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In this paper we introduce a general theory for nonlinear sufficient di-
mension reduction, and explore its ramifications and scope. This theory sub-
sumes recent work employing reproducing kernel Hilbert spaces, and reveals
many parallels between linear and nonlinear sufficient dimension reduction.
Using these parallels we analyze the properties of existing methods and de-
velop new ones. We begin by characterizing dimension reduction at the gen-
eral level of σ -fields and proceed to that of classes of functions, leading to the
notions of sufficient, complete and central dimension reduction classes. We
show that, when it exists, the complete and sufficient class coincides with the
central class, and can be unbiasedly and exhaustively estimated by a general-
ized sliced inverse regression estimator (GSIR). When completeness does not
hold, this estimator captures only part of the central class. However, in these
cases we show that a generalized sliced average variance estimator (GSAVE)
can capture a larger portion of the class. Both estimators require no numeri-
cal optimization because they can be computed by spectral decomposition of
linear operators. Finally, we compare our estimators with existing methods
by simulation and on actual data sets.

1. Introduction. In this paper we propose a general theory for nonlinear suf-
ficient dimension reduction (SDR), develop novel estimators and investigate their
properties under this theory. Along with these developments we also introduce a
new conditional variance operator, which can potentially be used to generalize all
second-order dimension reduction methods to the nonlinear case.

In its classical form, linear SDR seeks a low-dimensional linear predictor that
captures in full a regression relationship. Imagining a regression setting that com-
prises multiple predictor variables and multiple responses, let X and Y be random
vectors of dimension p and q . If there is a matrix β ∈ Rp×d with d < p such that

Y ⊥⊥ X|βTX,(1)

then the subspace spanned by the columns of β is called a sufficient dimension
reduction (SDR) subspace. Under mild conditions, the intersection of all such sub-
spaces still satisfies (1), and is called the central subspace, denoted by SY |X; see
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Li (1991, 1992), Li and Duan (1989), Duan and Li (1991), Cook and Weisberg
(1991), Cook (1994, 1998b). A general condition for the existence of the central
subspace is given by Yin, Li and Cook (2008).

Several recent papers have combined sufficient dimension reduction and ker-
nels; see Akaho (2001), Bach and Jordan (2002), Fukumizu, Bach and Gretton
(2007), Wu (2008), Wu, Liang and Mukherjee (2008), Hsing and Ren (2009), Yeh,
Huang and Lee (2009), Zhu and Li (2011) and Li, Artemiou and Li (2011). This
proliferation of work, in addition to producing versatile methods for extracting
nonlinear sufficient predictors, points toward a general synthesis between the no-
tions of sufficiency at the core of SDR and the ability to encompass nonlinearity
afforded by kernel mappings. To achieve this synthesis, explore its many ramifica-
tions and broad scope and develop new estimators based on it, are the goals of this
paper.

Specifically, we articulate a general formulation that comprises both linear and
nonlinear SDR, and parallels the basic theoretical developments pioneered by Li
(1991, 1992) and Cook (1994, 1998a, 1998b). This formulation allows us to study
linear and nonlinear SDR comparatively and, somewhat surprisingly, to relax some
stringent conditions required by linear SDR. For example, a linear conditional
mean [Li (1991), Cook (1998b)] is no longer needed for unbiasedness, and the
sufficient conditions for existence and uniqueness of the central subspace are far
more general and transparent. Finally, our general formulation links linear and
nonlinear SDR to the classical notions sufficiency, completeness and minimal suf-
ficiency, which brings insights and great clarity to the SDR theory.

Our developments and the sections of this paper, can be summarized as fol-
lows. In Section 2, we build upon the ideas of Cook (2007) and Li, Artemiou
and Li (2011) to define an SDR σ -field as a sub σ -field G of σ(X) (the σ -field
generated by X) such that Y ⊥⊥ X|G, and the corresponding SDR class as the set
of all square-integrable, G -measurable functions. Under very mild conditions—
much milder than the corresponding conditions for linear SDR [Yin, Li and Cook
(2008)]—we show that there exists a unique minimal σ -field GY |X that satisfies
Y ⊥⊥ X|GY |X , which we call the central σ -field. The set of all GY |X-measurable,
square-integrable functions is named the central class.

In Section 3, we provide two additional definitions that generalize concepts in
Cook (1998b), Li, Zha and Chiaromonte (2005) and Li, Artemiou and Li (2011):
a class of functions is unbiased if its members are GY |X-measurable, and exhaus-
tive if they generate GY |X . Next, we show that the special class

L2(PX) � [
L2(PX) � L2(PY )

]
(2)

is unbiased, where L2(PX) and L2(PY ) are the spaces of square-integrable func-
tions of X and Y . For reasons detailed in Section 3, we call this class the regression
class.
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In Section 4, we introduce the complete dimension reduction class: if G ⊆ σ(X)

is a σ -field and for each G -measurable f ∈ L2(PX) we have

E
(
f (X)|Y ) = 0 almost surely ⇒ f (X) = 0 almost surely,

then we say that the class of G -measurable functions in L2(PX) is complete. We
prove that when a complete sufficient dimension reduction (CSDR) class exists
it is unique and coincides with the central class. We further show that the CSDR
class coincides with the regression class—which is therefore not just unbiased, but
also exhaustive.

In Section 5 we establish a critical relationship between the regression class
and a covariance operator linking X and Y and, based on this, we generalize
sliced inverse regression [SIR; Li (1991)] to a method (GSIR) that can recover
the regression class—and hence is unbiased and exhaustive under completeness.
In Section 6, we consider the case where the central class is not complete, so that
GSIR is unbiased but no longer exhaustive. By introducing a novel conditional
variance operator, we generalize sliced average variance estimation [SAVE, Cook
and Weisberg (1991)] to a method (GSAVE) that can recover a class larger than
the regression class. Here, the situation is similar to that in the linear SDR setting,
where it is well known that

SIR subspace ⊆ SAVE subspace ⊆ SY |X;(3)

see Cook and Critchley (2000), Ye and Weiss (2003), Li, Zha and Chiaromonte
(2005) and Li and Wang (2007).

In Section 7 we develop algorithms for the sample versions of GSIR and
GSAVE, and a cross-validation algorithm to determine regularizing parameters.
In Section 8 we compare GSIR and GSAVE with some existing methods by simu-
lation and on actual data sets. Section 9 contains some concluding remarks. Some
highly technical developments are provided in the supplementary material [Lee, Li
and Chiaromonte (2013)].

2. Sufficient dimension reduction σ -fields and classes. Let (�, F ,P ) be
a probability space and (�X, FX), (�Y , FY ) and (�XY , FXY ) be measurable
spaces. For convenience, assume that �XY = �X × �Y and FXY = FX × FY .
Let X, Y and (X,Y ) be random elements that take values in �X , �Y and �XY ,
with distributions PX , PY , PXY , which are dominated by σ -finite measures. Let

σ(X) = X−1(FX), σ (Y ) = Y−1(FY ), σ (X,Y ) = (X,Y )−1(FXY ),

and finally let PY |X(·|·) : FY × �X → R be the conditional distribution of Y

given X.

DEFINITION 1. A sub σ -field G of σ(X) is an SDR σ -field for Y versus X if
it satisfies

Y ⊥⊥ X|G,(4)

that is, if Y and X are independent given G .
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This definition is sufficiently general to accommodate the two cases of nonlinear
sufficient dimension reduction that interest us the most. The first case is when
�X = Rp and �Y = Rq for some positive integers p and q , and FX , FY and FXY

are Borel σ -fields generated by the open sets in Rp , Rq and Rp+q . Clearly, in this
case, the conditional independence (4) is a generalization of (1) for linear SDR: if
we take G = σ(βTX), then (4) reduces to (1).

The second case is when X or Y , or both of them, are random functions. In
this case Definition 1 is a generalization of the linear SDR for functional data
introduced by Ferré and Yao (2003), and Hsing and Ren (2009). Specifically, let
[a, b] be a closed interval, λ the Lebesgue measure and L2(λ) the class of functions
on [a, b] that are square integrable with respect to λ. Let �X = L2(λ) and �Y = R.
In this case, each X(ω) is a function in L2(λ), which, depending on applications,
could be, say, a growth curve or the fluctuation of a stock price. Let h1, . . . , hd

be functions in L2(λ). Ferré and Yao (2003) considered the following functional
dimension reduction problem:

Y ⊥⊥ X|〈X,h1〉L2(λ), . . . , 〈X,hd〉L2(λ).(5)

This generalizes linear SDR to the infinite-dimensional case, but not to the non-
linear case, because 〈X,h1〉L2(λ), . . . , 〈X,hd〉L2(λ) are linear in X. Hsing and Ren
(2009) considered a more general setting where the sample paths {Xt(ω) : t ∈ J }
need not lie within L2(λ). Still, their generalization is inherently linear in the same
sense that problem (5) is linear. In contrast, our formulation in (4) allows an ar-
bitrary sub σ -field of σ(X), which need not be generated by linear functionals.
Interestingly, as we will see Section 5, it is the relaxation of linearity that allows
us to remove a restrictive linear conditional mean assumption used both in Ferré
and Yao (2003) (Theorem 2.1), and in Hsing and Ren (2009), assumption (IR2).

