectation τB(x, r) = E(ρ(S)|r(S) = x) with ρ(S) = E(Y |S) −
E(Y |r0(S)) exists and is twice differentiable with respect to its first argument,
with derivatives that are uniformly bounded in absolute value, and satisfies

‖τB(x, r1) − τB(x, r2)‖ ≤ C∗
B‖r1 − r2‖∞ a.s.
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for all r1, r2 ∈ Mn and a constant C∗
B > 0.

Assumption 4 imposes certain smoothness restrictions on the conditional expec-
tation of ρ(S). The term ρ(S) can be thought of as capturing the influence of the
underlying covariates S on the outcome variable Y that is not excreted through the
“index” r0(S). In certain applications, the “index” r0(S) is a sufficient statistic for
the function m0, and thus ρ(S) = 0 with probability 1. In this case, Assumption 4 is
trivially satisfied. Note that ρ(S) = E(ε|S), and that τB(·, r0) ≡ 0 by construction.

4.2. The key stochastic expansion. With the assumptions given in the pre-
vious section, we are now ready to state our main result, which is a stochas-
tic expansion of the real estimator m̂LL(x) around the oracle estimator m̃LL(x).
Our aim is to derive an explicit characterization of the influence of the pres-
ence of generated regressors on the final estimator of the function m0. To this
end, we define w(x, r) = (1, (r1(S) − x1)/h1, . . . , (rd(S) − xd)/hd), and set
Nh(x) = E(w(x, r)w(x, r)T Kh(r(S) − x)). Next, we define

�(x, r) = e�
1 Nh(x)−1

E
(
Kh

(
r0(S) − x

)
w(x, r)

(
r(S) − r0(S)

))
,

�(x, r) = e�
1 Nh(x)−1

E
(
K ′

h

(
r0(S) − x

)�
w(x, r)

(
r(S) − r0(S)

)
ρ(S)

)
for any r ∈ Mn, where K ′

h(u) = (K′
h,j (u) : j = 1, . . . , d)T is a vector with ele-

ments K′
h,j (u) = K′(uj /hj )/h2

j

∏
j∗�=j K(uj∗/hj∗)/hj∗ . Finally, we put �̂(x) =

�(x, r̂) and �̂(x) = �(x, r̂). With this notation, we can now state our main theo-
rem.

THEOREM 1. Suppose Assumptions 1–4 hold. Then

sup
x∈IR

|m̂LL(x) − m̃LL(x) + m′
0(x)�̂(x) − �̂(x)| = OP (n−κ),

where κ = min{κ1, . . . , κ3} with

κ1 <
1

2
(1 − η+) + (δ − η)min − 1

2
max

1≤j≤d
(δjαj + ξj ),

κ2 < 2ηmin + (δ − η)min,

κ3 < δmin + (δ − η)min.

The two leading terms in our stochastic expansion of the real estimator m̂LL(x)

around the oracle estimator m̃LL(x), which are accounting for the presence of
generated covariates, are both smoothed versions of the first-stage estimation error
r̂(s)− r0(s). To see this more clearly, note that it follows from standard arguments
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for local polynomial smoothing that

�(x, r) = E(Kh(r0(S) − x)(r(S) − r0(S)))

fR(x)
+ OP (n−κ) and

�(x, r) = E(K ′
h(r0(S) − x)�(r(S) − r0(S))ρ(Si))

fR(x)
+ OP (n−κ),

uniformly over x ∈ I−
R,n = {x ∈ IR : the support of Kh(· − x) is a subset of IR}. In

order to achieve a certain rate of convergence for the real estimator, it is thus not
necessary to have an estimator of r0 that converges with the same rate or a faster
one, since the asymptotic properties of the estimator using nonparametrically gen-
erated regressors only depend on a smoothed version of the first-stage estimation
error. While smoothing does not affect the order of the estimator’s deterministic
part, it typically reduces the variance and thus allows for less precise first-stage
estimators. Note that the first adjustment term is negligible in regions where the
regression function is flat, since m′

0(x) = 0 in this case. Conversely, the impact
of generated covariates is accentuated when the true regression function is steep.
Also note that �̂(x) = 0 when E(ε|S) = 0, as the latter implies that ρ(s) ≡ 0. This
is a natural condition in certain empirical applications.

REMARK 2. In Theorem 1 no assumptions are made about the process gen-
erating the data for estimation of r0. In particular, nothing is assumed about de-
pendencies between the errors in the pilot estimation and the regression errors εi .
We conjecture that better rates than n−κ can be proven under such additional as-
sumptions, but the results would only be specific to the respective full model under
consideration. One way to extend our approach to such a setting would be to use
our empirical process methods to bound the remainder term of higher order differ-
ences between m̂ and m̃, and to treat the leading terms of the resulting higher order
expansion by other, more direct methods.

5. Examples revisited. In this section, we apply our high-level results from
Section 4 to some of the motivating examples presented in Section 3, which are
representative for the others in terms of employed techniques. Assuming a specific
nature of the function r0 and a specific method to estimate it, explicit forms of
the adjustment terms �̂(x) and �̂(x) in Theorem 1 can be derived in order to
account for the presence of generated covariates. Our focus in this section is on
the practically most important case that r0 is the conditional mean function in an
auxiliary nonparametric regression. Many other applications can be treated along
the same lines.

5.1. Generic example: Two-stage nonparametric regression. The main setting
in which we illustrate the application of the stochastic expansion from Theorem 1
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is the “two-stage” nonparametric regression model given by

Y = m0(r0(S)) + ε,

T = r0(S) + ζ,

where ζ is an unobserved error term that satisfies E[ζ |S] = E[ε|r0(S)] = 0. For
simplicity, we focus on the case that R = r0(S) is a one-dimensional covariate,
but generalizations to multiple generated covariates or the presence of additional
observed covariates are immediate.

Our strategy for deriving asymptotic properties of m̂LL in this framework is to
first provide an explicit representation for the adjustment terms �̂(x) and �̂(x)

from Theorem 1, which are then combined with standard results about the oracle
estimator m̃LL. For this approach it is convenient to use a kernel-based smoother
to estimate r0. Since the bias of both �̂(x) and �̂(x) is of the same order as of
this first-stage estimator, we propose to estimate the function r0 via qth order local
polynomial smoothing, which includes the local linear estimator as the special case
q = 1. Formally, the estimator is given by r̂(s) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

(
Ti − α − ∑

1≤u+≤q

βT
r (Si − s)u

)2

Lg(Si − s)(5.1)

and Lg(s) = ∏p
j=1 L(sj /g)/g is a p-dimensional product kernel built from the

univariate kernel L, g is a vector of bandwidths, whose components are assumed
to be the same for simplicity, and

∑
1≤u+≤q denotes the summation over all

u = (u1, . . . , up) with 1 ≤ u+ ≤ q . When r0 is sufficiently smooth, the asymp-
totic bias of local polynomial estimators of order q is well known to be O(gq+1)

uniformly over x ∈ IR (if q is uneven), and can thus be controlled. A further tech-
nical advantage of using local polynomials is that the corresponding estimator ad-
mits a certain stochastic expansion under general conditions, which is useful for
our proofs. We make the following assumption, which is essentially analogous to
Assumption 1, except for Assumption 4(iii). This additional assumption requires
higher order smoothness of the kernel, necessary to bound the kth derivative of the
estimator r̂ . This allows us to verify Complexity Assumption 3 for r̂ .

ASSUMPTION 5. We assume the following properties for the data distribution,
the bandwidth and kernel function L:

(i) The observations (Si, Yi, Ti) are i.i.d., and the random vector S is continu-
ously distributed with compact support IS . Its density function fS is bounded and
bounded away from zero on IS . It is also differentiable with a bounded derivative.
The residuals ζ satisfy E|ζ |ε < ∞ for some ε > 2.

(ii) The function r0 is q + 1 times continuously differentiable on IS .
(iii) The kernel function L is a k-times continuously differentiable, symmetric

density function with compact support, say [−1,1], for some natural number k ≥
max{2,p/2}.
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(iv) The bandwidth satisfies g ∼ n−θ for some 0 < θ < 1/p.

To simplify the presentation, we also assume that the function r0(s) is strictly
monotone in at least one of its arguments, which can be taken to be the last one
without loss of generality. This assumption could be easily removed at the cost of
a substantially more involved notation in the following results.

ASSUMPTION 6. The function r0(u−p,up) is strictly monotone in up , and
we have that r0(u−p,ϕ(u−p, x)) = x for some twice continuously differentiable
function ϕ.

The following proposition shows that in the present context the function �̂(x)

can be written as the sum of a smoothed version of the first stage estimator’s
bias function, a kernel-weighted average of the first-stage residuals ζ1, . . . , ζn, and
some higher order remainder terms. For a concise presentation of the result, we in-
troduce some particular kernel functions. Let L∗ denote the p-dimensional equiv-
alent kernel of the local polynomial regression estimator, given in (A.27) in the
Appendix, and define the one-dimensional kernel functions

Jh(x, s) =
∫

Kh

(
r0(s) − x − ∂sr0(s)uh

)
L∗(u) du,

H�
g (x, v) = ∂xϕ(v−p, x)

g

∫
L∗

(
s−p,

ϕ(v−p, x) − vp

g
+ sp∂−pϕ(v−p, x)

)
ds.

