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Because of the advance in technologies, modern statistical studies of-
ten encounter linear models with the number of explanatory variables much
larger than the sample size. Estimation and variable selection in these high-
dimensional problems with deterministic design points is very different from
those in the case of random covariates, due to the identifiability of the high-
dimensional regression parameter vector. We show that a reasonable approach
is to focus on the projection of the regression parameter vector onto the linear
space generated by the design matrix. In this work, we consider the ridge re-
gression estimator of the projection vector and propose to threshold the ridge
regression estimator when the projection vector is sparse in the sense that
many of its components are small. The proposed estimator has an explicit
form and is easy to use in application. Asymptotic properties such as the con-
sistency of variable selection and estimation and the convergence rate of the
prediction mean squared error are established under some sparsity conditions
on the projection vector. A simulation study is also conducted to examine the
performance of the proposed estimator.

1. Introduction. Consider the following linear model:

yi = x′
iβ + εi, i = 1, . . . , n,(1)

where yi is an observed response variable, xi is a p-dimensional vector of observed
covariates or design points associated with yi , β is a p-dimensional vector of un-
known parameters and εi ’s are independent and identically distributed unobserved
random errors with mean 0 and unknown variance σ 2. The theory of linear models
is well established for traditional applications where the dimension p is fixed and
the sample size n > p. With modern technologies, however, in many biological,
medical, social and economical studies, p is comparable with, or much larger than,
n, and making valid statistical inference is a great challenge.

In the case of p < n, there is a rich literature on variable selection, that is,
identifying nonzero components of β in (1). For variable selection in the case of
p > n and statistical inference afterwards, the development of statistical theory
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started about a decade ago. Some excellent advances in asymptotic theory have
been made recently in situations where p diverges to infinity as the sample size n

increases to infinity with the divergence rate O(nl) for some l > 0 (polynomial-
type divergence rate) or O(enν

) for some ν ∈ (0,1) (ultra-high dimension). See, for
example, Fan and Peng (2004), Hunter and Li (2005), Meinshausen and Buhlmann
(2006), Zhao and Yu (2006), Zou (2006), Wang, Li and Tsai (2007), Fan and Lv
(2008), Zhang and Huang (2008), Meinshausen and Yu (2009), Wang (2009) and a
review by Fan and Lv (2010). When xi ’s are random covariates, under some condi-
tions, some variable selection methods have been shown to be selection-consistent
in the sense that, with probability tending to 1 as n → ∞, the selected variables
are exactly those related to the response, where the probability is with respect to
the joint distribution of (yi,xi)’s. As Fan and Lv (2008) commented in the end
of their stimulating paper, however, no selection-consistency result is available for
deterministic xi ’s and many applications, such as biomedical imaging and signal
processing, involve deterministic design points. Another example in which xi can
be treated as deterministic is an analysis conditional on the observed covariates.

Let X be the matrix whose ith row is x′
i , i = 1, . . . , n. For simplicity, we call X

the design matrix although xi ’s are not necessarily designed points. When p > n,
a key difference between a random X and a deterministic design matrix is the iden-
tifiability of the regression parameter β in (1), caused by the fact that the proba-
bilities under consideration are different. For random xi ’s that are independent
and identically distributed and independent of εi’s, β = [cov(xi )]−1 cov(xi , yi).
Hence, even when p > n, components of β can be estimated, and nonzero com-
ponents of β can be identified consistently with respect to the joint probability
distribution of (yi,xi )’s, under some conditions on cov(xi ) and cov(xi , yi). On
the other hand, when the design matrix is deterministic or an analysis conditional
on X is considered, the underlying probability is the probability distribution of
(y1, . . . , yn) conditional on X, and β is identifiable if and only if it lies in a set
having a one-to-one correspondence with R(X), the linear space spanned by rows
of X. Since the dimension of R(X) is at most n, when p > n, β is generally not
identifiable with respect to the probability distribution of (y1, . . . , yn) conditional
on X. Consequently, with deterministic X and p > n, it is not realistic to derive
consistent estimators of β or consistent variable selection procedures.

Without selection-consistency [as previously described; see definition (7) in
Section 4.1], we may still derive consistent estimators of some useful functions
of β under the p-dimensional linear model given by (1) with deterministic X and
p > n. This is the main focus of the current paper. Although β is generally not
identifiable when p > n, we argue in Section 2 that we may not need to estimate
the entire vector β . For statistical analysis, θ , the projection of β onto R(X), is
what we are able to estimate, and perhaps the estimation of θ is sufficient for valid
statistical inference.

To estimate θ , we first consider the ridge regression estimator in Section 3. For
any linear combination of the ridge regression estimator, we establish the asymp-
totic convergence rate of its mean squared error. We also obtain the convergence
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rate of the expected L2-norm error for the ridge regression estimator of Xθ . This
expected L2-norm error divided by n is equal to the average prediction mean
squared error minus σ 2.

