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ADAPTIVE CONFIDENCE INTERVALS FOR REGRESSION
FUNCTIONS UNDER SHAPE CONSTRAINTS

BY T. TONY CAI1, MARK G. LOW AND YIN XIA1

University of Pennsylvania

Adaptive confidence intervals for regression functions are constructed
under shape constraints of monotonicity and convexity. A natural benchmark
is established for the minimum expected length of confidence intervals at a
given function in terms of an analytic quantity, the local modulus of con-
tinuity. This bound depends not only on the function but also the assumed
function class. These benchmarks show that the constructed confidence inter-
vals have near minimum expected length for each individual function, while
maintaining a given coverage probability for functions within the class. Such
adaptivity is much stronger than adaptive minimaxity over a collection of
large parameter spaces.

1. Introduction. The construction of useful confidence sets is one of the more
challenging problems in nonparametric function estimation. There are two main
interrelated issues which need to be considered together, coverage probability and
the expected size of the confidence set. For a fixed parameter space it is often
possible to construct confidence sets which have guaranteed coverage probability
over the parameter space while controlling the maximum expected size. However
such minimax statements are often thought to be too conservative, and a more
natural goal is to have the expected size of the confidence set reflect in some sense
the difficulty of estimating the particular underlying function.

These issues are well illustrated by considering confidence intervals for the
value of a function at a fixed point. Let Y be an observation from the white noise
model

dY (t) = f (t) dt + n−1/2 dW(t), −1
2 ≤ t ≤ 1

2 ,(1)

where W(t) is standard Brownian motion and f belongs to some parameter
space F . Suppose that we wish to construct a confidence interval for f at some
point t0 ∈ (−1

2 , 1
2). Let CI be a confidence interval for f (t0) based on observing the

process Y , and let L(CI) denote the length of the confidence interval. The minimax
point of view can then be expressed by the following: subject to the constraint on
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the coverage probability inff ∈F P(f (t0) ∈ CI) ≥ 1 − α, minimize the maximum
expected length supf ∈F Ef (L(CI)).

As an example it is common to consider the Lipschitz classes

�(β,M) = {
f :

∣∣f (y)−f (x)
∣∣ ≤ M|y −x|β for x, y ∈ [−1

2 , 1
2

]}
, if 0 < β ≤ 1

and for β > 1

�(β,M) = {
f :

∣∣f (�β�)(x) − f (�β�)(y)
∣∣ ≤ M|x − y|β ′

for x, y ∈ [−1
2 , 1

2

]}
,

where �β� is the largest integer less than β and β ′ = β − �β�. For these classes it
easily follows from results of Donoho (1994), Low (1997) and Evans, Hansen and
Stark (2005) that the minimax expected length of confidence intervals, which have
guaranteed coverage of 1 − α over �(β,M), is of order M1/(1+2β)n−β/(1+2β).

It should, however, be stressed that confidence intervals which achieve such
an expected length rely on the knowledge of the particular smoothness param-
eters β and M , which are not known in most applications. Unfortunately, Low
(1997) and Cai and Low (2004) have shown that the natural goal of constructing
an adaptive confidence interval which has a given coverage probability and has
expected length that is simultaneously close to these minimax expected lengths for
a range of smoothness parameters is not in general attainable. More specifically
suppose that a confidence interval has guaranteed coverage probability of 1 − α

over �(β,M). Then for any f in the interior of �(β,M) the expected length for
this f must also be of order n−β/(1+2β). In other words the minimax rate describes
the actual rate for all functions in the class other than those on the boundary of the
set. For example, in the case that a confidence interval has guaranteed coverage
probability of 1 − α over the Lipschitz class �(1,M), then even if the underlying
function has two derivatives, and the first derivative smaller than M , the confidence
interval for f (x) must still have expected length of order n−1/3 even though one
would hope that an adaptive confidence interval would have a much shorter length
of order n−2/5.

Despite these very negative results there are some settings where some degree
of adaptation has been shown to be possible. In particular under certain shape con-
straints Hengartner and Stark (1995) constructed confidence bands which have a
guaranteed coverage probability of at least 1 − α over the collection of all mono-
tone densities and which have maximum expected length of order (

logn
n

)β/(2β+1)

for those monotone densities which are in �(β,M) for a particular choice of β

where 0 < β ≤ 1. This construction relies on the selection of a tuning param-
eter and is thus not adaptive. Dümbgen (2003), however, does provide adaptive
confidence bands with optimal rates for both isotonic and convex functions under
supremum norm loss on arbitrary compact subintervals. These results are, how-
ever, still framed in terms of the maximum length over particular large parameter
spaces, and the existence of such intervals raises the question of exactly how much
adaption is possible. It is this question that is the focus of the present paper.
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Rather than considering the maximum expected length over large collections of
functions, we study the problem of adaptation to each and every function in the
parameter space. We examine this problem in detail for two commonly used col-
lections of functions that have shape constraints, namely the collection of convex
functions and the collection of monotone functions. We focus on these parameter
spaces as it is for such shape constrained problems for which there is some hope
for adaptation. Within this context we consider the problem of constructing a con-
fidence interval for the value of a function at a fixed point under both the white
noise with drift model given in (1) as well as a nonparametric regression model.
We show that within the class of convex functions and the class of monotone func-
tions, it is indeed possible to adapt to each individual function, and not just to the
minimax expected length over different parameter spaces in a collection. The no-
tion of adaptivity to a single function is also discussed in Lepski, Mammen and
Spokoiny (1997) and Lepski and Spokoiny (1997) for the related point estimation
problem but in these contexts a logarithmic penalty of the noise level must be paid,
and thus the notion of adaptivity is somewhat different.

This result is achieved in two steps. First we study the problem of minimizing
the expected length of a confidence interval, assuming that the data is generated
from a particular function f in the parameter space, subject to the constraint that
the confidence interval has guaranteed coverage probability over the entire param-
eter space. The solution to this problem gives a benchmark for the expected length
which depends on the function f considered. It gives a bound on the expected
length of any adaptive interval because if the expected length is smaller than this
bound for any particular function, the confidence interval cannot have the desired
coverage probability. In applications it is more useful to express the benchmark in
terms of a local modulus of continuity, an analytic quantity that can be easily cal-
culated for individual functions. In situations where adaptation is not possible, this
local modulus of continuity does not vary significantly from function to function.
Such is the case in the settings considered in Low (1997). However, in the context
of convex or monotone functions, the resulting benchmark does vary significantly,
and this opens up the possibility for adaptation in those settings.

Our second step is to actually construct adaptive confidence intervals. This is
done separately for monotone functions and convex functions, with similar results.
For example, an adaptive confidence interval is constructed which is shown to have
expected length uniformly within an absolute constant factor of the benchmark for
every convex function, while maintaining coverage probability over the collection
of all convex functions. In other words, this confidence interval has smallest ex-
pected length, up to a universal constant factor, for each and every convex function
within the class of all confidence intervals which guarantee a 1 −α coverage prob-
ability over all convex functions. A similar result is established for a confidence
interval designed for monotone functions.

The rest of the paper is organized as follows. In Section 2 the benchmark for the
expected length at each monotone function or each convex function is established
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under the constraint that the interval has a given level of coverage probability over
the collection of monotone functions or the collection of convex functions. Sec-
tion 3 constructs data driven confidence intervals for both monotone functions
and convex functions and shows that these confidence intervals maintain cover-
age probability and have expected length within an absolute constant factor of the
benchmark given in Section 2 for each monotone function and convex function.
Section 4 considers the nonparametric regression model, and Section 5 discusses
connections of our results with other work in the literature. Proofs are given in
Section 6.

2. Benchmark and lower bound on expected length. As mentioned in the
Introduction, the focus in this paper is the construction of confidence intervals
which have expected length that adapts to the unknown function. The evaluation
of these procedures depends on lower bounds which are given here in terms of a
local modulus of continuity first introduced by Cai and Low (2011) in the context
of point estimation of convex functions under mean squared error loss. These lower
bounds provide a natural benchmark for our problems.