Then, with this notation, we obtain the following proposition.

PROPOSITION 1. Suppose that Assumptions 1 and 4–6 hold. Then we have for
the correction factor �̂ in Theorem 1 that

sup
x∈IR

|�̂(x) − �̂A(x) − �̂B(x)| = Op

(
log(n)

ngp

)
,

where the terms �̂A(x) and �̂B(x) satisfy

sup
x∈IR

|�̂A(x)| = Op

((
log(n)/(nmax{g,h}))1/2)

and

sup
x∈IR

|�̂B(x)| = Op(gq+1).

Moreover, uniformly over x ∈ I−
R,n, it is �̂B(x) = gq+1E[b(S)|r0(S) = x] +

op(gq+1) with a bounded function b(s) given in (A.25) in the Appendix, and the
term �̂A(x) allows for the following expansions uniformly over x ∈ I−

R,n, depend-
ing on the limit of g/h:
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(a) If g/h → 0, then

�̂A(x) = 1

nfR(x)

n∑
i=1

Kh

(
r0(Si) − x

)
ζi + Op

((
g2

h2 + g3/2

h

)(
log(n)

nh

)1/2)
.

(b) If h = g, then

�̂A(x) = 1

nfR(x)

n∑
i=1

Jh(x, Si)ζi + Op

((
log(n)

n

)1/2)
.

(c) If g/h → ∞, then

�̂A(x) = 1

nfR(x)

n∑
i=1

H�
g (x,Si)ζi + Op

(
g2

h2

(
log(n)

ng

)1/2
+

(
log(n)

n

)1/2)
.

It should be emphasized that in all three cases of the above proposition the lead-
ing term in the expression for �̂A(x) is equal to an average of the error terms
ζi weighted by a one-dimensional kernel function, irrespective of p = dim(S).
The dimension of the covariates thus affects the properties of �̂(x) only through
higher-order terms. Furthermore, it should be noted that one can also derive ex-
pressions of �̂(x) similar to the ones above for values of x close to the boundary
of the support. Likewise these take the form of a one-dimensional kernel weighted
average of the error terms ζi plus a higher-order term. The corresponding kernel
function, however, has a more complicated closed form varying with the point of
evaluation.

The following proposition establishes a result similar to Proposition 1 for the
second adjustment term �̂(x). We again introduce a particular one-dimensional
kernel function, defined as

H�
g (x, v) =

∫
g−1L∗

(
s−p,

ϕ(v−p, x) − vp

g
+ sp ∂pϕ(v−p, x)

)
dsλ(v−p, x)

with

λ(v−p, x) = ∂vp(ρ(v−p,ϕ(v−p, x)fS(v−p,ϕ(v−p, x))det(∂v−pϕ(v−p, x))

fS(v−p,ϕ(v−p, x)) ∂vpr0(v−p,ϕ(v−p, x))
,

where L∗ still denotes the p-dimensional equivalent kernel of the local polynomial
regression estimator, given in (A.27) in the Appendix.

PROPOSITION 2. Suppose that Assumptions 1 and 4–6 hold. Then we have
that

sup
x∈IR

|�̂(x) − �̂A(x) − �̂B(x)| = Op

(
log(n)

ngp

)
,
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where the terms �̂A(x) and �̂B(x) satisfy

sup
x∈IR

|�̂A(x)| = Op

((
log(n)/(ng)

)1/2)
and sup

x∈IR

|�̂B(x)| = Op(gq+1).

Moreover, uniformly over x ∈ I−
R,n, it is �̂B(x) = gq+1 ∂xE[b(S)ρ(S)|r0(S) =

x] + op(gq+1) with a bounded function b(s) given in (A.25) in the Appendix, and
the term �̂A(x) allows for the following expansion uniformly over x ∈ I−

R,n:

�̂(x) = 1

nfR(x)

n∑
i=1

H�
g (x, Si)ζi + oP

(√
log(n)

ng

)
.(5.2)

Again, the leading term in the expression for �̂A(x) is equal to an average of
the error terms ζi weighted by a one-dimensional kernel function, and thus behaves
similarly to one-dimensional nonparametric regression estimator. A similar result
could be established for regions close to the boundary of the support. Note that in
contrast to Proposition 1, the details of the result in Proposition 2 do not depend
on the relative magnitude of the bandwidths used in the first and second stage of
the estimation procedure.

Combining Theorem 1 and Propositions 1–2 with well-known results about the
oracle estimator m̃LL, various asymptotic properties of the real estimator m̂LL can
be derived. In the following corollaries we present results for the most relevant sce-
narios, addressing uniform rates of consistency and stochastic expansions of order
oP (n−2/5) for proving pointwise asymptotic normality. More refined expansions
of higher orders such as oP (n−1/2), which are useful for the analysis of semipara-
metric problems in which m0 plays the role of an infinite dimensional nuisance
parameter [e.g., Newey (1994b), Andrews (1994), Chen, Linton and Van Keile-
gom (2003)], would also be possible. We do not present such results here as they
would require strong smoothness restrictions that are unattractive in applications.
See Mammen, Rothe and Schienle (2011) for an alternative approach to control-
ling the influence of generated covariates in semiparametric models.

Starting with considering the uniform rate of consistency, it is well known
[Masry (1996)] that under Assumption 1 the oracle estimator satisfies

sup
x∈IR

|m̃LL(x) − m(x)| = Op

((
log(n)/nh

)1/2 + h2)
.

This implies the following result.

COROLLARY 1. Suppose that Assumptions 1, 4 and 5 hold. Then

sup
x∈IR

|m̂LL(x) − m(x)| = Op

(
log(n)1/2

(nmax{h,g})1/2 + h2 + log(n)

ngp
+ gq+1 + n−κ

)
.
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Straightforward calculations show that, under appropriate smoothness restric-
tions, it is possible to recover the oracle rate for the real estimator given suitable
choice of η and θ , even if the first-stage estimator converges at a strictly slower
rate. Note that the rate in Corollary 1 improves upon a bound on the uniform rate
of convergence of a two-stage regression estimator derived in Ahn (1995) for a
similar setting.

Next, we derive stochastic expansions of m̂LL of order oP (n−2/5) for the case
that η = 1/5. Such expansions immediately imply results on pointwise asymp-
totic normality of the real estimator. We start with the case that θ = η, in which
the stochastic terms �̂A(x) and �̂A(x) are of the same order of magnitude (other
bandwidth choices will be discussed below). During the analysis of this setting,
it becomes clear that applying Theorem 1 requires pθ < 3/10. Thus in order to
use the expansion in Proposition 1(b), only p = 1 is admissible; that is, S must be
one-dimensional for the choice θ = η to be feasible. In this setting, the notation
for the kernel functions appearing in the stochastic expansions can be somewhat
simplified. We define

J̃ (v, x) =
∫

K
(
v − r ′

0(r
−1
0 (x))u

)
L∗(u) du,

H̃�(v, x) =
∫

L∗(
v + s ∂xr

−1
0 (x)

)
dsλ̃(x),

where

λ̃(x) = ∂v(ρ(r−1
0 (x))fS(r−1

0 (x)))

fS(r−1
0 (x))r ′

0(r
−1
0 (x))

,

where r−1
0 is the inverse function of r0, which exists by Assumption 6.

COROLLARY 2. Suppose that Assumptions 1 and 4–6 hold with η = θ = 1/5
and p = q = 1. Then the following expansions hold uniformly over x ∈ I−

R,n:

m̂LL(x) − m0(x)

= 1

nfR(x)

n∑
i=1

Kh

(
r0(Si) − x

)
εi

− 1

nfR(x)

n∑
i=1

(
m′

0(x)J̃h

(
r0(Si) − x, x

) − H̃�
h

(
Si − r−1

0 (x), x
))

ζi

+ 1

2
β(x)h2 + op(n−2/5),

where the bias is given by

β(x) =
∫

u2K(u)dum′′
0(x)

−
∫

u2L(u)du
(
r ′′

0 (r−1
0 (x))m′

0(x) − ∂x[r ′′
0 (r−1

0 (x))ρ(r−1
0 (x))]).
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In particular, we have

(nh)1/2(
m̂LL(x) − m0(x) − β(x)h2) d→ N(0, σ 2

m(x)),

where σ 2
m(x) = [Var(ε|R = x)

∫
K(t)2 dt −2E(εζ |R = x)

∫
K(t)(J̃ (t, x)m′

0(x)−
H̃�(t, x)) dt Var(ζ |R = x)

∫
(m′

0(x)J̃ (t, x) − H̃�(t, x))2 dt]/fR(x) is the asymp-
totic variance.

Under the conditions of the corollary, the limiting distribution of m̂LL(x) is
generally affected by the pilot estimation step, although a qualitative description
of the impact seems difficult. Depending on the curvature of m0 and the covariance
of ε and ζ , the asymptotic variance of the estimator using generated regressors can
be bigger or smaller than that of the oracle estimator m̃LL. There thus exist settings
where in practice it would be preferable to base inference on the real estimator even
if one was actually able to compute the oracle estimator.

