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THE LINEAR STOCHASTIC ORDER AND DIRECTED INFERENCE
FOR MULTIVARIATE ORDERED DISTRIBUTIONS

BY ORI DAVIDOV1 AND SHYAMAL PEDDADA2

University of Haifa and National Institute of Environmental Health Sciences

Researchers are often interested in drawing inferences regarding the or-
der between two experimental groups on the basis of multivariate response
data. Since standard multivariate methods are designed for two-sided alterna-
tives, they may not be ideal for testing for order between two groups. In this
article we introduce the notion of the linear stochastic order and investigate
its properties. Statistical theory and methodology are developed to both es-
timate the direction which best separates two arbitrary ordered distributions
and to test for order between the two groups. The new methodology gener-
alizes Roy’s classical largest root test to the nonparametric setting and is ap-
plicable to random vectors with discrete and/or continuous components. The
proposed methodology is illustrated using data obtained from a 90-day pre-
chronic rodent cancer bioassay study conducted by the National Toxicology
Program (NTP).

1. Introduction. In a variety of applications researchers are interested in
comparing two treatment groups on the basis of several, potentially dependent
outcomes. For example, to evaluate if a chemical is a neuro-toxicant, toxicologists
compare a treated group of animals with an untreated control group in terms of var-
ious correlated outcomes such as tail-pinch response, click response and gait score,
etc.; cf. Moser (2000). The statistical problem of interest is to compare the mul-
tivariate distributions of the outcomes in the control and treatment groups. More-
over, the outcome distributions are expected to be ordered in some sense. The
theory of stochastic order relations [Shaked and Shanthikumar (2007)] provides
the theoretical foundation for such comparisons.

To fix ideas let X and Y be p-dimensional random variables (RVs); X is said
to be smaller than Y in the multivariate stochastic order, denoted X �st Y, pro-
vided P(X ∈ U) ≤ P(Y ∈ U) for all upper sets U ∈ Rp [Shaked and Shanthiku-
mar (2007)]. If for some upper set the above inequality is sharp, we say that X is
strictly smaller than Y (in the multivariate stochastic order) which we denote by
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X ≺st Y. Recall that a set U ∈ Rp is called an upper set if u ∈ U implies that v ∈ U

whenever u ≤ v, that is, if ui ≤ vi , i = 1, . . . , p. Note that comparing X and Y
with respect to the multivariate stochastic order requires comparing their distribu-
tions over all upper sets in Rp . This turns out to be a very high-dimensional prob-
lem. For example, if X and Y are multivariate binary RVs, then X �st Y provided∑

t∈U pX(t) ≤ ∑
t∈U pY(t) where pX(t) and pY(t) are the corresponding proba-

bility mass functions. Here U ∈ Up where Up is the family of upper sets defined
on the support of a p-dimensional multivariate binary RV. It turns out that the car-
dinality of Up , denoted by Np , grows super-exponentially with p. In fact N1 = 1,
N2 = 4, N3 = 18, N4 = 166, N5 = 7579 and N6 = 7,828,352. The values of N7
and N8 are also known, but N9 is not. However, good approximations for Np are
available for all p; cf. Davidov and Peddada (2011). Obviously the number of up-
per sets for general multivariate RVs is much larger. Since in many applications p

is large, it would seem that the analysis of high-dimensional stochastically ordered
data is practically hopeless. As a consequence, the methodology for analyzing mul-
tivariate ordered data is underdeveloped. It is worth mentioning that Sampson and
Whitaker (1989) as well as Lucas and Wright (1991) studied stochastically or-
dered bivariate multinomial distributions. They noted the difficulty of extending
their methodology to high-dimensional data due to the large number of constraints
that need to be imposed. Recently Davidov and Peddada (2011) proposed a frame-
work for testing for order among K , p-dimensional, ordered multivariate binary
distributions.

In this paper we address the dimensionality problem by considering an easy to
understand stochastic order which we refer to as the linear stochastic order.

DEFINITION 1.1. The RV X is said to be smaller than the RV Y in the (mul-
tivariate) linear stochastic order, denoted X �l-st Y, if for all s ∈ R

p
+ = {s : s ≥ 0},

sT X �st sT Y,(1.1)

where �st in (1.1) denotes the usual (univariate) stochastic order.

Note that it is enough to limit (1.1) to all nonnegative real vectors satisfying
‖s‖ = 1, and accordingly we denote by S p−1

+ the positive part of the unit sphere

in Rp . We call each s ∈ S p−1
+ a “direction.” In other words the RVs X and Y are

ordered by the linear stochastic order if every nonnegative linear combination of
their components is ordered by the usual (univariate) stochastic order. Thus instead
of considering all upper sets in Rp we need for each s ∈ S p−1

+ to consider only up-
per sets in R. This is a substantial reduction in dimensionality. In fact we will
show that only one value of s need be considered. Note that the linear stochastic
order, like the multivariate stochastic order, is a generalization of the usual univari-
ate stochastic order to multivariate data. Both of these orders indicate, in different
ways, that one random vector is more likely than another to take on large values.
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In this paper we develop the statistical theory and methodology for estimation and
testing for linearly ordered multivariate distributions. For completeness we note
that weaker notions of the linear stochastic order are discussed by Hu, Homem-
de Mello and Mehrotra (2011) and applied to various optimization problems in
queuing and finance.

Comparing linear combinations has a long history in statistics. For example, in
Phase I clinical trials it is common to compare dose groups using an overall mea-
sure of toxicity. Typically, this quantity is an ad hoc weighted average of individual
toxicities where the weights are often known as “severity weights;” cf. Bekele and
Thall (2004) and Ivanova and Murphy (2009). This strategy of dimension reduc-
tion is not new in the statistical literature and has been used in classical multivariate
analysis when comparing two or more multivariate normal populations. For exam-
ple, using the union-intersection principle, the comparison of multivariate normal
populations can be reduced to the comparison of all possible linear combinations
of their mean vectors. This approach is the basis of Roy’s classical largest root
test [Roy (1953), Johnson and Wichern (1998)]. Our proposed test may be viewed
as nonparametric generalization of the classical normal theory method described
above with the exception that we limit consideration only to nonnegative linear
combinations (rather than all possible linear combinations) since our main focus
is to make comparisons in terms of stochastic order. We emphasize that the linear
stochastic order will allow us to address the much broader problem of directional
ordering for multivariate ordered data, that is, to find the direction which best sep-
arates two ordered distributions. Based on our survey of the literature, we are not
aware of any methodology that addresses the problems investigated here.

This paper is organized in the following way. In Section 2 some probabilistic
properties of the linear stochastic order are explored, and its relationships with
other multivariate stochastic orders are clarified. In Section 3 we provide the back-
ground and motivation for directional inference under the linear stochastic order
and develop estimation and testing procedure for independent as well as paired
samples. In particular the estimator of the best separating direction is presented
and its large sampling properties derived. We note that the problem of estimating
the best separating direction is a nonsmooth optimization problem. The limiting
distribution of the best separating direction is derived in a variety of settings. Tests
for the linear stochastic order based on the best separating direction are also de-
veloped. One advantage of our approach is that it avoids the estimation of multi-
variate distributions subject to order restrictions. Simulation results, presented in
Section 4, reveal that for large sample sizes the proposed estimator has negligible
bias and mean squared error (MSE). The bias and MSE seem to depend on the true
value of the best separating direction, the dependence structure and the dimension
of the problem. Furthermore, the proposed test honors the nominal type I error
rate and has sufficient power. In Section 5 we illustrate the methodology using
data obtained from the National Toxicology Program (NTP). Concluding remarks
and some open research problems are provided in Section 6. For convenience all
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proofs are provided in the Appendix where additional concepts are defined when
needed.

2. Some properties of the linear stochastic order. We start by clarifying
the relationship between the linear stochastic order and the multivariate stochastic
order. First note that X �l-st Y if and only if P(sT X ≥ t) ≤ P(sT Y ≥ t) for all
(t, s) ∈ R×R

p
+ which is equivalent to P(X ∈ H) ≤ P(Y ∈ H) for all H ∈ H where

H is the collection of all upper half-planes, that is, sets which are both half planes
and upper sets. Thus X �st Y ⇒ X �l-st Y. The converse does not hold in general.

EXAMPLE 2.1. Let X and Y be bivariate RVs such that P(X = (1,1)) =
P(X = (0,1)) = P(X = (1,0)) = 1/3 and P(Y = (3/4,3/4)) = P(Y = (1,2)) =
P(Y = (2,1)) = 1/3. It is easy to show that X is smaller than Y in the linear
stochastic order but not in the multivariate stochastic order.

The following theorem provides some closure results for the linear stochastic
order.

THEOREM 2.1. (i) If X �l-st Y, then g(X) �l-st g(Y) for any affine increas-
ing function; (ii) if X �l-st Y, then XI �l-st YI for each subset I ∈ {1, . . . , p};
(iii) if X|Z = z �l-st Y|Z = z for all z in the support of Z, then X �l-st Y; (iv) if
X1, . . . ,Xn are independent RVs with dimensions pi and similarly for Y1, . . . ,Yn

and if in addition Xi �l-st Yi , then (X1, . . . ,Xn) �l-st (Y1, . . . ,Yn); (v) finally, if
Xn → X and Yn → Y where convergence can be in distribution, in probability or
almost surely and if Xn �l-st Yn for all n, then X �l-st Y.

Theorem 2.1 shows that the linear stochastic order is closed under increasing
linear transformations, marginalization, mixtures, conjugations and convergence.
In particular parts (ii) and (iii) of Theorem 2.1 imply that if X �l-st Y, then Xi �st
Yi and Xi + Xj �st Yi + Yj for all i and j ; that is, all marginals are ordered as are
all convolutions. Although the multivariate stochastic order is in general stronger
than the linear stochastic order, there are situation in which both orders coincide.

THEOREM 2.2. Let X and Y be continuous elliptically distributed RVs sup-
ported on Rp with the same generator. Then X �l-st Y if and only if X �st Y.

Note that the elliptical family of distributions is large and includes the multi-
variate normal, multivariate t and the exponential power family; see Fang, Kots
and Ng (1989). Thus Theorem 2.2 shows that the multivariate stochastic order co-
incides with the linear stochastic order in the normal family. Incidentally, in the
proof of Theorem 2.2 we generalize the results of Ding and Zhang (2004) on mul-
tivariate stochastic ordering of elliptical RVs. Another interesting example is the
following:
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THEOREM 2.3. Let X and Y be multivariate binary RVs. Then X �l-st Y is
equivalent to X �st Y if and only if p ≤ 3.

REMARK 2.1. In the proof of Theorem 2.2 distributional properties of the
elliptical family play a major role. In contrast, Theorem 2.3 is a consequence of
the geometry of the upper sets of multivariate binary RVs which turn out to be
upper half planes if and only if p ≤ 3.

We now explore the role of the dependence structure.

THEOREM 2.4. Let X and Y have the same copula. Then X �l-st Y if and only
if X �st Y.

Theorem 2.4 establishes that if two RVs have the same dependence structure as
quantified by their copula function [cf. Joe (1997)], then the linear and multivari-
ate stochastic orders coincide. Such situations arise when the correlation structure
among outcomes is not expected to vary with dose.

The orthant orders are also of interest in statistical applications. We say that
X is smaller than Y in the upper orthant order, denoted X �uo Y, if P(X ∈ O) ≤
P(Y ∈ O) for all O ∈ O where O is the collection of upper orthants, that is, sets
of the form {z : z ≥ x} for some fixed x ∈ Rp . The lower orthant order is similarly
defined; cf. Shaked and Shanthikumar (2007) or Davidov and Herman (2011). It
is obvious that the orthant orders are weaker than the usual multivariate stochastic
order, that is, X �st Y ⇒ X �uo Y and X �lo Y. In general the linear stochastic
order does not imply the upper (or lower) orthant order, nor is the converse true.
However, as stated below, under some conditions on the copula functions, the lin-
ear stochastic order implies the upper (or lower) orthant order.

