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Q-LEARNING WITH CENSORED DATA

BY YAIR GOLDBERG AND MICHAEL R. KOSOROK1

University of North Carolina at Chapel Hill

We develop methodology for a multistage decision problem with flexible
number of stages in which the rewards are survival times that are subject to
censoring. We present a novel Q-learning algorithm that is adjusted for cen-
sored data and allows a flexible number of stages. We provide finite sample
bounds on the generalization error of the policy learned by the algorithm, and
show that when the optimal Q-function belongs to the approximation space,
the expected survival time for policies obtained by the algorithm converges
to that of the optimal policy. We simulate a multistage clinical trial with flex-
ible number of stages and apply the proposed censored-Q-learning algorithm
to find individualized treatment regimens. The methodology presented in this
paper has implications in the design of personalized medicine trials in cancer
and in other life-threatening diseases.

1. Introduction. In medical research, dynamic treatment regimes are increas-
ingly used to choose effective treatments for individual patients with long-term
patient care. A dynamic treatment regime (or similarly, policy) is a set of decision
rules for how the treatment should be chosen at each decision time-point, depend-
ing on both the patient’s medical history up to the current time-point and the pre-
vious treatments. Note that although the same set of decision rules is applied to all
patients, the choice of treatment at a given time-point may differ, depending on the
patient’s medical state. Moreover, the patient’s treatment plan is not known at the
beginning of a dynamic regime, since it may depend on subsequent time-varying
variables that may be influenced by earlier treatments and response to treatment.
An optimal treatment regime is a set of treatment choices that maximizes the mean
response of some clinical outcome at the end of the final time interval [see, e.g.,
Murphy (2003), Robins (2004), Moodie, Richardson and Stephens (2007)].

We consider the problem of finding treatment regimes that lead to longer sur-
vival times, where the number of treatments is flexible and where the data are sub-
ject to censoring. This type of framework is natural for cancer applications, where
the initiation of the next line of therapy depends on the disease progression and
thus the number of treatments is flexible. In addition, data are subject to censor-
ing since patients can drop out during the trial. For example, in advanced nonsmall
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cell lung cancer (NSCLC), patients receive one to three treatment lines. The timing
of the second and third lines of treatment is determined by the disease progression
and by the ability of patients to tolerate therapy [Stinchcombe and Socinski (2008),
Krzakowski et al. (2010)]. We focus on mean survival time restricted to a specific
interval, since in a limited-time study, censoring prevents reliable estimation of the
unrestricted mean survival time [see discussion in Karrison (1997), Zucker (1998),
Chen and Tsiatis (2001); see also Wahed and Tsiatis (2006) in the context of se-
quential decision problems and see Robins, Orellana and Rotnitzky (2008) for an
alternative approach].

Finding an optimal policy for survival data poses many statistical challenges.
We enumerate four. First, one needs to incorporate information accrued over time
into the decision rule. Second, one needs to avoid treatments which appear optimal
in the short term but may lead to poor final outcome in the long run. Third, the data
are subject to censoring since some of the patients may be lost to follow-up and the
final outcome of those who reached the end of the study alive is unknown. Fourth,
the number of decision points (i.e., treatments) and the timing of these decision
points can be different for different patients. This follows since the number of
treatments and duration between treatments may depend on the medical condition
of the patient. In addition, in the case of a patient’s death, treatment is stopped.
The first two challenges are shared with general multistage decision optimization
[Lavori and Dawson (2004), Moodie, Richardson and Stephens (2007)]. The latter
two arise naturally in the context of optimizing survival time, but are applicable
to other scenarios as well. Developing valid methodology for estimating dynamic
treatment regimes in this flexible timing setup is crucial for applications in cancer
and in other diseases where such structure is the norm and appropriate existing
methods are unavailable.

One of the primary tools used in developing dynamic treatment regimes is Q-
learning [Murphy et al. (2007), Zhao, Kosorok and Zeng (2009), Laber et al.
(2010), Zhao et al. (2011)]. Q-learning [Watkins (1989), Watkins and Dayan
(1992)], which is reviewed in Section 2, is a reinforcement learning algorithm.
Since we do not assume that the problem is Markovian, we present a version of Q-
learning that uses backward recursion. The backward recursion used by Q-learning
addresses the first two challenges posed above: it enables both accrual of informa-
tion and incorporation of long-term treatment effects. However, when the number
of stages is flexible, and censoring is introduced, it is not clear how to implement
backward recursion. Indeed, finding the optimal treatment at the last stage is not
well defined, since the number of stages is patient-dependent. Also, it is not clear
how to utilize the information regarding censored patients.

In this paper we present a novel Q-learning algorithm that takes into account the
censored nature of the observations using inverse-probability-of-censoring weight-
ing [see Robins, Rotnitzky and Zhao (1994); see also Wahed and Tsiatis (2006),
Robins, Orellana and Rotnitzky (2008) in the context of sequential decision prob-
lems]. We provide finite sample bounds on the generalization error of the policy
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learned by the algorithm, that is, bounds on the average difference in expected sur-
vival time between the optimal dynamic treatment regime and the dynamic treat-
ment regime obtained by the proposed Q-learning algorithm. We also present a
simulation study of a sequential-multiple-assignment randomized trial (SMART)
[see Murphy (2005a) and references therein] with flexible number of stages de-
pending on disease progression and failure event timing. We demonstrate that the
censored-Q-learning algorithm proposed here can find treatment strategies tailored
to each patient which are better than any fixed-treatment sequence. We also demon-
strate the result from ignoring censored observations.

One general contribution of the paper is the development of a methodology for
solving backward recursion when the number and timing of stages are flexible. As
mentioned previously, this is crucial for applications but has not been addressed
previously. In Section 4 we present an auxiliary multistage decision problem that
has a fixed number of stages. Since the number of stages is fixed for the auxiliary
problem, backward recursion can be used in order to estimate the decision policy.
We then show how to translate the original problem to the auxiliary one and obtain
the surprising conclusion that results obtained for the auxiliary problem can be
translated into results regarding the original problem with flexible number and
timing of stages.

An additional contribution of the paper is the universal consistency proof for
the algorithm performance. Universal consistency of an algorithm means that for
every distribution function on the sample space, the expected loss of the func-
tion learned by the algorithm converges in probability to the infimum of the ex-
pected loss, where the infimum is taken over all the measurable functions [see,
e.g., Steinwart and Christmann (2008)]. In Section 6 we prove that when the opti-
mal Q-functions belong to the corresponding approximation spaces considered by
the algorithm, the algorithm is universally consistent. The proof presented here is
algorithm-specific, but the tools used in the proof are widely applicable for univer-
sal consistency proofs when the data are subject to censoring [see, e.g., Goldberg
and Kosorok (2012)]. While other learning algorithms were suggested for survival
data [see, e.g., Biganzoli et al. (1998), Shivaswamy, Chu and Jansche (2007), Shim
and Hwang (2009); see also Zhao et al. (2011) in the context of a multistage de-
cision problem], we are not aware of any other universal consistency proof for
survival data.

The paper is organized as follows. In Section 2 we review the Q-learning algo-
rithm and discuss the challenges for adapting the Q-learning methodology for a
framework with flexible number of stages and censored data. We also review ex-
isting methods for finding optimal policies. Definitions and notation are presented
in Section 3. The auxiliary problem is presented in Section 4. The censored-Q-
learning algorithm is presented in Section 5. The main theoretical results are pre-
sented in Section 6. In Section 7 we present a multistage-randomized-trial simu-
lation study. Concluding remarks appear in Section 8. Supplementary proofs are
provided in the Appendix. A description of and link to the code and data sets used
in Section 7 appear in the supplementary material [Goldberg and Kosorok (2012)].
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2. Q-learning.

2.1. Reinforcement learning. Reinforcement learning is a methodology for
solving multistage decision problems. It involves recording sequences of actions,
statistically estimating the relationship between these actions and their conse-
quences and then choosing a policy (i.e., a set of decision rules) that approximates
the most desirable consequence based on the statistical estimation. A detailed in-
troduction to reinforcement learning can be found in Sutton and Barto (1998).

In the medical context of long-term patient care, the reinforcement learning set-
ting can be described as follows. For each patient, the stages correspond to clinical
decision points in the course of the patient’s treatment. At these decision points,
actions (e.g., treatments) are chosen, and the state of the patient is recorded. As
a consequence of a patient’s treatment, the patient receives a (random) numerical
reward.

More formally, consider a multistage decision problem with T decision points.
Let St be the (random) state of the patient at stage t ∈ {1, . . . , T + 1} and let St =
{S1, . . . , St } be the vector of all states up to and including stage t . Similarly, let
At be the action chosen in stage t , and let At = {A1, . . . ,At } be the vector of
all actions up to and including stage t . We use the corresponding lower case to
denote a realization of these random variables and random vectors. Let the random
reward be denoted Rt = r(St ,At , St+1), where r is an (unknown) time-dependent
deterministic function of all states up to stage t + 1 and all past actions up to
stage t . A trajectory is defined as a realization of (ST +1,AT ,RT ). Note that we
do not assume that the problem is Markovian. In the medical context example,
a trajectory is a record of all the patient covariates at the different decision points,
the treatments that were given, and the medical outcome in numerical terms.