The next corollary considers the case that θ > η, and thus g/h → 0. Again, ap-
plying Theorem 1 requires pθ < 3/10 in this setting, and thus only p = 1 is admis-
sible when using Proposition 1(a) for such a choice of bandwidths. The corollary
also focuses on the special case that ρ(S) := E(Y |R)−E(Y |S) = 0, which implies
that �̂(x) = 0 with probability 1. This condition is satisfied for certain empirical
applications, such as, for example, models IV models. Without this additional re-
striction, an expansion of the difference m̂LL(x) − m0(x) would be dominated by
the term �̂A(x), which is Op((log(n)/(ng))1/2) and thus converges at a slower
rate than the oracle estimator.

COROLLARY 3. Suppose that Assumptions 1, 4 and 5 hold with η = 1/5,
1/5 < θ < 3/10 and p = q = 1, and that ρ(S) = 0 with probability 1. Then the
following expansion holds uniformly over x ∈ I−

R,n:

m̂LL(x) − m0(x) = 1

nfR(x)

n∑
i=1

Kh

(
r0(Si) − x

)(
εi − m′

0(x)ζi

)

+ 1

2
h2

∫
u2K(u)dum′′

0(x) + op(n−2/5).

In particular, we have

(nh)1/2
(
m̂LL(x) − m0(x) − 1

2
h2

∫
u2K(u)dum′′

0(x)

)
d→ N(0, σ 2

m(x)),

where σ 2
m(x) = Var(ε − m′

0(R)ζ |R = x)
∫

K(t)2 dt/fR(x) is the asymptotic vari-
ance.

The limiting distribution of m̂LL(x) is again affected by the use of generated
covariates under the conditions of the corollary. In this particular case, the form of
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the asymptotic variance has an intuitive interpretation: the estimator m̂LL(x) has
the same limiting distribution as the local linear oracle estimator in the hypothetical
regression model

Y = m0(r0(S)) + ε∗,

where ε∗ = ε − m′
0(r0(S))ζ . As in Corollary 2 above, depending on the curvature

of m0 and the covariance of ε and ζ , the asymptotic variance of the estimator using
generated regressors can be bigger or smaller than that of the oracle estimator m̃LL.

The next corollary discusses the case when θ < η. For such a choice of band-
width, applying Theorem 1 requires no restrictions on the dimensionality of S.
It turns out that in this case m̂LL(x) = m̃LL(x) + op(n−2/5), and thus the limit
distribution of m̂LL is the same as for the oracle estimator m̃LL. The effect ex-
erted by the presence of nonparametrically generated regressors is thus first-order
asymptotically negligible for conducting inference on m0 in this case.

COROLLARY 4. Suppose that Assumptions 1, 4 and 5 hold with θ < η = 1/5.
Then the following expansion holds uniformly over x ∈ I−

R,n if 2
5(q + 1)−1 < θ <

3
10p−1:

m̂LL(x) − m0(x) = 1

nfR(x)

n∑
i=1

Kh

(
r0(Si) − x

)
εi

+ 1

2
h2

∫
u2K(u)dum′′

0(x) + op(n−2/5).

In particular, we have

(nh)1/2
(
m̂LL(x) − m0(x) − 1

2
h2

∫
u2K(u)dum′′

0(x)

)
d→ N(0, σ 2

m(x)),

where σ 2
m(x) = Var(ε|R = x)

∫
K(t)2 dt/fR(x) is the asymptotic variance.

5.2. Nonparametric censored regression. Consider estimation of the censored
regression model in (3.1). Let r̂(x) be the qth order local polynomial estimator of
the conditional mean r0(x) = E(Y |X = x), and let q̂(r) be the local linear estima-
tor of q0(r) using the generated covariates r̂(Xi). Then an estimate of μ0 is given
by

μ̂(x) = λ +
∫ λ

r̂(x)

1

q̂(u)
du,(5.3)

where the constant λ is chosen large enough to satisfy λ > maxi=1,...,n r̂(Xi) with
probability tending to one. Generalizing Lewbel and Linton (2002), we consider
the use of higher-order local polynomials for the first stage estimator, and allow
the bandwidth used for the computation of r̂ and q̂ to be different. For presenting



1150 E. MAMMEN, C. ROTHE AND M. SCHIENLE

the asymptotic properties of μ̂, let s0(x) = E(I{Y > 0}|X = x) be the proportion
of uncensored observations conditional on X = x, and assume that this function is
continuously differentiable and bounded away from zero on the support of X. We
then obtain the following result.

COROLLARY 5. Suppose that Assumptions 1 and 5 hold with (Y, S,T ) =
(I{Y > 0},X,Y ) and R = r0(S) = r0(X). Furthermore, suppose that θ ∈ (θ, θ̄)

where θ and θ̄ are constants depending on η, q and p as follows:

θ̄ = 1 − 3η

p
and θ = max

{
1 − 4η

p
,

1

2(q + 1) + p

}
.

Under these conditions, we have that

√
ngp

(
μ̂(x) − μ0(x)

) d→ N

(
0,

σ 2
r (x)

fS(x)s2
0(x)

∫
L(t)2 dt

)
,

where σ 2
r (x) = Var(Y |X = x).

The corollary is analogous to Theorem 5 in Lewbel and Linton (2002). How-
ever, using our results, substantially simplifies the proof and provides insights on
admissible choices of bandwidths. Note that the lower bound θ is chosen such that
both the bias of r̂ and q̂ tends to zero at a rate faster than (ngp)−1/2. Due to this un-
dersmoothing, the limiting distribution of μ̂ − μ is centered at zero. Note that the
final estimator converges at the same rate as the generated regressors. This is due
to the fact that the function r̂ is not only used to compute q̂ , but also determines
the limits of integration in (5.3). The “direct” influence of the generated regressors
in the estimation of q is asymptotically negligible in this particular application.

5.3. Nonparametric triangular simultaneous equation models. Now consider
nonparametric estimation of the structural function μ1 in the triangular simulta-
neous equation model (3.3)–(3.4) using a marginal integration estimator. In order
to keep the notation simple, we restrict our attention to the arguably most rele-
vant case with a single endogenous regressor, but allow for an arbitrary number
of exogenous regressors and instruments. Let μ̂2(z) be the qth order local poly-
nomial estimator of μ2(z) = E(X1|Z = z), and let m̂(x1, z1, v) be the local linear
estimator of m(x1, z1, v) = E(Y |X1 = x1,Z1 = z1,V = v). The latter is computed
using the generated covariates V̂i = X1i − μ̂2(Zi) instead of the true residuals Vi

from equation (3.4). For simplicity, we use the same bandwidth for all components
of m̂; that is, we put ηj ≡ η for all j = 1, . . . , (2 + d1). The marginal integration
estimator of μ1(x1, z1) is then given by the following sample version of (3.5):

μ̂1(x1, z1) = 1

n

n∑
i=1

m̂(x1, z1, V̂i).(5.4)

The following result establishes the estimator’s asymptotic normality.
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COROLLARY 6. Suppose that Assumption 1 holds with (Y, S,T ) = (Y, (X1,

Z1,Z2),X1) and R = r0(S) = (X1,Z1,X1 − μ2(Z1,Z2)), and that Assump-
tion 5 holds with r0(S) = μ2(Z1,Z2). Furthermore, suppose that η ∈ (max{1/(5+
d1),1/(2p + 3)},1/(1 +d1)), and that θ ∈ (θ, θ̄), where θ and θ̄ are constants de-
pending on η, q and dj = dim(Zj ) as follows:

θ̄ = 1 − 3η

2p
and θ = 1 − η(d1 + 1)

2(q + 1)
,

where p = d1 + d2. Under these conditions, we have that√
nh1+d1

(
μ̂1(x1, z1) − μ1(x1, z1)

) d→ N

(
0,E

(
σ 2

ε (x1, z1,V )

fXZ|V (x1, z1,V )

)∫
K̃(t)2 dt

)
,

where K̃(t) = ∏1+d1
i=1 K(ti) is a (1 + d1)-dimensional product kernel, and σ 2

ε (x1,

z1, v) = Var(Y − m(R)|R = (x1, z1, v)).

Under the conditions of the corollary, the asymptotic variance of μ̂1(x1, z1) is
not influenced by the presence of generated regressors: If m̂ was replaced in (5.4)
with an oracle estimator m̃ using the actual disturbances Vi instead of the recon-
structed ones, the result would not change. Also, note that the exclusion restrictions
on the instruments imply that E(Y |X1,Z1,V ) = E(Y |X1,Z1,Z2). Therefore As-
sumption 4 is automatically satisfied, and the adjustment term �̂(x) from Theo-
rem 1 is equal to zero and does not have to be considered for the proof.

6. Conclusions. In this paper, we analyze the properties of nonparametric es-
timators of a regression function, when some the covariates are not directly ob-
servable, but have been estimated by a nonparametric first-stage procedure. We
derive a stochastic expansion showing that the presence of generated regressors
affects the limit behavior of the estimator only through a smoothed version of the
first-stage estimation error. We apply our results to a number of practically relevant
statistical applications.