2.1. Benchmark and lower bound. We focus in this paper on estimating the
function f at 0 since estimation at other points away from the boundary is similar.
For a given function class F , write Iα(F ) for the collection of all confidence
intervals which cover f (0) with guaranteed coverage probability of 1 − α for all
functions in F . For a given confidence interval CI, denote by L(CI) the length of
CI and L(CI, f ) = Ef (L(CI)) the expected length of CI at a given function f .
The minimum expected length at f of all confidence intervals with guaranteed
coverage probability of 1 − α over F is then given by

L∗
α(f, F ) = inf

CI∈Iα(F )
L(CI, f ).(2)

A natural goal is to construct a confidence interval with expected length close to
the minimum L∗

α(f, F ) for every f ∈ F while maintaining the coverage probabil-
ity over F . However although L∗

α(f, F ) is a natural benchmark for the expected
length of confidence intervals, it is not easy to evaluate exactly. Instead as a first
step toward our goal, we provide a lower bound for the benchmark L∗

α(f, F ) in
terms of a local modulus of continuity ω(ε,f, F ) introduced by Cai and Low
(2011). The local modulus is a quantity that is more easily computable and tech-
niques for its analysis are similar to those given in Donoho and Liu (1991) and
Donoho (1994) where a global modulus of continuity was introduced in the study
of minimax theory for estimating linear functionals. See the examples in Sec-
tion 2.2.

For a parameter space F and function f ∈ F , the local modulus of continuity is
defined by

ω(ε,f, F ) = sup
{∣∣g(0) − f (0)

∣∣ :‖g − f ‖2 ≤ ε, g ∈ F
}
,(3)
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where ‖ · ‖2 is the L2(−1
2 , 1

2) function norm. The following theorem gives a lower
bound for the minimum expected length L∗

α(f, F ) in terms of the local modulus
of continuity ω(ε,f, F ). In this theorem and throughout the paper we write � for
the cumulative distribution function and φ for the density function of a standard
normal density and set zα = �−1(1 − α).

THEOREM 1. Suppose F is a nonempty convex set. Let 0 < α < 1
2 and f ∈ F .

Then for confidence intervals based on (1),

L∗
α(f, F ) ≥

(
1 − 1√

2πzα

+ φ(zα)

zα

− α

)
ω

(
zα√
n
,f, F

)
.(4)

In particular,

L∗
α(f, F ) ≥

(
1 − 1√

2πzα

)
ω

(
zα√
n
,f, F

)
.(5)

The lower bounds given in Theorem 1 can be viewed as benchmarks for the
evaluation of the expected length of confidence intervals when the true function
is f for confidence intervals which have guaranteed coverage probability over all
of F . The bound depends on the underlying true function f as well as the param-
eter space F .

The bounds from Theorem 1 are general. In some settings they can be used to
rule out the possibility of adaptation, whereas in other settings they provide bounds
on how much adaptation is possible. In particular the result ruling out adaptation
over Lipschitz classes mentioned in the Introduction easily follows from this the-
orem. For example, consider the Lipschitz class �(β,M) and suppose that f is
in the interior of �(β,M). Straightforward calculations similar to those given in
Section 2.2 show that

ω
(
ε, f,�(β,M)

) ∼ Cε2β/(2β+1).(6)

Now consider two Lipschitz classes �(β1,M1) and �(β2,M2) with β1 > β2.
A fully adaptive confidence interval in this setting would have guaranteed cover-
age of 1 − α over �(β1,M1) ∪ �(β2,M2) and maximum expected length over
�(βi,Mi) of order nβi/(2βi+1) for i = 1 and 2. However, it follows from Theo-
rem 1 and (6) that for all confidence intervals with coverage probability of 1 − α

over �(β2,M2), for every f ∈ �(β2,M
′) with M ′ < M2,

L∗
α

(
f,�(β2,M2)

) ≥ C(α)n−β2/(2β2+1)

for some constant C(α) not depending on f . In particular this holds for all f ∈
�(β1,M1) ∩ �(β2,M

′) and hence

sup
f ∈�(β1,M1)

inf
CI∈Iα(�(β1,M1)∪�(β2,M2))

L(CI, f ) ≥ C(α)n−β2/(2β2+1)

� n−β1/(2β1+1).
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Therefore it is not possible to have confidence intervals with adaptive expected
length over two Lipschitz classes with different smoothness parameters.

In the present paper Theorem 1 will be used to provide benchmarks in the set-
ting of shape constraints. Denote by Fm and Fc, respectively, the collection of all
monotonically nondecreasing functions and the collection of all convex functions
on [−1

2 , 1
2 ]. We shall now show that in these cases the modulus and the associated

lower bounds vary significantly from function to function.

2.2. Examples of bounds for monotone functions and convex functions. We
now turn to the application of the lower bound given in Theorem 1 in the case
of monotone functions and convex functions. Here we shall evaluate the lower
bound for four particular families of functions yielding different rates at which
the expected length decreases to zero as the noise level decreases in contrast to the
situation just described where the parameter space did not have an order constraint.
Two of the functions will be both monotonically nondecreasing and convex. In this
case the lower bound can also be quite different depending on whether we assume
the knowledge that f is convex or monotonically nondecreasing.

The key quantity that is needed in any application of Theorem 1 is the local
modulus. We follow the same approach as given in Donoho (1994) where a global
modulus of continuity is considered for minimax estimation. In each case, for a
given function f , we first minimize the L2 norm between a function g ∈ F and
the function f subject to the constraint that |g(0) − f (0)| = a for some given
value a > 0. From here it is easy to invert and thus maximize |g(0) − f (0)| given
a constraint on the L2 norm between f and g.

EXAMPLE 1. As a first example consider the linear function fk(t) = kt where
k ≥ 0 is a constant. This function is both monotonically nondecreasing and convex.

First consider the collection of monotonically nondecreasing functions Fm. We
shall treat separately the case k > 0 and the case k = 0. For the moment we shall
take k > 0. Suppose that 0 < a ≤ k

2 . In this case fk ∈ Fm and a function g that
minimizes ‖g − fk‖2 subject to the constraint that |g(0) − fk(0)| = a is given by
g(t) = fk(t) if t < 0, g(t) = a if 0 ≤ t ≤ b, and g(t) = fk(t) if t > b, where b

satisfies fk(b) = a. The assumption that a ≤ k
2 guarantees b ≤ 1

2 . We then have
‖g − fk‖2 = a3/2/(3k)1/2. It follows that if ε2 ≤ 1

24k2

ω(ε,fk,Fm) = (3k)1/3ε2/3

and consequently for n ≥ 24z2
α

k2 , if k > 0

L∗
α(fk,Fm) ≥

(
1 − 1√

2πzα

)
(3k)1/3z2/3

α n−1/3.

In the case that k = 0 a function g that minimizes ‖g − f0‖2 subject to the
constraint that |g(0) − f0(0)| = a is given by g(t) = f0(t) if t < 0, g(t) = a if
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0 ≤ t ≤ 1
2 . In this case it is easy to check that ‖g − f0‖2 = 1√

2
ε and hence

ω(ε,f0,Fm) = √
2ε

and hence

L∗
α(f0,Fm) ≥

(
1 − 1√

2πzα

)√
2zαn−1/2.

We now consider the bound for the length of the confidence interval for fk

belonging to the collection of convex functions. In this case we do not need to
treat the cases k > 0 and k = 0 separately. The function g that minimize ‖g −fk‖2
subject to the constraint that g is convex and |g(0)−fk(0)| = a is given by g(t) =
(k+3a)t −a if t ≥ 0 and g(t) = (k−3a)t −a if t < 0. In this case ‖g−f ‖2 = 1

2a.
It then immediately follows that

ω(ε,fk,Fc) = 2ε

and so

L∗
α(fk,Fc) ≥

(
1 − 1√

2πzα

)
2zαn−1/2.