When θ is sparse in the sense that many of its components are small, we con-
sider in Section 4 a sparse estimator of θ obtained by thresholding the ridge re-
gression estimator of θ . We show that, with probability tending to 1 at a fast rate,
we can eliminate small components of θ and keep large components of θ , that
is, thresholding the ridge regression estimator provides a variable selection pro-
cedure, that is, consistent in some sense. This method is computationally much
simpler than methods such as the LASSO [Tibshirani (1996)], SCAD [Fan and Li
(2001)] and the ENET [Zou and Hastie (2005)], since no numerical minimization
is required as the proposed estimator has an explicit form. We show that the con-
vergence rate of the expected L2-norm error or average prediction mean squared
error of the thresholded ridge regression estimator is much faster than that of the
ridge regression estimator when θ is sparse. In particular, the thresholded ridge
regression estimator is estimation-consistent (defined in Section 4), but the ridge
regression estimator may not be.

Thresholding the ridge regression estimator is closely related to the SIS as
shown in Fan and Lv (2008). However, its asymptotic behavior for deterministic X
is different from that for random X, and its consistency also requires very differ-
ent conditions. For deterministic X and p > n, there does not exist any result on
the consistency of the LASSO, SCAD or ENET. When p < n, Zhang and Huang
(2008) showed that the LASSO is estimation-consistent, but the required condi-
tions are more stringent and complicated than those required for the consistency
of the thresholded ridge regression estimator.

Some simulation results are presented in Section 5 to study the estimation and
prediction performance of the proposed method, the ridge regression, the LASSO
and the ENET. All technical proofs are given in Section 6.

2. Identifiability and projection. We consider model (1) with deterministic
design matrix X = (x1, . . . ,xn)

′, where the dimension of xi , p, is larger than n.
Let r = rn be the rank of X. From the singular value decomposition,

X = PDQ′,(2)

where P is an n × r matrix satisfying P′P = Ir , Q is a p × r matrix satisfying
Q′Q = Ir , Ia denotes the identity matrix of order a and D is an r × r diagonal
matrix of full rank. Let Q⊥ be a p× (p−r) matrix such that Q′Q⊥ = 0 (the matrix
of 0’s with an appropriate order) and Q′⊥Q⊥ = Ip−r . Throughout, we denote the
q-dimensional Euclidean space by Rq for any positive integer q and the subspace
of Rp generated by the rows of X by R(X).

We say that β in (1) is identifiable if β1 ∈ B, β2 ∈ B and Xβ1 = Xβ2 imply
β1 = β2, where B is the parameter space of β . The following lemma gives a suffi-
cient and necessary condition for the identifiability of β .
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LEMMA 1. Under model (1) with p > r , β is identifiable if and only if there
exists a known function φ from Rr to Rp−r such that

B = {β :β = Qξ + Q⊥φ(ξ), ξ ∈ Rr}.(3)

Lemma 1 reveals that identifiable β’s must be in a set having a one-to-one cor-
respondence with R(X) = {β :β = Qξ , ξ ∈ Rr}. Since the dimension of the set on
the right-hand side of (3) is r ≤ n∧p (the minimum of n and p), β is typically not
identifiable when p > n and, hence, we are not able to obtain a component-wise
consistent estimator of β . However, we may not need to estimate the entire vec-
tor β , that is, if Xβ1 = Xβ2, we can still estimate parameters related to Xβ1 = Xβ2
and make valid inference without trying to distinguish β1 and β2. Therefore, we
consider the projection of β onto R(X), which is what we are able to identify in
view of Lemma 1. Define

(XX′)− = PD−2P′,
which is (XX′)−1 if r = n. The projection of β onto R(X) is

θ = X′(XX′)−Xβ = QQ′β.(4)

Note that θ ∈ R(X) and θ = β if and only if β ∈ R(X). Furthermore, Xθ = Xβ
and model (1) can be written as

yi = x′
iθ + εi, i = 1, . . . , n.(5)

Thus, estimating θ is enough for inference about parameters Xβ = Xθ and predic-
tion.

The dimension of θ is still p. When β has many zero components, θ may not
have any zero component. However, θ may have many small components. This can
be seen from the L2-norms of β and θ . Since θ = QQ′β and QQ′ is a projection
matrix, we obtain that ‖θ‖ ≤ ‖β‖, where ‖ · ‖ denotes the L2-norm. This implies
that if β has many zero components so that the order of ‖β‖ is much smaller than
O(p), then the order of ‖θ‖ is also much smaller than O(p). Hence, if components
of θ are nonzero, then many of them must be negligible, and θ can be viewed as
a sparse vector. More precise descriptions of this sparsity can be found in condi-
tions (C2) in Section 3 and (C4) in Section 4.

3. The ridge regression estimator of the projection. Since the dimension
of θ in (4) is p > n, we consider the ridge regression estimator of θ [Hoerl and
Kennard (1970)] under model (5).

θ̂ = (X′X + hnIp)−1X′y,

where y = (y1, . . . , yn)
′ and hn > 0 is an appropriately chosen regularization pa-

rameter. The computation of θ̂ involves only inverting an n × n matrix. This is
because (2) implies that

(X′X + hnIp)−1X′ = X′(XX′ + hnIn)
−1,(6)
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which also implies that the ridge regression estimator θ̂ is always in R(X). In
fact, if β̂ is the ridge regression estimator of β constructed under model (1), then
θ̂ = X′(XX′)−Xβ̂ = β̂ . But θ̂ = β̂ estimates θ , not the nonidentifiable β when
p > n.