APPENDIX: PROOFS

Throughout the Appendix, C and c denote generic constants chosen sufficiently
large or sufficiently small, respectively, which may have different values at each
appearance. Furthermore, define M̄n = M̄n,1 × · · · × M̄n,d .

A.1. Proof of Theorem 1. In order to prove the statement of the theorem,
we have to introduce some notation. Throughout the proof of this and the follow-
ing statements, we denote the unit vector (1,0, . . . ,0)T in R

p+1 by e1. We also
write wi(x, r) = (1, (r1(Si) − x1)/h1, . . . , (rd(Si) − xd)/hd), and put wi(x) =
wi(x, r0), ŵi(x) = wi(x, r̂) and w̃i(x) = wi(x, r̃). We also define Mh(x, r) =
n−1 ∑n

i=1 wi(x, r)wi(x, r)T Kh(r(Si)− x), and put Mh(x) = Mh(x, r0), M̂h(x) =
Mh(x, r̂) and M̃h(x) = Mh(x, r̃) and set Nh(x) = E(Mh(x, r0)). Furthermore, de-
fine ε∗ = ε − ρ(S) and note that we have E(ε∗|S) = 0 by construction. It also
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holds that

Yi = m0(r0(Si)) + ε∗
i + ρ(Si).

Next, it follows from standard calculations that the real estimator m̂LL can be
written as

m̂LL(x) = m0(x)+ m̂LL,A(x)+ m̂LL,B(x)+ m̂LL,C(x)+ m̂LL,D(x)+ m̂LL,E(x),

where m̂LL,j (x) = α̂j for j ∈ {A,B,C,D,E}, and

(α̂A, β̂A) = argmin
α,β

n∑
i=1

(
ε∗
i − α − βT (

r̂(Si) − x
))2

Kh

(
r̂(Si) − x

)
,

(α̂B, β̂B) = argmin
α,β

n∑
i=1

(
m0(r0(Si)) − m0(x) − m′

0(x)T
(
r0(Si) − x

)

− α − βT (
r̂(Si) − x

))2

× Kh

(
r̂(Si) − x

)
,

(α̂C, β̂C) = argmin
α,β

n∑
i=1

(−m′
0(x)T

(
r̂(Si) − r0(Si)

) − α − βT (
r̂(Si) − x

))2

× Kh

(
r̂(Si) − x

)
,

(α̂D, β̂D) = argmin
α,β

n∑
i=1

(
m′

0(x)T
(
r̂(Si) − x

) − α − βT (
r̂(Si) − x

))2

× Kh

(
r̂(Si) − x

)
,

(α̂E, β̂E) = argmin
α,β

n∑
i=1

(
ρ(Si) − α − βT(

r̂(Si) − x
))2

Kh

(
r̂(Si) − x

)
.

Similarly, the oracle estimator m̃LL can be represented as

m̃LL(x) = m0(x)+ m̃LL,A(x)+ m̃LL,B(x)+ m̃LL,C(x)+ m̃LL,D(x)+ m̃LL,E(x),

where m̃LL,j (x) = α̃j for j ∈ {A,B,C,D,E}, and

(α̃A, β̃A) = argmin
α,β

n∑
i=1

(
εi − α − βT (

r0(Si) − x
))2

Kh

(
r0(Si) − x

)
,

(α̃B, β̃B) = argmin
α,β

n∑
i=1

(
m0(r0(Si)) − m0(x) − m′

0(x)T
(
r0(Si) − x

)

− α − βT (
r0(Si) − x

))2

× Kh

(
r0(Si) − x

)
,
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(α̃C, β̃C) = argmin
α,β

n∑
i=1

(−m′
0(x)T

(
r̂(Si) − r0(Si)

) − α − βT (
r0(Si) − x

))2

× Kh

(
r0(Si) − x

)
(α̃D, β̃D) = argmin

α,β

n∑
i=1

(
m′

0(x)T
(
r0(Si) − x

) − α − βT (
r0(Si) − x

))2

× Kh

(
r0(Si) − x

)
.

(α̃E, β̃E) = argmin
α,β

n∑
i=1

(
ρ(Si) − α − βT(

r(Si) − x
))2

Kh

(
r(Si) − x

)
.

Note that by construction,

m̂LL,D(x) ≡ m̃LL,D(x) ≡ 0.(A.1)

We now argue that

sup
x∈IR

|m̂LL,A(x) − m̃LL,A(x)| = Op(n−κ1).(A.2)

For a proof of (A.2) note that m̂LL,A(x) and m̃LL,A(x) are given by the first
elements of the vectors M̂(x)−1n−1 ∑n

i=1 Kh(r̂(Si) − x)εiŵi(x) and M(x)−1 ×
n−1 ∑n

i=1 Kh(r0(Si) − x)εiw̃i(x), respectively. Using these representations, one
sees that (A.2) follows from Lemmas 1 and 2 below.

As a second step, we now show that

sup
x∈IR

|m̂LL,E(x) − m̃LL,E(x) − �̂(x)| = Op(n−κ1 + n−κ2 + n−κ3).(A.3)

To prove (A.3), put μ̂(x) = 1
n

∑n
i=1 Kh(r̂(Si) − x)ŵi(x)ρ(Si) and μ(x) =

1
n

∑n
i=1 Kh(r0(Si) − x)wi(x)ρ(Si), and write G(x) = eT

1(Nh(x))−1
E(μ̂(x) −

μ(x)). With this notation, m̂LL,E(x) = eT
1M̂h(x)−1μ̂(x) and m̃LL,E(x) = eT

1 ×
Mh(x)−1μ(x). Using Lemma 4 and some results of Lemma 3, we then find that

m̂LL,E(x) − m̃LL,E(x) − G(x)

= eT
1
(
M̂h(x)−1μ̂(x) − Mh(x)−1μ(x) − E(Mh(x))−1

E
(
μ̂(x) − μ(x)

))
= OP

(
n−((1/2)(1−η+)+(δ−η)min) + n−((1/2)(1−η+)+δmin) + n−κ1

) = OP (n−κ1)

uniformly over x ∈ IR . Using standard smoothing arguments, we also get that

G(x) = eT
1Nh(x)−1

E
(
μ̂(x) − μ(x)

)
= 1

fR(x)

∫ (
Kh

(
r̂(u) − x

) − Kh

(
r0(u) − x

))
ρ(u)fS(u) dx du

+ OP

(
n−2ηmin−(δ−η)min

)
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= 1

fR(x)

∫
K ′

h

(
r0(u) − x

)(
r̂(u) − r0(u)

)
ρ(u)fS(u) dx du

+ OP

(
n−δmin−(δ−η)min

) + OP (n−κ2)

= �̂(x) + OP (n−κ2) + OP (n−κ3)

uniformly over x ∈ IR . This shows the claim in (A.3).
Finally, from Lemmas 2 and 3 we get that

sup
x∈IR

|m̂LL,B(x) − m̃LL,B(x)| = Op(n−κ2),(A.4)

sup
x∈IR

|m̂LL,C(x) − m̃LL,C(x)| = Op(n−κ3),(A.5)

and it is easy to see that

sup
x∈IR

|m̃LL,C(x) − m′
0(x)�̂(x)| = Op(n−κ).(A.6)

Taken together, the results in (A.1)–(A.6) imply the statement of the theorem.

LEMMA 1. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r1(Si) − x

)
εi − 1

n

n∑
i=1

Kh

(
r2(Si) − x

)
εi

∣∣∣∣∣
= Op(n−κ1),

sup
x∈IR,r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r1(Si) − x

)r1,j (Si) − xj

hj

εi

− 1

n

n∑
i=1

Kh

(
r2(Si) − x

)r2,j (Si) − xj

hj

εi

∣∣∣∣∣
= Op(n−κ1).

PROOF. We only prove the first statement of the lemma. The second claim can
be shown using essentially the same arguments. Without loss of generality, we also
assume that

κ1 > (δ − η)min.(A.7)

If κ1 ≤ (δ − η)min the statement of the lemma follows from a direct bound. For
C1,C2 > 0 large enough (see below) we choose Cε such that

Pr
(
max

i
|εi | > Cε log(n)

)
≤ n−C1,(A.8)

∣∣EεiI{|εi | ≤ Cε log(n)}∣∣ ≤ n−C2 .(A.9)



NONPARAMETRICALLY GENERATED COVARIATES 1155

With this choice of Cε we define

�i(r1, r2) = (
Kh

(
r1(Si) − x

) − Kh

(
r2(Si) − x

))
ε∗
i

with

ε∗
i = εiI{|εi | ≤ Cεi

log(n)} − E
(
εiI{|εi | ≤ C log(n)}).

For the proof of the lemma we apply a chaining argument; compare, for example,
the proof of Theorem 9.1 in van de Geer (2000). Now for s ≥ 0, let M̄∗

s,n,j be a

set of functions chosen such that for each r ∈ M̄n,j there exists r∗ ∈ M̄∗
s,n,j such

that ‖r − r∗‖∞ ≤ 2−sn−δj . That is, the functions in M̄∗
s,n,j are the midpoints of

a (2−sn−δj )-covering of M̄n,j . By Assumption 3, the set M̄∗
s,n,j can be chosen

such that its cardinality #M̄∗
s,n,j is at most C exp((2−sn−δj )−αj nξj ). Furthermore,

define M̄∗
s,n = M̄∗

s,n,1 × · · · × M̄∗
s,n,d .