It is important to note that for k > 0 the minimum expected lengths L∗
α(fk,Fm)

and L∗
α(fk,Fc) are different, one of order n−1/3 and another of order n−1/2, al-

though the function fk is the same. It is also interesting to note that the expected
length of the confidence for monotone functions is an increasing function of k

whereas the expected length of the confidence for convex functions does not de-
pend on k. Since we shall show that these bounds are achievable within a constant
factor it follows that the minimum expected length of the confidence interval when
fk is the true function depends strongly on whether we specify that the under-
lying collection of functions is convex or monotone. Plots illustrating shapes of
functions fk and a least favorable function g are shown as below in Figure 1.

FIG. 1. Plots of fk and a least favorable function g in Example 1 with the constraints
|g(0) − fk(0)| = a.
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EXAMPLE 2. As a second example which is also both monotonically nonde-
creasing and convex consider the function f (t) = k1t + k2t

rI (0 < t ≤ 1
2) where

r ≥ 1 and k1 ≥ 0 and k2 > 0 are constants.
We consider the cases r = 1 and r > 1 separately. When r = 1 the function is

piecewise linear with the change of slope at 0. In this case suppose 0 < a ≤ k1+k2
2 .

A monotonically nondecreasing function g ∈ Fm that minimize ‖g − f ‖2 subject
to the constraint that |g(0) − f (0)| = a is given by g(t) = f (t) if t < 0, g(t) = a

if 0 ≤ t ≤ b, and g(t) = f (t) if t > b, where b satisfies f (b) = a. The constraint
a ≤ k1+k2

2 is to guarantee that such a b exists with b ≤ 1
2 . Then we have ‖g−f ‖2 =

a3/2(3(k1 + k2))
−1/2, and it follows that if ε2 ≤ 1

24(k1 + k2)
2,

ω(ε,f,Fm) = (
3(k1 + k2)

)1/3
ε2/3

and consequently for n ≥ 24z2
α

(k1+k2)
2 ,

L∗
α(f,Fm) ≥

(
1 − 1√

2πzα

)(
3(k1 + k2)

)1/3
z2/3
α n−1/3.

We can also give a lower bound on the expected length for this same function for
confidence intervals which guarantee coverage over the class of convex functions.
Suppose 0 < a ≤ k2

4 . Here we need to find the convex h that minimizes ‖h − f ‖2
subject to the constraints that |h(0) − f (0)| = a. It is given by h(t) = f (t) if
t ≤ −2a

k2
, h(t) = (k2

2 + k1)t + a if −2a
k2

≤ t ≤ 2a
k2

and h(t) = f (t) if t ≥ 2a
k2

. Then

‖f − g‖2 = 2a3/2/(3k2)
1/2 and it follows that if ε2 ≤ k2

2
48 ,

ω(ε,f,Fc) = (3k2/4)1/3ε2/3.

Hence, for n ≥ 48z2
α

k2
2

,

L∗
α(f,Fc) ≥

(
1 − 1√

2πzα

)
(3k2/4)1/3z2/3

α n−1/3.

We now turn to the case where r > 1. Suppose 0 < a ≤ k1
2 + k2(

1
2)r . In this case

the monotonically nondecreasing function g that minimizes ‖g − f ‖2 subject to
the constraints that |g(0) − f (0)| = a is given by g(t) = f (t) if t < 0, g(t) = a

if 0 ≤ t ≤ b and g(t) = f (t) if t > b, where b satisfies f (b) = a. As before the
condition 0 < a ≤ k1

2 + k2(
1
2)r guarantees that b exists with b < 1

2 . In this case
a3/2(3k1)

−1/2 − cas ≤ ‖g − f ‖2 ≤ a3/2(3k1)
−1/2 + cas for some constant c > 0

and s > 3/2. It follows that if ε2 ≤ 1
24k2

1 + (1 + 1
2r+1 − 2

r+1)(1
2)2r+1k2

2 + (1
2 −

1
r+1 + 1

r+2)(1
2)r+1k1k2, then

ω(ε,f,Fm) = (3k1)
1/3ε2/3(

1 + o(1)
)
.
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Hence,

L∗
α(f,Fm) ≥

(
1 − 1√

2πzα

)
(3k1)

1/3z2/3
α n−1/3(

1 + o(1)
)
.

For a bound on the expected length of this same function for confidence intervals
with coverage guaranteed over the collection of convex functions, we suppose 0 <

a ≤ k2(
1
2)r+1. In this case the convex function h that minimizes ‖h − f ‖2 subject

to the constraints that |h(0) − f (0)| = a, is given by h(t) = kt + a, k > k1, if
x0 ≤ t ≤ x1 and h(t) = f (t) otherwise, where (x0, cx0) and (x1, cx1 + xr

1) are the
intersection points of f (t) and the line kt + a. Then the function h with slope k0
that minimize ‖h − f ‖2 would be the least favorable function. It follows that, if

ε2 ≤ k2
2

24(1
2)2r ,

ω(ε,f,Fc) = C(r)k
1/(2r+1)
2 ε2r/(2r+1)

and consequently for n ≥ 24z2
α22r

k2
2

,

L∗
α(f, Fc) ≥

(
1 − 1√

2πzα

)
C(r)k

1/(2r+1)
2 z2r/(2r+1)

α n−r/(2r+1),

where C(r) > 0 is a constant depending on r only.

It is interesting to note that in this example the rates of convergence for
L∗

α(f, Fm) and L∗
α(f, Fc) are the same for the case r = 1, and are different when

r > 1. Plots illustrating shapes of functions f and a least favorable function g are
shown as below in Figure 2.

Next we consider a function which is monotonically nondecreasing but not con-
vex.

EXAMPLE 3. Let f (t) = ktr for some constant k > 0 and r = 2l + 1 or r =
1

2l+1 for l = 0,1,2, . . . . Suppose that a < (1
2)rk. In this case a function g that

minimizes ‖g − f ‖2 subject to the constraint that |g(0) − f (0)| = a is given by
g(t) = f (t) if t < 0, g(t) = a if 0 ≤ t ≤ b and g(t) = f (t) if t > b, where b

satisfies f (b) = a. As before the condition a < (1
2)rk guarantees that b exists with

b < 1
2 . Then ‖g−f ‖2 = a1+(1/(2r))/k1/(2r)(2r2/(r +1)(2r +1))1/2, and it follows

that when ε2 ≤ (1
2)2r+1k2 2r2

(r+1)(2r+1)
,

ω(ε,f,Fm) =
(

(r + 1)(2r + 1)k

2r2

)r/(2r+1)

ε2r/(2r+1).

Hence for n ≥ 22r+1(r+1)(2r+1)z2
α

2r2k2 ,

L∗
α(f, Fc) ≥

(
1 − 1√

2πzα

)(
(r + 1)(2r + 1)k

2r2

)r/(2r+1)

z2r/(2r+1)
α n−r/(2r+1),
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FIG. 2. Plots of f and a least favorable function g in Example 2 with the constraints
|g(0) − f (0)| = a.

and once again it is clear that the rate at which the expected length decreases to
zero depends strongly on the value of r .

As a final example we consider a function which is convex but not monotoni-
cally nondecreasing.

EXAMPLE 4. Let f (t) = t2. Suppose that a < 1/2. In this case the function g

that minimizes ‖g − f ‖2 subject to the constraint that |g(0) − f (0)| = a is given
by g(t) = −3

√
a/2t −a if −√

2a ≤ t ≤ 0, g(t) = 3
√

a/2t −a if 0 ≤ t ≤ √
2a and

g(t) = f (t) otherwise. Then ‖g − f ‖2 = 25/4/
√

15a5/4 and it follows that when
ε2 ≤ 1/

√
15,

ω(ε,f,Fm) = 152/5

2
ε4/5.

Hence for n ≥ √
15z2

α ,

L∗
α(f, Fc) ≥

(
1 − 1√

2πzα

)
152/5

2
z4/5
α n−2/5.
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FIG. 3. Plots of f and a least favorable function g in Examples 3 and 4 with the constraints
|g(0) − f (0)| = a.

A similar minimization problem is solved in Dümbgen (2003).

Plots illustrating shapes of functions f and a least favorable function g for both
Examples 3 and 4 are shown in Figure 3.

3. Confidence procedures. In this section we both construct and give an anal-
ysis of adaptive confidence intervals for monotone functions and convex functions.
The procedures are easily implementable. We consider the class of monotonically
nondecreasing functions and the class of convex functions. Concave functions and
monotonically nonincreasing functions can be handled similarly.