THEOREM 2.5. If X �l-st Y and CX(u) ≤ CY(u) for all u ∈ [0,1]p , then
X �lo Y. Similarly if X �l-st Y and C̄X(u) ≤ C̄Y(u) for all u ∈ [0,1]p , then
X �uo Y.

Note that CX(u) and C̄X(u) above are the copula and tail-copula functions for
the RV X [cf. Joe (1997)] and are defined in the Appendix and similarly for CY(u)

and C̄Y(u). Further note that the relations CX(u) ≤ CY(u) and/or C̄X(u) ≤ C̄Y(u)

indicate that the components of Y are more strongly dependent than the compo-
nents of X. This particular dependence ordering is known as positive quadrant de-
pendence. It can be further shown that strong dependence and the linear stochastic
order do not in general imply stochastic ordering.

Additional properties of the linear stochastic order as they relate to estimation
and testing problems are given in Section 3.
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3. Directional inference.

3.1. Background and motivation. There exists a long history of well-deve-
loped theory for comparing two or more multivariate normal (MVN) populations.
Methods for assessing whether there are any differences between the populations
[which differ? in which component(s)? and by how much?] have been addressed
in the literature using a variety of simultaneous confidence intervals and multiple
comparison methods; cf. Johnson and Wichern (1998). Of particular interest to us
is Roy’s largest root test. To fix ideas consider two multivariate normal random
vectors X and Y with means μ and ν, respectively, and a common variance ma-
trix �. Using the union-intersection principle Roy (1953) expressed the problem
of testing H0 :μ = ν versus H1 :μ 
= ν as a collection of univariate testing prob-
lems, by showing that H0 and H1 are equivalent to

⋂
s∈Rp H0,s and

⋃
s∈Rp H1,s

where H0,s : sT μ = sT ν and H1,s : sT μ 
= sT ν. Implicitly Roy’s test identifies the
linear combination sT

max(ν − μ) that corresponds to the largest “distance” between
the mean vectors, that is, the direction which best separates their distributions. The
resulting test, known as Roy’s largest root test, is given by the largest eigenvalue
of BS−1 where B is the matrix of between groups (or populations) sums of squares
and cross products, and S is the usual unbiased estimator of �. In the special case
when there are only two populations, this test statistic is identical to Hotelling’s T 2

statistic. From the simultaneous confidence intervals point of view, the critical val-
ues derived from the null distribution of this statistic can be used for constructing
Scheffe’s simultaneous confidence intervals for all possible linear combinations of
the difference (μ − ν). Further note that the estimated direction corresponding to
Roy’s largest root test is S−1(Ȳ − X̄) where X̄ and Ȳ are the respective sample
means.

Our objective is to extend and generalize the classical multivariate method, de-
scribed above, to nonnormal multivariate ordered data. Our approach will be non-
parametric. Recall that comparing MVNs is done by considering the family of
statistics Tn,m(s) = sT (Ȳ−X̄) for all s ∈ Rp . In the case of nonnormal populations,
the population mean alone may not be enough to characterize the distribution. In
such cases, it may not be sufficient to compare the means of the populations but
one may have to compare entire distributions. One possible way of doing so is by
considering rank statistics. Suppose X1, . . . ,Xn and Y1, . . . ,Ym are independent
random samples from two multivariate populations. Let

Rk(s) =
n∑

i=1

I(sT Xi≤sT Xk)
+

m∑
j=1

I(sT Yj≤sT Xk)

be the rank of sT Xk in the combined sample sT X1, . . . , sT Xn, sT
1 Y1, . . . , sT Ym.

For fixed s ∈ Rp the distributions of sT X and sT Y can be compared using a rank
test. For example, if we use Wn,m(s) = ∑n

i=1 Ri(s) our comparison is done in
terms of Wilcoxon’s rank sum statistics. It is well known that rank tests are well
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suited for testing for univariate stochastic order [cf. Hájek, Šidák and Sen (1999),
Davidov (2012)] where the restrictions that s ∈ S p−1

+ must be made. Although any
rank test can be used, the Mann–Whitney form of Wilcooxon’s (WMW) statistic
is particularly attractive in this application. Therefore in the rest of this paper we
develop estimation and testing procedures for the linear stochastic order based on
the family of statistics

�n,m(s) = 1

nm

n∑
i=1

m∑
j=1

I(sT Xi≤sT Yj ),(3.1)

where s varies over S p−1
+ . Note that (3.1) unbiasedly estimates

�(s) = P
(
sT X ≤ sT Y

)
.(3.2)

The following result is somewhat surprising.

PROPOSITION 3.1. Let X and Y be independent MVNs with means μ ≤ ν and
common variance matrix �. Then Roy’s maximal separating direction �−1(ν −μ)

also maximizes P(sT X ≤ sT Y).

Proposition 3.1 shows that the direction which separates the means, in the sense
of Roy, also maximizes (3.2). Thus it provides further support for choosing (3.1)
as our test statistic. Note that in general �−1(ν − μ) may not belong to S p−1

+ .

Since we focus on the linear statistical order, we restrict ourselves to s ∈ S p−1
+ .

Consequently we define smax := arg max
s∈S p−1

+
�(s) and refer to smax as the best

separating direction. Further note that if X and Y are independent and continuous
and if X �l-st Y, then �(s) ≥ 1/2 for all s ∈ S p−1

+ . This simply means that sT X
tends to be smaller than sT Y more than 50% of the time. Note that probabilities
of type (3.2) were introduced by Pitman (1937) and further studied by Peddada
(1985) for comparing estimators. Random variables satisfying such a condition
are said to be ordered by the precedence order [Arcones, Kvam and Samaniego
(2002)].

Once smax is estimated we can plug it into (3.1) to get a test statistic. Hence
our test may be viewed as a natural generalization of Roy’s largest root test from
MVNs to arbitrary ordered distributions. However, unlike Roy’s method, which
does not explicitly estimate smax, we do. On the other hand the proposed test does
not require the computation of the inverse of the sample covariance matrix whereas
Roy’s test and Hotteling’s T 2 test require such computations. Consequently, such
tests cannot be used when n < p whereas our test can be used in all such instances.

REMARK 3.1. In the above description Xi and Yj are independent for all
i and j and therefore the probability P(sT Xi ≤ sT Yj ) is independent of both i

and j . However, in many applications such as repeated measurement and crossover
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designs, the data are a random sample of dependent pairs (X1,Y1), . . . , (XN,YN)

for which Zi = Yi − Xi are i.i.d. For example, such a situation may arise when
Yi = Y′

i + εi and Xi = X′
i + εi , where εi are pair-specific random effects and the

RVs Y′
i (as well as X′

i) are i.i.d. In this situation P(sT Xi ≤ sT Yi) is independent
of i and smax is well defined. Moreover the objective function analogous to (3.1) is

�N(s) = 1

N

N∑
i=1

I(sT Xi≤sT Yi )
.(3.3)

In the following we consider both sampling designs which we refer to as: (a) in-
dependent samples and (b) paired or dependent samples. Results are developed
primarily for independent samples, but modification for paired samples are men-
tioned as appropriate.

3.2. Estimating the best separating direction. Consider first the case of inde-
pendent samples, that is, X1, . . . ,Xn and Y1, . . . ,Ym are random samples from the
two populations. Rewrite (3.1) as

�n,m(s) = 1

nm

n∑
i=1

m∑
j=1

I(sT Zij≥0),(3.4)

where Zij = Yj − Xi . The maximizer of (3.4) is denoted by ŝmax, that is,

ŝmax = arg max
s∈S p−1

+
�n,m(s).(3.5)

Finding (3.5) with s ∈ S p−1
+ is a nonsmooth optimization problem. Consider first

the situation where p = 2. In this case we maximize (3.4) subject to s ∈ S 1+ =
{(s1, s2) : s2

1 + s2
2 = 1, (s1, s2) ≥ 0}. Geometrically S 1+ is a quarter circle spanning

the first quadrant. Now let Z = (Z1,Z2), and without any loss of generality assume
that ‖Z‖ = 1. We examine the behavior of the function I(sT Z≥0) as a function
of s. Clearly if Z ≥ 0, that is, if Z1 ≥ 0,Z2 ≥ 0, then for all s ∈ S 1+ we have
I(sT Z≥0) = 1. In other words any value of s on the arc S 1+ maximizes I(sT Z≥0).
Similarly if Z < 0 then for all s ∈ S 1+ we have I(sT Z≥0) = 0 and again the entire arc
S 1+ maximizes I(sT Z≥0). Now let Z1 ≥ 0 and Z2 < 0. It follows that I(sT Z≥0) = 1
provided cos(sT Z) ≥ 0. Thus I(sT Z≥0) = 1 for all s on the arc [0, θ ] for some θ .
If Z1 < 0 and let Z2 ≥ 0 the situation is reversed and I(sT Z≥0) = 1 for all angles
s on the arc [θ,π/2]. The value of θ is given by (3.6). In other words each Z
is mapped to an arc on S 1+ as described above. Now, the function (3.4) simply
counts the number of arcs covering each s ∈ S 1+. The maximizer of (3.4) lies in
the region where the maximum number of arcs overlap. Clearly this implies that
the maximizer of (3.4) is not unique. A quick way to find the maximizer is the
following:



INFERENCE FOR THE LINEAR STOCHASTIC ORDER 9

ALGORITHM 3.1. Let M denote the number of Zij ’s which belong to the
second or fourth quadrant. Map

Zij �→ θij =
{

π/2 − cos−1(Zij,1), if Zij,1 ≥ 0,Zij,2 < 0,
cos−1(Zij,1) − π/2, if Zij,1 < 0,Zij,2 ≥ 0.

(3.6)

Relabel and order the resulting angles as θ[1] < · · · < θ[M]. Also define θ[0] = 0
and θ[M+1] = π/2. Evaluate �n,m(s[i]) i = 1, . . . ,M where s[i],1 = cos(θ[i]) and
s[i],2 = sin(θ[i]). If a maximum is attained at θ[j ], then any value in [θ[j−1], θ[j ]] or
[θ[j ], θ[j+1]] maximizes (3.1).

In light of the above discussion we can be easily prove the following:

PROPOSITION 3.2. For p = 2 Algorithm 3.1 maximizes (3.1).

In the general case, that is, for p ≥ 3, each observation Zij is associated with

a “slice” of S p−1
+ . The boundaries of the slice are the intersection of S p−1

+ and
some half-plane. Note that when p = 2 the slices are arcs. The shape of the slice
depends on the quadrant to which Zij belongs. The maximizer of (3.1) is again the
value of s which belongs to the largest number of slices. Although the geometry
of the resulting optimization problem is easy to understand, we have not been able
to devise a simple algorithm, which scales with p, based on the ideas above. How-
ever, we have found that (3.5) can be obtained by converting the data into polar
coordinates and then using the Nelder–Mead algorithm which does not require the
objective function to be differentiable. We emphasize that this maximization pro-
cess results in a single maximizer of (3.1) and we do not attempt to find the entire
set of maximizers. For completness we note that there are methods for optimizing
(3.1) specifically designed for nonsmooth problems. For more details see Price,
Reale and Robertson (2008) and Audet, Béchard and Le Digabel (2008) and the
references therein for both algorithms and convergence results.

REMARK 3.2. It is clear that the estimation procedure for paired samples is
the same as for independent samples.

3.3. Large sample behavior. We find three different asymptotic regimes for
ŝmax depending on distributional assumptions and the sampling scheme (paired
versus independent samples).

Note that the parameter space is the unit sphere not the usual Euclidian space.
There are several ways of dealing with this irregularity, one of which is to re-

express the last coordinate of s ∈ S p−1
+ as sp =

√
1 − s2

1 − · · · − s2
p−1 and con-

sider the parameter space {s ≥ 0 : s2
1 + · · · + s2

p−1 ≤ 1} which is a compact subset

of Rp−1. Clearly these parameterizations are equivalent, and without any further
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ambiguity we will denote them both by S p−1
+ . Thus in the proofs below both views

of S p−1
+ are used interchangeably as convenient.

We begin our discussion with independent samples assuming continuous distri-
butions for both X and Y.