We now study the bias and variance of θ̂ as an estimator of θ , which is essential
for establishing asymptotic properties of θ̂ . For the matrix Q given in the singular
value decomposition (2), � = (QQ⊥) is orthogonal, that is, �′� = ��′ = Ip . Then

bias(θ̂) = E(θ̂) − θ

= (X′X + hnIp)−1X′Xθ − θ

= −(h−1
n X′X + Ip)−1θ

= −�(h−1
n �′X′X� + Ip)−1�′QQ′θ

= − (Q Q⊥ )

(
(h−1

n D2 + Ir )
−1 0

0 Ip−r

)(
Q′
Q′⊥

)
QQ′θ

= − (Q(h−1
n D2 + Ir )

−1 Q⊥ )

(
Q′θ

0

)

= −Q(h−1
n D2 + Ir )

−1Q′θ ,

where the fourth equality follows from the fact that � is orthogonal and θ =
QQ′β = QQ′θ . The covariance matrix of θ̂ is given by

var(θ̂) = σ 2(X′X + hnIp)−1X′X(X′X + hnIp)−1

≤ σ 2(X′X + hnIp)−1

≤ σ 2h−1
n Ip,

where A ≤ B for nonnegative definite matrices A and B means B − A is nonnega-
tive definite.

To study the asymptotic properties of θ̂ , we consider n → ∞ and p = pn,
a function of n. Quantities such as β , y, xi , etc., form triangular arrays, but the
subscript n is omitted for simplicity. We assume that λ1n, the smallest positive
eigenvalue of X′X, satisfies

λ−1
1n = O(n−η), η ≤ 1 and η does not depend on n.(C1)

We also need a sparsity condition on θ . From the discussion in the end of Section 2,
we conclude that, in terms of the L2-norm, the sparsity of β implies the sparsity
of θ . We assume that

‖θ‖ = O(nτ ), τ < η and τ does not depend on n.(C2)

If the number of nonzero components of β is O(n2τ ), and all absolute values
of nonzero components of β are bounded by a constant M , then (C2) holds since
‖θ‖ ≤ ‖β‖ ≤ Mnτ .
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THEOREM 1. Assume model (1) and conditions (C1) and (C2).

(i) As n → ∞, E(l′θ̂ − l′θ)2 = O(h−1
n ) + O(h2

nn
−2(η−τ)) uniformly over p-

dimensional deterministic vector l with ‖l‖ = 1.
(ii) n−1E‖Xθ̂ − Xθ‖2 = O(rnn

−1) + O(h2
nn

−(1+η−2τ)).

Note that these results hold without any condition on the dimension p. The-
orem 1(i) shows that the mean squared error of l′θ̂ converges to 0 uniformly
in l if hn → ∞ and hnn

−(η−τ) → 0. Theorem 1(ii) gives the convergence rate
of the expected L2-norm error E‖Xθ̂ − Xθ‖2 for estimating E(y) = Xθ . Since
the dimension of Xθ is n, we say that an estimator ϑ̂ of θ is L2-consistent if
n−1E‖Xϑ̂ − Xθ‖2 → 0 as n → ∞. Typically, rn/n does not converge to 0 and,
hence, Xθ̂ may not be L2-consistent.

To elaborate the motivation of using the expected L2-norm error E‖Xϑ̂ −Xθ‖2

as a performance measure for an estimator ϑ̂ of θ , we consider the problem of
predicting future y-values on deterministic X. Let y∗ be independent of y but with
the same distribution as y. For deterministic X, it is typical to assess the accuracy
of the prediction Xϑ̂ using the average prediction mean squared error n−1E‖y∗ −
Xϑ̂‖2. It turns out that

n−1E‖y∗ − Xϑ̂‖2 = σ 2 + n−1E‖Xϑ̂ − Xθ‖2.

Hence, having a small expected L2-norm error is equivalent to having a small
average prediction mean squared error.

4. The thresholded ridge regression estimator. The discussion in the previ-
ous section indicates that, although the ridge regression estimator θ̂ is consistent
for the estimation of any linear combination of θ , it may not be L2-consistent, that
is, n−1E‖Xθ̂ −Xθ‖2 may not converge to 0. To achieve L2-consistency (and good
prediction property) under some sparsity conditions on θ , we propose to improve
the ridge regression estimator by thresholding.