3.1. Construction. The construction is split into two steps. In the first step a
countable collection of confidence intervals is created each of which has guaran-
teed coverage probability. These intervals are based on a collection of pairs of
linear estimators. For each interval one of the estimators has nonnegative bias and
the other nonpositive bias. The one-sided control of the bias of these estimators
is a key special feature in these problems and an important part of what makes it
possible to adapt to every individual function. Moreover for each function f this
collection has at least one interval with expected length within a constant factor
of the local modulus bound given in Theorem 1. The second step is to select from
this collection a particular interval.

In the case of monotonically nondecreasing functions we take for each j ≥ 2,
pairs of estimators δR

j = 2j (Y (2−j )−Y(0)) and δL
j = 2j (Y (0)−Y(−2−j )). Then

for estimating f (0) it is easy to check that δR
j has nonnegative and monotonically

nonincreasing biases while δL
j have nonpositive and monotonically nondecreasing

biases. The one-sided control of the biases of these estimators over the class of
all monotonically nondecreasing functions easily allows for the construction of a
confidence interval. For that we shall need the standard deviation of δR

j and δL
j . In
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order to give a unified treatment in both the monotone and convex case it is useful
to establish a common notation. Here we shall set σ 2

j = 2j−1

n
. It is then easy to

check that both δR
j and δL

j have a standard deviation of
√

2σj . It is then also easy
to see that for each j ≥ 2, the confidence interval CImj (α) given by

CImj (α) = [
δL
j − zα/2

√
2σj , δ

R
j + zα/2

√
2σj

]
(7)

has guaranteed coverage of 1 − α. We should, however, note that in (7) the left
endpoint of the interval may be larger than the right endpoint in which case we
adopt the convention that the confidence interval is just the empty set. The length
of this confidence interval is then max(δR

j − δL
j + 2

√
2zα/2σj ,0).

In the case of convex functions for j ≥ 1, let δj = 2j−1(Y (2−j ) − Y(−2−j ))

and let δ̃j = 2δj+1 − δj .
The following lemma shows that for convex functions δj have nonnegative and

monotonically nonincreasing biases and that δ̃j have nonpositive and monotoni-
cally nondecreasing biases.

LEMMA 1. For any convex function f ,

0 ≤ Bias(δj+1) ≤ 1
2 Bias(δj ),(8)

Eδj − 3Eδj+1 + 2Eδj+2 ≥ 0.(9)

It is also easy to check that the standard deviation of δj is equal to σj where

σ 2
j = 2j−1

n
and that 2δj+1 − δj has a standard deviation of

√
5σj . It then follows

from the signs of the biases of δj+1 and 2δj+1 − δj that for any given j ,

CIcj (α) = [2δj+1 − δj − zα/2
√

5σj , δj+1 + zα/2σj+1](10)

gives a confidence interval with coverage probability of at least 1 − α. We should
also note once again that the left endpoint of the interval may be larger than the
right endpoint in which case the confidence interval is taken to be the empty set,
and so in this case the length of this confidence interval is max(δj − δj+1 + (

√
5 +√

2)zα/2σj ,0).
These results, for which a more formal proof is given in Section 6 are summa-

rized in the following proposition.

PROPOSITION 1. For every j ≥ 2, the confidence interval CImj defined in (7)
has coverage probability of at least 1 − α for all monotonically nondecreasing
functions f ∈ Fm, and for every j ≥ 1, the confidence interval CIcj defined in (10)
has coverage probability of at least 1 − α for all convex functions f ∈ Fc.



734 T. T. CAI, M. G. LOW AND Y. XIA

The second stage in the construction is that of selecting from these collections
of intervals the one to be used. First note that one should not select the shortest
interval since the collections defined in (7) and (10) will always contain one which
corresponds to the empty set. A more sensible goal is to try to select the interval
with the smallest expected length or at least one which has expected length close
to the smallest expected length.

The approach we take here is to choose an interval for which the expected length
is of the same order of magnitude as the standard deviation of the length. Such an
interval will always have expected length close to the shortest expected length.
For the case of monotonically nondecreasing functions the selection of the interval
from the countable collection in (7) can be done by creating another collection of
estimators which can be used to estimate the expected length of the intervals.

More specifically set ξj = 2j−1(Y (2−j+1) − Y(2−j )) − 2j−1(Y (−2−j ) −
Y(−2−j+1)). Then for j ≥ 2, ξj ’s are independent of each other and both δR

j

and δL
j are independent of ξk for every k ≤ j . We should note that the estimators

ξj are similar to δR
j − δL

j in that they are both differences of averages of Y to
the left and right of the origin and thus estimate the average local change of the
function. However δR

j − δL
j are not independent for different j whereas the ξj are

independent. It is thus natural to view the ξj as a surrogate for δR
j − δL

j with the
technical advantage that they are independent. The selection of a j for which ξj

has expected value close to σj will then result in a confidence interval CImj close to
the one with the smallest expected length. The independence properties of the ξj

allows us to guarantee a 1 − α coverage probability while making this selection.
More specifically the construction proceeds as follows. Let

ĵ = inf
j

{
j : ξj ≤ 3

2
zασj

}
(11)

and define the final confidence interval by

CIm∗ = CIm
ĵ
(α).(12)

Before we turn to the analysis of this procedure we also introduce here a related
confidence procedure in the convex case. Here rather than introducing an indepen-
dent estimate of the difference between the two estimators used in constructing
the confidence interval, we proceed more directly. The basic idea is similar, but
the dependence between the estimates of j and the confidence interval constructed
from this estimate requires that we adjust the original coverage level of our CIcj .

More specifically let Tj = δj − δj+1. When the expected value of Tj is the
same order as σj , the confidence interval CIcj will then be close to the one with
the smallest expected length. Our estimate of j is given by an empirical version,
namely

ĵ = inf
j

{j :Tj ≤ zασj }.(13)
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Although this estimate can be used to select the appropriate CIcj to use, as just
mentioned, care also needs to be taken to make sure that the resulting selected in-
terval maintains the required coverage probability. The analysis given below shows
that a choice of α/6 in the construction of the original collection of intervals guar-
antees an overall coverage probability of α. Thus in the case of convex functions,
we define our interval by

CIc∗ = CIc
ĵ

(
α

6

)
.(14)

3.2. Analysis of the confidence intervals. In this section we present the prop-
erties of the confidence intervals CIm∗ and CIc∗ defined by (12) and (14) focusing
on the coverage and the expected length of these intervals.

We begin with the confidence interval CIm∗ . In this case it is easy to check the
coverage probability of CIm∗ by the independence of the interval CImj and ξk for
every k satisfying 2 ≤ k ≤ j .

The key to the analysis of the expected length is the introduction of jm∗ where

jm∗ = arg min
j

{j :Eξj ≤ zασj }.(15)

The analysis of the expected length relies on showing that ĵ is highly concen-
trated around jm∗ . The concentration of ĵ around jm∗ then provides a bound on the
expected length of CI∗. These results, for which a proof is given in Section 6 are
summarized in the following theorem.

THEOREM 2. Let 0 < α ≤ 0.2. The confidence interval CIm∗ defined in (12)
has coverage probability of at least 1 − α for all monotonically nondecreasing
functions f ∈ Fm and satisfies

Ef L
(
CIm∗

) ≤ 1.21(3zα + 2
√

2zα/2)σjm∗ ≤ c0zασjm∗ ,(16)

where c0 is a constant and can be taken to be 8.85 for all 0 < α ≤ 0.2.

REMARK 1. The constant c0 in Theorem 2 depends on the upper limit of α.
c0 can be smaller if the upper limit on α is reduced. For example, for common
choices of α = 0.05 or 0.01, c0 ≤ 7.71 for α = 0.05, and c0 ≤ 7.42 for α = 0.01.