We define a policy, or similarly, a dynamic treatment regime, to be a set of de-
cision rules. More formally, define a policy π to be a sequence of deterministic
decision rules, {π1, . . . , πT }, where for every pair (st ,at−1), the output of the t th
decision rule, πt(st ,at−1), is an action. Our goal is to find a policy that maximizes
the expected sum of rewards. The Bellman equation [Bellman (1957)] character-
izes the optimal policy π∗ as one that satisfies the following recursive relation:

π∗
t (st ,at−1) = arg max

at

E[Rt + V ∗
t+1(St+1,At )|St = st ,At = at ],(1)

where the value function

V ∗
t+1(st+1,at ) = Eπ∗

[
T∑

i=t+1

Ri

∣∣∣St+1 = st+1,At = at

]
(2)

is the expected cumulative sum of rewards from stage t + 1 to stage T , where the
history up to stage t + 1 is given by {st+1,at }, and when using the optimal policy
π∗ thereafter.
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Finding a policy that leads to a high expected cumulative reward is the main goal
of reinforcement learning. Naively, one could learn the transition distribution func-
tions and the reward function using the observed trajectories, and then solve the
Bellman equation recursively. However, this approach is inefficient both computa-
tionally and memory-wise. In the following section, we introduce the Q-learning
algorithm, which requires less memory and less computation.

2.2. Q-learning. Q-learning [Watkins (1989)] is an algorithm for solving re-
inforcement learning problems. It is claimed by Sutton and Barto to be one of the
most important breakthroughs in reinforcement learning [Sutton and Barto (1998),
Section 6.5]. Q-learning uses backward recursion to compute the Bellman equation
without the need to know the full dynamics of the process.

More formally, we define the optimal time-dependent Q-function

Q∗
t (st ,at ) = E[Rt + V ∗

t+1(St+1,At )|St = st ,At = at ].
Note that V ∗

t (st ,at−1) = maxat Q
∗
t (st ,at ), and thus

Q∗
t (st ,at ) = E

[
Rt + max

at+1
Q∗

t+1(St+1,At , at+1)
∣∣St = st ,At = at

]
.(3)

In order to estimate the optimal policy, one first estimates the Q-functions
backward through time t = T ,T − 1, . . . ,1 and obtains a sequence of estimators
{Q̂T , . . . , Q̂1}. The estimated policy is given by

π̂t (st ,at−1) = arg max
at

Q̂t (st ,at−1, at ).(4)

In the next section we discuss the difficulties in applying the Q-learning method-
ology when trajectories are subject to censoring and the number of stages is flexi-
ble.

2.3. Challenges with flexible number of stages and censoring. As discussed
in the Introduction, our goal is to develop a Q-learning algorithm that can handle
a flexible number of stages and that takes into account the censored nature of the
observations. We face two main challenges. First, recall that the estimation of the
Q-functions in (3) is done recursively, starting from the last stage backward. Thus,
when the number of stages is flexible, it is not clear how to perform the base step
of the recursion. Second, due to censoring, some of the trajectories may be incom-
plete. Incorporating the data of a censored trajectory is problematic: even when
the number of stages is fixed, the known number of stages for a censored trajec-
tory may be less than the number of stages in the multistage problem. Moreover,
the reward is not known for the stage at which censoring occurs.

2.4. Review of existing approaches. Finding optimal policies or optimal treat-
ment regimes has been discussed extensively in other work. We discuss shortly
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some additional work that is related to the approach taken here. However, we are
not aware of any other existing approaches that address simultaneously both cen-
soring and flexible number of stages.

The approach closest to our proposal is the censored-Q-learning algorithm of
Zhao et al. (2011). Zhao et al. considered a Q-learning algorithm for censored data
based on support vector regression adjusted for censoring with fixed number of
stages. A simulation study was performed to demonstrate the algorithm’s perfor-
mance; however, the theoretical properties of this algorithm were not evaluated.

A general approach for finding optimal policies that uses backward recursion
was studied by Murphy (2003) and Robins (2004) in the semiparametric context,
and by Murphy (2005b) in the nonparametric context. These works do not treat
flexible number of stages or censoring, and cannot be applied to the framework
considered here without some adjustments.

Another approach for finding optimal policies was studied by Orellana, Rot-
nitzky and Robins (2010) [see also van der Laan and Petersen (2007), Robins,
Orellana and Rotnitzky (2008)]. Orellana et al. considered dynamic regime
marginal structural mean models [Robins (1999)]. In this approach, for each
regime, one considers all trajectories that comply to the regime up to some point.
The trajectories are then censored at the first time-point at which they do not com-
ply to the regime. The contribution of the noncompliant trajectories is redistributed
among compliant trajectories that have the same covariate and treatment history,
using the inverse-probability-of-censoring weighting. Advantages and disadvan-
tages of this approach compared to the backward recursion approach mentioned
above are discussed in Robins, Orellana and Rotnitzky (2008), Section 5. We note
that it is assumed in their approach that the length of each stage is fixed, an as-
sumption we do not require.

This general issue is also related to the analysis of two-stage randomized trials
involving right-censored data studied in a series of papers including Lunceford,
Davidian and Tsiatis (2002), Wahed and Tsiatis (2006), Wahed (2009), Miyahara
and Wahed (2010). The authors use inverse-probability-of-censoring to correct for
censoring. See also Thall et al. (2007) that considers analysis of two-stage ran-
domized trials with interval censoring. However, the main focus of these works is
in finding the best regime from a finite number of optional regimes, as opposed to
the individualized-treatment policies addressed in our proposal.

3. Preliminaries. In this section we present definitions and notation which
will be used in the paper.

Let T be the maximal number of decision time-points for a given multistage
time-dependent decision problem. Note that the number of stages for different
observations can be different. For each t = 1, . . . , T , the state St is the pair
St = (Zt ,Rt−1), where Zt is either a vector of covariates describing the state of the
patient at beginning of stage t or Zt = ∅. Zt = ∅ indicates that a failure event hap-
pened during the t th stage which has therefore reached a terminal state. Rt−1 is the
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length of the interval between decision time-points t − 1 and t , where we denote
R0 ≡ 0. Although in the usual Q-learning context

∑t
j=1 Rj is the sum of rewards

up to and including stage t , in our context it is more useful to think of this sum as
the total survival time up to and including stage t . Let At be an action chosen at
decision time t , where At takes its values in a finite discrete space A.

The model assumes that observations are subject to censoring. Let C be a cen-
soring variable and let SC(x) = P(C ≥ x) be its survival function. We assume that
censoring is independent of both covariates and failure time. We assume that C

takes its values in the segment [0, τ ] where τ < ∞ and that SC(τ) > Kmin > 0. Let
δt be an indicator with δt = 1 if no censoring event happened before the (t + 1)th
decision time-point. Note that δt−1 = 0 ⇒ δt = 0.

REMARK 3.1. Note that for a censoring variable, we define the survival func-
tion SC(x) as P(C ≥ x) rather than the usual P(C > x). This is because given a
failure time x, we are interested in the probability P(C ≥ x). However, to avoid
complications that are not of interest to the main results of this paper, we assume
that the probability of simultaneous failure and censoring is zero [see, e.g., Satten
and Datta (2001)].

The inclusion of failure times in the model affects the trajectory structure. Usu-
ally, a trajectory is defined as a (2T + 1)-length sequence {S1,A1, S2, . . . ,AT ,
ST +1}. However, in our context, if a failure event occurs before decision time-
point T , the trajectory will not be of full length. Denote by T the (random) num-
ber of stages for the individual (T ≤ T ). Due to the censoring, the trajectories
themselves are not necessarily fully observed. Assume that a censoring event oc-
curred during stage t . Note that this means that δt−1 = 1 while δt = 0 and that
C <

∑t
i=1 Ri . In this case the observed trajectories have the following structure:

{S1,A1, S2, . . . ,At } and C is also observed.
We now discuss the distribution of the observed trajectories. Assume that n tra-

jectories are sampled at random according to a fixed distribution denoted by P0.
The distribution P0 is composed of the unknown distribution of each St condi-
tional on (St−1,At−1) (denoted by {f1, . . . , fT }) and an exploration policy that
generates the actions. Denote the exploration policy by p = {p1, . . . , pT } where
the probability that action a is taken given history {St ,At−1} is pt(a|St ,At−1).
We assume that pt(a|st ,at−1) ≥ L−1 for every action a ∈ A and for each possi-
ble value (st ,at−1), where L ≥ 1 is a constant. The likelihood (under P0) of the
trajectory {s1, a1, s2, . . . , at , st̄+1} is

f1(s1)p1(a1|s1)

t̄∏
j=2

(fj (sj |sj−1,aj−1)pj (aj |sj ,aj−1))ft̄+1(s̄t+1|st̄ ,at̄ ).