For r1, r2 ∈ M̄n we now choose rs
1, rs

2 ∈ M̄∗
s,n such that ‖rs

1,j − r1,j‖∞ ≤
2−sn−δj and ‖rs

2,j − r2,j‖∞ ≤ C2−sn−δj , for all j . We then consider the chain

�i(r1, r2) = �i(r
0
1 , r0

2 ) −
Gn∑
s=1

�i(r
s−1
1 , rs

1) +
Gn∑
s=1

�i(r
s−1
2 , rs

2)

− �i(r
Gn

1 , r1) + �i(r
Gn

2 , r2),

where Gn is the smallest integer that satisfies Gn > (1 + cG)(κ1 − (δ − η)min) ×
log(n)/ log(2) for a constant cG > 0. With this choice of Gn, we obtain that for
l = 1,2

T1 =
∣∣∣∣∣1

n

n∑
i=1

�i(r
Gn

l , rl)

∣∣∣∣∣ ≤ C log(n)2−Gnn−(δ−η)min ≤ Cn−κ1 .(A.10)

Now for any a > cG define the constant ca = (
∑∞

s=1 2−as)−1. It then follows that

Pr

(
sup

r1∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Gn∑
s=1

�i(r
s−1
1 , rs

1)

∣∣∣∣∣ > n−κ1

)

≤
Gn∑
s=1

Pr

(
sup

r1∈M̄n

∣∣∣∣∣1

n

n∑
i=1

�i(r
s−1
1 , rs

1)

∣∣∣∣∣ > ca2−asn−κ1

)

≤
Gn∑
s=1

#M̄∗
s−1,n#M̄∗

s,n Pr

(
1

n

n∑
i=1

�i(r
∗,s
1 , r

∗∗,s
1 ) > ca2−asn−κ1

)

+
Gn∑
s=1

#M̄∗
s−1,n#M̄∗

s,n Pr

(
1

n

n∑
i=1

�i(r̃
∗,s
1 , r̃

∗∗,s
1 ) < ca2−asn−κ1

)

= T2 + T3,
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where the functions r
∗,s
1 , r̃

∗,s
1 ∈ M̄∗

s−1,n and r
∗∗,s
1 , r̃

∗∗,s
1 ∈ M̄∗

s,n are chosen such
that

Pr

(
1

n

n∑
i=1

�i(r
∗,s
1 , r

∗∗,s
1 ) > ca2−asn−κ1

)

= max
rs−1
1 ,rs

1

Pr

(
1

n

n∑
i=1

�i(r
s−1
1 , rs

1) > ca2−asn−κ1

)
,

Pr

(
1

n

n∑
i=1

�i(r̃
∗,s
1 , r̃

∗∗,s
1 ) < ca2−asn−κ1

)

= max
rs−1
1 ,rs

1

Pr

(
1

n

n∑
i=1

�i(r
s−1
1 , rs

1) > ca2−asn−κ1

)
.

We now show that both T2 and T3 tend to zero at an exponential rate:

T2 ≤ exp(−cnc),(A.11)

T3 ≤ exp(−cnc).(A.12)

We only show (A.11), as the statement (A.12) follows by essentially the same ar-
guments. Using Assumption 3, we obtain by application of the Markov inequality
that

T2 ≤ C

Gn∑
s=1

∏
j

exp
(
(2−sn−δj )−αj nξj

)

× E

(
exp

(
γn,s

1

n

n∑
i=1

�i(r
∗,s
1 , r

∗∗,s
1 ) − γn,sca2−asn−κ1

))

(A.13)

≤ C

Gn∑
s=1

exp
(∑

j

2sαj nδjαj+ξj − γn,sca2−asn−κ1

)

×
n∏

i=1

E

(
exp

(
γn,s

1

n
�i(r

∗,s
1 , r

∗∗,s
1 )

))
,

where γn,s = cγ 2(2−a)sn−κ1+1−η++2(δ−η)min with a constant cγ > 0, small enough.
Now the last term on the right-hand side of (A.13) can be bounded as follows:

E

(
exp

(
γn,s

1

n
�i(r

∗,s
1 , r

∗∗,s
1 )

))
≤ 1 + CE(γ 2

n,sn
−2�2

i (r
∗,s
1 , r

∗∗,s
1 ))

(A.14)
≤ exp

(
Cγ 2

n,sn
−2nη+−2(δ−η)min2−2s),
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where we have used that∣∣∣∣γn,s

1

n
�i(r

∗,s
1 , r

∗∗,s
1 )

∣∣∣∣ ≤ Cγn,s

1

n
log(n)nη+n−(δ−η)min2−s

≤ C log(n)n(δ−η)min−κ12−as+s

≤ C log(n)n(cG−a)(κ1−(δ−η)min)

≤ C

for n large enough because of (A.7). Inserting (A.14) into (A.13), we obtain, if a

and cγ were chosen sufficiently small, that

T2 ≤ C

Gn∑
s=1

exp
(∑

j

2sαj nδjαj+ξj − c22(1−a)sn1−2κ1−η++2(δ−η)min

)

≤ C

Gn∑
s=1

exp(−csnc)

≤ exp(−cnc).

Finally, it follows from a simple argument that

T4 = Pr

(
sup

r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

�i(r
0
1 , r0

2 )

∣∣∣∣∣> n−κ1

)
≤ exp(−cnc)(A.15)

because the set M̄∗
0,n can always be chosen such that it contains only a single

element.
From (A.10), (A.11), (A.12) and (A.15), we thus obtain that

sup
x∈IR

Pr

(
sup

r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r1(Si) − x

)
ε∗
i

(A.16)

− 1

n

n∑
i=1

Kh

(
r2(Si) − x

)
ε∗
i

∣∣∣∣∣ > Cn−κ1

)
≤ exp(−cnc).

Now for CI > 0 choose a grid IR,n of IR with O(nCI ) points, such that for each
x ∈ IR there exists a grid point x∗ = x∗(x) ∈ IR,n such that ‖x − x∗‖ ≤ n−cCI . If
CI is chosen large enough, this implies that

sup
x∈IR

sup
r∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r(Si) − x

)
εi − 1

n

n∑
i=1

Kh

(
r(Si) − x∗)

εi

∣∣∣∣∣ ≤ n−κ1(A.17)

for large enough n, with probability tending to one. Furthermore, it follows from
(A.16) that

sup
x∈IR,n

sup
r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r1(Si) − x

)
εi − 1

n

n∑
i=1

Kh

(
r2(Si) − x

)
εi

∣∣∣∣∣ ≤ n−κ1 .(A.18)
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The statement of the lemma then follows from (A.8)–(A.9) and (A.17)–(A.18), if
the constants C1 and C2 were chosen large enough. �

LEMMA 2. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r1(Si) − x

)(r1,j (Si) − xj

hj

)a(
r1,l(Si) − xl

hl

)b

− 1

n

n∑
i=1

Kh

(
r2(Si) − x

)(r2,j (Si) − xj

hj

)a(
r2,l(Si) − xl

hl

)b
∣∣∣∣∣

= Op

(
n−(δ−η)min

)
for j, l = 1, . . . , q j �= l and 0 ≤ a + b ≤ 2, 0 ≤ a, b.

PROOF. The lemma follows from

sup
x,s

∣∣Kh

(
r1(s) − x

) − Kh

(
r2(s) − x

)∣∣ ≤ Cn−(δ−η)min+η+

for r1, r2 ∈ M̄n and from

sup
x∈IR,r∈M̄

∣∣∣∣∣1

n

n∑
i=1

Kh

(
r(Si) − x

)∣∣∣∣∣
≤ Cn−1+η+ sup

x∈IR

#{i : |r0,j (Si) − xj | ≤ Cn−ηj for j = 1, . . . , d}

= Op(1),

which follows from a simple calculation. �

LEMMA 3. Suppose that the assumptions of Theorem 1 hold. For a random
variable Rn = Op(1) that neither depends on x nor i, it holds that

sup
x∈IR,1≤i≤n

∣∣[m0(r0(Si)) − m0(x) − m′
0(x)T

(
r0(Si) − x

)]
Ii(x)

∣∣
(A.19)

≤ Rnn
−2ηmin,

sup
x∈IR

∥∥∥∥∥1

n

n∑
i=1

Kh

(
r̂(Si) − x

)
ŵi(x)ŵi(x)T

− 1

n

n∑
i=1

Kh

(
r0(Si) − x

)
w̃i(x)w̃i(x)T

∥∥∥∥∥(A.20)

≤ Rnn
−(δ−η)min,
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sup
x∈IR

∥∥∥∥∥1

n

n∑
i=1

Kh

(
r0(Si) − x

)
w̃i(x)w̃i(x)T − fR(x)BK

∥∥∥∥∥
(A.21)

≤ Rn

(
n−ηmin + n−(1−η+)/2

√
logn

)
,

where Ii(x) = I{‖(r̂(Si)−x)/h‖1 ≤ 1} is an equals one if r̂(Si)−x lies in the sup-
port of the kernel function Kh and zero otherwise, and BK = diag(1,

∫
u2K(u)du,

. . . ,
∫

u2K(u)du) is a (d + 1) × (d + 1) diagonal matrix.