THEOREM 3.1. Let X and Y have continuously differentiable densities. If
�(s) is uniquely maximized by smax ∈ interior(S p−1

+ ). Then ŝmax, the maximizer

of (3.1), is strongly consistent, that is, ŝmax
a.s.→ smax. Furthermore ŝmax = smax +

Op(N−1/2) where N = n + m. Finally, if n/(n + m) → λ ∈ (0,1), then

N1/2(ŝmax − smax) ⇒ N(0,�),

where the matrix � is defined in the body of the proof.

Although (3.1) is not continuous (nor differentiable) its U -statistic structure
guarantees that it is “almost” so [i.e., it is continuous up to an op(1/N) term],
and therefore its maximizer converges at a

√
N rate to a normal limit [Sherman

(1993)]. We also note that it is difficult to estimate the asymptotic variance �
directly since it depends on unknown functions (∇ψj and ∇2ψj for j = 1,2 are
defined in the body of the proof). Nevertheless bootstrap variance estimates are
easily derived.

REMARK 3.3. Note that if either X or Y are continuous RVs, then �(s) is
continuous. This is a necessary condition for the uniqueness of smax.

We have not been able to find general condition(s) for a unique maximizer for
�(s), although important sufficient conditions can be found. For example:

PROPOSITION 3.3. If Z = Y − X and there exist δ = ν − μ ≥ 0 and � so the
distribution of

sT Z − sT δ√
sT �s

is independent of s, then the maximizer of �(s) is unique.

The condition above is satisfied by location scale families, and it may be con-
venient to think of δ and � as the location and scale parameters for Z. In general,
however, �(s) may not have a unique maximum nor be continuous. For example, if
both X and Y are discrete RVs, then �(s) is a step function. In such situations smax
is set valued, and we may denote it by Smax. As we have seen earlier the maximizer
of �n,m(s) is always set valued (typically, however, we find only one maximizer).
Consider, for example, the case where P(X = (−1,−1)) = P(X = (1,1)) = 1/2
and let P(Y = (−1,−1)) = 1/2 − ε, and P(Y = (1,1)) = 1/2 + ε for some ε > 0.
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It is clear that X ≺st Y. Further note that Z ∈ {(2,2), (0,0), (−2,−2)}, and it fol-
lows that �(s) is constant on S 1+ which implies that Smax coincides with S 1+. Simi-
larly �n,m(s) is constant on S 1+ and therefore ŝmax ∈ Smax for all n,m. This means
that consistency is guaranteed and the limiting distribution is degenerate. More
generally, we have:

THEOREM 3.2. If X and Y have discrete distributions with finite support and
ŝmax is a maximizer of (3.1), then

P(ŝmax /∈ Smax) ≤ C1 exp(−C2N)

for some positive constants C1 and C2.

Theorem 3.2 shows that the probability that a maximizer of �n,m is not in Smax

is exponentially small when the underlying distributions of X and Y are discrete.
Hence ŝmax is consistent and converges exponentially fast. In fact the proof of
Theorem 3.2 implies that Ŝmax → Smax; that is, the set of maximizers of �n,m(·)
converges to the set of maximizers of �(·); that is, ρH(Ŝmax,Smax) → 0 where ρH

is the Hausdroff metric defined on compact sets. A careful reading of the proof
shows that Theorem 3.2 also holds under paired samples.

Finally, we consider the case of continuous RVs under paired samples. Then
under the conditions of Theorem 3.1 and provided the density of Z = Y − X is
bounded we have:

THEOREM 3.3. Under the above mentioned conditions ŝmax, the maximizer
of (3.3), is strongly consistent, that is, ŝmax

a.s.→ smax, converges at a cube root rate,
that is, ŝmax = smax + Op(N−1/3), and

N1/3(ŝmax − smax) ⇒ W,

where W has the distribution of the almost surely unique maximizer of the process
s �−→ −[Q(s) + W(s)] on S p−1

+ where Q(s) is a quadratic function and W(s) is
a zero mean Gaussian process described in the body of the proof.

Theorem 3.3 shows that in paired samples ŝmax is consistent, but in contrast with
Theorem 3.1 it converges at a cube-root rate to a nonnormal limit. The cube root
rate is due to the discontinuous nature of the objective function (3.3). General re-
sults dealing with this kind of asymptotics for independent observations are given
by Kim and Pollard (1990). The main difference between Theorems 3.1 and 3.3 is
that the objective function (3.1) is smoothed by its U -statistic structure while (3.3)
is not.
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3.4. A confidence set for ŝmax. Since the parameter space is the surface of
a unit sphere it is natural to define the (1 − α) × 100% confidence set for smax
centered at ŝmax by {

s ∈ S p−1
+ : ŝT

maxs ≤ Cα,N

}
,

where Cα,N satisfies P(ŝT
maxs ≤ Cα,N) = 1 − α. For more details see Fisher and

Hall (1989) or Peddada and Chang (1996). Hence the confidence set is the set of
all s ∈ S p−1

+ which have a small angle with ŝmax. In theory one may appeal to
Theorem 3.1 to derive the critical value for any α ∈ (0,1). However the limit law
in Theorem 3.1 requires knowledge of unknown parameters and functions. For this
reason, we explore the bootstrap for estimating Cα,N .

REMARK 3.4. Since in the case of paired samples, the estimator converges at
cube root rate rather than the square root rate, the standard bootstrap methodology
may yield inaccurate coverage probabilities; see Abrevaya and Huang (2005) and
Sen, Banerjee and Woodroofe (2010). For this reason we recommend the “M out
of N” bootstrap methodology. For further discussion on the “M out of N” boot-
strap methodology one may refer to Lee (1999), Delagdo, Rodriguez-Poo and Wolf
(2001), Bickel and Sakov (2008).

3.5. Testing for order. Consider first the case of independent samples where
interest is in testing the hypothesis

H0 : X =st Y versus H1 : X ≺st Y.(3.7)

Thus (3.7) tests whether the distributions of X and Y are equal or ordered (later
on we briefly discuss testing H0 : X �st Y versus H1 : X ⊀st Y). In this section we
propose a new test for detecting an ordering among two multivariate distributions
based on the maximal separating direction. The test is based on the following ob-
servation:

THEOREM 3.4. Let X and Y be independent and continuous RVs. If X =st Y,
then P(sT X ≤ sT Y) = 1/2 for all s ∈ S p−1

+ , and if both (i) X �st Y and (ii)

P(sT X ≤ sT Y) > 1/2 for some s ∈ S p−1
+ hold, then X ≺st Y.

Theorem 3.4 says that if it is known a priori that {X �st Y} = {X =st Y} ∪
{X ≺st Y}, that is, the RVs are either equal or ordered [which is exactly what (3.7)
implies], then a strict linear stochastic ordering implies a strict ordering by the
usual multivariate stochastic order. In particular under the alternative there must
exist a direction s ∈ S p−1

+ for which sT X ≺l-st sT Y.

REMARK 3.5. The assumption that X �st Y is natural in applications such as
environmental sciences where high exposures are associated with increased risk.
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Nevertheless if the assumption that X �st Y is not warranted then the alternative
hypothesis formulated in terms of the linear stochastic order actually tests whether
there exists a s ∈ S p−1

+ for which P(sT X ≤ sT Y) > 1/2. This amounts to a prece-
dence (or Pitman) ordering between sT X and sT Y.

REMARK 3.6. In the proof of Theorem 3.4 we use the fact that given that
X �st Y we have X ≺st Y provided Xi ≺st Yi for some 1 ≤ i ≤ p. Note that if
Xi ≺st Yi , then E(Xi) < E(Yi). Thus it is possible to test (3.7) by comparing
means (or any other monotone function of the data). Although such a test will
be consistent it may lack power because tests based on means are often far from
optimal when the data is not normally distributed. The WMW procedure, however,
is known to have high power for a broad collection of underlying distributions.

Hence (3.7) can be reformulated in terms of the linear stochastic. In particular
it justifies using the statistic

Sn,m = N1/2(
�n,m(ŝmax) − 1/2

)
.(3.8)

To the best of our knowledge this is the first general test for multivariate ordered
distributions. In practice we first estimate ŝmax and then define Ûi = ŝT

maxXi and
V̂j = ŝT

maxYj where i = 1, . . . , n and j = 1, . . . ,m. Hence (3.8) is nothing but a
WMW test based on the Û ′’s and V̂ ’s. It is also a Kolmogorov–Smirnov type test.

The large sample distribution of (3.8) is given in the following.

THEOREM 3.5. Suppose the null (3.7) holds. Let n,m → ∞ and n/(n +
m) → λ ∈ (0,1). Then

Sn,m ⇒ S = sup
s∈S p−1

+
G(s),

where G(s) is a zero mean Gaussian process with covariance function given by
(A.20).

REMARK 3.7. Since ŝmax
a.s.→ smax by Slutzky’s theorem the power of test

(3.8) converges to the power of a WMW test comparing the samples (sT
maxX1, . . . ,

sT
maxXn) and (sT

maxY1, . . . , sT
maxYm). The “synthetic” test, assuming that smax is

known, serves as a gold standard as verified by our simulation study.

REMARK 3.8. Furthermore, the power of the test under local alternatives, that
is, when Y =st X + N−1/2δ and N → ∞ is bounded by the power of the WMW
test comparing the distributions of sT

maxX and sT
maxY = sT

maxX + N−1/2sT
maxδ.
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Alternatives to the “sup” statistic (3.8) are the “integrated” statistics

In,m =
∫

s∈S p−1
+

[
N1/2(

�n,m(s) − 1/2
)]

ds and

(3.9)
I+
n,m =

∫
s∈S p−1

+

[
N1/2(

�n,m(s) − 1/2
)]

+ ds,

where [x]+ = max(0, x). It is clear that In,m ⇒ N(0, σ 2) where

σ 2 =
∫

u∈S p−1
+

∫
v∈S p−1

+
C(u,v) dudv

and C(u,v), the covariance function of G, is given by (A.20). Also

I+
n,m ⇒

∫
s∈S p−1

+

[
G(s)

]
+ ds.

This distribution does not have a closed form. The statistics In,m and I+
n,m have uni-

variate analogues; cf. Davidov and Herman (2012). Finally, we have the following
theorem:

THEOREM 3.6. The tests (3.8) and (3.9) are consistent. Furthermore if X �l-st

Y �l-st Z, then all three tests for H0 : X =st Z versus H1 : X ≺st Z are more power-
ful than the respective tests for H0 : X =st Y versus H1 : X ≺st Y.

Theorem 3.6 shows that the tests are consistent and that their power function is
“monotone” in the linear stochastic order.

REMARK 3.9. Qualitatively similar results are obtainable in the paired sam-
pling case; the only difference being the limiting process. For example, it easy to
see that the paired sample analogue of (3.8) satisfies

N1/2(
�N(ŝmax) − 1/2

) ⇒ sup
s∈S p−1

+
Q(s),

where Q(s) is the empirical process on S p−1
+ associated with (3.3). Analogues of

In,m and I+
n,m are similarly defined and analyzed. Tests for paired samples may be

similarly implemented using bootstrap or permutation methods.

4. Simulations. For simplicity of exposition, and motivated by the fact that
the example we analyzed in this paper deals with independent samples, we limit
our simulations to the case of independent samples.
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4.1. The distribution of ŝmax. We start by investigating the distribution of ŝmax
by simulation. For simplicity we choose p = 3 and generated Xi (i = 1, . . . , n)
distributed as N3(0,�) and Yj (j = 1, . . . ,m) distributed as N3(δ,�) where
� = (1 − ρ)I + ρJ, I is the identity matrix and J is a square matrix of 1s. We
simulated 1000 realizations of ŝmax for various sample sizes and correlation co-
efficients. To get a visual description of the density of ŝmax, we provide a pair of
plots for each configuration of ρ and sample size n. In Figure 1 we provide the joint
density of the two-dimensional polar angles (θ,φ) of ŝmax. There are four panels
in Figure 1, corresponding to all combinations of ρ = 0,0.9 and n = 10,100. The
mean vector δ in this plot was taken to be δ = (2,2,2)T . In Figure 2 we pro-
vide the density of the polar residual defined by 1 − ŝT

max smax. The four panels
of Figure 2 correspond to all combinations of ρ = 0,0.9 and n = 10,100 and
two patterns of δ, namely, (2,2,2)T and (3,2,1)T . We see from Figure 1 that
ŝmax converges to a unimodal, normal looking distribution as the sample size in-
creases. Interestingly, from Figure 2 we see that the concentration of the distribu-
tion around the true parameter depends upon the values of δ and ρ (which together
determine smax). If the components of the underlying random vector are exchange-
able [e.g., δ = (2,2,2)T ], the residuals tend to concentrate more closely around
zero [Figure 2(a) and (c)] compared to the case when they are not exchangeable
[Figure 2(b) and (d)].