4.1. Variable selection. Let Mβ,0 be the set of indices of nonzero components
of β , and let M̂ be the set of indices of components of β selected using a variable
selection method. The variable selection method or M̂ is said to be selection-
consistent if and only if

lim
n→∞P(M̂ = Mβ,0) = 1.(7)

Unlike the case of random X, for deterministic X with p > n, the selection-
consistency defined by (7) is generally not achievable because β is not identifi-
able. Some selection-consistency results for the case of p > n and deterministic X
published in the literature are based on very strong and sometimes unrealistic con-
ditions on the design matrix X to ensure the identifiability of β . In fact, when β is
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not identifiable, it is not appropriate to use β to describe usefulness of components
of xi , since two different β may result in the same responses under model (1). Al-
though components of xi corresponding to zero components of β are not related
to yi , due to the fact that β is unknown and not identifiable, these components of
xi may still be useful in statistical analysis since we have to use model (5) instead
of model (1), that is, θ instead of β .

The previous discussion leads to variable selection in terms of the projection
vector θ , since any linear combination l′β is estimable if and only if l′β = l′θ .
However, when β contains many zero components, θ may not have any zero com-
ponent, although many components of θ may be close to zero. Small but not ex-
actly zero components of θ do not contribute much in estimation but add variabil-
ity. Thus, we would like to carry out variable selection in a more general sense as
defined by Zhang and Huang (2008), that is, we try to eliminate small components
of θ . Condition (C4) stated later may be used to define whether a component of θ
can be treated as small.

We propose to threshold the ridge regression estimator θ̂ . Let θ̂j be the j th
components of θ̂ , j = 1, . . . , p. The thresholded ridge regression estimator is de-
fined as θ̃ whose j th component θ̃j = θ̂j if |θ̂j | > an and θ̃j = 0 if |θ̂j | ≤ an,
j = 1, . . . , p, where

an = C1n
−α, 0 < α ≤ 1/2,C1 > 0,(8)

is the thresholding value with α and C1 not depending on n. The computation of θ̃
is easy since it has an explicit form. Thresholding can be viewed as a variable
selection procedure; that is, we select components of θ with indices in M

θ̂ ,an
, the

set of indices of nonzero components of θ̃ . We now study the asymptotic behavior
of M

θ̂,an
under some conditions and appropriate choices of an and hn. A condition

on the divergence rate of p = pn as n → ∞ is

p = O(enν

), 0 < ν < 1 and ν does not depend on n.(C3)

If p = enν
, it is referred to as the ultra-high dimension [Fan and Lv (2010)].

THEOREM 2. Assume model (1) with normally distributed εi and condi-
tions (C1)–(C3). Let an be given by (8) with α < (η − ν − τ)/3, un = 1 +
(log logn)−1 and hn = C2a

−2
n (log logn)3 log(n ∨ p), where C2 > 0 is a constant

and n ∨ p is the maximum of n and p. Then, for any constant t > 0,

P(Mθ ,anun
⊂ M

θ̂ ,an
⊂ Mθ ,an/un

) = 1 − O
(
(n ∨ p)−t ),(9)

where Mξ ,cn
denotes the set of indices of components of ξ whose absolute values

are larger than cn.

Result (9) shows that, by thresholding θ̂ , we can eliminate all components of θ
with absolute values less than an/un, but keep all components of θ with absolute
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values larger than anun, with probability tending to 1 at the rate of O((n ∨ p)−t )

for any t > 0. This rate is at least O(n−t ) for any t > 0 and it is O(e−tnν
) for any

t > 0 if logp has exactly the order nν .
Let qn− and qn+ be the numbers of elements in Mθ ,anun

and Mθ ,an/un
, re-

spectively. Then qn− ≤ qn+. Since un → 1, it is often true that qn+ − qn− → 0 as
n → ∞. Then, result (9) implies that

P(M
θ̂ ,an

= Mθ ,an
) = 1 − O

(
(n ∨ p)−t ),(10)

which will be referred to as the consistency of M
θ̂ ,an

. This consistency is weaker
than the selection-consistency given by (7), but the latter may not be achieved.

We now consider nonnormal εi under model (1), that is, the normality assump-
tion on εi is replaced by

E(εk
i ) < ∞ for an even integer k not depending on n,(M)

and condition (C3) is replaced by

p = O(nl), 1 ≤ l < k/6 and l does not depend on n,(C3′)

while the other conditions, (C1) and (C2), remain the same. When the normality
condition is relaxed to the moment condition (M), we cannot handle a dimension
at the divergence rate given by (C3), although the polynomial-type divergence rate
given by (C3′) can still be much larger than n. The integer k in condition (M) has to
be sufficiently large so that 3l(t + 1)/k < η − τ , where t > 0 is in the convergence
rate of M

θ̂,an
.

THEOREM 2A. Assume model (1) and conditions (M), (C1), (C2) and (C3′).
For any t > 0, let an be given by (8) with α ≤ (η − ξ − τ)/3 and ξ = 3l(t + 1)/k,
and un = 1 + (log logn)−1. If hn = C2a

−2
n (log logn)2(n∨p)2ξ/(3l), where C2 > 0

is a constant, then result (9) holds.