PROOF. Claim (A.19) follows by a simple calculation. Claim (A.20) is a di-
rect consequence of Lemma 2, and (A.21) follows from standard arguments from
kernel smoothing theory. For the stochastic part, one makes use of Lemma 5, given
in Appendix A.7, below. �

LEMMA 4. Suppose that the assumptions of Theorem 1 hold. Then it holds
that

sup
x∈IR,r1,r2∈M̄

‖μ(x, r1) − μ(x, r2) − E[μ(x, r1) − μ(x, r2)]‖ = Op(n−κ1),(A.22)

sup
x∈IR

|μ̂(x)| = Op

(√
lognn−(1−η+)/2)

,(A.23)

where

μ̂(x) = n−1
n∑

i=1

Kh

(
r̂(Si) − x

)
ŵi(x)ρ(Si)

and

μ(x) = n−1
n∑

i=1

Kh

(
r0(Si) − x

)
wi(x)ρ(Si).

PROOF. For a proof of (A.22) one proceeds as in Lemma 1. Claim (A.23)
follows by classical smoothing arguments. Note that we have that E(μ̂(x, r0)) = 0.

�

A.2. Proof of Proposition 1. In order to prove Proposition 1, we use the fact
that the local polynomial estimator satisfies a certain uniform stochastic expansion
if Assumption 4 holds. In order to present this result, we first have to introduce a
substantial amount of further notation. For simplicity we assume g1 = · · · = gp ,
and we write g for this joint value and for the vector g = (g, . . . , g).

Let Ni = (i+q−1
q−1

)
be the number of distinct q-tuples u with u+ = i. Arrange

these q-tuples as a sequence in a lexicographical order (with the highest priority
given to the last position so that (0, . . . ,0, i) is the first element in the sequence,
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and (i,0, . . . ,0) the last element). Let τi denote this one-to-one mapping, that
is, τi(1) = (0, . . . ,0, i), . . . , τi(Ni) = (i,0 . . . ,0). For each i = 1, . . . , q , define
a Ni × 1 vector μi(x) with its kth element given by xτi(k), and write μ(x) =
(1,μ1(x)T , . . . ,μq(x)T )T , which is a column vector of length N = ∑q

i=1 Ni . Let
νi = ∫

L(u)ui du and define νni(x) = ∫
L(u)uifS(x + gu)du. For 0 ≤ j, k ≤ q ,

let Mj,k and Mn,j,k(x) be two Nj × Nk matrices with their (l,m) elements, re-
spectively, given by

[Mj,k]l,m = ντj (l)+τk(m) and [Mnj,k(x)]l,m = νn,τj (l)+τk(m)(x).

Now define the N × N matrices Mq and Mn,q(x) by

Mq =

⎛
⎜⎜⎜⎝

M0,0 M0,1 · · · M0,q

M1,0 M1,1 · · · M1,q

...
...

. . .
...

Mq,0 Mq,1 · · · Mq,q

⎞
⎟⎟⎟⎠ ,

Mn,q(x) =

⎛
⎜⎜⎜⎝

Mn,0,0(x) Mn,0,1(x) · · · Mn,0,q(x)

Mn,1,0(x) Mn,1,1(x) · · · Mn,1,q(x)
...

...
. . .

...

Mn,q,0(x) Mn,q,1(x) · · · Mn,q,q(x)

⎞
⎟⎟⎟⎠ .

Finally, denote the first unit q-vector by e1 = (1,0, . . . ,0). With this notation, it
can be shown along classical lines that the local polynomial estimator r̂ admits the
following stochastic expansion:

r̂(s) = r0(s) + 1

n

n∑
i=1

e1M
−1
nq (s)μ

(
(Si − s)/g

)
Lg(Si − s)ζi

(A.24)
+ gq+1Bn(s) + Rn(s),

where sups∈IS
‖Rn(s)‖ = Op((log(n)/ngp)1/2), and Bn is a bias term that satisfies

Bn(s) = 1

(q + 1)!e1M
−1
q Aqr

(q+1)
0 (s) + op(1) ≡ b(s) + op(1).(A.25)

To prove the proposition, define the stochastic component and the bias term of the
expansion (A.24) as r̂A(s) = n−1 ∑n

i=1 e1M
−1
nq (s)μ((Si − s)/g)Lg(Si − s)ζi and

r̂B(s) = gq+1Bn(s), respectively. Now the function �̂ can be written as

�̂(x) = eT
1 Nh(x)−1

E
(
Kh

(
r0(S) − x

)
w(x, r)r̂A(S)

)
+ eT

1 Nh(x)−1
E

(
Kh

(
r0(S) − x

)
w(x, r)r̂B(S)

) + Op

(
log(n)

ngp

)

≡ �̂A(x) + �̂B(x) + Op

(
log(n)

ngp

)
,
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uniformly over x ∈ IR . We first analyze the term �̂B(x). Through the usual argu-
ments from kernel smoothing theory, one can show for x ∈ I−

R,n that

�̂B(x) = gq+1eT
1 Nh(x)−1

E
(
Kh

(
r0(S) − x

)
w(x, r)b(S)

) + op(gq+1)

= gq+1
E

(
b(S)|r0(S) = x

) + op(gq+1 + n−2η)

since the function E(b(S)|r0(S) = x) is continuous with respect to x because of
Assumptions 5 and 6. Explicitly, we have

E
(
b(S)|r0(S) = x

)
=

∫
b(s−p,ϕ(s−p, x))fS(s−p,ϕ(s−p, x)) ∂s−pϕ(s−p, x) ds−p∫

fS(s−p,ϕ(s−p, x)) ∂s−pϕ(s−p, x) ds−p

.

Next, consider the term �̂A(x). Note that for x ∈ I−
R,n we have that

�̂A(x) = 1

nfR(x)

n∑
j=1

ψn(x,Sj )ζj(A.26)

with

ψn(x, s) =
∫
IS

(
Kh

(
r0(u) − x

)
e1M̄

−1
nq (u)μ

(
(s − u)/g

)
Lg(s − u)

)
fS(u)du

=
∫

Kh

(
r0(u) − x

)
L∗

n,g(s, u − s) du,

where L∗
n,g(s, t) = fS(s − t)e1M̄

−1
nq (s − t)μ(t/g)Lg(t). Define I−

S,n as the set that
contains all s ∈ IS that do not lie in a g-neighborhood of the boundary of IS .
Uniformly over s ∈ I−

S,n, we have that Mn,q(s) − fS(s)Mq = O(g) . Thus for
s ∈ I−

S,n, we have that ψn(x, s) = (1+O(g))ψ(x, s) where the function ψ is equal
to ψ(x, s) = ∫

Kh(r0(u) − x)L∗
g(u − s) du with modified kernel L∗ defined as

L∗(t) = e1M
−1
q μ(t)L(t).(A.27)

Note that L∗ is the equivalent kernel of the local polynomial regression estimator;
see Fan and Gijbels (1996), Section 3.2.2. For q = 0,1 the equivalent kernel is in
fact equal to the original one, whereas L∗(t) is equal to L(t) times a polynomial
in t of order q for q ≥ 2, with coefficients such that its moments up to the order
q are equal to zero. The kernel L∗

n,g(u, t) has the same moment conditions in t as
L∗

g but depends on u.
We now derive explicit expressions for the leading term in equation (A.26) for

the cases (a)–(c) of the proposition. Starting with case (a), in which g/h → 0,
it follows by substitution and Taylor expansion arguments that with K ′

h(v) =
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h−1K ′(h−1v) and K ′′
h(v) = h−1K ′′(h−1v)

ψn(x, v) =
∫

Kh

(
r0(s) − x

)
L∗

n,g(s, s − v) ds

=
∫

Kh

(
r0(v − tg) − x

)
L∗

n(v − tg, t) dt

=
∫ (

Kh

(
r0(v) − x

) + K ′
h

(
r0(v) − x

)r0(v − tg) − r0(v)

h

+ K ′′
h(χ1 − x)

1

2

(
r0(v − tg) − r0(v)

h

)2)

× L∗
n(v − tg, t) dt

= Kh

(
r0(v) − x

)
+ K ′

h

(
r0(v) − x

) ∫ (
−∂sr0(v)

tg

h
+ ∂2

s r0(χ2)
t2g2

2h

)
L∗

n(v − tg, t) dt

−
∫

K ′′
h(χ1 − x)