Theorem 2 shows that the coverage probability is attained and also provides
an upper bound on the expected length in terms of σjm∗ . In order to establish that
this expected length is within a constant factor of the lower bound given in Theo-
rem 1, we need to provide a lower bound for L∗

α(f,Fm) in terms of zασjm∗ . This
connection is given in the following theorem.
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THEOREM 3. Let 0 < α ≤ 0.2 and let f ∈ Fm. Then

L∗
α(f,Fm) ≥

(
1 − 1√

2πzα

)
1√
2
zασjm∗ .(17)

Combining Theorems 2 and 3, we have

Ef L
(
CIm∗

) ≤ c1L
∗
α(f,Fm)(18)

for all monotonically nondecreasing functions f ∈ Fm, where c1 is a constant
depending on α only. For example, c1 can be taken to be 14.40 for α = 0.05
and 12.67 for α = 0.01. Hence, the confidence interval CIm∗ is uniformly within
a constant factor of the benchmark L∗

α(f,Fm) for all monotonically nondecreas-
ing functions f and all confidence level 1 − α ≥ 0.8.

We now turn to an analysis of the properties of the confidence interval CIc∗
defined in (14). The key to this analysis is the introduction of jc∗ where

jc∗ = arg min
j

{
j :ETj ≤ 2

3
zασj

}
.(19)

The analysis of both the coverage probability and the expected length relies on
showing that ĵ is highly concentrated around jc∗ . The probability of not covering
f (0) can be bounded by

P
(
f (0) /∈ CIc∗

) ≤ P
(
ĵ ≤ jc∗ − 3

) + P
(
ĵ ≥ jc∗ + 3

)
(20)

+
2∑

l=−2

P
(
f (0) /∈ CIjc∗+l

)
.

The first two terms are controlled by the high concentration of ĵ around jc∗ , and the
last term is controlled by Proposition 1 which bounds the coverage probability of
any given j . The concentration of ĵ around jc∗ also allows control on the expected
length of CIc∗ which leads to the following theorem.

THEOREM 4. Let 0 < α ≤ 0.2. The confidence interval CIc∗ defined in (14) has
coverage probability of at least 1 − α for all convex f and satisfies

Ef L
(
CIc∗

) ≤ 1.25
(
zα + (

√
5 + √

2)zα/12
)
σjc∗ ≤ c0zασjc∗ ,(21)

where c0 is a constant and can be taken to be 12.79 for all 0 < α ≤ 0.2.

REMARK 2. The constant c0 in Theorem 4 depends on the upper limit of α.
c0 can be smaller if the upper limit on α is reduced. For example, for common
choices of α = 0.05 or 0.01, c0 ≤ 8.57 for α = 0.05, and c0 ≤ 7.42 for α = 0.01.
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Theorem 4 shows that the coverage probability is attained and also provides an
upper bound on the expected length in terms of σjc∗ . As was the case for monotone
functions, in order to to establish that this expected length for convex functions
is within a constant factor of the lower bound given in Theorem 1, we need to
provide a lower bound for L∗

α(f,Fc) in terms of zασjc∗ . This connection is given
in the following theorem.

THEOREM 5. Let 0 < α ≤ 0.2 and let f ∈ Fc. Then

L∗
α(f,Fc) ≥

(
1 − 1√

2πzα

)√
2

3
zασjc∗ .(22)

Theorems 4 and 5 together yield

Ef L
(
CIc∗

) ≤ c2L
∗
α(f,Fc)(23)

for all convex functions f ∈ Fc, where c2 is a constant depending on α only. For
example, c2 can be taken to be 24 for α = 0.05 and 19 for α = 0.01. Hence, the
confidence interval CIc∗ is uniformly within a constant factor of the benchmark
L∗

α(f,Fc) for all convex functions f and all confidence levels 1 − α ≥ 0.8.

4. Nonparametric regression. We have so far focused on the white noise
model. The theory presented in the earlier sections can also easily be extended to
nonparametric regression. Consider the regression model

yi = f (xi) + σzi, i = −n,−(n − 1),−1,0,1, . . . , n,(24)

where xi = i
2n

and zi
i.i.d.∼ N(0,1) and where for notational convenience we index

the observations from −n to n. Note that the noise level σ can be accurately es-
timated easily, as in Hall, Kay and Titterington (1990) or Munk et al. (2005). See
also Wang et al. (2008). We shall thus assume it is known in this section. Then un-
der the assumption that f is convex or monotone, we wish to provide a confidence
interval for f (0).

4.1. Monotone regression. Let J = �log2 n�. For 1 ≤ j ≤ J define the local
average estimators

δ̄R
j = 2−j+1

2j−1∑
k=1

yk and δ̄L
j = 2−j+1

2j−1∑
k=1

y−k.(25)

We should note that the indexing scheme is the reverse of that given for the white
noise with drift process. Here estimators δ̄R

j (or δ̄L
j ) with small values of j have

smaller bias (or larger bias) and larger variance than those with larger values of j .
As in the white noise model it is easy to check that δ̄R

j has nonnegative bias

and δ̄L
j has nonpositive bias. Simple calculations show that the variance of δ̄R

j and
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δ̄L
j are both 2σ 2

j , where σ 2
j = 2−jσ 2. It is also important to introduce ξ̄j as in

the white noise case, where ξ̄j = 2−j ∑2j

k=2j−1+1(yk − y−k). It is easy to check

that Eξ̄j ≤ Eξ̄j+1, ξ̄j ’s are independent with each other, and both δ̄R
j and δ̄L

j are

independent with ξ̄k for every k ≥ j .
It then follows that CImj = [δ̄L

j − zα/2
√

2σj , δ̄
R
j + zα/2

√
2σj ] has guaranteed

coverage probability of at least 1 − α over all monotonically nondecreasing func-
tions.

Now set

ĵ =
⎧⎨
⎩ max

j

{
j : ξ̄j ≤ 3

2
zασj

}
, if ξ̄1 ≤ 3

2
zασ1;

1, otherwise,
(26)

and define the confidence interval to be

CIm∗ = CIm
ĵ
.(27)

The properties of this confidence interval can then be analyzed in the same way
as before and can be shown to be similar to those for the white noise model. In
particular, the following result holds.

THEOREM 6. Let 0 < α ≤ 0.2. The confidence interval CIm∗ defined in (27) has
coverage probability of at least 1 − α for all monotone functions f and satisfies

Ef L
(
CIm∗

) ≤ C1L
∗
α(f,Fm)(28)

for all monotonically nondecreasing functions f ∈ Fm, where C1 > 0 is a constant
depending on α only.

4.2. Convex regression. As in the monotone case, set J = �log2 n�. For 1 ≤
j ≤ J define the local average estimators

δ̄j = 2−j
2j−1∑
k=1

(y−k + yk).(29)

We should note that this indexing scheme is the reverse of that given for the white
noise with drift process. Here estimators δ̄j with small values of j have smaller
bias and larger variance than those with larger values of j .

As in the white noise model it is easy to check that δ̄j has nonnegative bias.
It is also important to introduce an estimate which has a similar variance but is
guaranteed to have nonpositive bias. The key step is to introduce

Tj = δ̄j − δ̄j−1(30)

as an estimate of the bias of δ̄j . The following lemma gives the required properties
of δ̄j and Tj .
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LEMMA 2. For any convex function f ,

2ETj ≤ ETj+1,(31)

0 ≤ Bias(δ̄j ) ≤ 2j−1 + 1

2j + 1
Bias(δ̄j+1).(32)

From (32) it is clear that the biases of the estimators δ̄j are nonnegative
and monotonically nondecreasing. In addition straightforward calculations using
both (31) and (32) show that the estimators

δL
j = (

2 + 2−(j−1))δ̄j − (
1 + 2−(j−1))δ̄j+1 = δ̄j − (

1 + 2−(j−1))Tj+1

have a nonpositive and monotonically nonincreasing biases. Simple calculations
show that the variance of δL

j is τ 2
j = (5 + 2−j+3 + 2−2j+2)2−j−1σ 2.

It then follows that CIcj = [δ̄j − (1 + 2−(j−1))Tj+1 − zα/12τj , δ̄j + zα/12σj ] has
coverage over all convex functions.