We denote expectations with respect to the distribution P0 by E0. The survival
function with respect to the distribution P0 is denoted by G(x) = P0(

∑T̄
j=1 Rj >
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x). We assume that G(τ) > Gmin > 0, that is, that there is a positive probability
that the survival time is greater than τ .

We define policy π to be a sequence of deterministic decision rules, {π1, . . . ,

πT }, where for every nonterminating pair (st ,at−1), the output of the t th decision
rule, πt(st ,at−1), is an action. Let the distribution P0,π denote the distribution of
a trajectory for which the policy π is used to generate the actions. The likelihood
(under P0,π ) of the trajectory, {s1, a1, s2, . . . , at , st̄+1} is

f1(s1)1π(s1)=a1

t̄∏
j=2

(
fj (sj |sj−1,aj−1)1πj (sj ,aj−1)=aj

)
ft̄+1(st̄+1|st̄ ,at̄ ).

Our goal is to find a policy that maximizes the expected rewards. Since with
probability 1 C ≤ τ , the maximum observed survival time is less than or equal to τ .
Thus we try to maximize the truncated-by-τ expected survival time. Formally, we
look for a policy π̂ that approximates the maximum over all deterministic policies
of the following expectation:

E0,π

[(
T∑

t=1

Rt

)
∧ τ

]
,

where E0,π is the expectation with respect to P0,π and a ∧ b = min{a, b}.
4. The auxiliary problem. In this section we construct an auxiliary Q-

learning model for our original problem. The modified trajectories of the con-
struction are of fixed length T , and the modified sum of rewards is less than or
equal to τ . We then show how results obtained for the auxiliary problem can be
translated into results regarding the original problem.

For the auxiliary problem, we complete all trajectories to full length in the fol-
lowing way. Assume that a failure time occurred at stage t < T . In that case the
trajectory up to St+1 is already defined. Write S′

j = Sj for 1 ≤ j ≤ t + 1 and
A′

j = Aj for 1 ≤ j ≤ t . For all t + 1 < j ≤ T + 1 set Sj = (∅,0) and for all
t + 1 ≤ j ≤ T draw Aj uniformly from A.

We also modify trajectories with overall survival time greater than τ in the fol-
lowing way. Assume that t is the first index for which

∑t
i=1 Ri ≥ τ . For all j ≤ t ,

write S′
j = Sj and A′

j = Aj . Write R′
t = τ − ∑t−1

i=1 Ri and assign Z′
t+1 ≡ ∅ and

thus the modified state S′
t+1 = (∅,R′

t ). If t < T , then for all t + 1 < j ≤ T + 1 set
Sj = (∅,0) and for all t + 1 ≤ j ≤ T draw A′

j uniformly from A. The modified
trajectory is given by the sequence {S′

1,A
′
1, S

′
2, . . . ,A

′
T , S′

T +1}. Note that trajec-
tories with fewer than 2T + 1 entries and for which

∑t
i=1 Ri ≥ τ are modified

twice.
The n modified trajectories are distributed according to the fixed distribution

P which can be obtained from P0. This distribution is composed of the unknown
distribution of each S′

t conditional on (S′
t−1,A′

t−1), denoted by {f ′
1, . . . , f

′
T +1},
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and exploration policy p′. The conditional distribution f ′
1 equals f1, and for 2 ≤

t ≤ T + 1,

f ′
t (s

′
t |s′

t−1,a′
t−1)

(5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ft ((z
′
t , r

′
t )|s′

t−1,a′
t−1), z′

t−1 �= ∅,

t∑
i=1

r ′
i < τ ,

∫
Gz′t

ft ((z
′
t , rt )|s′

t−1,a′
t−1)drt , z′

t−1 �= ∅,

t∑
i=1

r ′
i = τ ,

1s′t=(∅,0), z′
t−1 = ∅,

where Gz′
t
= {(z′

t , rt ) :
∑t

i=1 ri ≥ τ } and 1A is 1 if A is true and is 0 otherwise. The
exploration policy p′ agrees with p on every pair (St ,At−1) for which Zt �= ∅ and
draws At uniformly from A whenever Zt = ∅. The likelihood (under P ) of the
modified trajectory, {s′

1, a
′
1, s

′
2, . . . , a

′
T , s′

T +1}, is

f ′
1(s

′
1)p1(a

′
1|s′

1)

T∏
t=2

(f ′
t (s

′
t |s′

t−1,a′
t−1)pt (a

′
t |s′

t ,a′
t−1))f

′
T +1(s

′
T +1|s′

T ,a′
T ).

Denote expectations with respect to the distribution P by E.
Let π be a policy for the original problem. We define a version of the policy π ′

for the auxiliary problem in the following way. For any state (s′
t ,a′

t−1) for which
z′
t �= ∅, the same action is chosen. For any state (s′

t ,a′
t−1) for which z′

t = ∅, a fixed
action at ∈ A is chosen; w.o.l.g., let ao be chosen. For the auxiliary problem, we
say that two policies π ′

a and π ′
b are equivalent if π ′

a(s
′
t ,a′

t−1) = π ′
b(s

′
t ,a′

t−1) for
every (s′

t ,a′
t−1) for which z′

t �= ∅. We denote both the original policy and any
modified version of it by π whenever it is clear from the context which policy is
considered. Similarly, we omit the prime from states and actions in the auxiliary
problem whenever there is no reason for confusion.

Let Pπ be the distribution in the auxiliary problem where actions are chosen
according to π . The likelihood under Pπ of the trajectory {s1, a1, s2, . . . , aT , sT +1}
is

f ′
1(s1)1π1(s1)=a1

T∏
t=2

(
f ′

t (st |st−1,at−1)1πj (st ,at−1)=at

)
f ′

T +1(sT +1|sT ,aT ).

Denote expectations with respect to the distribution Pπ by Eπ .
We now define the value functions and the Q-functions for policies in the auxil-

iary model. For any auxiliary policy π define its corresponding value function Vπ .
Given an initial state s1, Vπ(s1) is the expected truncated-by-τ survival time when
the initial state is s1 and the actions are chosen according to the policy π . For-
mally Vπ(s1) = Eπ [∑T

i=1 Rt |S1 = s1] where the truncation takes place since the
expectation is taken with respect to the distribution of the modified trajectories.
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The stage-t value function for the auxiliary policy π , Vπ,t (st ,at−1), is the ex-
pected (truncated) remaining survival time from the t th decision time-point, given
the trajectory (st ,at−1), and when following the policy π thereafter. Note that
given st , the survival time up to the beginning of stage t is known, and thus trun-
cation ensures that the overall survival time is less than or equal to τ . Formally
Vπ,t (st ,at−1) = Eπ [∑T

i=t Ri |St = st ,At = at ].
The stage-t Q-function for the auxiliary policy π is the expected remaining

(truncated) survival time, given that the state is (st ,at−1), that at is chosen at
stage t , and that π is followed thereafter. Formally,

Qπ,t (st ,at ) = E[Rt + Vπ,t+1(St+1,At )|St = st ,At = at ].
The optimal value function V ∗

t (st ,at−1) and the optimal Q-function Q∗
t (st ,at ) are

defined by (2) and (3), respectively.
The following lemma relates the values of the value function Vπ in the auxiliary

problem to the expected truncated-by-τ survival time for a policy π in the original
problem.

LEMMA 4.1. Let � be the collection of all policies in the original problem.
Then for all π ∈ �, the following equalities hold true:

Vπ(so) = E0,π

[(
T∑

t=1

Rt

)
∧ τ

∣∣∣S1 = so

]
,(6)

V ∗(so) = max
π∈�

E0,π

[(
T∑

t=1

Rt

)
∧ τ

∣∣∣S1 = so

]
,(7)

where Vπ and V ∗ are value functions in the auxiliary problem.

PROOF. We start by decomposing the expectations depending on both the ter-
minal stage and whether the sum of rewards is greater than or equal to τ .

Define

Ft =
{
{so, a1, . . . , st+1} :

t∑
i=1

ri < τ, zt+1 = ∅

}
,

Gt =
{
{so, a1, . . . , sk+1} : t = min

{
j :

j∑
i=1

ri ≥ τ

}
, and k = T or zk+1 = ∅

}
,

F ′
t = {

(s′
T +1,a′

T ) : (s′
t+1,a′

t ) ∈ Ft , {a′
t+1, . . . , sT +1} = {ao, (∅,0), . . . , (∅,0)}},

G′
t =

{
(s′

T +1,a′
T ) : (s′

t ,a′
t ) is a beginning of sequence in Gt,

{s′
t+1, a

′
t+1, . . . , sT +1} =

{(
∅, τ −

t−1∑
j=1

rj

)
, ao, . . . , (∅,0)

}}
.
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Denote

ft,π (st ,at−1)

= f1(s1)
[
1π(s1)=a1

] t−1∏
j=2

(
fj (sj |sj−1,aj−1)1πj (sj ,aj−1)=aj

)

× ft (st |st−1,at−1)

and similarly f ′
t,π .