The notion of sufficiency underlying SDR, as defined by (1) and (4), is different
from the classical notion of sufficiency because G is allowed to depend on any
parameter in the joint distribution of PXY . For example, G = σ(βTX) depends
on the parameter β [or rather, the meta-parameter span(β)] which characterizes
the conditional distribution of Y |X. Nevertheless, both notions imply a reduction,
or simplification, in the representation of a stochastic mechanism—the SDR one
through a newly constructed predictor, and the classical one through a statistic.
Indeed, it is partly by exploring and exploiting this similarity that we developed
our theory of nonlinear SDR.

Obviously there are many sub σ -fields of X that satisfy (4), starting with σ(X)

itself—which induces no reduction. For maximal dimension reduction we seek
the smallest such σ -field. As in the case of classical sufficiency, the minimal SDR
σ -field does not universally exist, but exists under very mild assumptions. The next
theorem gives the sufficient condition for the minimal SDR σ -field to uniquely
exist. The proof echoes Bahadur (1954), which established the existence of the
minimal sufficient σ -field in the classical setting.
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THEOREM 1. Suppose that the family of probability measures {PX|Y (·|y) :y ∈
�Y } is dominated by a σ -finite measure. Then there is a unique sub σ -field G∗ of
σ(X) such that:

(1) Y ⊥⊥ X|G∗;
(2) if G is a sub σ -field of σ(X) such that Y ⊥⊥ X|G , then G∗ ⊆ G .

PROOF. Let �y = PX|Y (·|y) and P = {�y :y ∈ �Y }. Since P is dominated
by a σ -finite measure, it contains a countable subset Q = {Qk :k = 1,2, . . .} such
that Q ≡ P, where ≡ means two families of measures dominating each other. Let
{ck :k = 1,2, . . .} be a sequence of positive numbers that sum to 1, and let Q0 =∑∞

k=1 ckQk . Then Q0 is a probability measure on �X such that {Q0} ≡ Q ≡ P.
Let πy = d�y/dQ0 and G be a sub σ -field of σ(X). We claim that the following
statements are equivalent:

(1) Y ⊥⊥ X|G ;
(2) πy is essentially measurable with respect to G for all y ∈ �Y modulo Q0.

PROOF OF 1 ⇒ 2. Let B ∈ FX . Then

EQ0

(
πy(X)IB(X)

) = E�y

(
IB(X)

) = E�y

[
E�y

(
IB(X)|G

)]
= EQ0

[
E�y

(
IB(X)|G

)
πy(X)

]
.

By 1, �y(B|G) is the same for all y ∈ �Y . Hence �y(B|G) = Qk(B|G) for all k,
which implies �y(B|G) = Q0(B|G). Hence we can rewrite the right-hand side of
the above equalities as

EQ0

[
EQ0

(
IB(X)|G

)
πy(X)

] = EQ0

[
IB(X)EQ0

(
πy(X)|G

)]
.

Thus the following equality holds for all B ∈ FX:

EQ0

(
πy(X)IB(X)

) = EQ0

[
IB(X)EQ0

(
πy(X)|G

)]
,

which implies πy(X) = EQ0(πy(X)|G) a.s. Q0.
PROOF OF 2 ⇒ 1. For any A ∈ G ,

E�y

[
EQ0

(
IB(X)|G

)
IA(X)

] = EQ0

[
EQ0

(
IB(X)|G

)
IA(X)πy(X)

]
= EQ0

[
IB(X)IA(X)EQ0

(
πy(X)|G

)]
.

By 2, EQ0(πy(X)|G) = πy(X). Hence the right-hand side becomes

EQ0

[
IB(X)IA(X)πy(X)

] = E�y

[
IB(X)IA(X)

] = �y(X ∈ A ∩ B).

Thus EQ0(IB(X)|G) = Q0(B|G) is the conditional probability �y(B|G), which
means �y(B|G) does not depend on y. That is, 1 holds.

Now let G∗ be the intersection of all SDR σ -fields G . Then G∗ is itself a σ -field.
Moreover, since πy is essentially measurable with respect to all SDR σ -fields for
all y ∈ �Y , it is also essentially measurable with respect to G∗ for all y ∈ �Y .
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Consequently, G∗ is itself an SDR σ -field, which implies that it is also the smallest
SDR σ -field. If G∗∗ is another smallest SDR σ -field, then we know G∗ ⊆ G∗∗ and
G∗∗ ⊆ G∗. Thus G∗ is unique. �

We can now naturally introduce the following definition:

DEFINITION 2. Suppose that the class of probability measures {PX|Y (·|y) :y ∈
�Y } on �X is dominated by a σ -finite measure. Then we call the σ -field G∗ in
Theorem 1 the central σ -field for Y versus X, and denote it by GY |X .

Notably, this set up characterizes dimension reduction solely in terms of con-
ditional independence. However, explicitly turning to functions and introducing
an additional mild assumption of square integrability are very consequential for
further development because they allow us to work with structures such as orthog-
onality and projection.

Let L2(PXY ), L2(PX) and L2(PY ) be the spaces of functions defined on �XY ,
�X and �Y that are square-integrable with respect to PXY , PX and PY , respec-
tively. Since constants are irrelevant for dimension reduction, we assume through-
out that all functions in L2(PX), L2(PY ) and L2(PXY ) have mean 0. Given a sub
σ -field G of σ(X,Y ), we use MG to denote the class of all functions f in L2(PXY )

such that f (X) is G -measurable. If G is generated by a random vector, say X, then
we use MX to abbreviate Mσ(X). It can be easily shown that, for any G , MG is a
linear subspace of L2(PXY ).

DEFINITION 3. Let G be an SDR σ -field and GY |X be the central σ -field. Then
MG is called an SDR class, and MGY |X is called the central class. The latter class
is denoted by SY |X .

The central class, comprising square-integrable functions that are measurable
with respect to the central σ -field GY |X , represents our generalization of the central
space SY |X defined in linear SDR; see the Introduction.

3. Unbiasedness and exhaustiveness. In linear SDR, the goal is to find a set
of vectors that span SY |X . If a matrix γ satisfies span(γ ) ⊆ SY |X , we say that γ is
unbiased [Cook (1998b)]. If span(γ ) = SY |X , we say that γ is exhaustive [Li, Zha
and Chiaromonte (2005)]. Note that when span(γ ) ⊆ SY |X , γ TX is a linear func-
tion of βTX, where β is any matrix such that span(β) = SY |X; if span(γ ) = SY |X ,
then γ TX is an injective linear transformation of βTX. In the nonlinear setting,
we follow the same logic but remove the linear requirement. Part of the following
definition was given in Li, Artemiou and Li (2011).

DEFINITION 4. A class of functions in L2(PX) is unbiased for SY |X if its
members are GY |X-measurable, and exhaustive for SY |X if its members generate
GY |X .
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Next, we look into what type of functions are unbiased. The lemma below pro-
vides a characterization of the orthogonal complement of MG that will be used
many times in the subsequent development. Its proof is essentially the definition
of the conditional expectation, and is omitted.

LEMMA 1. Suppose U is a random element defined on (�, F ), G is a sub
σ -field of σ(U) and f ∈ L2(PU). Then f is orthogonal to MG (f ⊥ MG ) if and
only if E[f (U)|G] = 0.

Note that ⊥⊥ and ⊥ have different meanings: the former means independence;
the latter means orthogonality. For two subspaces, say S1 and S2, of a generic
Hilbert space H, we use S1 � S2 to denote the subspace S1 ∩ S ⊥

2 . The following
theorem explicitly specifies a class of functions, which we call regression class,
that is unbiased for SY |X .

THEOREM 2. If the family {�y :y ∈ �Y } is dominated by a σ -finite measure,
then

L2(PX) � [
L2(PX) � L2(PY )

] ⊆ SY |X.(6)

PROOF. It is equivalent to show that L2(PX) � SY |X ⊆ L2(PX) � L2(PY ).

If f ∈ L2(PX) � SY |X , then, by Lemma 1, E[f (X)|GY |X] = 0. Since GY |X is a
sufficient σ -field,

E
[
f (X)|Y ] = E

[
E

(
f (X)|Y, GY |X

)|Y ] = E
[
E

(
f (X)|GY |X

)|Y ] = 0.