Now set

ĵ =
{

max
j

{j :Tj ≤ zασj }, if T2 ≤ zασ2;

1, otherwise,
(33)

and define the confidence interval to be

CIc∗ = CIc
ĵ
.(34)

This confidence interval shares similar properties as the one for the white noise
model. In particular, the following result holds.

THEOREM 7. Let 0 < α ≤ 0.2. The confidence interval CIc∗ defined in (34) has
coverage probability of at least 1 − α for all convex function f and satisfies

Ef L
(
CIc∗

) ≤ C2L
∗
α(f,Fc)(35)

for all convex function f ∈ Fc, where C2 > 0 is a constant depending on α only.

5. Discussion. The major emphasis of the paper has been to show that with
shape constraints it is possible to construct confidence intervals that have expected
length that adapts to individual functions. In this section we shall discuss briefly
the maximum expected lengths of our procedures over Lipschitz classes that are
either monotone or convex in a way that is similar to that provided in Dümbgen
(1998, 2003) for the maximum width of a confidence band. We shall also explain
how our results can be extended to the problem of estimating the value of f at
points other than 0.
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5.1. Minimax results. Although the focus of the present paper has been on the
construction of a confidence interval with the expected length adaptive to each in-
dividual convex or monotone function, these results do yield immediately adaptive
minimax results for the expected length in the conventional sense. Define

Fc(β,M) = Fc ∩ �(β,M) and Fm(β,M) = Fm ∩ �(β,M).

The following results are direct consequence of Theorems 2 and 4.

COROLLARY 1. (i) The confidence interval CIm∗ defined in (12) satisfies

sup
f ∈Fm(β,M)

Ef L
(
CIm∗

) ≤ C1M
1/(1+2β)n−β/(1+2β)(36)

simultaneously for all 0 ≤ β ≤ 1 and 1 < M < ∞, for some absolute constant
C1 > 0.

(ii) The confidence interval CIc∗ defined in (14) satisfies

sup
f ∈Fc(β,M)

Ef L
(
CIc∗

) ≤ C2M
1/(1+2β)n−β/(1+2β)(37)

simultaneously for all 1 ≤ β ≤ 2 and 1 < M < ∞, for some absolute constant
C2 > 0.

We should note that these ranges of Lipschitz classes are the only ones of inter-
est in these cases. In particular suppose that CI is a confidence interval with guar-
anteed coverage over the class of monotonically nondecreasing functions. Then
for any β > 1 the class �(β,M) includes the linear function fk(t) = kt . As shown
in Example 1 in Section 2.2,

L∗
α(fk,Fm) ≥

(
1 − 1√

2πzα

)
(3k)1/3z2/3

α n−1/3.

Hence,

sup
f ∈Fm(β,M)

Ef L(CI) ≥ sup
k

L∗
α(fk,Fm)

(38)

= sup
k

(
1 − 1√

2πzα

)
(3k)1/3z2/3

α n−1/3 = ∞.

A similar results holds for convex functions assumed to belong to �(β,M)

with β > 2. On the other hand suppose f is convex and assumed to belong to
�(β,M) with β < 1. Then from the assumption that f is in �(β,M) it follows
that |f (1/2) − f (−1/2)| ≤ M . Convexity then shows that f ∈ �(1,M) and the
maximum expected length over this class is given above.
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5.2. Confidence interval at other points. The focus of the present paper has
been on the problem of estimating the value of f (0). The basic development is
similar for any other point t in the interior of the interval [−1/2,1/2] unless t

is near to the boundary. More specifically for any 0 ≤ t < 1/2 we can consider
estimators δR

j (t) = 2j (Y (t + 2−j ) − Y(t)) and δL
j (t) = 2j (Y (t) − Y(t − 2−j ))

where j ≥ − log2(
1
4 − t

2) for monotone functions and δj (t) = 2j−1(Y (t + 2−j ) −
Y(t − 2−j )) where j ≥ − log2(

1
2 − t) for convex functions. The basic theory is the

same as before.
For monotonically nondecreasing functions, the confidence interval CImj is re-

placed by

CImj (t) = [
δL
j (t) − zα/2

√
2σj , δ

R
j (t) + zα/2

√
2σj

]
and the choice of ĵ is given by

ĵ (t) = inf
j≥− log2(1/4−(t/2))

{
j : ξj (t) ≤ 3

2
zασj

}
,

where ξj (t) = 2j−1(Y (t + 2−j+1) − Y(t + 2−j )) − 2j−1(Y (t − 2−j ) − Y(t −
2−j+1)). The final confidence interval is defined by

CIm∗ = CIm
ĵ(t)

.(39)

For convex functions, the confidence interval CIcj is replaced by

CIcj (t) = [
δj+1(t) − (

δj (t) − δj+1(t)
)
+ − zα/12

√
5σj , δj+1(t) + zα/12σj+1

]
,

and ĵ is chosen to be

ĵ (t) = inf
j≥− log2(1/2−t)

{
j :Tj (t) ≤ zασj

}
.

Define the final confidence interval by

CIc∗ = CIc
ĵ (t)

.

The modulus of continuity defined in (40) is replaced by

ω(ε,f, t, F ) = sup
{∣∣g(t) − f (t)

∣∣ :‖g − f ‖2 ≤ ε, g ∈ F
}
.(40)

The earlier analysis then yields

Ef L
(
CIm∗ (t)

) ≤ c1L
∗
α(f, t,Fm)

and

Ef L
(
CIc∗(t)

) ≤ c2L
∗
α(f, t,Fc),

where we now have

L∗
α(f, t, F ) ≥

(
1 − 1√

2πzα

)
ω

(
zα√
n
,f, t, F

)
.
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Finally we should note that at the boundary the construction of a confidence in-
terval must be unbounded. For example any honest confidence interval for f (1/2)

must be of the form [f̂ (1/2),∞); otherwise it cannot have guaranteed coverage
probability.

6. Proofs. We prove the main results in this section. We shall omit the proofs
for Theorems 6 and 7 as they are analogous to those for the corresponding results
in the white noise model.

6.1. Proof of Lemma 1. Set fs(t) = f (t)+f (−t)
2 − f (0). Now note that fs(tx)

is convex in x for all 0 ≤ t ≤ 1. Hence g(x) = ∫ 1
0 fs(tx) dt is also convex with

g(0) = 0. For x > 0 set z = xt , and it follows that g(x) = 1
x

∫ x
0 fs(z) dz =

1
2x

∫ x
−x(f (z) − f (0)) dz. Equation (8) follows from the fact that g(x) ≤ 1

2g(2x)

for x = 2−(j+1), and equation (9) follows from the fact that g(2x) ≤ 2/3g(x) +
1/3g(4x).

6.2. Proof of Lemma 2. For any convex function f , let fs(x) = 1
2(f (x) +

f (−x)) − f (0). Then fs(x) is convex, increasing in |x| and fs(0) = 0. Convexity
of fs yields that for 0 < x ≤ y,

fs(x)

x
≤ fs(y)

y
.(41)

Note that Eδj = 2−(j−1) ∑2j−1

k=1 fs(
k
n
) and

ETj = 2−(j−1)

{ 2j−1∑
k=2j−2+1

fs

(
k

n

)
−

2j−2∑
k=1

fs

(
k

n

)}
.

So ETj ≥ 2ETj−1 is equivalent to

2j−1∑
k=2j−2+1

fs

(
k

n

)
−

2j−2∑
k=1

fs

(
k

n

)
≥ 4

2j−2∑
k=2j−3+1

fs

(
k

n

)
− 4

2j−3∑
k=1

fs

(
k

n

)
,

which is the same as

2j−1∑
k=2j−2+1

fs

(
k

n

)
+ 3

2j−3∑
k=1

fs

(
k

n

)
≥ 5

2j−2∑
k=2j−3+1

fs

(
k

n

)
.(42)

Now note that for x ≥ 0 and u ≥ 0,

fs(x) + fs(x + 3u) ≥ fs(x + u) + fs(x + 2u) and

fs(x) + fs(x + 2u) ≥ 2fs(x + u)
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and consequently fs(x + 3u) + fs(x + 2u) + 3fs(x) ≥ 5fs(x + u). Then (42)
follows by taking u = 2j−3

n
and x = k

n
and then summing over k = 1, . . . ,2j−3.