4.2. L2-consistency. The following result shows that, after the variable selec-
tion, the thresholded estimator θ̃ has asymptotically smaller expected L2-norm
error than θ̂ , and it is in fact L2-consistent, under the following sparsity condition
on θ :

qn+ − qn− → 0, qn/rn → 0 and anvn → 0,(C4)

where

vn = ∑
j : |θj |≤an

|θj |,

θj is the j th component of θ , rn is the rank of X, an is given by (8), and qn, qn−
and qn+ are, respectively, the numbers of elements in sets Mθ ,an

, Mθ ,anun
and

Mθ ,an/un
given by (9).
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The last two conditions in (C4) are very similar to condition (2.4) in Zhang
and Huang (2008); that is, there exist qn “large” components of θ with qn much
smaller than the rank of X, and vn, the L1 norm of the “small” components of θ ,
may diverges to ∞, but at a rate slower than a−1

n .

THEOREM 3. Assume the conditions in Theorem 2 or 2A. Assume further
that (C4) holds and the maximum eigenvalue of X′X is O(n). Then

n−1E‖Xθ̃ − Xθ‖2 = O(qnn
−1) + O(vnan) + O

(
h2

nn
−(1+η−2τ)).(11)

Result (11) shows the gain of variable selection by thresholding. The expected
L2-norm error n−1E‖Xθ̃ −Xθ‖2 is smaller than n−1E‖Xθ̂ −Xθ‖2 for sufficiently
large n. The former converges to 0 at a certain rate and hence θ̃ is L2-consistent,
whereas the latter may not converge to 0 when rn/n does not converge to 0.

If qn/n → 0, result (11) can also be established with the vector of nonzero
components of θ̃ replaced by the ordinary least squares estimator of the sub-vector
of θ indexed by the set M

θ̂ ,an
.

4.3. Tuning parameters. To apply thresholding, we need to choose the con-
stants C1 in the thresholding value an given by (8) and C2 in the regularization
parameter hn given in Theorem 2 or 2A. Similar to many other problems, C1
and C2 can be viewed as tuning parameters, and there is no optimal way to find
their values. Some discussions can be found, for example, in Fan and Lv (2008).
It is possible to use a data-driven method to find values of tuning parameters
by minimizing the average prediction mean squared error n−1E‖y∗ − Xθ̃‖2 =
σ 2 + n−1E‖Xθ̃ − Xθ‖2.

Let ψ(C) be the average prediction mean squared error when C = (C1,C2)

is used in an and hn. Since ψ(C) is unknown, we minimize the cross-validation
estimator

ψ̂(C) = 1

n

n∑
i=1

(
yi − x′

i θ̃
(C)

−i

)2
,

where θ̃
(C)

−i is the thresholded ridge regression estimator of θ based on the data

set with (yi,xi) removed, i = 1, . . . , n. To avoid repeated computation of θ̃
(C)

−i , we
may use an equivalent formula for ψ̂(C),

ψ̂(C) = 1

n

n∑
i=1

(
yi − x′

i θ̃
(C)

1 − wi(C)

)2

,(12)

where wi(C) = x′
i (X

′X + hnIp)−1xi and θ̃
(C)

is the thresholded ridge regression
estimator based on the whole data set. This method is applied in the simulation
study presented in the next section.
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5. Simulation results. With deterministic X and p > n, we examined the L2-
norm errors and the expected L2-norm errors of the ridge regression estimator,
the thresholded ridge regression estimator, and the popular LASSO estimator and
ENET estimator (for comparison purpose) in four simulation studies. In the first
two simulation studies, the design matrix X was generated from a multivariate nor-
mal distribution but fixed throughout the simulation, which corresponds to analysis
conditional on X. In the last two simulation studies, X is a nearly orthogonal Latin
hypercube design or a Latin hypercube design.

5.1. Simulation study I. We considered linear model (1) with normally dis-
tributed εi and σ = 10. Three sets of sample and variable sizes were considered,
(n,p) = (30,100), (100,500) and (200,2000), with increasing ratio p/n. A set of
x1, . . . ,xn were independently generated with xi ∼ N(0,�), where the diagonal
elements of � are all equal to 1 and off-diagonal elements of � are all equal to
0.75. This set of X was fixed throughout the simulation. The first 20 components
of β are 1 + 0.1j for j = 1, . . . ,20, and the rest of the components of β are all
equal to 0. The L2 cumulative proportion plot of the projection vector θ , that is,∑k

j=1 θ2
(j)/‖θ‖2, k = 1, . . . , p, is given in Figure 1, where θ2

(j) is the j th ordered

value of θ2
1 , . . . , θ2

p . Although β has many zero components, θ does not have any
zero component but many components of θ are small.

For the thresholded ridge regression estimator, we selected the tuning param-
eter C = (C1,C2) by minimizing ψ̂(C) given by (12). For the ridge regression,
LASSO, and ENET estimators, the tuning parameters were selected by a 5-fold
cross-validation.

Let ϑ̂ denote the thresholded ridge regression estimator θ̃ , the ridge regression
estimator θ̂ , the LASSO estimator or the ENET estimator. We independently gen-
erated 100 values of y and obtained 100 values of n−1‖Xβ − Xϑ̂‖2, the L2-norm
error (divided by the sample size). Box plots of 100 values of n−1‖Xβ − Xϑ̂‖2

for four estimation methods are given in Figure 1. The average of 100 values
of n−1‖Xβ − Xϑ̂‖2, a simulation approximation to the expected L2-norm error
n−1E‖Xβ − Xϑ̂‖2, is listed in Table 1 for each of the four methods.