4.2. Study design. The simulation study consists of three parts. In the first part
we evaluate the accuracy and precision of ŝmax by estimating its bias and mean
squared error (MSE). In the second part we investigate the coverage probability
of bootstrap confidence intervals. In the third part we estimate type I errors and
powers of the proposed test Sn,m as well as the integral tests In,m and I+

n,m.
To evaluate the bias and MSEs we generated X1, . . . ,Xn ∼ N3(0,�) and

Y1, . . . ,Ym ∼ N3(δ,�) where n = m = 20 or 100 observations. The common
variance matrix is assumed to have intra-class correlation structure, that is, � =
(1 − ρ)I + ρJ where I is the identity matrix and J is a matrix of ones. Various
patterns of the mean vectors δ and correlation coefficient ρ were considered as
described in Table 1.

We conducted extensive simulation studies to evaluate the performance of the
bootstrap confidence intervals. In this paper we present a small sample of our
study. We generated data from two 5-dimensional normal populations with means
0 and δ, respectively, and a common covariance � = (1−ρ)I+ρJ. We considered
5 patterns of ρ and 2 patterns of sample sizes (n = m = 20 and 40). The nominal
coverage probability was 0.95. Results are summarized in Table 2.

The goal of the third part of our simulation study is to evaluate the type I error
and the power of the test (3.8). To evaluate the type I error three different baseline
distributions for the two populations X and Y were employed as follows: (1) both
distributed as N(0,�);(2) both distributed as πN(0,�) + (1 − π)N(δ,�) with
π = 0.2 or π = 0.8; and (3) both distributed as exp(Z) = (exp(Z1), . . . , exp(Zp))
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where Z follows a N(δ,�). We refer to this distribution as the multivariate lognor-
mal distribution. Throughout the variance matrix is assumed to have the intra-class
structure described above. Various patterns of the mean vectors δ and correlation
coefficient ρ the dimension p were considered as described in Table 3. Sample
sizes of n = m = 15 or 25 are reported.

Power comparisons were carried out for data generated from X1, . . . ,Xn ∼
Np(0,�) and Y1, . . . ,Ym ∼ Np(δ,�) where p = 3 or 5 and a variety of patterns
for δ as described in Table 4. If Roy’s maximal separating direction (cf. Propo-
sition 3.1) was known then a “natural gold standard” would be the test based on
�n,m(smax). We shall refer to this test as the true maximal direction (TMD) test.
Clearly the TMD test cannot be used in practice since it involves the unknown
direction smax. Nevertheless the TMD test provides an upper bound for the power
of the proposed test which uses the estimated direction. Hence we compute the
efficiency of the proposed test relative to TMD test. An additional test, referred
to as the RMD test is also compared. The RMD test has the same form but uses
Roy’s maximal direction given by S−1(Ȳ − X̄). As suggested by a reviewer we
also evaluated the power of the two integral based tests, described in (3.9), which
do not require the determination of the best separating direction.

Additionally, in Table 5 we evaluate the type I error and power of our test when
X1, . . . ,Xn ∼ Np(0,�) and Y1, . . . ,Ym ∼ Np(δ,�) and n = m = p = 10 and
n = m = 10 and p = 20 (i.e., p < n set up). Note that in neither of these cases the
standard Hotteling’s T 2 (or Roy’s largest root test) can be computed whereas the
proposed test can be calculated.

Simulation results reported in this paper are based on 1000 simulation runs.
Confidence sets are calculated using 1000 bootstrap samples. The bootstrap critical
values for estimating type I error were based on 500 bootstrap samples. Since the
results between 100 bootstrap samples and 500 bootstrap samples did not differ by
much, all powers were estimated using 100 bootstrap samples.

4.3. Simulation results. The Bias and MSEs for the patterns considered are
summarized in Table 1. It is clear that the bias decreases with the sample size as
do the MSEs. We observe that the bias tends to be smaller under independence
and negative dependence compared with positive dependence. It also tends to be
smaller when the data are exchangeable. Although results are not presented, we
evaluated squared bias and MSE for larger values of p (e.g., p = 5,10 and 20) and
as expected the total squared bias and total MSE increased with the dimension p.

In Table 2 we summarize the estimated coverage probabilities of the bootstrap
confidence intervals when p = 5. Our simulation study suggests that the proposed
bootstrap methodology seems to perform better for larger sample sizes but rather
poorly for smaller samples sizes.

Type I errors for different patterns considered in our simulation study are sum-
marized in Table 3. Our simulation studies suggest that in every case the proposed
bootstrap based test maintains the nominal level of 0.05. In general it is slightly
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TABLE 1
Bias and MSE of ŝmax

δ ρ Bias MSE

n = m = 20

(1,1,1) −0.25 0.001 0.072
(1,1,1) 0 0.004 0.129
(1,1,1) 0.25 0.009 0.187
(1,1,1) 0.50 0.012 0.216
(1,1,1) 0.90 0.010 0.203

(3,2,1) −0.25 0.018 0.090
(3,2,1) 0 0.001 0.066
(3,2,1) 0.25 0.053 0.114
(3,2,1) 0.50 0.060 0.113
(3,2,1) 0.90 0.112 0.170

n = m = 100

(1,1,1) −0.25 0.00009 0.014
(1,1,1) 0 0.00021 0.027
(1,1,1) 0.25 0.00045 0.041
(1,1,1) 0.50 0.00079 0.056
(1,1,1) 0.90 0.00050 0.044

(3,2,1) −0.25 0.02400 0.039
(3,2,1) 0 0.00004 0.012
(3,2,1) 0.25 0.05200 0.065
(3,2,1) 0.50 0.06400 0.077
(3,2,1) 0.90 0.14100 0.158

conservative. The performance of the test is not affected by the shape of the un-
derlying distribution. This is not surprising, owing to the nonparametric nature of
the test. Furthermore, we evaluated the type I error of the proposed bootstrap test
for testing the null hypothesis (3.7) for p as large as 20 with n = m = 10 and dis-
covered that the proposed test attains the nominal level of 0.05 even n ≤ p. See
Table 4. As commented earlier in the paper, Hotelling’s T 2 statistic cannot be ap-
plied here since the Wishart matrix is singular in this case. However, the proposed
method is still applicable since the estimation of the best direction does not require
the inversion of a matrix.

The power of tests (3.8) and (3.9) for various patterns considered in our simula-
tion study are summarized in Table 5.

As expected, in every case the power of the TMD test is higher than that of
Sn,m test and the RMD test. The Sn,m test is almost always more powerful than the
RMD test. The relative efficiency of Sn,m compared to the TMD test is quite high
in most cases. When n = m = 15 the relative efficiency ranges between 65–95%.
It is almost always above 90% when the sample size increases to 25 per group. In
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TABLE 2
Coverage probabilities for the bootstrap confidence intervals

for p = 5 normal data. Pattern i = 1,2 corresponds to
δ1 = (0.1,0.25,0.5,0.75,0.9) and δ2 = (0.5,0.5,0.5,0.5,0.5)

Set up Coverage probability

Pattern ρ n = m = 20 n = m = 40

1 −0.25 0.981 0.971
1 0 0.913 0.918
1 0.25 0.916 0.933
1 0.50 0.971 0.969
1 0.90 0.993 0.989

2 −0.25 0.982 0.967
2 0 0.984 0.972
2 0.25 0.986 0.978
2 0.50 0.968 0.968
2 0.90 0.950 0.954

general the two integral tests had very similar power. They had larger power than
Sn,m when ρ < 0. As ρ increased, the power of Sn,m improved relative to the two
integral tests. Test (3.8) seems to perform better when the components of δ were
unequal. We also note that when the integral tests outperform Sn,m the difference is
usually small, whereas the Sn,m test can outperform the integral tests substantially.
For example, observe pattern 2 where the powers of Sn,m and In,m are 0.93 and
0.97, respectively, when ρ = −0.25 and 0.63 versus 0.40 when ρ = 0.90.

5. Illustration. Prior to conducting a two-year rodent cancer bioassay to eval-
uate the toxicity/carcinogenicity of a chemical, the National Toxicology Program
(NTP) routinely conducts a 90-day pre-chronic dose finding study. One of the goals
of the 90-day study is to determine the maximum tolerated dose (MTD) that can be
used in the two-year chronic exposure study. Accurate determination of the MTD
is critical for the success of the two-year cancer bioassay. Cancer bioassays are
typically very expensive and time consuming. Therefore their proper design, that
is, choosing the correct dosing levels, is very important. When the highest dose
used in the two-year study exceeds the MTD, a large proportion of animals in the
high dose group(s) may die well before the end of the study, and the data from such
group(s) cannot be used reliably. This results in inefficiency and wasted resources.

Typically the NTP uses the 90-day study to determine the MTD on the basis of
a large number of correlated endpoints that provide information regarding toxic-
ity. These include body weight, organ weights, clinical chemistry (red blood cell
counts, cell volume, hemoglobin, hematocrit, lymphocytes, etc.), histopathology
(lesions in various target organs), number of deaths and so forth. The dose response
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TABLE 3
Type I errors for the proposed procedure with nominal level α = 0.05.

Three types of distributions are considered: MVNs, MV-LogN
(multivariate lognormal) and Mix-MVN (mixtures of MVNs)

Set up Type I error

Distribution p ρ n = m = 15 n = m = 25

MVNs 3 −0.25 0.041 0.037
MVNs 3 0.00 0.023 0.044
MVNs 3 0.25 0.037 0.033
MVNs 3 0.50 0.027 0.032
MVNs 3 0.90 0.031 0.036

MVNs 5 −0.25 0.035 0.035
MVNs 5 0.00 0.040 0.041
MVNs 5 0.25 0.045 0.032
MVNs 5 0.50 0.038 0.043
MVNs 5 0.90 0.044 0.031

MV-LogN 3 −0.25 0.025 0.040
MV-LogN 3 0.00 0.038 0.049
MV-LogN 3 0.25 0.025 0.027
MV-LogN 3 0.50 0.028 0.037
MV-LogN 3 0.90 0.026 0.034

MV-LogN 5 −0.25 0.026 0.039
MV-LogN 5 0.00 0.035 0.018
MV-LogN 5 0.25 0.039 0.039
MV-LogN 5 0.50 0.036 0.046
MV-LogN 5 0.90 0.034 0.042

Mix-MVNs 3 −0.25 0.032 0.040
Mix-MVNs 3 0.00 0.038 0.028
Mix-MVNs 3 0.25 0.039 0.032
Mix-MVNs 3 0.50 0.036 0.035
Mix-MVNs 3 0.90 0.041 0.028

Mix-MVNs 5 −0.25 0.042 0.035
Mix-MVNs 5 0.00 0.040 0.031
Mix-MVNs 5 −0.25 0.041 0.028
Mix-MVNs 5 0.50 0.034 0.040
Mix-MVNs 5 0.90 0.042 0.036

data is analyzed for each variable separately using Dunnett’s or the Williams’s test
(or their nonparametric versions, Dunn’s test and Shirley’s test, resp.). NTP com-
bines results from all such analyses qualitatively and uses other biological and
toxicological information when making decisions regarding the highest dose for
the two-year cancer bioassay. Analyzing correlated variables one at a time may
result in loss of information. The proposed methodology provides a convenient
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TABLE 4
Type I errors and power for some settings with p ≥ n. Here n = m = 10 and δ1

has components 1/2 and δ2 has components i/p

Type I error and power p = 10, n = m = 10 Type I error and power p = 20, n = m = 10

δ ρ Type I error δ ρ Type I error

0 0.00 0.054 0 0.00 0.081
0 0.25 0.051 0 0.25 0.050
0 0.50 0.028 0 0.50 0.046
0 0.90 0.038 0 0.90 0.048

Power Power

δ1 0.00 0.83 δ1 0.00 0.97
δ1 0.25 0.48 δ1 0.25 0.53
δ1 0.50 0.26 δ1 0.50 0.42
δ1 0.90 0.20 δ1 0.90 0.22

δ2 0.00 0.98 δ2 0.00 0.98
δ2 0.25 0.80 δ2 0.25 0.59
δ2 0.50 0.67 δ2 0.50 0.43
δ2 0.90 0.71 δ2 0.90 0.40

method to combine information from several outcome variables to make compar-
isons between groups.