By Lemma 1 again, f ⊥ MY . Because MY = L2(PY ), we have f ∈ L2(PX) �
L2(PY ). �

The intuition behind the term “regression class” is that L2(PX) � L2(PY ) re-
sembles the residual in a regression problem; thus L2(PX) � [L2(PX) � L2(PY )]
is simply the orthogonal complement of the “residual class.” Henceforth we write
the regression class as CY |X .

4. Complete and sufficient dimension reduction classes. After showing
that the regression class (2) is unbiased, we investigate under what conditions it
is also exhaustive for the central class SY |X . To this end we need to introduce the
notion of complete classes of functions in L2(PX).

DEFINITION 5. Let G ⊆ σ(X) be a sub σ -field. The class MG is said to be
complete if, for any g ∈ MG ,

E
[
g(X)|Y ] = 0 a.s. P ⇒ g(X) = 0 a.s. P.
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Again there are similarities and differences between completeness as defined
here and in the classical setting. A complete and sufficient statistic in the classical
setting is a rather restrictive concept, often associated with exponential families,
the uniform distribution, or the order statistics. In contrast, completeness here is
a rather general concept. To demonstrate this point, in the next two propositions
we give two examples of complete and sufficient dimension reduction classes. In
particular, the first shows that if Y is related to X through any regression model
with additive error, then the subspace of L2(PX) determined by the regression
function is a complete and sufficient dimension reduction class. In the following,
[L2(PX)]q denotes the q-fold Cartesian product of L2(PX).

PROPOSITION 1. Suppose there exists a function h ∈ [L2(PX)]q such that

Y = h(X) + ε,(7)

where ε ⊥⊥ X and E(ε) = 0. Then Mh(X) is a complete and sufficient dimension
reduction class for Y versus X.

Note that, since L2(PX) is centered, we have implicitly assumed that
E[h(X)] = 0 [and hence E(Y ) = 0]. However, this does not entail any real loss
of generality because the proof below can be easily modified for the case where
L2(PX) is not centered.

PROOF OF PROPOSITION 1. Suppose m ∈ Mh(X) and E[m(X)|Y ] = 0 a.s. P .
Then there is a measurable function g : Rq → R such that m = g ◦ h. Let
U = h(X). Then E(g(U)|Y) = 0 a.s. P . By Lemma 1, for any f ∈ L2(PY ), we
have E[g(U)f (Y )] = 0. In particular, E[g(U)eitTY ] = 0. Because U ⊥⊥ ε, this
implies

E
[
g(U)eitTU ]

E
(
eitTε) = E

[
g(U)eitTUeitTε] = E

[
g(U)eitTY ] = 0.

Hence E[g(U)eitTU ] = 0. By the uniqueness of inverse Fourier transformation we
see that g(U) = 0 a.s. P , which implies m(X) = (g ◦ h)(X) = 0 a.s. P . �

The expression in (7) covers many useful models in statistics and econometrics.
For example, any homoscedastic parametric or nonparametric regression, such as
the single index and the multiple index models [Ichimura and Lee (1991), Härdle,
Hall and Ichimura (1993), Yin, Li and Cook (2008)], are special cases of (7). Thus,
complete and sufficient dimension reduction classes exist for all those settings.
The next proposition considers a type of inverse regression model, in which X is
transformed into two components, one of which is related to Y by an inverse linear
regression model, and the other independent of the rest of the data.

PROPOSITION 2. Suppose q < p, �Y has a nonempty interior, and PY is
dominated by the Lebesgue measure on Rq . Suppose there exist functions g ∈
[L2(PX)]q and h ∈ [L2(PX)]p−q such that:
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(1) g(X) = Y + ε, where Y ⊥⊥ ε, and ε ∼ N(0,�);
(2) σ(g(X),h(X)) = σ(X);
(3) h(X) ⊥⊥ (Y, g(X));
(4) the induced measure PX ◦ g−1 is dominated by the Lebesgue measure

on Rq .

Then Mg(X) is a complete sufficient dimension reduction class for Y versus X.

PROOF. Assumption 3 implies Y ⊥⊥ h(X)|g(X), which, by assumption 2,
implies Y ⊥⊥ X|g(X). That is, Mg(X) is an SDR class. Let u ∈ Mg(X). Then
u = v ◦ g for some measurable function v : Rq → R. Let U = g(X). Suppose that
E[v(U)|Y ] = 0 almost surely P . Because Y ⊥⊥ ε, this implies PY ({y :Ev(y +ε) =
0}) = 1. In other words,∫

Rq
v(t)

1

(2π)q/2|�|1/2 e−(t−y)T�−1(t−y)/2 dt = 0

a.s. PY . This implies∫
v(t)e−tT�−1t/2eyT�−1t dt = 0 ⇒

∫
v(�s)e−sT�s/2eyTs ds = 0

a.s. PY , where s = �−1t . Because �Y contains an open set in Rq and the above
function of y is analytic, by the analytic continuation theorem, the above function
is 0 everywhere on Rq . Hence, by the uniqueness of inverse Laplace transforma-
tion, we have

v(�s)e−sT�s/2 = 0 almost surely λ,

where λ is the Lebesgue measure on Rq . But, because e−sT�s/2 > 0, we have
v(�s) = 0 a.s. λ or equivalently v(t) = 0 a.s. λ. By the change of variable theorem,∫

v◦g(x) �=0
dPX =

∫
v(t) �=0

dPX ◦ g−1.

By assumption 4, PX ◦ g−1 � λ. Hence the above integral is 0, implying v ◦
g(x) = 0 a.s. PX , or, equivalently, v ◦ g(X) = 0 a.s. P . �

Inverse regressions of this type are considered in Cook (2007), Cook and
Forzani (2009), and Cook, Li and Chiaromonte (2010) for linear SDR. The above
two propositions show that a complete and sufficient dimension reduction class
exists for a reasonably wide range of problems, including forward and inverse re-
gressions of very general, nonparameterized form. The next theorem shows that
when a complete and sufficient dimension reduction class exists, it is unique and
coincides with the central class. Once again, the situation here echoes that in clas-
sical theory, where a complete and sufficient statistic, if it exists, coincides with
the minimal sufficient statistic; see Lehmann (1981).
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THEOREM 3. Suppose {�y :y ∈ �Y } is dominated by a σ -finite measure, and
G is a sub σ -field of σ(X). If MG is a complete and sufficient dimension reduction
class, then

MG = CY |X = SY |X.

PROOF. If f ⊥ CY |X , then by Lemma 1, E(f |Y) = 0 which, because MG is
sufficient, implies

E
[
E(f |G)|Y ] = 0.

Because MG is complete and because E(f |G) ∈ MG , we have E(f |G) = 0. By
Lemma 1, this implies f ⊥ MG . Thus we have proved MG ⊆ CY |X . However, by
Theorem 2 we know that CY |X ⊆ SY |X ⊆ MG . This proves the desired equality.

�

5. Generalizations of SIR and their population-level properties. From the
previous developments we see that the subspace L2(PX) � L2(PY ) of L2(PX)

plays a critical role in nonlinear SDR. Its orthogonal complement in L2(PX) co-
incides with the central class SY |X under completeness, and even without com-
pleteness it is guaranteed to be inside SY |X . It turns out that this subspace can be
expressed as the range of a certain bounded linear operators. This representation
ensures that estimation procedures can rely on simple spectral decompositions,
rather than complicated numerical optimizations. We first introduce some covari-
ance operators which are the building block of this approach.

5.1. Covariance operators. Since constants are irrelevant here (e.g., f and
f + 3 can be considered as the same function), we will speak of set relations
modulo constants. If A and B are sets, then we say A ⊆ B modulo constants if for
each f ∈ A there is c ∈ R such that f +c ∈ B . We say that A is a dense subset of B

modulo constants if (i) A ⊆ B modulo constants and (ii) for each f ∈ B , there is a
sequence {fn} ⊆ A and a sequence of constants {cn} ⊆ R such that {fn + cn} ⊆ A

and fn + cn → f in the topology for B . Let HX and HY be Hilbert spaces of
functions of X and Y satisfying the conditions:

(A) HX and HY are dense subsets of L2(PX) and L2(PY ) modulo constants;
(B) there are constants C1 > 0 and C2 > 0 such that var[f (X)] ≤ C1‖f ‖HX

and var[g(Y )] ≤ C2‖g‖HY
.

Although we will later take HX and HY to be reproducing kernel Hilbert spaces
(RKHS), our theory is not restricted to such spaces. In particular, we do not require
the evaluation functionals [such as f �→ f (x) from HX to R] to be continuous.

For two generic Hilbert spaces H1 and H2, let B(H1, H2) denote the class of
all bounded linear operators from H1 to H2, and let B(H1) abbreviate B(H1, H1).
We denote the range of a linear operator A by ranA, the kernel of A by kerA,
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and the closure of ranA by ranA. Under assumption (B), the symmetric bilinear
form u : HX × HX → R defined by u(f,g) = cov[f (X), g(X)] is bounded and
thus induces an operator MXX ∈ B(HX) that satisfies 〈f,MXXg〉HX

= u(f,g).