5.2. Simulation study II. The setting in this study is the same as that in simu-
lation study I except that the values of xi ’s were generated with a � whose (k, l)th
element is equal to (0.5)|k−l| when |k − l| ≤ 10 and 0 when |k − l| > 10. The L2

cumulative proportion plot of θ and box plots of values of n−1‖Xβ − Xϑ̂‖2 based
on 100 simulation runs for four estimation methods are given in Figure 2. The
simulation approximations to n−1E‖Xβ − Xϑ̂‖2 are included in Table 1.

5.3. Simulation study III. Let NOLH(n,p) denote a nearly orthogonal Latin
hypercube design with n rows (runs) and p columns (variables). We considered
two sets of n and p. In the first case, n = 49, p = 96 and X is an NOLH(49,96)
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FIG. 1. Study I: L2 cumulative proportion plot of θ and box plots of L2-norm error for the thresh-
olded ridge regression, LASSO, ENET and ridge regression.

constructed by using the orthogonal array-based method in Lin, Mukerjee and
Tang (2009). In the second case, n = 64, p = 192 and X is an NOLH(64,192).
In both cases, the first 15 components of β are equal to 0.2,0.4, . . . ,2.8,3.0, and
the rest components of β are equal to 0. The standard deviation of εi is 8. The rest
of the simulation setting is the same as that in simulation study I. The L2 cumula-
tive proportion plot of θ and box plots of values of n−1‖Xβ − Xϑ̂‖2 based on 100
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TABLE 1
Simulation approximation to the expected L2-norm error

Method

Study n p Thres. Ridge LASSO ENET Ridge

I 30 100 27.34 48.46 44.56 51.48
100 500 24.72 32.01 28.46 44.32
200 2000 21.86 25.37 24.17 49.37

II 30 100 56.50 69.05 70.70 76.05
100 500 59.35 68.33 64.43 94.06
200 2000 74.59 85.14 82.35 100.75

III 49 96 61.58 78.40 76.83 85.46
64 192 54.79 81.54 79.78 78.34

IV 30 100 43.44 55.35 49.29 59.72
100 500 46.49 56.60 52.83 65.85
200 2000 48.53 51.78 56.26 71.21

simulation runs for four estimation methods are given in Figure 3. The simulation
approximations to n−1E‖Xβ − Xϑ̂‖2 are included in Table 1.

5.4. Simulation study IV. The setting in this study is the same as that in simula-
tion study I except that X is a deterministic Latin hypercube design [McKay, Beck-
man and Conover (1979)]: each column of X is a random permutation of n points
6(i/n) − 3, i = 1, . . . , n, and all columns are generated independently. The L2 cu-
mulative proportion plot of θ and box plots of values of n−1‖Xβ − Xϑ̂‖2 based
on 100 simulation runs for four estimation methods are given in Figure 4. The
simulation approximations to n−1E‖Xβ − Xϑ̂‖2 are included in Table 1.

5.5. Conclusions based on simulation studies. From Table 1 and Figures 1–4,
we conclude that the thresholded ridge regression estimator is much better than
the ridge regression estimator in terms of the L2-norm error or the expected L2-
norm error, which supports our asymptotic theory, that is, the thresholded ridge
regression estimator is L2-consistent whereas the ridge regression estimator is not.
Because the expected L2-norm error is linearly related to the average prediction
mean squared error (Section 3), these results show that thresholding ridge regres-
sion has better prediction performance. Except for study III, the LASSO performs
worse than the ENET and thresholded ridge regression, but better than the ridge
regression, and the ENET performs worse than the thresholded ridge regression,
although the difference is small in some cases. Since the ENET uses a combina-
tion of L1- and L2-penalty, it is not surprising that its performance is between the
LASSO and thresholded ridge regression. However, both LASSO and ENET have
large variability in simulation study III. It is well known that the LASSO requires
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FIG. 2. Study II: L2 cumulative proportion plot of θ and box plots of L2-norm error for the thresh-
olded ridge regression, LASSO, ENET and ridge regression.

more stringent conditions on the design matrix X [e.g., Zhao and Yu (2006)]. The
nearly orthogonal Latin hypercube design in simulation study III may not satisfy
these conditions, which results in the poor performance of the LASSO. This also
applies to the ENET, since it uses L1-penalty. Furthermore, no result for the L2-
consistency of LASSO or ENET is available in the situation of deterministic X and
p > n.

In terms of the computation, the thresholded ridge regression is much simpler
than the LASSO or ENET, especially when p is very large. Because of the iden-
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FIG. 3. Study III: L2 cumulative proportion plot of θ and box plots of L2-norm error for the
thresholded ridge regression, LASSO, ENET and ridge regression.

tity (6), the computation complexity of the thersholded ridge regression estimator
does not increase as p increases.