We now illustrate our methodology by re-analyzing data obtained from a recent
NTP study of the chemical Citral [NTP (2003)]. Citral is a flavoring agent that
is widely used in a variety of food items. The NTP assigned a random sample of
10 male rats to the control group and 10 to the 1785 mg/kg dose group. Hema-
tological and clinical chemistry measurements such as the number of platelets (in
1000 per l), urea nitrogen (UN) (in mg/dl), alkaline phosphatase (AP) (in IU/l) and
bile acids (BA) (in mol/l) were recorded on each animal at the end of the study.
The NTP performed univariate analysis on each of these variables and found no
significant difference between the control and dose group except for the concen-
tration of urea nitrogen which was increased in the high dose group. This increase
was marginally significant at the 5% level and not at all after correcting for mul-
tiplicity. We applied the proposed methodology to compare the control with the
high-dose group (1785 mg/kg) in terms of all nonnegative linear combinations
of the above mentioned four variables. We test the null hypothesis of no differ-
ence between the control and the high-dose group against the alternative that the
high-dose group is stochastically larger (in the above four variables) than the con-
trol group. The resulting p-value based on 10,000 bootstrap samples was 0.025,
which is significant at a 5% level of significance. The estimated value of smax was
(0.074,0.986,0.012,0.150)T and the estimated 95% confidence region is given by
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TABLE 5
Power comparisons of the two proposed test procedures with type I error of 0.050. Here

δ1 = (0.1,0.5,0.9), δ2 = (0.1,0.25,0.5,0.75,0.9), δ3 = (0.5,0.5,0.5) and
δ4 = (0.5,0.5,0.5,0.5,0.5)

Power and RE % (n = m = 15)

Set up Directional tests Integral tests

p δ ρ Sn,m RMD test TMD test In,m I+
n,m

3 δ1 −0.25 0.79 (90%) 0.62 (71%) 0.88 0.89 (100%) 0.89 (100%)
3 δ1 0.00 0.64 (82%) 0.45 (57%) 0.78 0.68 (87%) 0.68 (87%)
3 δ1 0.25 0.53 (78%) 0.38 (56%) 0.68 0.54 (79%) 0.54 (79%)
3 δ1 0.50 0.51 (73%) 0.41 (59%) 0.70 0.47 (67%) 0.47 (67%)
3 δ1 0.90 0.62 (64%) 0.85 (99%) 0.97 0.40 (41%) 0.41 (42%)

5 δ2 −0.25 0.93 (95%) 0.74 (76%) 0.98 0.97 (99%) 0.97 (99%)
5 δ2 0.00 0.80 (87%) 0.56 (60%) 0.92 0.86 (93%) 0.86 (93%)
5 δ2 0.25 0.59 (73%) 0.39 (47%) 0.81 0.66 (81%) 0.66 (81%)
5 δ2 0.50 0.56 (67%) 0.42 (50%) 0.84 0.48 (57%) 0.48 (57%)
5 δ2 0.90 0.63 (64%) 0.88 (89%) 0.99 0.40 (40%) 0.40 (40%)

3 δ3 −0.25 0.74 (89%) 0.54 (64%) 0.83 0.83 (100%) 0.83 (100%)
3 δ3 0.00 0.56 (87%) 0.34 (53%) 0.64 0.59 (92%) 0.59 (92%)
3 δ3 0.25 0.42 (87%) 0.23 (48%) 0.49 0.46 (93%) 0.46 (93%)
3 δ3 0.50 0.33 (86%) 0.15 (40%) 0.38 0.37 (97%) 0.37 (97%)
3 δ3 0.90 0.27 (83%) 0.12 (38%) 0.32 0.27 (83%) 0.27 (83%)

5 δ4 −0.25 0.92 (95%) 0.65 (68%) 0.96 0.95 (99%) 0.95 (99%)
5 δ4 0.00 0.75 (90%) 0.43 (51%) 0.83 0.82 (99%) 0.82 (99%)
5 δ4 0.25 0.49 (87%) 0.20 (35%) 0.57 0.60 (100%) 0.60 (100%)
5 δ4 0.50 0.41 (90%) 0.16 (34%) 0.45 0.43 (100%) 0.43 (100%)
5 δ4 0.90 0.29 (92%) 0.10 (32%) 0.31 0.33 (100%) 0.33 (100%)

{s ∈ S p−1
+ : ŝT

maxs ≤ 0.93}. Hence the confidence set includes any s which is within
21.5◦ degrees of ŝmax. This is a relatively large set due to the small sample sizes.
Clearly our methodology appears to be sensitive to detect statistical differences
which were not noted by NTP. Furthermore, our methodology allows us to infer
that indeed 1785 mg/kg dose group is larger in the multivariate stochastic order
than the control group. This is a much stronger conclusion than the simple order-
ing of their means. Thus we believe that the proposed framework and methodology
for studying ordered distributions can serve as a useful tool in toxicology and is
also applicable to a wide range of other problems as alluded to in this paper.

6. Concluding remarks and some open problems. In many applications,
researchers are interested in comparing two experimental conditions, for example,
a treatment and a control group, in terms of a multivariate response. In classical
multivariate analysis one addresses such problems by comparing the mean vectors
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TABLE 5
(Continued)

Power and RE % (n = m = 25)

Set up Directional tests Integral tests

p δ ρ Sn,m RMD test TMD test In,m I+
n,m

3 δ1 −0.25 0.96 (98%) 0.90 (91%) 0.98 0.98 (100%) 0.98 (100%)
3 δ1 0.00 0.85 (92%) 0.72 (78%) 0.92 0.85 (92%) 0.86 (92%)
3 δ1 0.25 0.80 (88%) 0.69 (76%) 0.90 0.75 (83%) 0.75 (83%)
3 δ1 0.50 0.75 (84%) 0.67 (75%) 0.89 0.66 (74%) 0.66 (74%)
3 δ1 0.90 0.89 (89%) 0.98 (99%) 1.00 0.59 (59%) 0.61 (61%)

5 δ2 −0.25 1.00 (100%) 0.98 (98%) 1.00 1.00 (100%) 1.00 (100%)
5 δ2 0.00 0.96 (97%) 0.85 (86%) 0.99 0.98 (99%) 0.98 (99%)
5 δ2 0.25 0.85 (88%) 0.74 (76%) 0.97 0.83 (86%) 0.83 (86%)
5 δ2 0.50 0.81 (84%) 0.74 (77%) 0.96 0.70 (73%) 0.70 (73%)
5 δ2 0.90 0.90 (90%) 0.99 (100%) 1.00 0.57 (57%) 0.58 (58%)

3 δ3 −0.25 0.94 (96%) 0.85 (87%) 0.98 0.96 (98%) 0.96 (98%)
3 δ3 0.00 0.75 (92%) 0.57 (69%) 0.82 0.79 (96%) 0.79 (96%)
3 δ3 0.25 0.62 (89%) 0.39 (56%) 0.70 0.66 (94%) 0.66 (94%)
3 δ3 0.50 0.54 (90%) 0.31 (52%) 0.60 0.55 (92%) 0.55 (92%)
3 δ3 0.90 0.44 (90%) 0.20 (42%) 0.49 0.42 (86%) 0.42 (86%)

5 δ4 −0.25 0.99 (99%) 0.94 (94%) 1.00 1.00 (100%) 1.00 (100%)
5 δ4 0.00 0.94 (96%) 0.72 (74%) 0.97 0.97 (100%) 0.97 (100%)
5 δ4 0.25 0.71 (90%) 0.41 (52%) 0.79 0.79 (100%) 0.79 (100%)
5 δ4 0.50 0.58 (91%) 0.25 (39%) 0.63 0.64 (100%) 0.64 (100%)
5 δ4 0.90 0.42 (87%) 0.18 (36%) 0.49 0.46 (94%) 0.46 (94%)

using Hotelling’s T 2 statistic. The assumption of MVN, underlying Hotelling’s T 2

test, may not hold in practice. Moreover if the data is not MVN, then the compar-
ison of population means may not always provide complete information regard-
ing the differences between the two experimental groups. Secondly, Hotelling’s
T 2 statistics are designed for two-sided alternatives and may not be ideal if a re-
searcher is interested in one-sided, that is, ordered alternatives. Addressing such
problems requires one to compare the two experimental groups nonparametrically
in terms of the multivariate stochastic order. Such comparisons, however, are very
high dimensional and not easy to perform.

In this article we circumvent this challenge by considering the notion of the lin-
ear stochastic order between two random vectors. The linear stochastic order is a
“weak” generalization of the univariate stochastic order. The linear stochastic or-
der is simple to interpret and has an intuitive appeal. Using this notion of ordering,
we developed nonparametric directional inference procedures. Intuitively, the pro-
posed methodology seeks to determine the direction that best separates two multi-
variate populations. Asymptotic properties of the estimated direction are derived.
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Our test based on the best separating direction may be viewed as a generalization
of Roy’s classical largest root test for comparing several MVN populations. To the
best of our knowledge this is the first general test for multivariate ordered distribu-
tions. Since in practice sample sizes are small, we use the bootstrap methodology
for drawing inferences.

We illustrated the proposed methodology using a data obtained from a recent
toxicity/carcinogenicity study conducted by the US National Toxicology Program
(NTP) on the chemical Citral. A re-analysis of their 90-day data using our pro-
posed methodology revealed a linear stochastic increase in platelets, urea nitro-
gen, alkaline phosphatase and bile acids in the high-dose group relative to the
control group, which was not seen in the original univariate analysis conducted by
the NTP. These findings suggest that the proposed methodology may have greater
sensitivity than the commonly used univariate statistical procedures. Our method-
ology is sufficiently general since it is nonparametric and can be applied to discrete
and/or continuous outcome variables. Furthermore, our methodology exploits the
underlying dependence structure in the data, rather than analyzing one variable at
a time.

We note that our example and some of our results pertain to continuous RVs.
However, the methodology may be used, with appropriate modification (e.g., meth-
ods for dealing with ties) with discrete (or mixed) data with no problem. Although
the focus of this paper has been the comparison of two multivariate vectors, in
many applications, especially in dose response studies, researchers may be inter-
ested in determining trends (order) among several groups. Similarly to classical
parametric order restricted inference literature, one could generalize the method-
ology developed in this paper to test for order restrictions among multiple pop-
ulations. For example, one could extend the results to K ≥ 2 RVs ordered by the
simple ordering, that is, X1 ≺l-st X2 ≺l-st · · · ≺l-st XK or to RVs ordered by the tree
ordering, that is, X1 ≺l-st Xj where j = 2, . . . ,K . As pointed out by a referee the
hypotheses H0 : X �st Y versus H1 : X ⊀st Y can also be formulated and tested us-
ing the approach described. First note that the null hypothesis implies �(s) ≥ 1/2
for all s ∈ S p−1

+ . On the other hand under the alternative there is an s ∈ S p−1
+ for

which �(s) < 1/2. Thus a test may be based on the statistic

N1/2(
�n,m(ŝmin) − 1/2

)
,

where ŝmin is the value which minimizes �n,m(s). It is also clear that the least fa-
vorable configuration occurs when �(s) = 1/2 for all s ∈ S p−1

+ which is equivalent
to X =st Y.