Note that

E0,π

[(
T∑

t=1

Rt

)
∧ τ

∣∣∣S1 = so

]
=

T∑
t=1

∫
Ft

(
t∑

i=1

ri

)
ft+1,π (st+1,at )d(st+1,at )

(8)

+ τ

T∑
t=1

P0,π (Gt)

and

Vπ(so) =
T∑

t=1

∫
F ′

t

(
T∑

i=1

ri

)
f′T +1,π (sT +1,aT )d(sT +1,aT )

(9)

+ τ

T∑
t=1

Pπ(G′
t ).

Note that

∫
Ft

(
t∑

i=1

ri

)
ft+1,π (st+1,at )d(st+1,at )

=
∫
Ft

(
t∑

i=1

ri

)
f′t+1,π (st+1,at )d(st+1,at )(10)

=
∫
F ′

t

(
T∑

i=1

ri

)
f′T +1,π (sT +1,aT )d(sT +1,aT ),

where the first equality follows from (5) and the second follows since there is a
one-to-one correspondence between trajectories in Ft and F ′

t , and by construction,
for each such trajectory in F ′

t we have
∑T

i=t+1 ri = 0 and

[
1πt+1(st+1,at )=ao

] T∏
j=t+2

(
f ′

j (sj |sj−1,aj−1)1πj (sj ,aj−1)=ao

)
fT +1(sT +1|sT ,aT ) = 1.
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Similarly, we show that P0,π (Gt) = Pπ(G′
t ). Denote by Ĝt the set of all se-

quences (st ,at ) which are the beginning part of some trajectory in Gt . Note that

P0,π (Gt) =
∫
Ĝt

ft (st ,at−1)
[
1πt (st ,at−1)=at

]

×
∫
{st+1 :

∑t
i=1 ri≥τ }

ft+1(st+1|st ,at )d(st+1)d(st ,at )

=
∫
Ĝt

f′t (st ,at−1)
[
1πt (st ,at−1)=at

]
(11)

×
∫
{st+1 :

∑t
i=1 ri=τ }

f ′
t+1(st+1|st ,at )d(st+1)d(st ,at )

=
∫
G′

t

f′T +1(sT +1,at )d(sT +1,at ) = Pπ(G′
t ),

where the second equality follows from (5) and the third equality follows from the
construction of G′

t .
The first assertion of the lemma, namely, (6), follows by substituting the right-

hand side of the equalities (10) and (11) in (8) for each t and comparing to (9).
The second assertion, (7), is proven by maximizing both sides of (6) over all

policies. Note that the maximization is taken over two different sets since each
policy in the original problem has an equivalent class of policies in the auxiliary
problem. However, since Vπ is the same for all policies in the same equivalence
class, the result follows. �

5. The censored-Q-learning algorithm. We now present the proposed
censored-Q-learning algorithm. As discussed before, we are looking for a policy
π̂ that approximates the maximum over all deterministic policies of the following
expectation:

E0,π

[(
T∑

t=1

Rt

)
∧ τ

]
.

We find this policy in three steps. First, we map our problem to the correspond-
ing auxiliary problem. Then we approximate the functions {Q∗

1, . . . ,Q
∗
T } using

backward recursion based on (3) and obtain the functions {Q̂1, . . . , Q̂T }. Finally,
we define π̂ by maximizing Q̂t (st , (at−1, at )) over all possible actions at .

Let {Q1, . . . , QT } be the approximation spaces for the Q-functions. We assume
that Qt(st ,at ) = 0 whenever zt = ∅. In other words, if a failure occurred before
the t th time-point, Qt equals zero.

Note that by (3), the optimal t-stage Q-function Q∗
t (st ,at ) equals the condi-

tional expectation of Rt + maxat+1 Q∗
t+1(St+1, (At , at+1)) given (st ,at ). Thus

Q∗
t = arg min

Qt

E
[(

Rt + max
at+1

Q∗
t+1(St+1, (At , at+1)) − Qt(St ,At )

)2]
.
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Ideally, we could compute the functions Q̂t using backward recursion in the
following way:

Q̂t = arg min
Qt

En

[(
Rt + max

at+1
Q̂t+1(St+1, (At , at+1)) − Qt(St ,At )

)2]
,

where En is the empirical expectation. The problem is that Rt may be censored
and thus unknown.

Note that E[δt |∑t
i=1 Ri] = P(C ≥∑t

i=1 Ri) = SC(
∑t

i=1 Ri) and thus

E

[
δt

SC(
∑t

i=1 Ri)

∣∣∣St ,At ,Rt

]
= 1

since St includes the information regarding R1, . . . ,Rt−1 and C is independent of
the covariates and actions.

Thus, for every function Qt ∈ Qt ,

E
[(

Rt + max
at+1

Q∗
t+1(St+1, (At , at+1)) − Qt(St ,At )

)2]

= E

[(
Rt + max

at+1
Q∗

t+1(St+1, (At , at+1)) − Qt(St ,At )
)2

× E

[
δt

SC(
∑t

i=1 Ri)

∣∣∣St ,At ,Rt

]]
(12)

= E

[
E

[(
Rt + max

at+1
Q∗

t+1(St+1, (At , at+1)) − Qt(St ,At )
)2

× δt

SC(
∑t

i=1 Ri)

∣∣∣St ,At ,Rt

]]

= E

[(
Rt + max

at+1
Q∗

t+1(St+1, (At , at+1)) − Qt(St ,At )
)2 δt

SC(
∑t

i=1 Ri)

]
.

Since Q∗
t is the minimizer of the first expression in the above sequence of equal-

ities, it also minimizes the last expression. Thus, we suggest to choose Q̂t recur-
sively as follows:

arg min
Qt∈Qt

En

[(
Rt + max

at+1
Q̂t+1(St+1, (At , at+1)) − Qt(St ,At )

)2

(13)

× δt

ŜC(
∑t

i=1 Ri)

]
,

where we define Q̂T +1 ≡ 0, and ŜC is the Kaplan–Meier estimator of the survival
function of the censoring variable SC . Note that by Remark 3.1, the Kaplan–Meier
estimator at x needs to estimate P(C ≥ x) rather than P(C > x). This can be
done by taking a right continuous version of the Kaplan–Meier estimator that in-
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terchanges the roles of failure and censoring events for estimation [see Satten and
Datta (2001)].

We define the policies π̂t using the approximated Q-functions Q̂t as follows:

π̂t (st ,at−1) = arg max
at

Q̂t (st , (at−1, at )).

6. Theoretical results. Let {Q1, . . . , QT } be the approximation spaces for
the minimization problems (13). Note that we do not assume that the problem
is Markovian, but, instead, we assume that each Qt is a function of all the history
up to and including stage t . Hence the spaces Qt can be different over t .

We assume that the absolute values of the functions in the spaces {Qt }t are
bounded by some constant M . Moreover, we need to bound the complexity of the
spaces {Qt }t . We choose to use uniform entropy as the complexity measure [see
van der Vaart and Wellner (1996)]. This enables us to obtain exponential bounds
on the difference between the true and empirical expectation of the loss function
that involves a random component, namely, the Kaplan–Meier estimator, as in (13)
(see Lemma A.6). This is different from Murphy (2005b) who uses the covering
number as a measure of complexity [Anthony and Bartlett (1999), page 148] for
the squared error loss function.

For every ε > 0 and measure P , we denote the covering number of Q by
N(ε, Q,L2(P )), where N(ε, Q,L2(P )) is the minimal number of closed L2(P )-
balls of radius ε required to cover Q. The uniform covering number of Q is defined
as supP N(εM, Q,L2(P )) where the supremum is taken over all finitely discrete
probability measures P on Q. The log of the uniform covering number is called
the uniform entropy [van der Vaart and Wellner (1996), page 84]. We assume the
following uniform entropy bound for the spaces {Qt }:

max
t={1,...,T } sup

P

logN(εM, Qt ,L2(P )) < D

(
1

ε

)W

(14)

for all 0 < ε ≤ 1 and some constants 0 < W < 2 and D < ∞, where the supremum
is taken over all finitely discrete probability measures, and M is the uniform bound
defined above.

In the following, we prove a finite sample bound on the difference between the
expected truncated survival times of an optimal policy and the policy π̂ obtained
by the algorithm. As a corollary we obtain that the difference converges to zero
under certain conditions.

The proof of the theorem consists of the following steps. First we use Lem-
ma 4.1 to map the original problem to the corresponding auxiliary one. Second,
for the auxiliary problem, we adapt arguments given in Murphy (2005b) to bound
the difference between the expected value of the learned policy and the expected
value of the optimal policy using error terms that involve expectations of both the
learned and optimal Q-functions. Third, we bound these error terms by decom-
posing them to terms that arise due to the difference between the empirical and
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true expectation, terms that arise due to the differences between the estimated and
true censoring distribution, and terms related to the empirical difference between
the estimated and optimal Q-function. Fourth, and finally, we obtain a finite sam-
ple bound which depends on the complexity of the spaces {Qt }, the deviation of
the Kaplan–Meier estimator from the censoring distribution, and the size of the
empirical errors in (13).