Denote the bias of δ̄j by b̄j = Eδ̄j − f (0). Then

b̄j = 2−(j−1)
2j−1∑
k=1

fs

(
k

n

)
= 2−(j−1)

{ 2j−1∑
k=2j−2+1

fs

(
k

n

)
+

2j−2∑
k=1

fs

(
k

n

)}
.

It follows from (41) that for k > 2j−2, fs(
k
n
) ≥ k

2j−2 fs(
2j−2

n
), and for k ≤ 2j−2,

fs(
k
n
) ≤ k

2j−2 fs(
2j−2

n
). Hence

2j−1∑
k=2j−2+1

fs

(
k

n

)
≥

2j−1∑
k=2j−2+1

k

2j−2 · fs

(
2j−2

n

)
≥

∑2j−1

k=2j−2+1 k/2j−2

∑2j−2

k=1 k/2j−2

2j−2∑
k=1

fs

(
k

n

)

= 3 · 2j−2 + 1

2j−2 + 1

2j−2∑
k=1

fs

(
k

n

)
.

Hence,

b̄j ≥ 2−(j−1) ·
(

3 · 2j−2 + 1

2j−2 + 1
+ 1

) 2j−2∑
k=1

fs

(
k

n

)
= 2j−1 + 1

2j−2 + 1
b̄j−1.

6.3. Proof of Theorem 1. Suppose that X ∼ N(θ,σ 2) where it is known that
θ ∈ [0, aσ ]. The confidence interval for θ which has guaranteed coverage over the
interval θ ∈ [0, aσ ] and which minimizes the expected length when θ = 0 is given
by [

0,max
(
0,min(X + zασ, aσ)

)]
.(43)

It follows that

L = σ

∫ a−zα

−zα

zφ(z) dz + σ
(
zαP (−zα ≤ Z ≤ a − zα) + aP (Z ≥ a − zα)

)
(44)

and hence

L

σ
= (

φ(zα) − φ(a − zα)
) + zα

(
�(a − zα) − �(−zα)

)
(45)

+ a
(
1 − �(a − zα)

)
.

In particular when a = zα ,

L

σ
≥ zα

(
1 − φ(0)

zα

+ φ(zα)

zα

− α

)
.(46)
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In particular we have

L

σ
≥ zα

(
1 − φ(0)

zα

)
.(47)

Write L∗
α(f, F ) for the smallest expected length at f when we have guaranteed

coverage over F . In particular let Pθ be a subfamily of F , and then L∗
α(f, F ) ≥

L∗
α(f,Pθ ).
Now suppose that f0 is the “true” function. Fix ε > 0. There is a function f1 ∈ F

such that

∣∣f1(0) − f0(0)
∣∣ = ω

(
ε√
n
,f, F

)

and such that

‖f1 − f0‖2 = ε√
n
.

Now for 0 ≤ θ ≤ 1, let fθ = f0 + θ(f1 − f0). Let Pθ be this collection of fθ .
Now for the process

dY (t) = fθ (t) dt + 1√
n

dW(t), −1

2
≤ t ≤ 1

2
,

there is a sufficient statistic Sn given by

Sn = f0(0) + (
f1(0) − f0(0)

) 1∫
(f1 − f0)2

∫ (
f1(t) − f0(t)

)(
dY (t) − f0(t) dt

)
.

Note that Sn has a normal distribution Sn ∼ N(fθ (0),
(f1(0)−f0(0))2

n
∫
(f1−f0)

2 ) or more

specifically Sn ∼ N(fθ (0), 1
ε2 ω

2( ε√
n
, f0, F )).

Note that a = ε. Now take ε = zα . It then follows that

L∗
α(f0,Pθ ) ≥ ω

(
zα√
n
,f0, F

)(
1 − φ(0)

zα

+ φ(zα)

zα

− α

)
.

6.4. Proof of Proposition 1. For monotone functions, we have

P
(
f (0) ∈ CImj

) = P
(
δL
j − zα/2

√
2σj ≤ f (0) ≤ δR

j + zα/2
√

2σj

)
≥ 1 − P

(
δR
j < f (0) − zα/2

√
2σj

) − P
(
δL
j > f (0) + zα/2

√
2σj

)
= 1 − P

(
Z <

f (0) − E(δR
j )√

2σj

− zα/2

)

− P
(
Z >

f (0) − E(δL
j )√

2σj

+ zα/2

)
,
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where Z is a standard normal random variable. Because f (0) − E(δR
j ) ≤ 0 and

f (0) − E(δL
j ) ≥ 0, we have

P
(
f (0) ∈ CImj

) ≥ 1 − P(Z < −zα/2) − P(Z > zα/2) = 1 − α.

For convex functions, let bj = Bias(δj ). It follows from Lemma 1 that bj −
2bj+1 > 0, and hence we have

P
(
f (0) ∈ CIcj

) ≥ P
(
2δj+1 − δj − zα/2

√
5σj ≤ f (0) ≤ δj+1 + zα/2σj+1

)
≥ 1 − P

(
δj+1 < f (0) − zα/2σj+1

)
− P

(
2δj+1 − δj > f (0) + zα/2

√
5σj

)
= 1 − P

(
δj+1 − Eδj+1

σj+1
< −bj+1

σj+1
− zα/2

)

− P

(
2δj+1 − δj − E(2δj+1 − δj )√

5σj

>
bj − 2bj+1√

5σj

+ zα/2

)

≥ 1 − P(Z < −zα/2) − P(Z > zα/2)

= 1 − α.

6.5. Proof of Theorem 2. We shall first prove that the confidence interval CIm∗
has guaranteed coverage probability of 1 − α over Fm and then prove the upper
bound for the expected length.

Note that

P
(
f (0) ∈ CIm∗

) =
∞∑

j=2

P
(
f (0) ∈ CImj |ĵ = j

)
P(ĵ = j).

Because both δR
j and δL

j are independent of ξk for k ≤ j , and the event {ĵ = j}
depends only on ξk for k ≤ j , then by Proposition 1 we have

P
(
f (0) ∈ CIm∗

) =
∞∑

j=2

P
(
f (0) ∈ CImj

)
P(ĵ = j) ≥

∞∑
j=2

(1 − α)P(ĵ = j) = 1 − α.

We now turn to the upper bound for the expected length. Note that for s ≥ 0,
Eξjm∗ +s ≤ zασjm∗ = 1

2s/2 zασjm∗ +s , and so we have

P
(
ĵ ≥ jm∗ + k

) ≤
k−1∏
s=0

P
(
ξjm∗ +s >

3

2
zασjm∗ +s

)

≤
k−1∏
s=0

P
(
Z > zα

(
3

2
− 1

2s/2

))
.



746 T. T. CAI, M. G. LOW AND Y. XIA

It follows from E(δR
j − δL

j ) ≤ 2Eξj that E(δR

ĵ
− δL

ĵ
) ≤ 2Eξ

ĵ
, and hence we have

Ef L
(
CI∗

) = Ef

(
δR

ĵ
− δL

ĵ
+ 2

√
2zα/2σĵ

) ≤ Ef (2ξ
ĵ
+ 2

√
2zα/2σĵ

)

≤ Ef

(
(3zα + 2

√
2zα/2)σĵ

) =
∞∑

j=2

(3zα + 2
√

2zα/2)σj · P(ĵ = j).

Thus

Ef L
(
CI∗

) ≤ (3zα + 2
√

2zα/2)σjm∗

(
P
(
ĵ ≤ jm∗

) +
∞∑

k=1

2k/2P
(
ĵ = jm∗ + k

))
.(48)

Set wk = 2k/2 − 2(k−1)/2 for k ≥ 1. Then it is easy to see that

S = P
(
ĵ ≤ jm∗

) +
∞∑

k=1

2k/2P
(
ĵ = jm∗ + k

) = 1 +
∞∑

k=1

wkP
(
ĵ ≥ jm∗ + k

)
.