We believe that the result obtained here may be useful beyond order restricted
inference. Our simulation study suggests that our estimator of the best separating
direction, that is, (3.5) may be useful even in the context of classical multivariate
analysis where it may be viewed as a robust alternative to Roy’s classical estimate.
Finally we note that the linear stochastic order may be useful in a variety of other
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statistical problems. For example, we believe that it provides a useful framework
for linearly combining the results of several diagnostic markers. This is a well-
known problem in the context of ROC curve analysis in diagnostic medicine.

APPENDIX: PROOFS

PROOF OF THEOREM 2.1. (i) Let g : Rp → Rn be an affine increasing func-
tion. Clearly g(x) = v + Mx for some n vector v and n × p matrix M with non-
negative elements. Thus for any u ∈ Rn+ we have s = MT u ∈ R

p
+. Hence

uT g(X) = uT (v + MX) = uT v + sT X �st uT v + sT Y = uT (v + MY) = uT g(Y)

as required where the inequality holds because X �l-st Y. (ii) Fix I ∈ {1, . . . , p}.
Let X = (XI ,XĪ ), Y = (YI ,YĪ ) where Ī is the complement of I in {1, . . . , p}.
Further define sT = (sT

I , sT
Ī
) where s ∈ R

p
+, and set sT

Ī
= 0. It follows that for all

sI ∈ Rdim(I ) we have

sT
I XI = sT X �st sT Y = s

T

I YI

as required. (iii) Let φ : R → R be any increasing function. Note that

E
(
φ

(
sT X

)) = E
(
E

(
φ

(
sT X

)|Z)) ≤ E
(
E

(
φ

(
sT Y

)|Z)) = E
(
φ

(
sT Y

))
.

The inequality is a consequence of X|Z = z �l-st Y|Z = z. Since φ is arbitrary
it follows that X �l-st Y as required. (iv) Let X = (X1, . . . ,Xn), and define Y
similarly. Let s ∈ R

p
+ where p = p1 + · · · + pn. Now

sT X = sT
1 X1 + · · · + sT

n Xn and sT Y = sT
1 Y1 + · · · + sT

n Yn

by assumption sT
i Xi �st sT

i Yi for i = 1, . . . , n. In addition sT
i Xi and sT

j Xj are in-
dependent for i 
= j . It follows from Theorem 1.A.3 in Shaked and Shanthikumar
(2007) that sT

1 X1 + · · · + sT
n Xn �st sT

1 Y1 + · · · + sT
n Yn, that is, X �l-st Y as re-

quired. (v) By assumption Xn ⇒ X and Yn ⇒ Y where the symbol ⇒ denotes
convergence in distribution. By the continuous mapping theorem sT Xn ⇒ sT X
and sT Yn ⇒ sT Y. It follows that

P
(
sT Xn ≥ t

) → P
(
sT X ≥ t

)
and P

(
sT Yn ≥ t

) → P
(
sT Y ≥ t

)
.(A.1)

Moreover since Xn �l-st Yn we have

P
(
sT Xn ≥ t

) ≤ P
(
sT Yn ≥ t

)
for all n ∈ N.(A.2)

Combining (A.1) and (A.2) we have P(sT X ≥ t) ≤ P(sT Y ≥ t), that is, X �l-st Y
as required. �

Before proving Theorem 2.2, we provide a definition and a preliminary lemma.
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DEFINITION A.1. We say that the RV X has an elliptical distribution with
parameters μ and � and generator φ(·), denoted X ∼ Ep(μ,�, φ), if its charac-
teristic function is given by exp(itT μ)φ(tT �t).

For this and other facts about elliptical distributions which we use in the proofs
below, see Fang, Kots and Ng (1989).

LEMMA A.1. Let X ∼ E1(μ,σ,φ) and Y ∼ E1(μ
′, σ ′, φ) be univariate ellip-

tical RVs supported on R. Then X �st Y if and only if μ ≤ μ′ and σ = σ ′.

PROOF. Since X and Y have the same generator they have the stochastic rep-
resentation:

X =st μ + σRU and Y =st μ′ + σ ′RU,(A.3)

where R is a nonnegative RV, independent of the RV U , satisfying P(U = ±1) =
1/2; cf. Fang, Kots and Ng (1989). It follows that RU is a symmetric RV supported
on R with a strictly increasing DF which we denoted by F0. Let FX and FY denote
the DFs of X and Y , respectively. Note that X �st Y if and only if FX(t) ≥ FY (t)

for all t ∈ R, or equivalently by (A.3), if and only if

F0

(
t − μ

σ

)
≥ F0

(
t − μ′

σ ′
)

(A.4)

for all t ∈ R. It is obvious that (A.4) holds when μ ≤ μ′ and σ = σ ′, estab-
lishing sufficiency. Now assume that X �st Y . Put t = μ in (A.4), and use the
strict monotonicity of F0 to get 0 ≥ (μ − μ′)/σ ′, that is, μ′ ≥ μ. Suppose now
that σ ′ > σ . It follows from (A.4) and the the strict monotonicity of F0 that
(t −μ)/σ ≥ (t −μ′)/σ ′ which is equivalent to t ≥ (μσ ′ −μ′σ)/(σ ′ −σ). The lat-
ter, however, contradicts the fact that (A.4) holds for all t ∈ R. A similar argument
shows that σ ′ < σ cannot hold; hence we must have σ = σ ′ as required. �

REMARK A.1. Note that Lemma A.1 may not hold for distributions with a
finite support. For example, if R ∼ U(0,1), then by (A.3) X ∼ U(μ − σ,μ + σ)

and Y ∼ U(μ′ − σ ′,μ′ + σ ′). It is easily verified that in this case X �st Y if and
only if � = μ′ − μ ≥ 0 and −� ≤ σ ′ − σ ≤ �; that is, it is not required that
σ = σ ′. Hence the assumption that X and Y are supported on R is necessary.

We continue with the proof of Theorem 2.2.

PROOF OF THEOREM 2.2. Let X and Y be be Ep(μ,�, φ) and Ep(μ′,�′, φ)

supported on Rp . Suppose that X �l-st Y. Choose s = ei where eik = 1 if i = k

and 0 otherwise. It now follows from Definition 1.1 that Xi �st Yi . Since Xi and Yi
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are marginally elliptically distributed RVs with the same generator and supported
on R, then by Lemma A.1 we must have

μi ≤ μ′
i and σii = σ ′

ii .(A.5)

The latter holds, of course, for all 1 ≤ i ≤ p. Choosing s = ei + ej we have Xi +
Xj �st Yi + Yj . Note that Xi + Xj and Yi + Yj are supported on R and follow
a univariate elliptical distribution with the same generator [Fang, Kots and Ng
(1989)]. Applying Lemma A.1 again we find that

μi + μj ≤ μ′
i + μ′

j and σii + σjj + 2σij = σ ′
ii + σ ′

jj + 2σ ′
ij .(A.6)

The latter holds, of course, for all 1 ≤ i 
= j ≤ p. It is easy to see that equations
(A.5) and (A.6) imply that μ ≤ μ′ and � = �′. Recall [cf. Fang, Kots and Ng
(1989)] that we may write X =st μ + RSU and Y =st μ′ + RSU where � = ST S,

U is a uniform RV on S p−1
+ , and R is a nonnegative RV. Let S be an upper set

in Rp . Clearly the set [S −μ] := {x −μ :x ∈ S} is also an upper set and [S −μ] ⊆
[S − μ′] since μ ≤ μ′. Now,

P(X ∈ S) = P
(
X0 ∈ [S − μ]) ≤ P

(
X0 ∈ [

S − μ′]) = P(Y ∈ S),

where X0 = RSU, hence X �st Y. This proves the “if” part. The “only if” part
follows immediately. �

PROOF OF THEOREM 2.3. Let Xp = {x : (x1, . . . , xp) ∈ {0,1}p} denote the
support of a p-dimensional multivariate binary (MVB) RV. By definition the rela-
tionship X �l-st Y implies that for all (t, s) ∈ R+ × R

p
+,

P
(
sT X > t

) ≤ P
(
sT Y > t

)
.(A.7)

Now note that

P
(
sT X > t

) = ∑
x∈Xp

f (x)I(sT x>t) and P
(
sT Y > t

) = ∑
x∈Xp

g(x)I(sT x>t),(A.8)

where f and g are the probability mass functions of X and Y, respectively. Let U

be an upper set on Xp . It is well known [cf. Davey and Priestley (2002)] that U

can be written as

U = ⋃
j∈J

U(xj ),(A.9)

where xj are the distinct minimal elements of U , and U(xj ) = {x : x ≥ xj } are
themselves upper sets [in fact U(xj ) is an upper orthant]. The set {xj : j ∈ J }
is often referred to as an anti-chain. Now observe that for any s ∈ R

p
+ the set

{x : sT x > t} is an upper set. Hence it must be of the form of (A.9) for some anti-
chain {xj : j ∈ J }. Suppose now, that for some U ∈ Xp there is a vector sU ∈ R

p
+
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such that U = {x : sT
U x > t} for some fixed t > 0. Then using (A.7) and (A.8) we

have

P(X ∈ U) = ∑
x∈{x : sTU x>t}

f (x) = P
(
sT
U X > t

) ≤ P
(
sT
U Y > t

)

= ∑
x∈{x : sTU x>t}

g(x) = P(Y ∈ U).

We will complete the proof by showing that for each upper set U ∈ Xp , we can
find a vector sU for which sT

U x > t for x ∈ U and sT
U x ≤ t for x ∈ Uc = X \ U if

and only if p ≤ 3. To do so we will first solve the system of equations sT xj = t for
j ∈ J . This system can also be written as Xs = t where

X =
⎛
⎜⎝

x1
...

xJ

⎞
⎟⎠

is a J × p matrix whose rows are the member of the anti-chain defining U , and
t = (t, . . . , t) has dimension J . Clearly the elements of X are ones and zeros. If
J ≤ p, the matrix X is of full rank since its rows are linearly independent by the
fact that they are an anti-chain. Hence a solution for s exists. With a bit of algebra,
we can further show that a solution s ≥ 0 exists. This, of course, is trivially verified
when p ≤ 3. Now set sU = s + ε for some ε ≥ 0. It is clear that we can choose
ε small enough to guarantee that sT

U x > t if and only if x ∈ U . Hence if J ≤ p,
upper set (A.9) can be mapped to a vector sU . However, the inequality J ≤ p for
all upper sets U ⊂ Xp holds if and only if p ≤ 3. This can be easily shown by
enumerating all 18 upper sets belonging to X3 [cf. Davidov and Peddada (2011)]
and noting that they have at most three minimal elements. Hence if p ≤ 3, then
X �l-st Y ⇐⇒ X �st Y as required.

Now let p = 4, and consider the upper set U generated by the anti-chain xj , j =
1, . . . , J where xj are all the distinct permutations of the vector (1,1,0,0). Clearly
J = 6. Note that although J > p, the system of equations Xs = t is uniquely solved
by sT∗ = (t/2, t/2, t/2, t/2). However, this solution coincides with the solution
of the system X′s = t where X′ is any matrix obtained from X by deleting any
two (or just one) of its rows. Note that the rows of X′ correspond to an upper set
U ′ ⊂ U . This, in turn, implies that for any such U ′ one cannot find a vector sU ′
satisfying sT

U ′x > t if and only if x ∈ U ′ because the inequality will hold for all
x ∈ U . Thus U ′ does not define an upper half plane. This shows that the linear
stochastic order and the multivariate stochastic order do not coincide when p = 4.
A similar argument may be used for any p ≥ 5. This completes the proof. �

We first define the term copula.
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DEFINITION A.2. Let F be the DF of a p-dimensional RV with marginal DFs
F1, . . . ,Fp . The copula C associated with F is a DF such that

F(x) = C(x) = C
(
F1(x1), . . . ,Fp(xp)

)
.

It follows that the tail-copula C̄(·) is nothing but the tail of the DF C(·).