Similarly, the bounded bilinear form (f, g) �→ cov[f (Y ), g(Y )] from HY × HY

to R defines an operator MYY ∈ B(HY ). Let GX and GY represent the subspaces
ranMXX and ranMYY .

DEFINITION 6. Suppose conditions (A) and (B) are satisfied. We define
the covariance operators �XX : GX → GX , �YY : GY → GY and �YX : GX → GY

through the relations

〈f,�XXg〉GX
= 〈f,g〉L2(PX), 〈f,�YY g〉GY

= 〈f,g〉L2(PY ),

〈f,�YXg〉GY
= 〈f,g〉L2(PY ).

These operators are essentially the same as those introduced by Fukumizu,
Bach and Jordan (2004, 2009), except that here we do not assume HX and
HY to be RKHS. By Baker [(1973), Theorem 1], there is a unique operator
RYX ∈ B(GX, GY ) such that �YX = �

1/2
YY RYX�

1/2
XX . We call RXY the correlation

operator. In order to connect these operators with the central class, which is an
L2(PX)-object, we need to extend the domains of �

1/2
XX and �

1/2
YY from GX and GY

to L2(PX) and L2(PY ). The following extension theorem is important and non-
trivial, but since the material presented here can be understood without its proof
we relegate it to the supplementary material [Lee, Li and Chiaromonte (2013)].

THEOREM 4. Under assumptions (A) and (B), there exist unique isomor-
phisms

�̃
1/2
XX :L2(PX) → GX, �̃

1/2
YY :L2(PY ) → GY

that agree with �
1/2
XX and �

1/2
YY on GX and GY in the sense that, for all f ∈ GX and

g ∈ GY ,

�̃
1/2
XX(f − Ef ) = �

1/2
XXf, �̃

1/2
YY (g − Eg) = �

1/2
YY g.

Furthermore, for any f ∈ L2(PX), g ∈ L2(PY ) we have
〈
�̃

1/2
YY g,RYX�̃

1/2
XXf

〉
GY

= cov
[
g(Y ), f (X)

]
.(8)

The easiest way to understand equality (8) is through the special case where
f = f ′ − E(f ′), g = g′ − E(g′) where f ′ ∈ GX , g′ ∈ GY . In this case,

〈
�̃

1/2
YY g,RYX�̃

1/2
XXf

〉
GY

= 〈
�

1/2
YY g′,RYX�

1/2
XXh′〉

GY
= 〈

g′,�YXf ′〉
GY

= cov
[
f (X), g(Y )

]
.
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The theorem also implies that, for all f,g ∈ L2(PX) and s, t ∈ L2(PY ),
〈
�̃

1/2
XXg, �̃

1/2
XXf

〉
GX

= 〈g,f 〉L2(PX) = cov
[
g(X),f (X)

]
,

〈
�̃

1/2
YY s, �̃

1/2
YY t

〉
GY

= 〈s, t〉L2(PY ) = cov
[
s(Y ), t (Y )

]
.

5.2. Generalized SIR. The results of the last subsection allow us to character-
ize L2(PX) � L2(PY ) in terms of extended covariance operators, which is the key
to developing its estimator. Recall that classical SIR [Li (1991)] for linear SDR is
based on the matrix [

var(X)
]−1 var

[
E(X|Y)

]
.(9)

Under the linear conditional mean assumption requiring that E(X|βTX) be linear
in X for any matrix β spanning SY |X , the re-scaled “inverse” conditional mean
[var(X)]−1E(X|Y) is contained in this space. To generalize this to the nonlinear
setting, we first introduce a conditional mean operator.

DEFINITION 7. We call the operator �̃
−1/2
YY RYX�̃

1/2
XX :L2(PX) → L2(PY ) the

conditional expectation operator, and denote it by EX|Y .

The relation between the conditional expectation operator and conditional ex-
pectations is elucidated by the next proposition, which is followed by an important
corollary.

PROPOSITION 3. Under conditions (A) and (B), we have:

(1) for any f ∈ L2(PX), EX|Y f = E(f (X)|Y);
(2) for any g ∈ L2(PY ), E∗

X|Y g = E(g(Y )|X).

PROOF. For any g ∈ L2(PY ),

〈EX|Y f, g〉L2(PY ) = 〈
�̃

−1/2
YY RYX�̃

1/2
XXf,g

〉
L2(PY ) = 〈

RYX�̃
1/2
XXf, �̃

1/2
YY g

〉
HY

= cov
(
f (X), g(Y )

)
,

where the last equality follows from (8). Hence cov(f (X) − (EX|Y f )(Y ),

g(Y )) = 0. By the definition of conditional expectation, EX|Y f = E(f (X)|Y),

which proves 1. Assertion 2 follows from the fact that �̃
−1/2
YY and �̃

1/2
XX are iso-

morphisms, and R∗
YX = RXY . �

COROLLARY 1. Under conditions (A) and (B), for any f,g ∈ L2(PX),〈
g,E∗

X|Y EX|Y f
〉
L2(PX) = cov

[
E

(
g(X)|Y )

,E
(
f (X)|Y )]

.(10)

Moreover, E∗
X|Y EX|Y ∈ B(L2(PX)), and its norm is no greater than 1.
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PROOF. We have
〈
g,E∗

X|Y EX|Y f
〉
L2(PX) = 〈EX|Y g,EX|Y f 〉L2(PX)

= 〈
E

(
g(X)|Y )

,E
(
f (X)|Y )〉

L2(PX),

which is the right-hand side of (10). Moreover, since �̃
1/2
XX is isomorphic, we have

E∗
X|Y EX|Y = (

�̃
−1/2
YY RYX�̃

1/2
XX

)∗(
�̃

−1/2
YY RYX�̃

1/2
XX

) = �̃
−1/2
XX RXY RYX�̃

1/2
XX.

Hence ‖E∗
X|Y EX|Y ‖ ≤ ‖�̃−1/2

XX ‖‖RXY ‖‖RYX‖‖�̃1/2
XX‖. Because �̃

1/2
XX and �̃

−1/2
XX

are isomorphisms, their norms are both 1. By Baker [(1973), Theorem 1],
‖RYX‖ ≤ 1. Hence ‖E∗

X|Y EX|Y ‖ ≤ 1. �

From this corollary we see that the quadratic form

f �→ 〈
f,E∗

X|Y EX|Y f
〉
L2(PX), L2(PX) × L2(PX) → R

generalizes the matrix var[E(X|Y)] of the linear case, which is the essential ingre-
dient of SIR for linear SDR. It is then not surprising that the operator E∗

X|Y EX|Y is
closely connected to the central class for nonlinear SDR, as shown in the following
theorem.

THEOREM 5. If conditions (A) and (B) are satisfied and SY |X is complete,
then

ran
(
E∗

X|Y EX|Y
) = SY |X.

PROOF. By Lemma 1, f ∈ CY |X if and only if f ∈ L2(PX) and E(f |Y) = 0.
By Proposition 3, this happens if and only if f ∈ kerEX|Y . This shows kerEX|Y =
C⊥

Y |X . However, because ker(EX|Y ) = ker(E∗
X|Y EX|Y ), we have

ran
(
E∗

X|Y EX|Y
) = [

ker
(
E∗

X|Y EX|Y
)]⊥ = (kerEX|Y )⊥ = (

C⊥
Y |X

)⊥ = CY |X.

Since SY |X is complete, we have CY |X = SY |X , as desired. �

Note that, unlike in classical SIR for linear SDR, here we do not have to con-
sider an analogue to the rescaling [var(X)]−1 in (9). This is because the L2(PX)-
inner product absorbs the marginal variance in the predictor vector. We refer to
the sample estimator based on ran(E∗

X|Y EX|Y ) (see Section 7.2) as generalized
SIR or GSIR. The GSIR estimator is related to kernel canonical component analy-
sis (KCCA) introduced by Bach and Jordan (2002); see also Fukumizu, Bach and
Gretton (2007). In Section 7.2 we will explore similarities and differences between
these two methods.
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5.3. Kernel SIR. We now turn to another nonlinear SDR estimator, which
was proposed by Wu (2008) and further studied by Yeh, Huang and Lee (2009),
called kernel sliced inverse regression (KSIR). In our setting, the population-level
description of this estimator is as follows. Let HX be a Hilbert space satisfy-
ing (A) and (B) (in this case an RKHS, but this assumption is unnecessary).
Let T : HX → L2(PX) be the centering transformation T (f ) = f − E(f ). Let
J1, . . . , Jh be a partition of �Y , and let μ1, . . . ,μh ∈ ranT be the Riesz represen-
tations of the linear functionals

Tj : ranT → R, g �→ E
(
g(X)|Y ∈ Ji

)
, i = 1, . . . , h.