THEOREM 6.1. Let {Q1, . . . , QT } be the approximation spaces for the Q-
functions. Assume that the uniform entropy bound (14) holds. Assume that n tra-
jectories are sampled according to P0. Let π̂ be defined by (4).

Then for any 0 < η < 1, we have with probability at least 1−η, over the random
sample of trajectories,

sup
π∈�

E0,π

[(
T∑

t=1

Rt

)
∧ τ

]
− E0,π̂

[(
T∑

t=1

Rt

)
∧ τ

]

≤ 16ε +
T∑

t=1

Lt/2
T∑

j=t

(
2Lj 4j−t

En

[
δt

ŜC(
∑t

i=1 Ri)
(15)

× (
F(Q̂t , Q̂t+1) − F(Q∗

t , Q̂t+1)
)]

+

)1/2

for all n that satisfies

max
{

5T

2
exp

{−nC1ε
4 + √

nC2ε
2}, T C3 exp

{−2nε4 + C4
√

nε2(U+αo)
}}

<
η

2
,

where

F(Qt,Qt+1) =
(
Rt + max

at+1
Qt+1(St+1,At , at+1) − Qt

)2
,

C1 = 2(1 − Gmin)
2M−2

1 K4
min(4L)−2(T +1),

C2 = Co(1 − Gmin)M
−1
1 K2

min(4L)−(T +1),

C3 = Ca exp
{
(4L)−(T +1)},

C4 = Cb(4L)(T +1)/2,

and where M1 = (2M + τ)2, Co is the constant that appears in Bitouzé, Laurent
and Massart [(1999), equation (1)], Ca , Cb and U are the constants that appear
in Lemma A.6, and for some αo small enough such that U + αo < 2.

Before we begin the proof of Theorem 6.1, we note that the bound (15) can-
not be used in practice to perform structural risk minimization [see, e.g., Vapnik
(1999)] for two reasons. First, the bound itself is too loose [see also Murphy
(2005b), Theorem 1, Remark 4]. Second, the constants, such as Ca and Cb, are
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not given, and are model-dependent. Interestingly, a bound on Co was established
recently by Wellner (2007). However, this bound is large and simulations suggest
that it is not tight. The bound (15) can, however, be used to derive asymptotic rates
[Steinwart and Christmann (2008), Chapter 6]. Moreover, when the functions Q∗

t

are in Qt , we obtain universal consistency, as stated in the following corollary:

COROLLARY 6.2. Assume that the conditions of Theorem 6.1 hold. Assume
also that for every t , Q∗

t ∈ Qt . Then

sup
π∈�

E0,π

[(
T∑

t=1

Rt

)
∧ τ

]
− E0,π̂

[(
T∑

t=1

Rt

)
∧ τ

]
a.s.→ 0.

PROOF. Note that for every t , Q̂t is the minimizer of

En

[
δt

ŜC(
∑t

i=1 Ri)
F (Qt, Q̂t+1)

]
.

Hence, the second expression in the right-hand side of (15) equals zero, and the
result follows. �

PROOF OF THEOREM 6.1. By Lemma 4.1,

sup
π∈�

E0,π

[(
T∑

t=1

Rt

)
∧ τ

]
− E0,π̂

[(
T∑

t=1

Rt

)
∧ τ

]
= E[V ∗(S1) − Vπ̂ (S1)],

where the expectation on the right-hand side of the equality is with respect to the
modified distribution P .

By Lemma 2 of Murphy (2005b) and Remark 2 that follows, for every state
so ∈ S1,

V ∗(so) − Vπ̂ (so) ≤
T∑

t=1

2Lt/2
√

E
[(

Q̂t (St ,At ) − Q∗
t (St ,At )

)2|S1 = so
]
.

Applying Jensen’s inequality, we obtain

E[V ∗(S1) − Vπ̂ (S1)] ≤
T∑

t=1

2Lt/2
√

E
[(

Q̂t (St ,At ) − Q∗
t (St ,At )

)2]
.(16)

We wish to obtain a bound on the expression E[(Q̂t (St ,At ) − Q∗
t (St ,At ))

2]
using the expressions Err

Q̂t+1
(Q̂t ) − Err

Q̂t+1
(Q∗

t ), where

ErrQt+1(Qt) = E
[(

Rt + max
at+1

Qt+1(St+1,At , at+1) − Qt(St ,At )
)2]

for any pair of function Qt and Qt+1. To obtain this bound we follow the line of
arguments that leads to the bound in equation (13) in the proof of Theorem 1 of
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Murphy (2005b). The bound (19) obtained here is tighter since only the special
case of Q∗

t in the second Err function is considered. To simplify the following ex-
pressions, we write Qt instead of Qt(St ,At ) whenever no confusion could occur.

For each t ,

Err
Q̂t+1

(Q̂t ) − Err
Q̂t+1

(Q∗
t )

= E[Q̂2
t ] − E[(Q∗

t )
2]

+ 2E
[(

Rt + max
at+1

Q̂t+1(St+1,At , at+1)
)
(Q∗

t − Q̂t )
]

= E[Q̂2
t ] − E[(Q∗

t )
2]

+ 2E
[
(Q∗

t − Q̂t )E
[(

Rt − max
at+1

Q∗
t+1(St+1,At , at+1)

)∣∣St ,At

]]

+ 2E
[(

max
at+1

Q∗
t+1(St+1,At , at+1)

− max
at+1

Q̂t+1(St+1,At , at+1)
)
(Q∗

t − Q̂t )
]

(17)

= E[Q̂2
t ] − E[(Q∗

t )
2] + 2E[(Q∗

t )
2] − 2E[Q̂tQ

∗
t ]

+ 2E
[(

max
at+1

Q∗
t+1(St+1,At , at+1)

− max
at+1

Q̂t+1(St+1,At , at+1)
)
(Q∗

t − Q̂t )
]

= E[(Q̂t − Q∗
t )

2]
+ 2E

[(
max
at+1

Q∗
t+1(St+1,At , at+1)

− max
at+1

Q̂t+1(St+1,At , at+1)
)
(Q∗

t − Q̂t )
]
,

where the second to the last equality follows since

Q∗
t (st ,at ) = E

[(
Rt − max

at+1
Q∗

t+1(St+1,At , at+1)
)∣∣St = st ,At = at

]
.

Using the Cauchy–Schwarz inequality for the second expression of (17), we
obtain

Err
Q̂t+1

(Q̂t ) − Err
Q̂t+1

(Q∗
t )

≥ E[(Q̂t − Q∗
t )

2]
− 2E

[(
max
at+1

Q∗
t+1(St+1,At , at+1) − max

at+1
Q̂t+1(St+1,At , at+1)

)2]1/2

× E[(Q∗
t − Q̂t )

2]1/2.
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Note that

E
[(

max
at+1

Q∗
t+1(St+1,At , at+1) − max

at+1
Q̂t+1(St+1,At , at+1)

)2]

≤ E
[
max
at+1

(
Q∗

t+1(St+1,At , at+1) − Q̂t+1(St+1,At , at+1)
)2]

(18)

≤ E

[
L
∑
a∈A

(
Q∗

t+1(St+1,At , a) − Q̂t+1(St+1,At , a)
)2

pt(a|St+1,At )

]

= LE
[(

Q∗
t+1(St+1,At+1) − Q̂t+1(St+1,At+1)

)2]
,

where the first inequality follows since (maxa h(a)−maxa h′(a))2 ≤ maxa(h(a)−
h′(a))2 and where L is the constant that appears in the definition of the exploration
policy p (see Section 3).

Using inequality (18) and the fact that xy ≤ 1
2(x2 + y2), we obtain

Err
Q̂t+1

(Q̂t ) − Err
Q̂t+1

(Q∗
t )

≥ E[(Q̂t − Q∗
t )

2] − E[4L(Q∗
t+1 − Q̂t+1)

2]1/2E[(Q∗
t − Q̂t )

2]1/2

≥ 1
2E[(Q̂t − Q∗

t )
2] − 2LE[(Q∗

t+1 − Q̂t+1)
2].

Hence

E[(Q̂t − Q∗
t )

2] ≤ 2
(
Err

Q̂t+1
(Q̂t ) − Err

Q̂t+1
(Q∗

t )
)+ 4LE[(Q∗

t+1 − Q̂t+1)
2].