1

2

(
∂sr0(χ3)tg

h

)2

L∗
n(v − tg, t) dt,

where χ1, χ2 and χ3 are intermediate values between r0(v) and r0(v − tg), v

and v − tg, and v and v − tg, respectively. This gives an expansion for ψn(x, v)

of order (g/h)2. For v /∈ I−
S,n one gets an expansion of order g/h. Put kn(v) =

−∂sr0(v)
∫

tL∗
n(v − tg, t) dt . Together with Lemma 5 in Appendix A.7, we thus

obtain that
1

nfR(x)

n∑
j=1

ψn(x,Sj )ζj

= 1

nfR(x)

n∑
i=1

(
Kh

(
r0(Si) − x

) + g

h
K ′

h

(
r0(Si) − x

)
kn(Si)

)
ζi

+ Op

((
g

h

)2(
log(n)

nh

)1/2)

= 1

nfR(x)

n∑
i=1

Kh

(
r0(Si) − x

)
ζi + Op

((
g2

h2 +
√

g3

h2

)√
log(n)

nh

)
,

as claimed. To show statement (b) of the proposition, we rewrite the function ψn

as follows:

ψn(x, v) =
∫ (

Kh

(
r0(v) − x + ∂sr0(v)th

) + K ′
(

χ1

h

)
∂2
s r0(χ2)

1

2
t2

)

× L∗
n(v − th, t) dt

= Jn,h(x, v) + h

∫
K ′

h(χ1)∂
2
s r0(χ2)

1

2
t2L∗

n(v − th, t) dt,
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where Jn,h(x, s) = ∫
Kh(r0(s) − x − ∂sr0(s)uh)L∗

n(s − uh,u)du, and χ1 is an
intermediate value between r0(v + gt) and r0(v) + ∂sr0(v)tg, and χ2 is an inter-
mediate value between v and v + gt . As in the proof of part (a), it follows from
Lemma 5 in Appendix A.7 that

1

nfR(x)

n∑
j=1

ψn(x,Sj )ζj = 1

nfR(x)

n∑
j=1

Jn,h(x, Sj )ζj + Op

(
h

√
log(n)

nh

)

= 1

nfR(x)

n∑
j=1

Jh(x, Sj )ζj + Op

(√
log(n)

n

)
,

where Jh uses the location independent form of the equivalent kernel L∗ as defined
in the text in front of Proposition 1. This implies the desired result.

Now consider statement (c) of the proposition. In this case, where g/h → ∞,
we can rewrite the function ψn as follows:

ψn(x, v) =
∫

Kh(wp − x)

× L∗
n,g

((
w−p,ϕ(w)

)T
,
(
w−p − v−p,ϕ(w) − vp

)T )
∂xϕ(w)dw.

From tedious but conceptually simple Taylor expansion arguments similar to the
ones employed for case (a), and from Lemma 5, one gets that

1

nfR(x)

n∑
j=1

ψn(x,Sj )ζj = 1

nfR(x)

n∑
j=1

Hn,g(x, Sj )ζj + Op

(
h2

g2

√
log(n)

ng

)
,

where

Hn,g(x, v) =
∫

K(t)L∗
n,g

((
v−p + gs−p,Gn(v−p, x; s−p, t)

)
,

(
s−p,Gn(v−p, x; s−p, t) − vp

))
(A.28)

∂xϕ(v−p, x) ds−p dt

and Gn(v−p, x; s−p, t) = ϕ(v−p, x)+gs−p ∂−pϕ(v−p, x)+ht ∂xϕ(v−p, x). With
H�

n as defined in the text, we find

1

nfR(x)

n∑
j=1

ψn(x,Sj )ζj = 1

nfR(x)

n∑
j=1

H�
n (x,Sj )ζj

+ Op

((
1 +

√
h

g

)√
log(n)

n
+ h2

g2

√
log(n)

ng

)
.

Since O(h/g) = o(1), this completes our proof.
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A.3. Proof of Proposition 2. To show the result, note that

�(x, r) = eT
1 Nh(x)−1

E
((

Kh

(
r(S) − x

) − Kh

(
r0(S) − x

))
w(x)ρ(S)

)
+ Op

(
n−((1/2)(1−η+)+2δ−η))

= E
(
ρ(S)|r(S) = x

) − E
(
ρ(S)|r0(S) = x

)
+ Op

(
n−2η + n−((1/2)(1−η+)+2δ−η))

uniformly over x ∈ IR and r ∈ Mn. Since E(ρ(S)|r0(S)) ≡ 0 by construction, it
suffices to consider the term E(ρ(S)|r(S) = x). To simplify the exposition, we
strengthen Assumption 6 and suppose that in addition to r0 all functions r ∈ Mn

are strictly monotone with respect to their last argument, and write ϕr for corre-
sponding the inverse function that satisfies r(u−p,ϕr(u−p, x)) = x (without this
condition, the notation would be much more involved, as we would have to con-
sider all regions where the functions r ∈ Mn are piecewise monotone with respect
to the last component separately). Using rules for integrals on manifolds, we derive
the following explicit expression for E(ρ(S)|r(S) = x):

E
(
ρ(S)|r(S) = x

)
=

∫
ρ(s−p,ϕr(s−p, x))fS(s−p,ϕr(s−p, x)) ∂−pϕr(s−p, x) ds−p∫

fS(s−p,ϕr(s−p, x)) ∂−pϕr(s−p, x) ds−p

.

Set the numerator of the above expression as γ1(x, r) and the denominator as
γ2(x, r). Then clearly γ2(x, r̂) = fR(x)+op(1) uniformly over x ∈ IR . Moreover,
note that the mapping

r �→ ρ(s−p,ϕr(s−p, x))fS(s−p,ϕr(s−p, x))

is Hadamard differentiable at r0, with derivative

r �→ ∂pλ(s−p,ϕ(s−p, x))

∂pr0(s−p,ϕ(s−p, x))
r(s−p,ϕ(s−p, x)).

It follows with γ1(x, r0) = 0 that

γ1(x, r) =
∫

∂pλ(s−p,ϕ(s−p, x))

∂pr0(s−p,ϕ(s−p, x))

(
r(s−p,ϕ(s−p, x)) − r0(s−p,ϕ(s−p, x))

)
× (∂−pϕr(s−p, x)) ds−p

+ Op(‖r − r0‖2∞).

We evaluate the term γ1(x, r̂), substitute the uniform expansion (A.24) for r̂(s) −
r0(s) into the explicit expression derived above, and use standard arguments from
kernel smoothing theory. This gives the desired expansion for �̂A. The form of �̂B

follows from the same arguments used to derive the form of �̂B in the proof of
Proposition 1.
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A.4. Proofs of Corollaries 1–4. The statements of these corollaries follow by
direct application of Proposition 1–2 and Theorem 1. The statement of Corollary 1
is immediate. For Corollaries 2–4, we only have to check that the error bounds in
Theorem 1 and Proposition 1–2 are of the desired order. We only discuss how the
constants α, δ and ξ can be chosen. Note that all these constants have no subindex
because we only consider the case d = 1. We apply Theorem 1 conditionally on the
values of S1, . . . , Sn. Then the only randomness in the pilot estimation comes from
ζ1, . . . , ζn. We can decompose r̂ into r̂A + r̂B , where r̂A is the local polynomial fit
to (Si, ζi), and r̂B is the local polynomial fit to (Si, r0(Si)). Conditionally given
S1, . . . , Sn, the value of r̂B is fixed, and for checking Assumption 3, we only have
to consider entropy conditions for sets of possible outcomes of r̂A. We will show
that with α = p/k one can choose for δ and ξ any value that is larger than (1 −
pθ)/2 or −pk−1(1 − pθ)/2 + pθ , respectively. Note that then α ≤ 2 because of
Assumption 4(iii). It can be easily checked that we get the desired expansions in
Corollaries 1 and 2 with this choices of α = p/k, δ and ξ (with δ and ξ small
enough). In particular note that we can make δα + ξ as close to pθ as we like.

It is clear that Assumption 2 holds for this choice of δ. This follows by standard
smoothing theory for local polynomials. Compare also Lemma 5 and the proof of
Proposition 1. It remains to check Assumption 3. It suffices to check the entropy
conditions for the tuple of functions (n−1 ∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi : 0 ≤
π+ ≤ q,πj ≥ 0 for j = 1, . . . , p). This follows because we get r̂A by multiplying
this tuple of functions with a (stochastically) bounded vector. We now argue that
all derivatives of order k of the functions n−1 ∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi can
be bounded by a variable Bn that fulfills Bn ≤ bn = nξ∗∗

) with probability tending
to one. Here ξ∗∗ is a number with ξ∗∗ > −1

2(1 − pθ) + kθ . This bound holds uni-
formly in s and π . Furthermore, the functions n−1 ∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi

can be bounded by a variable An that fulfills An ≤ an = nξ∗
) with probability tend-

ing to one. Here ξ∗ is a number with ξ∗ > −1
2(1 − pθ). Again, this bound holds

uniformly in s and π . We now consider the set of functions on IS that are ab-
solutely bounded by an and that have all partial derivatives of order k absolutely
bounded by bn. We argue that this set can be covered by C exp(λ−p/kb

p/k
n ) balls

with ‖ · ‖∞-radius λ for λ ≤ an. Here the constant C does not depend on an and
bn. This entropy bound shows that Assumption 3 holds with these choices of α, δ

and ξ . For the proof of the entropy bound one applies an entropy bound for the set
of functions on IS that are absolutely bounded by 1 and that have all partial deriva-
tives of order k absolutely bounded by 1. This set can be covered by C exp(λ−p/k)

balls with ‖ · ‖∞-radius λ for λ ≤ 1. The desired entropy bound follows by rescal-
ing of the functions. Note that we have that b−1

n an → 0.