In our language, KSIR uses (the sample version of) the subspace span(�−1
XXμ1, . . . ,

�−1
XXμh) to estimate SY |X . The next theorem shows that any such representation

must be a member of CY |X , and thus of SY |X (since CY |X ⊆ SY |X)—which im-
plies that KSIR is unbiased.

THEOREM 6. If (A) and (B) hold, then μj ∈ CY |X .

PROOF. By condition (A), ranT = L2(PX). If f ∈ L2(PX)�L2(PY ) ⊆ ranT ,
then, by Lemma 1, E(f |Y) = 0. Hence 〈f,μi〉L2(PX) = E[f (X)|Y ∈ Ji] = 0. �

Yeh, Huang and Lee (2009) give another unbiasedness proof for KSIR, but they
assume that the spanning functions of HX , say f1, . . . , fm, satisfy the linear con-
ditional mean assumption. That is, for any f ∈ HX , E(f |f1, . . . , fm) has the form
c0 + c1f1 + · · · + cmfm for some c0, . . . , cm ∈ R. This condition is an analogue
of the linear conditional mean assumption for linear SDR; see, for example, Li
(1991) and Cook and Li (2002). Interestingly, our result no longer relies on this
assumption. The reason Yeh, Huang and Lee need the assumption in the first place
is that they define the central class [Definition 1 of Yeh, Huang and Lee (2009)] as
the linear subspace spanned by h1, . . . , hd in span(f1, . . . , fm) such that

Y ⊥⊥ X|h1(X), . . . , hd(X),(11)

whereas we define the central class as the class of all measurable functions of
h1, . . . , hd . Indeed, in the nonlinear setting there is no reason to restrict to this
linear span formulation, since the conditional independence (11) only relies on the
σ -field generated by h1, . . . , hd .

6. Beyond completeness: Generalized SAVE. We now turn to the more gen-
eral problem of estimating the central class when it is not complete, in which case
the regression class may be a proper subset of the central class. We will general-
ize SAVE [Cook and Weisberg (1991)] to the nonlinear case and show that it can
recover functions beyond the regression class.

The setting here is different from that for GSIR in two respects. First, since
we now deal with the location-invariant quantity f (X) − E[f (X)|Y ], we no
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longer need to define the conditional mean operator through the centered L2-
spaces L2(PY ) and L2(PX). Second, we now define relevant operators through
L2-spaces instead of RKHSs, which is more convenient in this context. Let L′

2(PX)

and L′
2(PY ) denote the noncentered L2-spaces. Define the noncentered conditional

mean operator E′
X|Y :L′

2(PX) → L′
2(PY ) through

〈
g,E′

X|Y f
〉
L′

2(PX) = E
(
g(Y )f (X)

)
, f ∈ L′

2(PX), g ∈ L′
2(PY ).(12)

By the same argument of Proposition 3, E′
X|Y f = E(f (X)|Y). To generalize

SAVE, we introduce a new type of conditional variance operator.

DEFINITION 8. For each y ∈ �Y , the bilinear form

L2(PX) × L2(PX) → R, (f, g) �→ (
E′

X|Y (fg) − E′
X|Y f E′

X|Y g
)
(y)

uniquely defines an operator VX|Y (y) ∈ B(L2(PX)) via the Riesz representation.
We call the random operator

VX|Y :�Y → B
(
L2(PX)

)
, y �→ VX|Y (y)

the heteroscedastic conditional variance operator given Y .

The operator VX|Y is different from the conditional variance operator �X|Y
introduced by Fukumizu, Bach and Jordan (2004, 2009). In a sense, �X|Y is a
generalization of E[var(X|Y)] rather than var(X|Y), because 〈f,�X|Y f 〉HX

=
E[var(f (X)|Y)]. Note that E[var(f (X)|Y)] becomes var(f (X)|Y) only when the
latter is nonrandom. So �X|Y might be called a homoscedastic conditional vari-
ance operator. In contrast, 〈f,VX|Y f 〉L2(PX) gives directly the conditional vari-
ance var[f (X)|Y ], hence the term heteroscedastic conditional variance operator.
Here, we should also stress that E′

X|Y is defined between noncentered L′
2(PX) and

L′
2(PY ), whereas VX|Y (y) is defined between centered L2(PX) and L2(PX).
We now define the expectation of a generic random operator A :�Y →

B(L2(PX)). For each f ∈ L2(PX) and x ∈ �X , the mapping y �→ (A(y)f )(x) de-
fines a random variable. Its expectation defines a function x �→ ∫

�Y
(A(y)f )(x) ×

PY (dy), which is a member of L2(PX). Denoting this member as f̃ , we define
the nonrandom operator L2(PX) → L2(PX), f �→ f̃ as the expectation E(A). We
now consider the operator

S = E(V − VX|Y )2 :L2(PX) → L2(PX),(13)

where V :L2(PX) → L2(PX) is the (unconditional) covariance operator defined
by

〈f,Vg〉L2(PX) = cov
(
f (X), g(X)

)
.
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This operator is similar to �̃XX in Section 5 except that it is not defined through
RKHS. The operator S is an extension of the SAVE matrix [Cook and Weisberg
(1991)]

�−1E
[
var(X) − var(X|Y)

]2
�−1.(14)

Let β be a basis matrix of the central subspace SY |X of linear SDR. Cook and
Weisberg show that if E(X|βTX) is linear in βTX and var(X|βTX) is nonrandom,
then the column space of (14) is contained in SY |X . The next theorem general-
izes this result, but without requiring an analogue of the linear conditional mean
assumption.

THEOREM 7. Suppose that conditions (A) and (B) are satisfied, and
var[f (X)|GY |X] is nonrandom for any f ∈ S⊥

Y |X . Then ranS ⊆ SY |X .

PROOF. Let f ⊥ SY |X . We claim that for any y ∈ �Y ,〈
f,

[
V − VX|Y (y)

]
f

〉
L2(PX) = 0.(15)

Because Y ⊥⊥ X|GY |X , we have

var
(
f (X)|Y ) = var

(
E

(
f (X)|GY |X

)|Y ) + E
(
var

(
f (X)|GY |X

)|Y )
.

Because, by Lemma 1, E(f (X)|GY |X) is constant, the first term is 0. Because
var(f (X)|GY |X) is nonrandom, the second term is var(f (X)|GY |X). Hence

var
(
f (X)|Y ) = var

(
f (X)|GY |X

)
.

Similarly,

var
(
f (X)

) = var
(
E

(
f (X)|GY |X

)) + E
(
var

(
f (X)|GY |X

)) = var
(
f (X)|GY |X

)
.

Therefore var(f (X)|Y) = var(f (X)), which implies (15). Since V − VX|Y (y) is
self-adjoint, (15) implies f ∈ kerVX|Y (y). Hence

〈
f,

[
V − VX|Y (y)

]2
f

〉
L2(PX) = 0.

Now integrate both sides of this equation to obtain∫
�Y

〈
f,

(
V − VX|Y (y)

)2
f

〉
L2(PX)PY (dy)

=
〈
f,

∫
�Y

(
V − VX|Y (y)

)2
f PY (dy)

〉
L2(PX)

= 〈
f,

(
E(V − VX|Y )2)

f
〉
L2(PX) = 0.

Hence f ∈ kerE(V − VX|Y )2, as desired. �

Similar to the case of GSIR, we do not need to employ the rescaling by �−1

in (14) when generalizing SAVE, because the L2(PX)-inner product absorbs any
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marginal variance. We call the estimator derived from ranS (see Section 7.3) gen-
eralized SAVE or GSAVE. The next theorem shows that GSAVE can recover func-
tions outside CY |X .

THEOREM 8. If conditions (A) and (B) are satisfied, then CY |X ⊆ ranS.

PROOF. Since S is self-adjoint, it suffices to show that kerS ⊆ C⊥
Y |X . For any

f ∈ kerS, ∫
�Y

〈
f, (V − VX|Y )2(y)f

〉
PY (dy) = 0.

Hence 〈f, (V −VX|Y (y))2f 〉L2(PX) = 0 a.s. PY , which implies (V −VX|Y (y))f =
0 a.s. PY . Then ∫

�Y

〈
f,

(
V − VX|Y (y)

)
f

〉
L2(PX)PY (dy) = 0.

By Definition 8, the left-hand side is var[f (X)]−E[var(f (X)|Y)] = var[E(f (X)|
Y)]. Hence var[E(f (X)|Y)] = 0, which implies E[f (X)|Y ] = E[f (X)] = 0. By
Lemma 1, we have f ∈ L2(PX) � L2(PY ) = C⊥

Y |X , as desired. �

Combining Theorems 7 and 8 we see that

CY |X ⊆ ranS ⊆ SY |X,(16)

which is analogous to the relation (3) in the classical setting. Thus we can expect
GSAVE to discover functions outside the class CY |X , just as we can expect SAVE
to discover vectors outside the space spanned by SIR.