Using the fact that Q̂T +1 = Q∗
T +1 = 0, we obtain

E[(Q̂t − Q∗
t )

2] ≤ 2
T∑

j=t

(4L)j−t (Err
Q̂j+1

(Q̂j ) − Err
Q̂j+1

(Q∗
j )
)
.(19)

We are now ready to bound the expressions Err
Q̂j+1

(Q̂j ) − Err
Q̂j+1

(Q∗
j ). For

any Qt ∈ Qt ∪ Q∗
t , Qt+1 ∈ Qt+1, and censoring survival function K : [0, τ ] �→

[Kmin,1], where Kmin > 0, define

E (Qt ,Qt+1,K)

= E

[
δt

K(
∑t

i=1 Ri)

(
Rt + max

at+1
Qt+1(St+1,At , at+1) − Qt

)2
]
,

(20)
En(Qt ,Qt+1,K)

= En

[
δt

K(
∑t

i=1 Ri)

(
Rt + max

at+1
Qt+1(St+1,At , at+1) − Qt

)2
]
.

Note that similarly to (12) we have Err
Q̂t+1

(Qt) = E (Qt , Q̂t+1, SC), where SC

is the censoring survival function.
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Using this notation, we have

Err
Q̂t+1

(Q̂t ) − Err
Q̂t+1

(Q∗
t )

= E (Q̂t , Q̂t+1, SC) − E (Q∗
t , Q̂t+1, SC)

≤ |E (Q̂t , Q̂t+1, SC) − E (Q̂t , Q̂t+1, ŜC)|
+ |E (Q̂t , Q̂t+1, ŜC) − En(Q̂t , Q̂t+1, ŜC)|
+ (

En(Q̂t , Q̂t+1, ŜC) − En(Q
∗
t , Q̂t+1, ŜC)

)
+

+ |En(Q
∗
t , Q̂t+1, ŜC) − E (Q∗

t , Q̂t+1, ŜC)|
+ |E (Q∗

t , Q̂t+1, ŜC) − E (Q∗
t , Q̂t+1, SC)|,

where ŜC is the Kaplan–Meier estimator of SC , and (a)+ = max{a,0}. Hence

Err
Q̂t+1

(Q̂t ) − Err
Q̂t+1

(Q∗
t )

≤ 2 sup
{Qt ,Qt+1}

|E (Qt ,Qt+1, SC) − E (Qt ,Qt+1, ŜC)|
(21) + 2 sup

{Qt ,Qt+1,K}
|E (Qt ,Qt+1,K) − En(Qt ,Qt+1,K)|

+ (
En(Q̂t , Q̂t+1, ŜC) − En(Q

∗
t , Q̂t+1, ŜC)

)
+.

Combining (19) and (21), and substituting in (16), we have

E[V ∗(S1) − Vπ̂ (S1)]

≤ 2
T∑

t=1

Lt/2
T∑

j=t

√
2(4L)j−t

(
ErrQt+1(Qt) − ErrQt+1(Q

∗
t )
)

≤ 8(4L)(T +1)/2
√

max
t

sup
{Qt ,Qt+1}

|E (Qt ,Qt+1, SC) − E (Qt ,Qt+1, ŜC)|(22)

+ 8(4L)(T +1)/2
√

max
t

sup
{Qt ,Qt+1,K}

|E (Qt ,Qt+1,K) − En(Qt ,Qt+1,K)|(23)

+ 2
T∑

t=1

Lt/2
T∑

j=t

2j−tLj/2
√

2
(

En(Q̂t , Q̂t+1, ŜC) − En(Q
∗
t , Q̂t+1, ŜC)

)
+,

where we used the fact that
∑T

t=1 Lt/2∑T
j=t (4L)(j−t)/2 ≤ 2(4L)(T +1)/2 for L ≥ 2

and the fact that
√

x + y ≤ √
x + √

y.
In the following, we replace the bounds in (22) and (23) with exponential

bounds. We start with (22). Note that (Rt +maxat+1 Qt+1(St+1,At , at+1)−Qt)
2 ≤

M1 = (2M + τ)2 for all Qt,Qt+1. Hence,

sup
{Qt ,Qt+1}

|E (Qt ,QT +1, SC) − E (Qt ,QT +1, ŜC)| ≤ M1K
−2
minE[|SC − ŜC |]
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and thus

P
(
(4L)T/2+2

√
max

t
sup

{Qt ,Qt+1}
|E (Qt ,QT +1, SC) − E (Qt ,QT +1, ŜC)| > ε

)

≤
T∑

t=1

P
(
(4L)T/2+2

√
sup

{Qt ,Qt+1}
|E (Qt ,QT +1, SC) − E (Qt ,QT +1, ŜC)| > ε

)
(24)

≤ T P
(
(4L)T/2+2

√
M1K

−2
min‖S − ŜC‖∞ > ε

)
,

where the first equality follows from the fact that

P
(

max
t∈{1,...,T }Xt > c

)
≤

T∑
t=1

P(Xt > c).(25)

Using a Dvoretzky–Kiefer–Wolfowitz-type inequality for the Kaplan–Meier es-
timator [Bitouzé, Laurent and Massart (1999), Theorem 2], we have

P(‖SC − ŜC‖∞ > ε′)
(26)

< 5
2 exp

{−2n(1 − Gmin)
2(ε′)2 + Co

√
n(1 − Gmin)ε

′},
where Co is some universal constant and Gmin is a lower bound on the survival
function at τ (see Section 3).

Write ε = (4L)(T +1)/2
√

M1K
−2
minε

′, and thus ε′ = M−1
1 K2

minε
2(4L)−(T +1).

Note that 8(4L)T/2+2
√

M1K
−2
min‖SC − ŜC‖∞ > 8ε iff ‖SC − ŜC‖∞ > ε′. Apply-

ing the inequality (26) to the right-hand side of (24) and substituting for ε, we
obtain

P
(
8(4L)(T +1)/2

√
sup

t
sup

{Qt ,Qt+1}
|E (Qt ,QT +1, SC) − E (Qt ,QT +1, ŜC)| > 8ε

)

≤ 5T

2
exp

{−2n(1 − Gmin)
2M−2

1 K4
minε

4(4L)−2(T +1)

(27)
+ Co

√
n(1 − Gmin)M

−1
1 K2

minε
2(4L)−(T +1)}

≡ 5T

2
exp

{−nC1ε
4 + √

nC2ε
2},

where C1 = 2(1 − Gmin)
2M−2

1 K4
min(4L)−2(T +1) and C2 = Co(1 − Gmin)M

−1
1 ×

K2
min(4L)−(T +1).
We now find an exponential bound for (23). We follow the same line of ar-

guments, replacing the Dvoretzky–Kiefer–Wolfowitz-type inequality used in the
previous proof with the uniform entropy bound. Recall that by assumption, the
uniform entropy bound (14) holds for the spaces Qt and thus also for the spaces
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Qt ∪ Q∗
t . Hence, by Lemma A.6, and (25), for W ′ = max{W,1} and for all α > 0,

we have

P
(
8(4L)(T +1)/2

√
max

t
sup

{Qt ,Qt+1,K}
|E (Qt ,Qt+1,K) − En(Qt ,Qt+1,K)| > 8ε

)

≤ T Ca exp
{
Cb

√
n(4L)−(T +1)/2ε2(U+α) − 2n(4L)−(T +1)ε4}(28)

≡ T C3 exp
{
C4

√
nε2(U+α) − 2nε4},

where C3 = Ca exp{(4L)−(T +1)}, C4 = Cb(4L)(T +1)/2 and U = W ′(6−W ′)/(2+
W ′).

Take n large enough such that the right-hand sides of (27) and (28) are less
than η/2 and substitute in (22) and (23), respectively, and the result of the theorem
follows. �

7. Simulation study. We simulate a randomized clinical trial with flexible
number of stages to examine the performance of the proposed censored-Q-learning
algorithm. We compare the estimated individualized treatment policy to various
possible fixed treatments. We also compare the given expected survival times of
different censoring levels. Finally, we test the effect of ignoring the censoring.

This section is organized as follows. We first describe the setting of the simu-
lated clinical trial (Section 7.1). We then describe the implementation of the simu-
lation (Section 7.2). The simulation results appear in Section 7.3.

7.1. Simulated clinical trial. We consider the following hypothetical cancer
trial. The duration of the trial is 3 years. The state of each patient at each time-
point u ∈ [0,3] includes the tumor size [0 ≤ T (u) ≤ 1], and the wellness [0.25 ≤
W(u) ≤ 1]. The time-point uo such that W(uo) < 0.25 is considered the failure
time. We define the critical tumor size to be 1. At time ui such that T (ui) = 1, we
begin a treatment. We call the duration [ui, ui+1] the ith stage. Note that different
patients may have different numbers of stages.