6. Proofs.

PROOF OF LEMMA 1. Suppose that (3) holds. Let βj ∈ B, j = 1,2. Then
there are ξ j ∈ Rr such that βj = Qξ j + Q⊥φ(ξ j ), j = 1,2. If Xβ1 = Xβ2, then,
by (2), PDξ1 = PDξ2 and, thus, ξ1 = ξ2, which implies β1 = β2. This shows that
the parameter β in (1) is identifiable.

Suppose now that B is not of the form (3). Then, there exist ξ ∈ Rr , ζ j ∈ Rp−r ,
j = 1,2, ζ 1 �= ζ 2 and βj = Qξ + Q⊥ζ j ∈ B. Then β1 �= β2, but Xβ1 = PDξ =
Xβ2. This shows that β in (1) is not identifiable. �

PROOF OF THEOREM 1.

(i) From Section 3, bias(θ̂) = −Q(h−1
n D2 + Ir )

−1Q′θ . From the facts that
Q′Q = Ir , D2 contains positive eigenvalues of X′X, and (h−1

n D2 + Ir )
−1 ≤

hn/λ1n

1+hn/λ1n
Ir , we obtain that ‖bias(θ̂)‖ ≤ ‖θ‖(hn/λ1n). Hence, by (C1) and (C2),

[l′ bias(θ̂)]2 ≤ ‖bias(θ̂)‖2 = O(h2
nn

−2(η−τ)) uniformly over l with ‖l‖ = 1. Also,
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FIG. 4. Study IV: L2 cumulative proportion plot of θ and box plots of L2-norm error for the thresh-
olded ridge regression, LASSO, ENET and ridge regression.

from Section 3, var(θ̂) ≤ σ 2h−1
n Ip . Hence, l′ var(θ̂)l = O(h−1

n ) uniformly over l
with ‖l‖ = 1. Then, the result follows from E(l′θ̂ − l′θ)2 = l′ var(θ)l+[l′ bias(θ)]2.

(ii) Note that E‖Xθ̂ − Xθ‖2 = trace[X var(θ̂)X′] + ‖X bias(θ̂)‖2. From the
proof of (i),

X var(θ̂)X′ ≤ σ 2X(X′X + hnIp)−1X′

= σ 2PD(D2 + hnIr )
−1DP′

≤ σ 2PP′,
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since D(D2 +hnIr )
−1D is a diagonal matrix whose diagonal elements are bounded

by 1. Hence, trace[X var(θ̂)X′] ≤ σ 2 trace(PP′) = σ 2rn. Also,

‖X bias(θ̂)‖2 = θ ′Q(h−1
n D2 + Ir )

−1D2(h−1
n D2 + Ir )

−1Q′θ ≤ h2
nλ

−1
1n ‖θ‖2,

which is O(h2
nn

−(η−2τ)) by (C1) and (C2). This completes the proof. �

PROOF OF THEOREM 2. From the proof of Theorem 1,

bias(θ̂j ) = O(‖θ‖hn/λ1n) = O(hn/nη−τ )

uniformly in j = 1, . . . , p. For sufficiently large n, log logn > 0. With hn =
C2a

−2
n (log logn)3 log(n ∨ p) and condition (C3),

hn

nη−τ (un − 1)an

= C2(log logn)4 log(n ∨ p)

nη−τ a3
n

≤ c1(log logn)4

nη−ν−τ−3α

for some constant c1 > 0 and, hence, |bias(θ̂j )|/[(un − 1)an] → 0 uniformly in j

when α < (η − ν − τ)/3. Since var(θ̂j ) = O(h−1
n ), there is a constant c0 > 0 such

that

|bias(θ̂j )| − (un − 1)an

[var(θ̂j )]1/2
≤ −√

2c0
√

hnan/(log logn).

Let 
 be the standard normal distribution function. From (1) with normally dis-
tributed εi ,

P
(|θ̂j − θj | > (un − 1)an

) ≤ 2


( |bias(θ̂j )| − (un − 1)an

[var(θ̂j )]1/2

)

≤ 2

(−√

2c0
√

hnan/(log logn)
)

≤ exp{−c2
0hna

2
n/(log logn)2},

for sufficiently large n, where the last inequality follows from 2
(−x) ≤ e−x2/2

for x ≥ 2 and the fact that hna
2
n/(log logn)2 = C2 log logn log(n∨p) → ∞. Using

the same argument, we also obtain that

P
(|θ̂j − θj | > (1 − u−1

n )an

) ≤ exp{−c2
0hna

2
n/(log logn)2}

for sufficiently large n. Let t > 0 be given. For sufficiently large n, c2
0C2 log logn−

1 > t and, hence,

P(Mθ ,anun
⊂ M

θ̂,an
) ≥ 1 − P

( ⋃
j : |θj |>unan

{|θ̂j | ≤ an}
)

≥ 1 − P

( ⋃
j : |θj |>unan

{|θ̂j − θj | > (un − 1)an}
)
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≥ 1 −
p∑

j=1

P
(|θ̂j − θj | > (un − 1)an

)

≥ 1 − p exp{−c2
0hna

2
n/(log logn)2}

≥ 1 − (n ∨ p)−t .