7. Algorithms. We now develop algorithms for the sample versions of GSIR
and GSAVE, together with a cross-validation scheme to select parameters in the
GSIR and GSAVE algorithms. These sample versions involve representing the op-
erators in Theorems 5 and 7 as matrices. To formulate the algorithms we need to
introduce coordinate representations of functions and operators, which we adopt
with modifications from Horn and Johnson [(1985), page 31]; see also Li, Chun
and Zhao (2012).

Throughout this section, A† represents the Moore–Penrose inverse of a matrix
A, A†α represents (A†)α , In denotes the n × n identity matrix, 1n denotes the
vector in Rn whose entries are all 1 and Q = In − 1n1T

n/n. Let κX :�X × �X →
R be a positive definite function. Also, let KX be the n × n the Gram matrix
{κX(Xi,Xj ) : i, j = 1, . . . , n}, GX its centered versions QKXQ and LX the Gram
matrices with intercept; that is, LX = (1n,KX)T. Finally, define κY ,KY ,GY ,LY

in the same manner for Y .
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7.1. Coordinate representation. Let H be a finite-dimensional Hilbert space
with spanning system B = {b1, . . . , bn}. For an f ∈ H, let [f ]B ∈ Rn denote the
coordinates of f relative to B; that is, f = ∑n

i=1([f ]B)ibi . Let b :�X → Rn de-
note the Rn-valued function (b1, . . . , bn)

T. Then we can write f = [f ]T
Bb. Let

A : H → H′, where H′ is another finite-dimensional Hilbert spaces with spanning
system C = {c1, . . . , cm} and let c = (c1, . . . , cm)T. Then, for f ∈ H,

Af = A
(
bT[f ]B

) = (Ab1, . . . ,Abn)[f ]B = (
cT[Ab1]C , . . . , cT[Abn]C

)[f ]B.

Thus, if we let C [A]B = ([Ab1]C , . . . , [Abn]C ), then Af = cT(C [A]B)[f ]B. In other
words,

[Af ]C = (
C [A]B

)[f ]B.

Furthermore, if A1 : H′ → H′′ is another linear operator, where H′′ is a third finite-
dimensional Hilbert space with spanning system D, then, by a similar argument,

D[A1A]B = (
D[A1]C

)(
C [A]B

)
.

Since the spanning systems in the domain and range of an operator are self-evident
in the following discussion, we will write C [A]B and [f ]B simply as [A] and [f ].

Suppose A ∈ B(H) is self-adjoint. It can be shown that, for any α > 0,
[Aα] = [A]α . Depending on the choice of the spanning system of H, it is possible
that A is invertible and yet [A] is singular, but it is generally true that A−α = [A]†α .
Throughout this section the square brackets [·] will be used exclusively for denot-
ing coordinate representations.

7.2. Algorithm for GSIR. At the sample level, PX is replaced by the empiri-
cal measure Pn,X; HX is the RKHS spanned by BX = {κX(·,X1), . . . , κX(·,Xn)}
with inner product 〈f,g〉HX

= [f ]TKX[g], where [·] is coordinate with respect
to BX . The space L2(Pn,X) is spanned by κX(·,Xi) − EnκX(X,Xi), i = 1, . . . , n,
with inner product 〈f,g〉L2(Pn,X) = covn[f (X), g(X)] = n−1[f ]KXQKX[g]. The
operator MXX is defined through the relation 〈f,MXXg〉HX

= covn(f (X), g(X));
that is,

[f ]TKX[MXX][g] = n−1[f ]TKXQKX[g].
Since [f ] and [g] are arbitrary members of Rn, the above implies [MXX] =
n−1QKX . Then any f ∈ ranMXX ≡ GX can be written as MXXg for some
g ∈ HX , which implies [f ] = QKX[g] = Q[f ]. Consequently, for any f,g ∈ GX ,
〈f,g〉HX

= [f ]TGX[g].
Let us now find the matrix representations of �XX , �YY and �YX . In the fol-

lowing, hX represents the function x �→ (κX(x,X1), . . . , κX(x,Xn))
T. For any

f ∈ GX , we have

�XXf = MXXf = hT
X[MXX][f ] = n−1hT

XQKXQ[f ] = n−1hT
XGX[f ].
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Hence [�XXf ] = [�XX][f ] = n−1GX[f ]. Since this is true for all [f ] ∈ span(Q),
we have [�XX] = n−1GX . By the same argument we can show that

[�̃XX] = n−1GX, [�YY ] = [�̃YY ] = n−1GY ,
(17)

[�YX] = [�̃YX] = n−1GX, [EX|Y ] = G
†
Y GXG

†1/2
X G

1/2
X .

Theorem 5 suggests that we use ran(E∗
X|Y EX|Y ) to estimate SY |X . Since

E∗
X|Y EX|Y is an operator on L2(Pn,X) to L2(Pn,X), the vectors in ran(E∗

X|Y EX|Y )

can be found by

maximizing
〈
f,E∗

X|Y EX|Y f
〉
L2(Pn,X) = ‖EX|Y f ‖2

L2(Pn,Y )

subject to

〈f,f 〉L2(Pn,X) = 1.

The coordinate representation of this problem is

maximizing [f ]T[EX|Y ]TG2
Y [EX|Y ][f ] subject to [f ]TG2

X[f ] = 1.

The optimal solution is [f ] = G
†
Xφ, where φ are the leading eigenvectors of the

matrix

G
†
X[EX|Y ]TG2

Y [EX|Y ]G†
X

(18)
= G

†
XG

1/2
X G

†1/2
X GXG

†
Y G2

Y G
†
Y GXG

†1/2
X G

1/2
X G

†
X.

To enhance accuracy we replace the Moore–Penrose inverses G
†
X and G

†
Y by the

ridge-regression-type regularized inverses (GX +εXIn)
−1 and (GY +εY In)

−1. We
summarize the algorithm as follows:

(1) Select the parameters γX , γY , εX , εY using the algorithm in Section 7.4.
(2) Compute the matrix

(GX + εXIn)
−3/2G

3/2
X (GY + εY In)

−1G2
Y (GY + εY In)

−1G
3/2
X (GX + εXIn)

−3/2

and its first d eigenvectors φ1, . . . , φd of this matrix.
(3) Form the sufficient predictors at x φT

i (GX + εXIn)
−1hX(x), i = 1, . . . , d .

GSIR estimation is similar to the kernel canonical correlation analysis (KCCA)
developed by Akaho (2001), Bach and Jordan (2002) and Fukumizu, Bach and
Gretton (2007). In our notation, KCCA maximizes

〈g,�YXf 〉L2(PY ) = [g]TGY GX[f ]
subject to 〈g,�YY g〉L2(PY ) = [g]TG2

Y [f ] = 1 and 〈f,�XXf 〉L2(PX) = [g]T ×
G2

Y [g] = 1. The optimal solution for [f ] is [f ] = (GX + εIn)
−1φ, where φ is

one of the first d eigenvectors of

(GX + εIn)
−1GXGY (GY + εIn)

−2GY GX(GX + εIn)
−1.

We will compare GSIR and KCCA in Section 8.
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7.3. Algorithm for GSAVE. We first derive the sample-level representation of
the operator VX|Y (y). The sample version of the noncentered L2-classes L′

2(Pn,X)

and L′
2(Pn,Y ) are spanned by

CX = {
1, κX(·,X1), . . . , κX(·,Xn)

}
, CY = {

1, κY (·, Y1), . . . , κY (·, Yn)
}
,(19)

respectively. Let [·] represent the coordinates relative to these spanning systems.
Then, for any f ∈ L′

2(Pn,X), (f (X1), . . . , f (Xn))
T = LT

X[f ]. The operator E′
X|Y

is defined through the relation 〈g,E′
X|Y f 〉L′

2(Pn,Y ) = En(g(Y )f (X)), which yields
the representation

[
E′

X|Y
] = (

LY LT
Y

)†(
LY LT

X

)
.(20)

Let �Y denote the function y �→ (1, κY (y,Y1), . . . , κY (y,Yn))
T, and let �X denote

the same function of x. For any f,g ∈ L′
2(Pn,X),{

E′
X|Y (fg) − (

E′
X|Y f

)(
E′

X|Y g
)}

(y)
(21)

= �T
Y (y)

[
E′

X|Y
][fg] − [f ]T[

E′
X|Y

]T
�Y (y)�T

Y (y)
[
E′

X|Y
][g].