At each time-point ui , we consider two optional treatments: a more aggressive
treatment (A), and a less aggressive treatment (B). The immediate effects of treat-
ment A are

W(u+
i |A) = W(ui) − 0.5,

(29)
T (u+

i |A) = T (ui)/(10W(ui)),

that is, the wellness at time ui after treatment A [denoted by W(u+
i |A)] decreases

by 0.5 wellness units. The tumor size at time ui after treatment A [denoted by
T (u+

i |A)] decreases by a factor of 1/(10W(ui)) which reflects a greater decrease
of tumor size for a larger wellness value. Similarly, the immediate effects of the
less aggressive treatment B are

W(u+
i |B) = W(ui) − 0.25,

(30)
T (u+

i |B) = T (ui)/(4W(ui)),
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which, in comparison to the treatment A, has lower effect on the tumor size but
also lower decrease of wellness. The wellness and tumor size at time ui < u ≤ ui+1
follow the dynamics

W(u) = W(u+
i ) + (

1 − W(u+
i )
)(

1 − 2−(u−ui)/2),
(31)

T (u) = T (u+
i ) + 4T (u+

i )(u − ui)/3.

The stage that begins at time-point ui ends when either T (ui+1) = 1 for some
ui < ui+1 < 3 or when a failure event occurs or at the end of the trial when u = 3.
During this stage, we model the survival function of the patient as an exponential
distribution with mean 3(W(u+

i ) + 2)/20M(u+
i ).

The trajectories are constructed as follows. We assume that patients are recruited
to the trial when their tumor size reaches the critical size, that is, for all patients
T (0) = 1, and hence u1 = 0 is the beginning of the first stage. The wellness at
the beginning of the first stage, W(0), is uniformly distributed on the segment
[0.5,1]. With equal probability, a treatment a1 ∈ {A,B} is chosen. If no failure
event occurs during the first stage, the first stage ends when either T (u2) = 1 for
some 0 = u1 < u2 < 3 or at the end of the trial. If the first stage ends before the end
of the trial, then with equal probability another treatment a2 ∈ {A,B} is chosen.
The trial continues in the same way until either a failure time occurs or the trial
ends. We note that the actual number of stages for each patient is a random function
of the initial state and the treatments chosen during the trial. Due to the choices of
model parameters, the number of stages in the above dynamics is at least one and
not more than three.

For each trajectory, a censoring variable C is uniformly drawn from the segment
[0, c] for some constant c > 3, where the choice of the constant c determines the
expected percentage of censoring. When an event is censored, the trajectory (i.e.,
the states and treatments) up to the point of censoring and the censoring time are
given.

7.2. Simulation implementation. The Q-learning algorithm presented in Sec-
tion 5 was implemented in the Matlab environment. For the implementation we
used the Spider library for Matlab.2 The Matlab code, as well as the data sets, are
available online [see Goldberg and Kosorok (2012)].

The algorithm is implemented as follows. The input for the algorithm is a set
of trajectories obtained according to the dynamics described in Section 7.1. First,
the Kaplan–Meier estimator for the survival function of the censoring variable
is computed from the given trajectories. Then, we set Q̂4 ≡ 0 and compute Q̂i ,
i = 3,2,1 backwardly, as the minimizer of (13) over all the functions Qi(si, ai)

2The Spider library for Matlab can be downloaded from http://www.kyb.tuebingen.mpg.de/bs/
people/spider/.

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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which are linear in the first variable. The policy π̂ is computed from the functions
{Q̂1, Q̂2, Q̂3} using (4).

We tested the policy π̂ = (π̂1, π̂2, π̂3) by constructing 1000 new trajectories,
in which the choice of treatment at each stage is according to π̂ . One thou-
sand initial wellness values were drawn uniformly from the segment [0.5,1]. For
each wellness value, a treatment was chosen from the set {A,B}, according to
the policy π̂1. The immediate effect of the treatment was computed according to
(29)–(30). A failure time was drawn from the exponential distribution with mean
as described in the previous section; denote this time by f1. The time that the tu-
mor reached the critical size was computed according to the dynamics (31), and
we denote this time by u2. If both f1 and u2 are greater than 3 (the end of the
trial), then the trajectory was ended after the first stage and the survival time for
this patient was given as 3. Otherwise, if f1 ≤ u2, the trajectory was ended after
the first stage and the survival time for this patient was given as f1. If u2 < f1,
then at time u2, a second treatment is chosen according to the policy π̂2. The com-
putation of the remainder of the trajectory is done similarly. The expected value of
the policy π̂ is estimated by the mean of the survival times of all 1000 patients.

We compared the results of the algorithm to all fixed treatment sequences
A1A2A3, where Ai ∈ {A,B}. The expected values of the fixed treatment sequences
were computed explicitly. We also compared the results to that of the optimal pol-
icy, which was also computed explicitly.

7.3. Simulation and results. First, we would like to examine the influence of
the sample size and censoring percentage on the algorithm’s performance. We sim-
ulated data sets of trajectories of sizes 40,80,120, . . . ,400. For each set of trajec-
tories we considered four levels of censoring: no censoring, 10% censoring, 20%
censoring, and 30% censoring. Higher levels of (uniform) censoring were not con-
sidered since this requires drawing the censoring variable from a segment [0, c]
for c < 3, which is in contrast to the assumption on the censoring variable (see
the beginning of Section 3). A policy π̂ was computed for each combination of
data set size and censoring percentage. The policy π̂ was evaluated on a data set
of size 1000, as described in Section 7.2. We repeated the simulation 400 times for
each combination of data set size and censoring percentage. The mean values of
the estimated mean survival time are presented in Figure 1. A comparison between
the different fixed policies, policies obtained by the algorithm for different censor-
ing levels, and the optimal policy appears in Figure 2. As can be seen from both
figures, the individualized treatment policies obtained by the algorithm are better
than any fixed policy. Moreover, as the number of observed trajectories increases,
the expected survival time increases, for all censoring percentages.

We also examined the influence of the sample size and censoring percentage
on the distribution of estimated expected survival time. We simulated data sets
of sizes 50,100,200, . . . ,3200 and we considered the four levels of censoring as
before. As can be seen from Figure 3, the variance decreases when the sample size
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FIG. 1. The solid black curve, dashed blue curve, dot-dashed red curve, and dotted green curve
correspond to the expected survival time (in months) for different data set sizes with no censoring,
10% censoring, 20% censoring and 30% censoring, respectively. The expected survival time was
computed as the mean of 400 repetitions of the simulation. The black straight line, blue dashed
straight line, and the dot-dashed red straight line correspond to the expected survival times of the
optimal policy, the best fixed treatment policy, and the average of the fixed treatment policies, respec-
tively.

becomes larger. Also, the variance is smaller for smaller percentage of censoring,
although the difference is modest.

Note that the maximum expected survival times obtained by the algorithm are
a little bit above 17 months (see both Figures 1 and 2), while the value of the op-
timal policy is 17.85. The difference follows from the fact that the Q-functions
estimated by the algorithm are linear while the optimal Q-function is not (see Fig-

FIG. 2. The eight light gray bars represent the expected survival times for different fixed treatments
where A1A2A3 indicates the policy that chooses Ai at the ith stage. The four dark gray bars repre-
sent the expected survival times for policy π̂ obtained by the algorithm with no censoring, 10% cen-
soring, 20% censoring and 30% censoring. The white bar is the expected value of the optimal policy.
The values of the fixed treatments and the optimal policy were computed analytically while the values
of π̂ are the means of 400 repetitions of the simulation on 200 trajectories.
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FIG. 3. Distribution of expected survival time (in months) for different data set sizes, with no cen-
soring, 10% censoring, 20% censoring and 30% censoring. Each boxplot is based on 400 repetitions
of the simulation for each given data set size and censoring percentage.

ure 4). It is worth mentioning that even in the class of linear functions on which
the optimization is done there are Q-functions that yield higher values. This fact
is often referred to as the “mismatch” that follows from the fact that optimization
of the value function is not performed explicitly, but rather through optimization
of the Q-functions [see Tsitsiklis and van Roy (1996), Murphy (2005b), for more
details].

FIG. 4. The Q-functions computed by the proposed algorithm for a size-200 trajectory set. The left
panel presents both the optimal Q-function (solid red curve) and the estimated Q-function (dashed
blue curve) for different wellness levels and when treatment A is chosen. Similarly, the middle panel
shows both Q-functions when treatment B is chosen. The right panel shows the optimal value function
(solid red curve) and the estimated value function (dashed blue curve).
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FIG. 5. The number of required treatments for patients that follow the policy π̂ , when no failure
event occurs during the trial. The policy π̂ was estimated from 100 trajectories. The results were
computed using a size 100,000 testing set.

Figure 5 shows the number of treatments that were needed for patients that fol-
lowed the policy π̂ and did not have a failure event during the trial. As can be seen
from this figure, patients with high initial wellness need only one treatment. On
the other hand, patients with very low initial wellness value need three treatments.

Finally, we checked the effect of ignoring the censoring on the expected sur-
vival time. We considered two ways of ignoring the censoring. First, we consider
an algorithm that ignores the weights in the minimization problem (13). This is
equivalent to deleting the last stage from each trajectory that was censored. We
also consider an algorithm that deletes all censored trajectories. In the example
presented in Figures 1–5, where uniform censoring takes place, there is a rela-
tively moderate difference between the expected survival time for the proposed
algorithm and the other two algorithms that ignore censoring. However, when the
censoring variable follows the exponential distribution (leaving fewer observations
with longer survival times), the bias from ignoring the censored trajectories is sub-
stantial, as can be seen in Figure 6.