Thus

S = 1 +
∞∑

k=1

wk

k−1∏
s=0

P
(
Z > zα

(
3

2
− 1

2s/2

))
.

The right-hand side is increasing in α. Through numerical calculations, we can see
that, for α = 0.2,

∞∑
k=1

wk

k−1∏
s=0

P
(
Z > zα

(
3

2
− 1

2s/2

))
≤ 0.21.

Thus, by equation (48), we have

Ef L
(
CI∗

) ≤ 1.21(3zα + 2
√

2zα/2)σjm∗ .

6.6. Proof of Theorem 3. Note that if jm∗ > 2, then Eξjm∗ −1 ≥ zασjm∗ −1 =
1√
2
zασjm∗ and hence there is a t∗ ≤ 2−jm∗ +2 such that we have either f (t∗)−f (0) ≥

1√
2
zασjm∗ or f (0) − f (−t∗) ≥ 1√

2
zασjm∗ . If f (t∗) ≥ 1√

2
zασjm∗ + f (0), let

g(t) =
⎧⎨
⎩ max

{
1√
2
zασjm∗ + f (0), f (t)

}
, if t ≥ 0;

f (t), otherwise,

and if f (−t∗) ≤ − 1√
2
zασjm∗ + f (0), let

g(t) =
⎧⎨
⎩ min

{
− 1√

2
zασjm∗ + f (0), f (t)

}
, if t ≤ 0;

f (t), otherwise.



ADAPTIVE CONFIDENCE INTERVALS 747

Then we have ∫ 1/2

−1/2

(
f (t) − g(t)

)2
dt ≤ 1

2
z2
α

2jm∗ −1

n
· 2−jm∗ +2 = z2

α

n
.

If jm∗ = 2, let

g(t) =
⎧⎨
⎩ max

{
1√
2
zασjm∗ + f (0), f (t)

}
, if t ≥ 0;

f (t), otherwise,

then we have ∫ 1/2

−1/2

(
f (t) − g(t)

)2
dt ≤ 1

2
z2
α

2jm∗ −1

n
· 1

2
≤ z2

α

n
.

It then follows that

ω

(
zα√
n
,f,Fm

)
≥ 1√

2
zασjm∗ ,

and so

L∗
α(f,Fm) ≥

(
1 − 1√

2πzα

)
1√
2
zασjm∗ .

6.7. Proof of Theorem 4. We shall first prove that the confidence interval CIc∗
has guaranteed coverage probability of 1 − α over Fc and then prove the upper
bound for the expected length.

Note that if jc∗ > 1, then ETjc∗−1 ≥ 2
3zασjc∗−1 =

√
2

3 zασjc∗ . It follows that for
k ≥ 1, ETjc∗−k ≥ 2k−1/2 1

3zασjc∗ = 2(3k−1)/2 1
3zασjc∗−k . Hence

P
(
ĵ = jc∗ − k

) ≤ P(Tjc∗−k ≤ zασjc∗−k) ≤ P

(
Z ≥

(
2(3k−1)/2

3
− 1

)
zα

)
.(49)

Also for m ≥ 0, ETjc∗+m ≤ 2−m · 2
3zασjc∗ = 2−3m/2 · 2

3zασjc∗+m and hence

P
(
ĵ ≥ jc∗ + k

) ≤
k−1∏
m=0

P(Tjc∗+m > zασjc∗+m)

(50)

≤
k−1∏
m=0

P

(
Z > zα

(
1 − 2

3
2−3m/2

))
.

To bound the coverage probability note that

P
(
f (0) /∈ CIc∗

) ≤ ∑
m≥3

P
(
ĵ = jc∗ − m

) + P
(
ĵ ≥ jc∗ + 3

)
(51)

+
2∑

k=−2

P
(
f (0) /∈ CIjc∗+k

)
.
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It then follows from equation (49) that

P
(
ĵ = jc∗ − 3

) ≤ P

(
Z ≥ 13

3
zα

)
≤ 7α

10,000

for all 0 < α ≤ 0.2. It is easy to verify directly that for all z ≥ 1, P(Z ≥ 2z) ≤
(1/6)P (Z ≥ z). Furthermore, it is easy to see that for k ≥ 1, 2(3(k+3)−1)/2

3 −1 ≥ 2k 13
3

and so

P
(
ĵ = jc∗ − 3 − k

) ≤ P

(
Z ≥

(
2(3(k+3)−1)/2

3
− 1

)
zα

)
≤ P

(
Z ≥ 2k 13

3
zα

)

≤ 6−kP

(
Z ≥ 13

3
zα

)
≤ 6−k 7α

10,000
.

Hence,∑
m≥3

P
(
ĵ = jc∗ − m

) = ∑
k≥0

P
(
ĵ = jc∗ − 3 − k

) ≤ 7α

10,000

∑
k≥0

6−k ≤ 7α

5000
.

Note that (50) yields that

P
(
ĵ ≥ jc∗ + 3

) ≤ P

(
Z ≥ 1

3
zα

)
· P

(
Z ≥

(
1 − 1

3
√

2

)
zα

)
· P

(
Z ≥ 11

12
zα

)
≤ α

6.4

for all 0 < α ≤ 0.3. It now follows from (51) that

P
(
f (0) ∈ CIc∗

) = 1 − P
(
f (0) /∈ CIc∗

) ≥ 1 −
(

7α

5000
+ α

6.4
+ 5 × α

6

)
≥ 1 − α.

We now turn to the upper bound for the expected length. Note that

Ef L
(
CIc∗

) ≤
∞∑

j=1

(
zα + (

√
5 + √

2)zα/12
)
σj · P(ĵ = j).(52)

Hence

Ef L
(
CIc∗

) ≤ (
zα + (

√
5 + √

2)zα/12
)
σjc∗

(53)

×
(
P

(
ĵ ≤ jc∗

) +
∞∑

k=1

2k/2P
(
ĵ = jc∗ + k

))
.

Set wk = 2k/2 − 2(k−1)/2 for k ≥ 1. Then it is easy to see that

S = P
(
ĵ ≤ jc∗

) +
∞∑

k=1

2k/2P
(
ĵ = jc∗ + k

) = 1 +
∞∑

k=1

wkP
(
ĵ ≥ jc∗ + k

)
.

It then follows from (50) that

S ≤ 1 +
∞∑

k=1

wk

k−1∏
m=0

P

(
Z > zα

(
1 − 2

3

1

23m/2

))
.
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The right-hand side is clearly increasing in α. Direct numerical calculations show
that for α = 0.2,

∞∑
k=1

wk

k−1∏
m=0

P

(
Z > zα

(
1 − 2

3

1

23m/2

))
≤ 0.25.

It then follows directly from (53) that

EL
(
CIc∗

) ≤ 1.25
(
zα + (

√
5 + √

2)zα/12
)
σjc∗ .

6.8. Proof of Theorem 5. Note that if jc∗ > 1, then ETjc∗−1 ≥ 2
3zασjc∗−1 =√

2
3 zασjc∗ , and hence there is a t∗ satisfying 0 < t∗ ≤ 2−jc∗+1 such that fs(t∗) =√
2

3 zασjc∗ , where fs(t) = f (t)+f (−t)
2 − f (0). Let g be defined by

g(t) = f (t)1
(|t | > t∗

) +
(
fs(t∗) + f (t∗) − f (−t∗)

2t∗
t

)
1
(|t | ≤ t∗

)
.

There is also a g as in the proof of Lemma 5 in our other paper with g(0) = fs(t∗)
for which ∫ 1/2

−1/2

(
g(t) − f (t)

)2
dt ≤ 9

4
f 2

s (t∗)t∗ ≤ z2
α

n
.

If jc∗ = 1, then let g(t) = f (t) +
√

2
3 zασjc∗ , and then we have

∫ 1/2

−1/2

(
g(t) − f (t)

)2
dt ≤ 2

9
z2
ασ 2

1 ≤ z2
α

n
.

It then follows that

ω

(
zα√
n
,f,Fc

)
≥

√
2

3
zασjc∗ ,

and so

L∗
α(f,Fc) ≥

(
1 − 1√

2πzα

)√
2

3
zασjc∗ .
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