For any Xi , f (Xi)g(Xi) can be expressed as the ith entry of the vector LT
X[f ] �

LT
X[g], which is the same as LT

X(LXLT
X)†LX(LT

X[f ] � LT
X[g]), where � is the

Hadamard product. Thus we have the coordinate representation

[fg] = (
LXLT

X

)†
LX

(
LT

X[f ] � LT
X[g]).(22)

Substituting (20) and (22) into (21) we see that, for any f,g ∈ L′
2(Pn,X),

〈
f,VX|Y (y)g

〉
L′

2(Pn,X) = [f ]TLX

(
diagCY (y) − CY (y)CT

Y (y)
)
LT

X[g]
(23)

≡ [f ]TLX�(y)LT
X[g],

where CY (y) = LT
Y (LY LT

Y )†�Y (y).
Let Sn :L2(Pn,X) → L2(Pn,X) be the operator En(V − VX|Y (Y ))2. By Theo-

rem 7, GSAVE is the class of functions ran(S). At the sample level, this corre-
sponds to

maximizing 〈f,Snf 〉L2(Pn,X) subject to 〈f,f 〉L2(Pn,X) = 1.(24)

By (23), for each y ∈ �Y , and f,g ∈ L2(Pn,X), we have〈
g,VX|Y (y)f

〉
L2(Pn,X) = [f ]TLXQ�(y)QLT

X[g].
From this we deduce that [VX|Y (y)] = (LXQLT

X/n)†LXQ�(y)QLT
X . By a similar

derivation we find [V ] = (LXQLT
X/n)†(LXQLT

X/n). Hence
[
V − VX|Y (y)

] = (
LXQLT

X/n
)†

LXQ
(
Q/n − �(y)

)
QLT

X.

It follows that

〈f,Snf 〉L2(Pn,X) = En

{[f ]TLXQ
(
Q/n − �(Y)

)
Q

(
Q/n − �(Y)

)
QLT

X[f ]}.
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To find ran(Sn) we maximize the above subject to [f ]T(LXQLT
X/n)[f ] = 1.

Again we use the regularized inverses instead of the Moore–Penrose inverses to
enhance performance. The algorithm is summarized as follows:

(1) Determine γX,γY , εX, εY using the algorithm is Section 7.4.
(2) Compute C = LT

Y (LY LT
Y + εY In+1)

−1/2LY . Let Ci be the ith column of
C. Compute �i = diag(Ci) − CiC

T
i and then compute �i = Q/n − �i for i =

1, . . . , n.
(3) Compute

n−1
n∑

i=1

(
LXQLT

X + εXIn+1
)−1/2

LXQ�iQ�iQLT
X

(
LXQLT

X + εXIn+1
)−1/2

and the first d eigenvectors of this matrix, say φ1, . . . , φd .
(4) The sufficient predictors’ values at any given x ∈ �X are the set of d num-

bers

�T
X(x)

(
LXQLT

X + εXIn+1
)−1/2

Qφi, i = 1, . . . , d.

Here we should mention that, similar to SAVE for linear SDR, GSAVE works
best for extracting predictors affecting the conditional variance of the response, but
often not so well for extracting predictors affecting the conditional mean. However,
we expect that other second-order methods for linear SDR, such as directional
regression [Li and Wang (2007)] and the minimum discrepancy approach [Cook
and Ni (2005)], will be amenable to similar generalizations to nonlinear SDR.
These will be left for future research.

7.4. Cross-validation algorithm. We now develop a cross-validation scheme
to determine the parameters γX , γY , εX , εY , which are used in the algorithms for
both the GSIR and the GSAVE. We will only describe the algorithm for determin-
ing (γX, εX); that of (γY , εY ) is completely analogous.

In the following, for a matrix A, A−i,−j represents the submatrix of A with its
ith row and j th column removed, and A−i,j represents the j th column of A with
the ith entry removed. Let C−i

Y = CY \ {κY (·, Yi)}, and define C−i
X similarly. Our

cross-validation strategy is to predict f (Yi) for each f ∈ C−i
Y , using the conditional

mean operator developed from (C−i
X , C−i

Y ). The regularized matrix representation
of E′

Y |X based on (C−i
X , C−i

Y ) is[
E′

Y |X
]
−(i+1),−(i+1)

= {
(LX)−(i+1),−i(LX)T−(i+1),−i + εXIn

}−1
(LX)−(i+1),−i(LY )T−(i+1),−i .

The kth member fk of C−i
Y is the function eT

k (�Y )−(i+1)(·) where ek is the vector
in Rn whose kth entry is 1 and the remaining entries are 0. Therefore, the estimate
of E(fk(Y )|X = x) based on on C−i

X is

(�X)T−(i+1)(x)
[
E′

Y |Xfk

]
−(i+1) = eT

k

[
E′

Y |X
]T
−(i+1),−(i+1)(�X)−(i+1)(x),
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and the prediction of (f1(Yi), . . . , fn(Yi))
T is [E′

Y |X]T−(i+1),−(i+1)(�X)−(i+1)(Xi).
However, because (�X)−(i+1)(Xi) is the vector (LX)−(i+1),i , and (f1(Yi), . . . ,

fn(Yi))
T is the vector (LY )−(i+1),i , the difference between (f1(Yi), . . . , fn(Yi))

T

and its prediction is

(LY )−(i+1),i − [
E′

Y |X
]T
−(i+1),−(i+1)(LX)−(i+1),i .

To stress that this difference depends on γX, εX, γY , we denote it by �i(εX, γX,

γY ). Our cross-validation criterion is defined as CV(γX, εX, γY ) = ∑n
i=1 ‖�i(γX,

εX, γY )‖2. Since the role of γY is only to determine the set of functions to be
predicted, we exclude it from the optimization process (for the determination of
εX, γX). Moreover, as argued in Fukumizu, Bach and Jordan (2009), the parame-
ters εX and γX have similar smoothing effects and only one of them needs to be
optimized. For these reasons we fix γY and εX at

1/γY0 =
(

n

2

)−1 ∑
i<j

|Yi − Yj |2, εX0 = 0.01(25)

and minimize CV(γX, εX0, γY0) over a grid for γX . The grid consists of 20 subin-
tervals in [γX0/3,3γX0], equally spaced in the log scale, where γX0 is calculated
using the first formula in (25) with |Yi −Yj | replaced by ‖Xi −Xj‖. The rationale
for this formula can be found in Li, Artemiou and Li (2011).

The pair (γY , εY ) is selected in the same way, except that εY0 is set to 0.001.
This is because Y has dimension 1, so a weaker penalty is needed.

8. Simulations and data analysis. In this section we present simulation com-
parisons among GSIR, GSAVE, KSIR and KCCA. For the reasons explained in the
previous section, we compare GSIR with KSIR and KCCA in settings where the
sufficient predictor appears in the conditional mean, and we compare GSAVE with
GSIR, KSIR and KCCA in settings where the sufficient predictor appears in the
conditional variance. We also apply GSIR, KSIR and KCCA to two real data sets.

8.1. Simulation comparisons. To make a comprehensive comparison of GSIR,
KSIR and KCCA we consider three regression models, namely:⎧⎪⎨

⎪⎩
I: Y = (

X2
1 + X2

2

)1/2 log
(
X2

1 + X2
2

)1/2 + ε;
II: Y = X1/

(
1 + eX2

) + ε,

III: Y = sin
(
π(X1 + X2)/10

) + ε,

ε ⊥⊥ X,ε ∼ N(0,0.25),p = 10;
as well as three distributional scenarios for the predictor vector X, namely:
(A) independent Gaussian predictors, (B) independent non-Gaussian predictors
and (C) correlated Gaussian predictors. In symbols:⎧⎪⎨

⎪⎩
A: X ∼ N(0, Ip);
B: X ∼ (1/2)N(−1p, Ip) + (1/2)N(1p, Ip);
C: X ∼ N

(
0,0.6Ip + 0.41p1T

p

)
.
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TABLE 1
Comparison of KSIR, KCCA and GSIR when sufficient predictors appear in the conditional means

Models Spearman cor. with true predictor Spearman cor. with response

X Y |X KSIR KCCA GSIR KSIR KCCA GSIR

A I 0.78 (0.05) 0.81 (0.04) 0.80 (0.05) 0.63 (0.06) 0.66 (0.05) 0.64 (0.05)
II 0.81 (0.05) 0.90 (0.03) 0.91 (0.03) 0.56 (0.06) 0.61 (0.05) 0.62 (0.05)
III 0.76 (0.06) 0.89 (0.04) 0.91 (0.03) 0.47 (0.07) 0.56 (0.05) 0.56 (0.05)

B I 0.88 (0.02) 0.88 (0.02) 0.87 (0.02) 0.82 (0.03) 0.81 (0.03) 0.80 (0.03)
II 0.89 (0.03) 0.93 (0.02) 0.93 (0.02) 0.71 (0.04) 0.74 (0.04) 0.74 (0.04)
III 0.90 (0.02) 0.97 (0.01) 0.97 (0.01) 0.72 (0.04) 0.77 (0.03) 0.77 (0.03)

C I 0.79 (0.04) 0.82 (0.04) 0.81 (0.04) 0.64 (0.05) 0.66 (0.05) 0.65 (0.05)
II 0.83 (0.05) 0.86 (0.06) 0.88 (0.04) 0.56 (0.06) 0.59 (0.06) 0.60 (0.06)
III 0.83 (0.06) 0.96 (0.02) 0.96 (0.02) 0.56 (0.06) 0.65 (0.04) 0.65 (0.04)

Note that the central σ -fields for the three models I, II and III are generated by
X2

1 + X2
2, X1/(1 + eX2) and sin(π(X1 + X2)/10), respectively.