A.5. Proof of Corollary 5. Our proof has the same structure as the one pro-
vided by Lewbel and Linton (2002), but making use of Theorem 1 considerably
simplifies some of their arguments. First, note that the restriction that θ < θ < θ̄
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implies that (ngp)1/2h2 → 0 and (ngp)1/2gq+1 → 0. From a second-order Taylor
expansion, we furthermore obtain that

μ̂(x) − μ0(x) = 1

q0(r0(x))

(
r̂(x) − r0(x)

)

+
∫ λ

r0(x)

q̂(s) − q0(s)

q0(s)2 ds − q̂ ′(r̄(x))

2q̂(r̄(x))2

(
r̂(x) − r(x)

)2

−
∫ λ

r(x)

(q̂(s) − q0(s))
2

q̂(s)q0(s)2 ds

+ (q̂(ř(x)) − q0(ř(x)))2

q̂(ř(x))q0(ř(x))

(
r̂(x) − r0(x)

)
≡ T1 + T2 + T3 + T4 + T5,

where r̂(x) and ř(x) are intermediate values between r(x) and r̂(x). Now it fol-
lows from standard arguments for local linear estimators that

√
ngpT1

d→ N

(
0,

σ 2
r (x)

fS(x)s2
0(x)

∫
L2(t) dt

)
,

since s0(x) = q0(r0(x)). To prove the corollary, it thus only remains to be shown
that the remaining four terms in the above expansion are of smaller order than
T1. Under the conditions of the corollary, it is easy to show with straightforward
rough arguments that infq(s) > 0, sup q̂ ′(s) = Op(1) and sup |q̂(s) − q0(s)|2 =
op((ngp)−1/2) where the supremum and infimum are taken over s ∈ (ro(x) −
ε, λ0 + ε) for some ε > 0, respectively. This directly implies that T3 + T4 + T5 =
op((ngp)−1/2). Now consider the term T2. From Theorem 1, we obtain that

T2 =
∫ λ

r0(x)

q̃(s) − q0(s)

q0(s)2 ds −
∫ λ

r0(x)

q ′
0(s)�̂(s) − �̂(s)

q0(s)2 ds + Op(n−κ),

where q̃(x) is the oracle estimator of the function q obtained via local linear re-
gression of I{Y > 0} on r0(X), and �̂(s) and �̂(x) are the adjustment terms that
appear in the main expansion in Theorem 1, with the necessary adjustments to the
notation. Using similar arguments as in the proof of Proposition 1–2 and Corollar-
ies 2–4, and the restriction that θ < θ < θ̄ , we obtain that∫ λ

r(x)

q̃(s) − q(s)

q2(s)
ds

= 1

n

n∑
i=1

εi

fR(r0(Xi))
+ Op(h2)

= Op(n−1/2) + Op(h2) = op((ngp)−1/2)
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for εi = I{Yi > 0} − q0(Xi), and similarly that∫ λ

r(x)

q ′
0(s)�̂(s) − �̂(s)

q0(s)2 ds = Op(n−1/2) + Op

(
logn

ngp

)
+ Op(gq+1)

= op((ngp)−1/2).

Thus T2 = op((ngp)−1/2). Finally, straightforward calculations show that θ < θ <

θ̄ also implies that Op(n−κ) = op((ngp)−1/2). This completes the proof.

A.6. Proof of Corollary 6. Let f̂ = (m̂, μ̂2) and f̄ = (m,μ2), define the
functional Sn(f ) as

Sn(f ) = 1

n

n∑
i=1

f1
(
x1, z1,X1i − f2(Zi)

) − μ1(x1, z1),

and let Ṡn(f )[h] = limt→0(Sn(f + th) − Sn(f ))/t denote its directional deriva-
tive. One then obtains through direct calculations that for any f = (f1,A +
f1,B, f2) with bounded second derivatives we have that

‖Sn(f ) − Sn(f̄ ) − Ṡn(f̄ )[f − f̄ ]‖∞
= O(‖f2 − f̄2‖2∞) + O

(‖f2 − f̄2‖∞
∥∥f (v)

1,A − f̄
(v)
1

∥∥∞
) + O(‖f1,B‖∞),

where f
(v)
1,A(x1, z1, v) = ∂vf1,A(x1, z1, v). Using the same kind of arguments as in

the proof of Proposition 1, under the conditions of the corollary one can derive the
following stochastic expansion of m̂ up to order op((nh1+d1)−1/2), uniformly over
(x1, z1, v) in the h-interior of the support of (X1,Z1,V ):

m̂(x1, z1, v) − m(x1, z1, v)

= 1

nfR(x1, z1, v)

n∑
i=1

Kh

(
(X1i ,Z1i , Vi) − (x1, z1, v)

)
εi(A.29)

+ op((nh1+d1)−1/2),

where εi = Y − m(X1i ,Z1i , Vi). A similar, but notationally more involved expan-
sion can be derived for values of (x1, z1, v) in the proximity of the boundary. Note
that since exclusion restriction on the instruments that E(U |Z1,Z2,V ) = E(U |V )

implies that E(ε|Z1,Z2,V ) = 0. In the notation of Theorem 1, this means that
ρ(s) ≡ 0, and hence the term corresponding to �̂(x) is equal to zero and does not
need to be considered.

Now let f̂1,A denote the sum of the function m and the leading term of the
expansion (A.29), and denote the remainder term by f̂1,B . Then it follows from,
for example, Masry (1996) and the conditions on η and θ , that

‖f̂2 − f̄2‖∞ = OP

((
log(n)/(ngd1+d2)

)1/2) = op((nh1+d1)−1/4),
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and it follows from the same result together with Lemma 5 in Appendix A.7 that

‖f̂2 − f̄2‖∞
∥∥f̂ (v)

1,A − f̄
(v)
1

∥∥∞ = OP

(
log(n)/(n2h3+d1gd1+d2)1/2)

= op((nh1+d1)−1/2).

For any fixed values (x1, z1) we thus have that

μ̂1(x1, z1) − μ1(x1, z1) = Sn(f̂ ) = Sn(f̄ ) + T1,n + T2,n + op((nh1+d1)−1/2),

where

T1,n = −1

n

n∑
i=1

m(v)(x1, z1,Vi)
(
μ̂2(Zi) − μ2(Zi)

)
,

T2,n = 1

n

n∑
i=1

(
m̂(x1, z1,Vi) − m(x1, z1,Vi)

)
.

Being a simple sample average of i.i.d. mean zero random variables, one can di-
rectly see that Sn(f0) = Op(n−1/2) = op((nh1+d1)−1/2). Using a stochastic ex-
pansion for μ̂2 as in the proof of Proposition 1, and applying projection arguments
for U-statistics, one also finds that T1,n = Op(n−1/2) = op((nh1+d1)−1/2). Now
consider the term T2,n. From the expansion in (A.29), it follows that for any fixed
values (x1, z1) we have that

T2,n = 1

n

n∑
j=1

1

nfR(x1, z1,Vj )

n∑
i=1

Kh

(
(X1i ,Z1i , Vi) − (x1, z1,Vj )

)
εi

(A.30)
+ op((nh1+d1)−1/2).

This in turn implies that

√
nh1+d1T2,n

d→ N

(
0,E

(
σ 2

ε (x1, z1,V )

fXZ1|V (x1, z1,V )

)∫
K̃(t)2 dt

)

using again projection arguments for U-statistics.

A.7. Uniform rates for generalized kernels. The following auxiliary lemma
states uniform rates for averages of i.i.d. mean zero random variables weighted
by “kernel-type” expressions. It is used in the proofs of several of our results.
Modifications of the lemma are well known in the smoothing literature; see, for
example, Härdle, Janssen and Serfling (1988). The lemma can be proved by stan-
dard smoothing arguments. One can proceed by using a Markov inequality as in
the proof of Lemma 1, but without making use of a chaining argument.

LEMMA 5. Assume that D ⊂ R
dx is a compact set, and Wn,h is a kernel-

type function that satisfies Wn,h(u, z) = 0 for ‖u − t (z)‖ > bnh for some de-
terministic sequence 0 < b ≤ |bn| ≤ B < ∞, and t : RdS → R

dx a continuously
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differentiable function, for any u ∈ D and z ∈ R
dS . Furthermore, assume that

|Wn,h(u, z) − Wn,h(v, z)| ≤ l
‖u−t (z)‖

h
h−dx W̃n(v, t (z)) with supn W̃n bounded, and

that E[exp (ρ|ε|)|S] < C a.s. for a constant C > 0 and ρ > 0 small enough. Then
we have that

sup
x∈D

∣∣∣∣∣1

n

n∑
i=1

anWn,h(x, Si)εi

∣∣∣∣∣ = Op

(√
log(n)

nhdx

)

for any deterministic sequence an with |an| ≤ A.
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