Similarly, for any t > 0,

P(M
θ̂ ,an

⊂ Mθ ,an/un
) ≥ P

( ⋂
j : |θj |≤an/un

{|θ̂j | ≤ an}
)

≥ 1 − P

( ⋃
j : |θj |≤an/un

{|θ̂j − θj | > (1 − u−1
n )an}

)

≥ 1 − p exp{−c2
0hna

2
n/(log logn)2}

≥ 1 − (n ∨ p)−t

for sufficiently large n. This completes the proof. �

PROOF OF THEOREM 2A. From the proof of Theorem 1, we still have
bias(θ̂j ) = O(hn/nη−τ ) uniformly in j = 1, . . . , p. Let ζj be the j th component
of (X′X + hnIp)−1 ∑n

i=1 xi (yi − x′
iθ). Then, for un = 1 + (log logn)−1,

P
(|θ̂j − θj | > (un − 1)an

) ≤ E(θ̂j − θj )
k

[(un − 1)an]k

= O

( |bias(θ̂j )|k + E(ζ k
j )

[(un − 1)an]k
)

= O

(
hk

n(log logn)k

nk(η−τ)ak
n

)
+ O

(
(log logn)k

h
k/2
n ak

n

)
,

where the last equality follows from E(ζ k
j ) = O(h

−k/2
n ) [Whittle (1960), Theo-

rem 2]. Similarly,

P
(|θ̂j − θj | > (1 − u−1

n )an

) = O

(
hk

n(log logn)k

nk(η−τ)ak
n

)
+ O

(
(log logn)k

h
k/2
n ak

n

)
.

Using hn = C2a
−2
n (log logn)2(n ∨ p)2ξ/(3l), we obtain that

P(M
θ̂ ,an

⊂ Mθ ,an/un
) ≥ 1 −

p∑
j=1

P
(|θ̂j − θj | > (1 − u−1

n )an

)

= 1 − O

(
phk

n(log logn)k

nk(η−τ)ak
n

)
− O

(
p(log logn)k

h
k/2
n ak

n

)
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= 1 − O

(
p(n ∨ p)2kξ/(3l)(log logn)3k

nk(η−τ)a3k
n

)

− O

(
p

(n ∨ p)ξk/(3l)

)

= 1 − O

(
p(n ∨ p)kξ/l(log logn)3k

(n ∨ p)(t+1)nk(η−3α−τ)

)

− O

(
p

(n ∨ p)(t+1)

)

= 1 − O

(
nkξ (log logn)3k

(n ∨ p)tnk(η−3α−τ)

)
− O

(
1

(n ∨ p)t

)

= 1 − o
(
(n ∨ p)−t ) − O

(
(n ∨ p)−t )

= 1 − O
(
(n ∨ p)−t ),

since kξ/(3l) = t + 1 and α ≤ (η − ξ − τ)/3. Similarly,

P(Mθ ,anun
⊂ M

θ̂ ,an
) ≥ 1 − O

(
(n ∨ p)−t ).

Hence, result (9) follows. �

PROOF OF THEOREM 3. Let An = {M
θ̂ ,an

= Mθ ,an
} and Ac

n be its comple-

ment. On the set An, the number of nonzero components of θ̃ is the same as qn.
Let θ1 be θ with its components smaller than an in absolute value set to 0. Under
condition (C4) and the condition that X′X has a maximum eigenvalue bounded
by cn for a constant c,

n−1‖Xθ1 − Xθ‖2 ≤ c‖θ1 − θ‖2

= c
∑

j : |θj |≤an

θ2
j

≤ can

∑
j : |θj |≤an

|θj |

= O(vnan).

Hence,

n−1E‖Xθ̃ − Xθ‖2 ≤ 2n−1(E‖Xθ̃ − Xθ1‖2 + ‖Xθ1 − Xθ‖2)

= 2n−1E‖Xθ̃ − Xθ1‖2 + O(vnan).

Then, it remains to show that

n−1E‖Xθ̃ − Xθ1‖2 = O(qnn
−1) + O(vnan) + O

(
h2

nn
−(1+η−2τ)).(13)
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Following the proof of Theorem 1 we obtain that

n−1E[‖Xθ̃ − Xθ1‖2IAn] = O(qnn
−1) + O

(
h2

nn
−(1+η−2τ)),

where IA is the indicator of the set A. From

‖Xθ̃ − Xθ1‖2IAc
n
≤ 2‖Xθ̃ − Xθ̂‖2IAc

n
+ 2‖Xθ̂ − Xθ1‖2IAc

n

and Theorem 1, result (13) follows if we can show that

n−1E‖Xθ̃ − Xθ̂‖2IAc
n
= o

(
qnn

−1 ∨ h2
nn

−(1+η−2τ)).
Since

‖Xθ̃ − Xθ̂‖2 = (θ̃ − θ̂)′X′X(θ̃ − θ̂) ≤ O(n)‖θ̃ − θ̂‖2 ≤ O(a2
npn),

the result follows from P(Ac
n) = O((n ∨ p)−t ) for any t > 0 according to Theo-

rem 2 or 2A. This completes the proof. �
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