We assess the quality of an estimated sufficient predictor by its closeness to the
true sufficient predictor and its closeness to the response. Since we are only in-
terested in monotone functions of the predictor, we use Spearman’s correlation as
the measure of closeness. For each combination of the models and scenarios, we
generate n = 200 observations on (X,Y ) as the training data, and compute the first
predicting function using the each of three methods. We then independently gener-
ate m = 200 observations on (X,Y ) as the testing data, and evaluate the predicting
functions at these points. Finally, we compute the mentioned Spearman’s correla-
tions from the testing data. This process is repeated N = 200 times. In Table 1 we
list means and standard deviations of the Spearman’s correlations computed using
the N = 200 simulated samples. From the table we see that the performances of
KCCA and GSIR are similar, and both are slightly better than KSIR.

Next, we compare GSAVE, KSIR, KCCA and GSIR when the predictors only
affect the variance. We use the following models:⎧⎪⎨

⎪⎩
IV: Y = X1ε;
V: Y = (1/50)

(
X3

1 + X3
2

)
ε;

VI: Y = (
X1/

(
1 + eX2

))
ε,

and again the scenarios (A), (B) and (C) for the distribution of X. The specifica-
tions of n,m,N,p are the same as in the previous comparison.

Because the sufficient predictors appear in the conditional variance var(Y |X)

only, it is less meaningful to measure the closeness between the estimated suf-
ficient predictor and the response. So in Table 2 we only report the means and
standard deviations of Spearman’s correlations between the estimated and true
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TABLE 2
Comparison of KSIR, KCCA, GSIR and GSAVE when sufficient predictors appear in conditional

variances

Models Spearman’s correlation with true predictors

X Y |X GSAVE KSIR KCCA GSIR

A IV 0.89 (0.08) 0.10 (0.07) 0.36 (0.22) 0.41 (0.23)
V 0.73 (0.19) 0.09 (0.07) 0.17 (0.13) 0.20 (0.14)
VI 0.84 (0.09) 0.10 (0.08) 0.25 (0.17) 0.27 (0.17)

B IV 0.87 (0.08) 0.10 (0.07) 0.43 (0.25) 0.53 (0.25)
V 0.88 (0.06) 0.09 (0.07) 0.11 (0.08) 0.11 (0.08)
VI 0.76 (0.15) 0.27 (0.11) 0.61 (0.13) 0.64 (0.13)

C IV 0.76 (0.20) 0.11 (0.07) 0.23 (0.16) 0.26 (0.18)
V 0.82 (0.14) 0.10 (0.07) 0.11 (0.09) 0.12 (0.09)
VI 0.73 (0.15) 0.15 (0.10) 0.41 (0.17) 0.44 (0.17)

sufficient predictors. We see that GSAVE performs substantially better than the
other methods. The discrepancy can be explained by the fact that KSIR, KCCA
and GSIR depend completely on E[var(f (X)|Y)], whereas GSAVE extracts more
information from var(f (X)|Y).

8.2. Data analysis. We first consider the faces data, available at http://
waldron.stanford.edu/isomap/datasets.html. This data set contains 698 images of
the same sculpture of a face photographed at different angles and with different
lighting directions. The predictor comprises 64×64 image pixels (thus p = 4096),
and the response comprises horizontal rotation, vertical rotation and lighting direc-
tion measurements (thus q = 3). We use this data to demonstrate that the first three
sufficient predictors estimated by KCCA and GSIR can effectively capture the 3-
variate response. We use n = 558 of the images selected at random (roughly 80%)
as training data, and the remaining m = 140 images as testing data. For each
method, we estimate the first three predictor functions from the training data, and
evaluate them on the testing data. The left panel of Figure 1 is the perspective plot
of the first three KCCA predictors evaluated on the 140 testing images, and the
right panel is the counterpart for GSIR. We did not include KSIR in this com-
parison because in its proposed form it cannot handle multivariate responses. The
perspective plots indicate that nearby regions in the 3-D cubes have similar pat-
terns of left–right rotation, up–down rotation and lighting direction, while distant
regions have discernibly different patterns. This reflects the ability of the three
sufficient predictors to capture the 3-variate responses.

Next, we apply KSIR, KCCA and GSIR to the handwritten digits data, available
at http://www.cs.nyu.edu/~roweis/data.html. This data set contains 2000 images of

http://waldron.stanford.edu/isomap/datasets.html
http://www.cs.nyu.edu/~roweis/data.html
http://waldron.stanford.edu/isomap/datasets.html
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FIG. 1. First 3 sufficient predictors by KCCA (left panel) and GSIR (right panel), computed from
558 training images, and evaluated on 140 testing images—faces data.

p = 16 × 16 pixels showing handwritten digits from 0 to 9—the response is thus
categorical with 10 levels. We use 1000 images as training data and 1000 as testing
data. Again, for each method we estimate the first three sufficient predictors on the
training data, and evaluate them on the testing data. Results are presented in the
three perspective plots in Figure 2—for visual clarity, these plots include only 100
randomly selected points from the 1000 in the testing data. The plots show that
all three methods provide low-dimensional representations in which the digits are
well separated.

9. Concluding remarks. In this article we described a novel and very general
theory of sufficient dimension reduction. This theory allowed us to combine linear
and nonlinear SDR into a coherent system, to link them with classical statistical
sufficiency, and to subsume several existing nonlinear SDR methods into a unique
framework.

Our developments thus revealed important and previously unexplored proper-
ties of SDR methods. For example, unbiasedness of various nonlinear extensions
of SIR proposed in recent literature was proved under the stringent linear condi-
tional mean assumption. We were able to show that these methods are all unbiased
under virtually no assumption, and that GSIR is exhaustive under the complete-
ness assumption. We were also able to show that nonlinear extensions of SIR are
in general not exhaustive when completeness is not satisfied, and that in these cases
GSAVE can recover a larger portion of the central class. These insights could not
have been obtained without paralleling linear and nonlinear SDR as allowed by
our new theory.

In addition to achieving theoretical synthesis and important insights on SDR
methods, we introduced a new heteroscedastic conditional variance operator—
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FIG. 2. First 3 sufficient predictors by KSIR (upper-left panel), KCCA (upper-right panel) and
GSIR (lower panel), computed on 1000 training images and evaluated on 1000 testing images—hand-
written digits data.

which is more general than the (homoscedastic) conditional variance operator in
Fukumizu, Bach and Jordan (2004, 2009). This operator was crucial to generaliz-
ing SAVE to the nonlinear GSAVE, and thus to exploit dependence information
in the conditional variance to improve upon the performance of the nonlinear ex-
tensions of SIR. We have no doubt that the heteroschedastic conditional variance
operator can be used to generate nonlinear extensions of other second-order SRD
methods such as contour regression [Li, Zha and Chiaromonte (2005)], directional
regression [Li and Wang (2007)], SIR-II [Li (1991)] and other F2M methods [Cook
and Forzani (2009)]. These extensions will be the topic of future work.

More generally, it is our hope that the clarity and simplicity that classical no-
tions lend to the formulation of dimension reduction, as well as the transparent
parallels we were able to draw between linear and nonlinear SDR, will provide
fertile grounds for much research to come.
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As we put forward a general theory that encompasses both linear and nonlin-
ear SDR, it is also important to point out that linear SDR has its special values
that cannot be replaced by nonlinear SDR via kernel mapping, one of which is
its preservation of the original coordinates and as a result its strong interpretabil-
ity. For example, when mapped to higher dimension spaces, kernel methods can
sometimes interpret difference in variances in the original coordinates as location
separation in the transformed coordinates, which can be undesirable depending
on the goal and emphasis of particular applications. For further discussion and an
example of this point, see Li, Artemiou and Li (2011).

Acknowledgments. We would like to thank two referees and an Associate Ed-
itor for their insightful comments and useful suggestions, which led to significant
improvements to this paper. In particular, the consideration of nonlinear sufficient
dimension reduction for functional data is inspired by the comments of two refer-
ees.

SUPPLEMENTARY MATERIAL

Supplement to “A general theory for nonlinear sufficient dimension re-
duction: Formulation and estimation” (DOI: 10.1214/12-AOS1071SUPP; .pdf).
This is supplementary appendix that contains some techincal proofs of the results
in the paper.
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