PROOF OF THEOREM 2.4. Suppose that X and Y have the same copula. Let
X �l-st Y. Choosing s = ei where eik = 1 if i = k and 0 otherwise, we find using
the definition that Xi �st Yi . The latter holds, of course, for all 1 ≤ i ≤ p. Applying
Theorem 6.B.14 in Shaked and Shanthikumar (2007), we find that X �st Y. The
reverse direction is immediate. �

PROOF OF THEOREM 2.5. Note that for any x ∈ Rp we have

F(x) = CX
(
F1(x1), . . . ,Fp(xp)

) ≥ CX
(
G1(x1), . . . ,Gp(xp)

)
≥ CY

(
G1(x1), . . . ,Gp(xp)

) = G(x).

This means that X �lo Y. The other part of the theorem is proved similarly. �

PROOF OF PROPOSITION 3.1. Let X and Y be independent MVNs with means
μ ≤ ν and common variance matrix �. Clearly

P
(
sT X ≤ sT Y

) = 


(
−sT (μ − ν)√

2sT �s

)
,

where 
 is the DF of a standard normal RV. It follows that P(sT X ≤ sT Y) is
maximized when the ratio sT (ν − μ)/

√
sT �s is maximized. From the Cauchy–

Schwarz inequality we have

sT (ν − μ)√
sT �s

≤
√

(ν − μ)T �−1(ν − μ)(A.10)

for all s. It is now easily verified that s = �−1(ν − μ) maximizes the left-hand side
of (A.10). �

PROOF OF PROPOSITION 3.2. Let Qq , q = 1, . . . ,4, be the four quadrants. It
is clear that maximizing (3.1) is equivalent to maximizing

� ′
n,m(s) = ∑

Zij∈Q2

I(sT Zij≥0) + ∑
Zij∈Q4

I(sT Zij≥0).(A.11)

It is also clear that for any s the indicators I(sT Zij≥0) are independent of the length
of Zij which we therefore take to have length unity. Observe that the value of
(A.11) is constant in the intervals (θ[i], θ[i+1]) where θ[i] are defined in Algo-
rithm 3.1. At each point θ[i], i = 0, . . . ,M +1, the value of (A.11) may increase or
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decrease. It follows that for all s ∈ S p−1
+ � ′

n,m(s) ∈ {� ′
n,m(s[0]), . . . ,� ′

n,m(s[M+1])}
where s[i] are defined in Algorithm 3.1. Therefore the maximum value of (3.1) is an
element of the above list. Now suppose that s[i] is a global maximizer of (A.11).
Clearly either � ′

n,m(s[i]) = � ′
n,m(s[i−1]) or � ′

n,m(s[i]) = � ′
n,m(s[i+1]) must hold,

in which case any value in [θ[i−1], θ[i]] or [θ[i], θ[i+1]] is a global maximizer. This
concludes the proof. �

PROOF OF THEOREM 3.1. Using Hajek’s projection and for any s, we may
write

�n,m(s) = �(s) + n−1
n∑

i=1

ψ1(Xi , s) + m−1
m∑

j=1

ψ2(Yj , s) + Rn,m(s),(A.12)

where

ψ1(Xi , s) = Ḡ
(
sT Xi

) − �(s),

ψ2(Yj , s) = F
(
sT Yj

) − �(s)

and Rn,m(s) is a remainder term. Here Ḡ(sT x) = P(sT Y ≥ sT x), F(sT y) =
P(sT X ≤ sT y) and �(s) = E(Ḡ(sT Xi )) = E(F (sT Yj )). Clearly E[ψ1(Xi , s)] =
E[ψ2(Yj , s)] = 0 for all i and j , so by the strong law of large numbers
n−1 ∑n

i=1 ψ1(Xi , s) and m−1 ∑m
j=1 ψ2(Yj , s) both converge to zero with proba-

bility one. Now,

sup
s∈S p−1

+

∣∣�n,m(s) − �(s)
∣∣ ≤ sup

s∈S p−1
+

∣∣∣∣∣n−1
n∑

i=1

ψ1(Xi , s)

∣∣∣∣∣ + sup
s∈S p−1

+

∣∣∣∣∣m−1
m∑

j=1

ψ2(Yj , s)

∣∣∣∣∣
+ sup

s∈S p−1
+

∣∣Rn,m(s)
∣∣.

The set S p−1
+ is compact, and the function ψ1(x, s) is continuous in s ∈ S p−1

+
for all values of x and bounded [in fact |ψ1(x, s)| ≤ 2]. Thus the condi-
tions in Theorem 3.1 in DasGupta (2008) are satisfied, and it follows that
sup

s∈S p−1
+

|n−1 ∑n
i=1 ψ1(Xi , s)| a.s.→ 0 as n → ∞. Similarly sup

s∈S p−1
+

|m−1 ×∑m
i=1 ψ2(Yi , s)| a.s.→ 0 as m → ∞. Since �n,m(s) is bounded all its moments exist;

therefore from Theorem 5.3.3 in Serfling (1980) we have that with probability one
Rn,m(s) = o(1/N). Moreover it is clear that the latter holds uniformly for all s.
Thus,

sup
s∈S p−1

+

∣∣�n,m(s) − �(s)
∣∣ a.s.→ 0 as n,m → ∞.

By assumption �(smax) > �(s) for all s ∈ S p−1
+ \ smax so we can apply Theo-

rem 2.12 in Kosorok (2008) to conclude that

ŝmax
a.s.→ smax;
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that is, ŝmax is strongly consistent. This completes the first part of the proof.
Since the densities of X and Y are differentiable, it follows that �(s) is continu-

ous and twice differentiable. In particular at smax ∈ S p−1
+ , the matrix −∇2�(smax)

exists and is positive definite. A Taylor expansion implies that

sup
‖s−smax‖<δ

�(s) − �(smax) ≤ −Cδ2.

It is also obvious that

n−1
n∑

i=1

ψ1(Xi , smax) = Op(1/
√

N)

and

m−1
m∑

j=1

ψ2(Yj , smax) = Op(1/
√

N).

Finally as noted above |Rn,m(s)| = O(1/N) for all s as n,m → ∞. Therefore
by Theorem 1 in Sherman (1993) we have that

ŝmax = smax + Op

(
N−1/2);(A.13)

that is, ŝmax converges to smax at a N1/2 rate. This completes the second part of the
proof.

The functions �(s),ψ1(Xi , s) and ψ2(Yj , s) on the right-hand side of (A.12)
all admit a quadratic expansion. A bit of algebra shows that for s in an Op(N−1/2)

neighborhood of smax, we have

�n,m(s) = �(smax) + (s − smax)
T Mn,m

N1/2
(A.14)

+ 1

2
(s − smax)

T V(s − smax) + op(1/N),

where

Mn,m = 1√
λn,m

∑n
i=1 ∇ψ1(Xi , smax)

n1/2 + 1√
1 − λn,m

∑m
j=1 ∇ψ2(Yj , smax)

m1/2

λn,m = n/N , for j = 1,2 the function ∇ψj(·, smax)
T is the gradient of ψj(·, s)

evaluated at smax, and the matrix V is given by

V = E
(∇2ψ1(X, smax)

) + E
(∇2ψ2(Y, smax)

)
.

Note that the op(1/N) term in (A.14) absorbs Rn,m(s) in (A.12) as well as the
higher-order terms in the quadratic expansions of �(s), n−1 ∑n

i=1 ψ1(Xi , s) and
m−1 ∑m

j=1 ψ2(Yj , s). Now by the CLT and Slutzky’s theorem, we have that

Mn,m ⇒ N(0,�),
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where

� = 1

λ
E

(∇ψ1(X, smax)∇ψ1(X, smax)
T )

+ 1

1 − λ
E

(∇ψ2(Y, smax)∇ψ2(Y, smax)
T )

.

Finally it follows by Theorem 2 in Sherman (1993) that

N1/2(ŝmax − smax) ⇒ N(0,�),

where � = V−1�V −1, completing the proof. �

PROOF OF THEOREM 3.2. Suppose that X and Y are discrete RVs with finite
support. Let pa = P(X = xa) > 0 and qb = P(Y = yb) > 0 where a = 1, . . . ,A and
b = 1, . . . ,B; A and B are finite. Define the set Sab = {s ∈ S p−1

+ : sT xa ≤ sT yb}.
A simple argument shows that

�(s) = P
(
sT X ≤ sT Y

) =
A∑

a=1

B∑
b=1

I(s∈Sab)paqb =
K∑

k=1

αkI(s∈Sk),

where K ≤ 2AB is finite, the sets Sk are distinct,
⋃K

k=1 Sk = S p−1
+ and αk =∑

(a,b)∈Jk
paqb with Jk = {(a, b) : Sk ∩ Sab 
= ∅}. Thus �(s) is a simple func-

tion on S p−1
+ , and Smax is the set associated with the largest αk . We will assume,

without any loss of generality, that α1 > αk for all k ≥ 2. Now note that

�n,m(s) = 1

nm

n∑
i=1

m∑
j=1

I(sT Xi≤sT Yj ) =
A∑

a=1

B∑
b=1

namb

nm
I(s∈Sab),

where na = ∑n
i=1 I(Xi=xa),mb = ∑m

j=1 I(Yi=yb) where a = 1, . . . ,A and b =
1, . . . ,B . Clearly �n,m(s) is also a simple function. Moreover for large enough
n and m we will have na > 0 and mb > 0 for all a = 1, . . . ,A and b = 1, . . . ,B ,
and consequently �n,m(s) is defined over the same sets as �(s), that is,

�n,m(s) =
K∑

k=1

α̂kI(s∈Sk),

where α̂k = ∑
(a,b)∈Jk

p̂aq̂b with p̂a = na/n and q̂b = mb/m. Furthermore the
maximizer of �n,m(s) is any s ∈ Sk provided that Sk is associated with the
largest α̂k . Hence,

P(ŝmax /∈ Smax) = P
(
arg max

1≤k≤K
α̂k 
= 1

)
= P

(
K⋃

k=2

{α̂1 ≤ α̂k}
)

(A.15)

≤
K∑

k=2

P(α̂1 ≤ α̂k) ≤ (K − 1) max
2≤k≤K

P(α̂1 ≤ α̂k).



34 O. DAVIDOV AND S. PEDDADA

A bit of rearranging shows that

P(α̂1 ≤ α̂k) = P

( ∑
(a,b)∈J1

p̂aq̂b − ∑
(a,b)∈Jk

p̂aq̂b ≤ 0
)

= P

(
n−1m−1

n∑
i=1

m∑
j=1

Z
(k)
ij ≤ 0

)
,

where

Z
(k)
ij = ∑

(a,b)∈J1\Jk

I(Xi=xa)I(Yj=yb) − ∑
(a,b)∈Jk\J1

I(Xi=xa)I(Yj=yb).

Note that Z
(k)
ij may be viewed as a kernel of a two sample U -statistic. Moreover

−|Jk \ J1| ≤ Z
(k)
ij ≤ |Jk \ J1|

is bounded (here | · | denotes set cardinality) and E(Z
(k)
ij ) = μk = E(α̂1 − α̂k) > 0

by assumption. Applying Theorem 2 and the derivations in Section 5b in Hoeffding
(1963) we have that

P

(
n−1m−1

n∑
i=1

m∑
j=1

Z
(k)
ij ≤ 0

)
≤ exp

(
−N min(λn,m,1 − λn,m)μ2

k

2(|Jk \ J1| + |J1 \ Jk|)2

)
,(A.16)

where λn,m = n/N → λ ∈ (0,1) as n,m → ∞. Finally from (A.15) and (A.16)
we have that

P(ŝmax /∈ Smax) ≤ C1 exp(−C2N),

where C1 = K − 1 and C2 = min(λ,1 −λ)min 2μ2
k(|Jk \ J1| + |J1 \ JK |)−2 com-

pleting the proof. �

PROOF OF THEOREM 3.3. Choose ε > 0. We have already seen that under
the stated conditions, �(s) is continuous, and therefore for each s the set Bs,ε =
{s′ : |�(s′) − �(s)| < ε} is open. The collection {Bs,ε : s ∈ S p−1

+ } is an open cover

for S p−1
+ . Since S p−1

+ is compact there exists a finite subcover Bs1,ε, . . . ,Bs
K

,ε for

S p−1
+ where K < ∞. Hence each s belongs to some Bs

i
,ε and therefore

sup
s∈S p−1

+

∣∣�N(s) − �(s)
∣∣

≤ max
1≤i≤K

sup
s∈Bsi ,ε

∣∣�N(s) − �N(si )
∣∣

+ max
1≤i≤K

∣∣�N(si ) − �(si)
∣∣ + max

1≤i≤K
sup

s∈Bsi ,ε

∣∣�(si) − �(s)
∣∣.
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By construction sups∈Bsi ,ε
|�(si )−�(s)| < ε for all i. By the law of large numbers

�N(si )
a.s.→ �(si ) as N → ∞ for each i = 1, . . . ,K . Since K is finite,

max
1≤i≤K

∣∣�N(si ) − �(si )
∣∣ ≤

K∑
i=1

∣∣�N(si ) − �(si )
∣∣ a.s.→ 0.