8. Summary. We studied a framework for multistage decision problems with
flexible number of stages in which the rewards are survival times and are subject
to censoring. We proposed a novel Q-learning algorithm adjusted for censoring.
We derived the generalization error properties of the algorithm and demonstrated
the algorithm performance using simulations.

The work as presented is applicable to real-world multistage decision problems
with censoring. However, two main issues should be noted. First, we assumed
that censoring is independent of observed trajectories. It would be useful to relax
this assumption and allow censoring to depend on the covariates. Developing an
algorithm that works under this relaxed assumption is a challenge. Second, we have
used the inverse-probability-of-censoring weighting to correct the bias induced by



CENSORED Q-LEARNING 555

FIG. 6. The solid blue curve, dashed black curve, and dot-dashed red curve correspond to the
expected survival times (in months) for different data set sizes, for the proposed algorithm, the algo-
rithm that ignores the weights, and the algorithm that deletes all censored trajectories, respectively.
The censoring variable follows the exponential distribution with 50% censoring on average. The
expected survival time was computed as the mean of 400 repetitions of the simulation.

censoring. When the percentage of censored trajectories is large, the algorithm
may be inefficient. Finding a more efficient algorithm is also an open question.

APPENDIX: SUPPLEMENTARY PROOFS

The main goal of this section is to provide an exponential bound on the dif-
ference between the empirical expectation En(Qt ,Qt+1,K) and the true expecta-
tion E (Qt ,Qt+1,K) as a function of the uniform entropy of the class of functions
[see (20)]. This result appears in Lemma A.6. Similar results for Glivenko–Cantelli
classes, Donsker classes and bounded uniform entropy integral (BUEI) classes can
be found in van der Vaart and Wellner (1996) and Kosorok (2008).

LEMMA A.1. Let F1, . . . , Fk be k sets of functions. Assume that for every
j ∈ {1, . . . , k}, supf ∈Fj

‖f ‖∞ ≤ Mj . Let φ : Rk �→ R satisfy

|φ ◦ f (x) − φ ◦ g(x)|2 ≤ c2
k∑

j=1

(
fj (x) − gj (x)

)2(32)

for every f = (f1, . . . , fk), g = (g1, . . . , gk) ∈ F1 × · · · × Fk , where 0 < c <

∞. Let P be a finitely discrete probability measure. Define φ ◦ (F1, . . . , Fk) =
{φ(f1, . . . , fk) : (f1, . . . , fk) ∈ F1 × · · · × Fk}. Then

N

(
εc

k∑
j=1

Mj,φ ◦ (F1, . . . , Fk),L2(P )

)
≤

k∏
j=1

N(εMj , Fj ,L2(P )).(33)

PROOF. The proof is similar to the proof of Kosorok (2008), Lemma 9.13.
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Let f,g ∈ F1 × · · · × Fk satisfy ‖fj − gj‖P,2 < εMj for 1 ≤ j ≤ k. Note that

‖φ ◦ f − φ ◦ g‖P,2 ≤ c

√√√√√ k∑
j=1

‖fj − gj‖2
P,2 ≤ cε

k∑
j=1

Mj,

which implies (33). �

The following two corollaries are a direct result of Lemma A.1:

COROLLARY A.2. Let K = {K :K is monotone decreasing K : [0, τ ] �→
[Kmin,1]}. Define K−1 = {1/K :K ∈ K}. Let P be a finitely discrete probability
measure. Then

N(εK−1
min, K−1,L2(P )) ≤ N(ε, K,L2(P )).

PROOF. Note that inequality (32) holds for k = 1 and c = K−1
min, and the results

follow from Lemma A.1. �

COROLLARY A.3. Let Q ⊂ {Q(x,a) :x ∈ R
p, a ∈ {1, . . . , k},‖Q‖∞ ≤ M}.

Define Qmax = {maxa Q(x, a) :Q ∈ Q}. Let P be a finitely discrete probability
measure. Then

N(εkM, Qmax,L2(P )) ≤ N(εM, Q,L2(P ))k.

PROOF. Since (maxa h(a) − maxa h′(a))2 ≤ maxa(h(a) − h′(a))2, inequality
(32) holds for c = 1. The results now follow from Lemma A.1. �

We also need the following lemma and its corollary:

LEMMA A.4. Let F1 and F2 be two function classes uniformly bounded in
absolute value by M1 and M2, respectively. Define F1 · F2 = {f1 · f2 :fi ∈ Fi}.
Then

N
(
2εM1M2, F1 · F2,L2(P )

)≤ N(εM1, F1,L2(P )) · N(εM2, F2,L2(P )).

PROOF. Let ‖fj − gj‖P,2 ≤ εMj where fj , gj ∈ Fj , j = {1,2}. Note that

‖f1 · f2 − g1 · g2‖P,2 ≤ ‖f1(f2 − g2)‖P,2 + ‖g2(f1 − g1)‖P,2

≤ M1‖f2 − g2‖P,2 + M2‖f1 − g1‖P,2 ≤ 2M1M2ε.

The result follows. �

COROLLARY A.5. Let G be a function class uniformly bounded in absolute
value by M . Define G 2 = {g2 :g ∈ G}. Then

N(2εM2, G 2,L2(P )) ≤ N(εM, G,L2(P ))2.
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PROOF. Apply Lemma A.4 with F1 = F2 = G . �

We use the previous results to prove the following lemma:

LEMMA A.6. Let

Qt ⊂ {
Qt(x, a) :x ∈ R

pt , a ∈ {1, . . . , k},‖Qt‖∞ ≤ M
}
,

K = {K :K is monotone decreasingK : [0, τ ] �→ [Kmin,1]},
R =

{
1

K(t)

(
r + max

a
Qt+1(x, a) − Qt(x, a)

)2
: r ∈ [0, τ ],

Qt ∈ Qt , Qt+1 ∈ Qt+1,K ∈ K
}
,

where t ∈ 1, . . . , T and QT +1 = {0}. Assume that the uniform entropy bound for
each of the spaces Qt (14) holds. Then:

(1) There are constants D′ and W ′ such that logN(ε, R,L2(P )) ≤ D′(1
ε
)W

′
,

where W ′ = max{W,1}.
(2) For every α > 0 and t > 0,

P ∗( sup
f ∈R

‖Ef − Enf ‖ > t
)

≤ Ca exp
{
Cb

√
ntU+α − 2nt2},

where U = W ′(6 − W ′)/(2 + W ′), the constants Ca and Cb depend only on D′,
W ′ and α, and where P ∗ is outer probability.

PROOF. Let W ′ = max{W,1}. Note that uniform entropy bound (14) for
the spaces Qt holds also for W ′. Note that by Corollary A.3, logN(εM, Qmax

t ,
L2(P )) ≤ DkW ′+1(1

ε
)W

′
. Since (x + y + z)2 < 3(x2 + y2 + z2), we can apply

Lemma A.1 to the class

G =
{
r + max

a
Qt+1(x, a) − Qt(x, a) : r ∈ [0, τ ],Qt ∈ Qt ,Qt+1 ∈ Qt+1

}

with c = √
3 and φ(x, y, z) = x + y + z to obtain logN(

√
3ε(2M + τ), G ,

L2(P )) ≤ (τ + DkW ′+1 + D)ε−W ′
, where we used the fact that the segment [0, τ ]

can be covered by no more than τ/ε + 1 balls of radius ε and that log(1 + τ/ε) ≤
τ/ε. By Corollary A.5, we have logN(2 · 3ε(2M + τ)2, G 2,L2(P )) ≤ 2(τ +
DkW ′+1 + D)(1

ε
)W

′
or, equivalently,

logN(εM1, G 2,L2(P )) ≤ D1

(
1

ε

)W ′
,

where M1 = (2M + τ)2 is a uniform bound for G 2, and D1 = 2(τ + DkW ′+1 +
D)6−W ′

.
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By Kosorok [(2008), Lemma 9.11], logN(ε, K,L2(P )) ≤ D2ε
−1 for some uni-

versal constant D2 which is independent of the choice of probability measure P .
By Corollary A.2,

logN(εK−1
min, K−1,L2(P )) ≤ D2

(
1

ε

)
.

Applying Lemma A.4 to R = K−1 · G 2, we obtain

logN(εK−1
minM

′, R,L2(P )) ≤ (D1 + D2)

(
1

ε

)W ′
.

Since this inequality holds for every finitely discrete probability measure P , asser-
tion (1) is proved. The second assertion follows from van der Vaart and Wellner
(1996), Theorem 2.14.10. �
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SUPPLEMENTARY MATERIAL

Code and data sets (DOI: 10.1214/12-AOS968SUPP; .zip). Please read the file
README.pdf for details on the files in this folder.
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