Now for any s′ ∈ Bs
i
,ε , �N(s′) a.s.→ �(s′), �N(si )

a.s.→ �(si ) and |�(s′) − �(si)| <

ε. This implies that we can choose N large enough so |�N(s′) − �N(si )| < 2ε.
Moreover this bound holds for all s′ ∈ Bs

i
,ε and i so

lim sup
∣∣�N(s) − �(s)

∣∣ ≤ 3ε

on S p−1
+ . Since ε is arbitrary we conclude that sup

s∈S p−1
+

|�N(s) − �(s)| a.s.→ 0 as

N → ∞. By assumption �(smax) > �(s) for all s ∈ S p−1
+ \ smax, so we can apply

Theorem 2.12 in Kosorok (2008) to conclude that

ŝmax
a.s.→ smax,

that is, ŝmax is strongly consistent. This completes the first part of the proof.
We have already seen that

sup
‖s−smax‖<δ

�(s) − �(smax) ≤ −Cδ2

holds. We now need to bound E∗ sup‖s−smax‖<δ N1/2|(PN(�̄(s)−�̄(smax))|, where
E∗ denotes the outer expectation and �̄(s) = I(sT Z≥0) − �(s). We first note that
the bracketing entropy of the upper half-planes is of the order δ/ε2. The envelope
function of the class I(sT z≥0) − I(sTmaxz≥0) where ‖s − smax‖ < δ is bounded by
I(sT z≥0>sTmaxz) + I(sTmaxz≥0>sT z) whose squared L2 norm is

P
(
sT Z ≥ 0 > sT

maxZ
) + P

(
sT

maxZ ≥ 0 > sT Z
)
.(A.17)

Note that we may replace the RV Z in (A.17) with the RV Z′ = Z/‖Z‖ whose
mass is concentrated on the unit sphere. The condition that ‖s − smax‖ < δ implies
that the angle between s and smax is of the order O(δ), and therefore P(sT Z′ ≥
0 > sT

maxZ′) is computed as surface integral on a spherical wedge with maximum
width δ. It follows that (A.17) is bounded by 2Ap−1δ‖h′‖∞ where Ap−1 is the

area of S p−1
+ , and ‖h′‖∞ is the supremum of the density of Z′. Clearly ‖h′‖∞ <

∞ since the density of Z is bounded by assumption. Thus by Corollary 19.35 in
van der Vaart (2000) we have

E∗ sup
‖s−smax‖<δ

N1/2∣∣PN

(
�̄(s) − �̄(smax)

)∣∣ ≤ Cδ1/2.

It now follows that

�N(ŝmax) ≥ sup
s∈S p−1

+
�N(s) − op

(
N−2/3)

,(A.18)
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which implies by Theorem 5.52 in van der Vaart (2000) and Theorem 14.4 of
Kosorok (2008) that

ŝmax = smax + Op

(
N−1/3);

that is, ŝmax converges to smax at a cube root rate. This completes the second part
of the proof.

The limit distribution is derived by verifying the conditions in Theorem 1.1
of Kim and Pollard (1990), denoted henceforth by KP. First note that (A.18) is
condition (i) in KP. Since ŝmax is consistent, condition (ii) also holds, and condition
(iii) holds by assumption. The differentiability of the density of Z implies that �(s)
is twice differentiable. The uniqueness of the maximizer implies that −∇2�(smax)

is positive definite, and hence condition (iv) holds; see also Example 6.4 in KP for
related calculations. Condition (v) in KP is equivalent to the existence of the limit
H(u,v) = limα→∞ αE(�̄(smax + u/α)�̄(smax + v/α)) which can be rewritten as

lim
β→0

1

β

[
P

(
(smax + βu)T Z ≥ 0, (smax + βv)T Z ≥ 0

)
− P

(
(smax + βu)T Z ≥ 0

)
P

(
(smax + βv)T Z ≥ 0

)]
.

With some algebra we find that this limit exists and equals∫
z∈S p−1

+
δ
(
sT

maxz
)(

zT (u + v)
)
h(z) dz

−
∫

z∈S p−1
+

δ
(
sT

maxz
)(

zT u
)
h(z) dz

∫
z∈S p−1

+
δ
(
sT

maxz
)(

zT v
)
h(z) dz,

where δ(sT
maxz) is the usual Dirac function; hence integration is with respect to the

surface measure on {sT
maxz = 0}. It follows that condition also (v) holds. Conditions

(vi) and (vii) were verified in the second part of the proof. Thus we may apply
Theorem 1.1 in KP to get

N1/3(ŝmax − smax) ⇒ arg max
{−Q(s) + W(s) : s ∈ S p−1

+
}
,

where by KP Q(s) = sT ∇2�(smax)s and W(s) is a zero mean Gaussian process
with covariance function H(u,v). This completes the proof. �

PROOF OF PROPOSITION 3.3. Note that

�(s) = P
(
sT X ≤ sT Y

) = P
(
sT Z ≥ 0

) = P

(
sT Z − sT δ√

sT �s
≥ − sT δ√

sT �s

)

= 1 − F

(
− sT δ√

sT �s

)
.
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Now, by assumption the DF F is independent of s. Therefore �(s) is uniquely
maximized on S p−1

+ if and only if the function

κ(s) = sT δ√
sT �s

is uniquely maximized on S p−1
+ . If � = I , then κ(s) = sT δ, and we wish to max-

imize a linear function on S p−1
+ . It is easily verified (by using ideas from linear

programming) that the maximizer is unique if δ ≥ 0 which is true by assumption.
Incidentally, it is easy to show directly that κ(s) is maximized at s∗/‖s∗‖ where

s∗ = (δ1I(δ1≥0), . . . , δpI(δp≥0)).

Now let � 
= I and assume that a unique maximizer does not exist; that is, suppose
that κ(s) is maximized by both s1 and s2. It is clear that κ(λ1s1) = κ(λ2s2) for all
λ1, λ2 > 0; that is, the value of κ(·) is constant along rays through the origin. The
rays passing through s1 and s2, respectively, intersect the ellipsoid sT �s = 1 at the
points p1 and p2. It follows that κ(p1) = κ(p2), moreover p1 and p2 maximize
κ(·) on the ellipsoid. Now since pT

1 �p1 = 1 = pT
2 �p2 we must have pT

1 δ = pT
2 δ.

Recall that a linear function on ellipsoid is uniquely maximized (just like on a
sphere; see the comment above). Therefore we must have p1 = p2 which implies
that s1 = s2 as required. �

PROOF OF THEOREM 3.4. If X =st Y, then for all s we have sT X =st sT Y.
By assumption both sT X and sT Y are continuous RVs, so P(sT X ≤ sT Y) = 1/2.
Suppose now that both X �st Y and P(sT X ≤ sT Y) > 1/2 for some s ∈ S p−1

+ , hold.
Then we must have X ≺l-st Y. Since X �st Y we have Xj �st Yj for 1 ≤ j ≤ p.
One of these inequalities must be strict; otherwise X =st Y contradicts the fact that
X ≺l-st Y. Now use Theorem 1 in Davidov and Peddada (2011) to complete the
proof. �

PROOF OF THEOREM 3.5. The functions ψ1 and ψ2 defined in the proof of
Theorem 3.1 are Donsker; cf. Example 19.7 in van der Vaart (2000). Hence by the
theory of empirical processes applied to (A.12), we find that

N1/2(
�n,m(s) − �(s)

) ⇒ G(s),(A.19)

where G(s) is a zero mean Gaussian process, and convergence holds for all
s ∈ S p−1

+ . We also note that (A.19) is a two-sample U -processes. A central limit
theorem for such processes is described by Neumeyer (2004). Hence by the con-
tinuos mapping theorem, and under H0, we have N1/2(�n,m(ŝmax) − 1/2)) ⇒
sup

s∈S p−1
+

G(s) where the covariance function of G(s), denoted by C(u,v), is given
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by
1

λ
P

(
uT X1 ≤ uT X2,vT X1 ≤ vT X3

)
(A.20)

+ 1

1 − λ
P

(
uT X1 ≤ uT X2,vT X3 ≤ vT X2

) − 1

4λ(1 − λ)
,

where X1,X2,X3 are i.i.d. from the common DF. �

PROOF OF THEOREM 3.6. Suppose that X ≺l-st Y. Then for some s∗ ∈ S p−1
+

we have sT∗ X ≺st sT∗ Y which implies that P(sT∗ X ≤ sT∗ Y) > 1/2. By definition
P(sT

maxX ≤ sT
maxY) ≥ P(sT∗ X ≤ sT∗ Y) so �(smax) > 1/2. It follows from the proof

of Theorem 3.1 that �n,m(ŝmax) → �(smax) with probability one. Thus,

Sn,m = N1/2(
�n,m(ŝmax) − 1/2

) a.s.−→ ∞ as n,m → ∞.

Therefore by Slutzky’s theorem,

P(Sn,m > qn,m,1−α;H1) → 1 as n,m → ∞,

where qn,m,1−α is the critical value for an α level test based on samples of size n

and m and qn,m,1−α → q1−α . Hence the test based on Sn,m is consistent. Consis-
tency for In,m and I+

n,m is established in a similar manner.

Now assume that X �l-st Y �l-st Z so that sT Y �st sT Z for all s ∈ S p−1
+ .

Fix xi , i = 1, . . . , n, and choose s ∈ S p−1
+ . Without any loss of generality as-

sume that sT x1 ≤ sT x2 ≤ · · · ≤ sT xn. Define Uj = ∑n
i=1 I(sT xi≤sT Yj ) and Vj =∑n

i=1 I(sT xi≤sT Zj ). Clearly Uj and Vj take values in J = {0, . . . , n}. Now, for k ∈ J

we have

P(Uj ≥ k) = P
(
sT Yj ≥ sT xk

) ≤ P
(
sT Zj ≥ sT xk

) = P(Vj ≥ k),

where we use the fact that sT Y �st sT Z. It follows that Uj �st Vj for j =
1, . . . ,m. Moreover {Uj } and {Vj } are all independent and it follows from The-
orem 1.A.3 in Shaked and Shanthikumar (2007) that

∑m
j=1 Uj �st

∑m
j=1 Vj . Thus∑n

i=1
∑m

j=1 I(sT xi≤sT Yj ) �st
∑n

i=1
∑m

j=1 I(sT xi≤sT Zj ). The latter holds for every
value of x1, . . . ,xn, and therefore it holds unconditionally as well, that is,

n∑
i=1

m∑
j=1

I(sT Xi≤sT Yj ) �st

n∑
i=1

m∑
j=1

I(sT Xi≤sT Zj ).

It follows that �X,Y
n,m (s) �st �X,Z

n,m (s) for all s ∈ S p−1
+ where �X,Y

n,m (s) and �X,Z
n,m (s)

are defined in (3.1) and the superscripts emphasize the different arguments used to
evaluate them. Thus

�X,Y
n,m

(
ŝX,Y

max
) �st �X,Z

n,m

(
ŝX,Y

max
) �st �X,Z

n,m

(
ŝX,Z

max
)

and as a consequence P(SX,Y
n,m > qn,m,1−α) ≤ P(SX,Z

n,m > qn,m,1−α) as required. The
monotonicity of the power function of In,m and I+

n,m follows immediately from the

fact that �X,Y
n,m (s) �st �X,Z

n,m (s) for all s ∈ S p−1
+ . �
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