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We introduce a general framework to handle structured models (sparse
and block-sparse with possibly overlapping blocks). We discuss new methods
for their recovery from incomplete observation, corrupted with deterministic
and stochastic noise, using block-�1 regularization. While the current the-
ory provides promising bounds for the recovery errors under a number of
different, yet mostly hard to verify conditions, our emphasis is on verifiable
conditions on the problem parameters (sensing matrix and the block struc-
ture) which guarantee accurate recovery. Verifiability of our conditions not
only leads to efficiently computable bounds for the recovery error but also
allows us to optimize these error bounds with respect to the method param-
eters, and therefore construct estimators with improved statistical properties.
To justify our approach, we also provide an oracle inequality, which links the
properties of the proposed recovery algorithms and the best estimation perfor-
mance. Furthermore, utilizing these verifiable conditions, we develop a com-
putationally cheap alternative to block-�1 minimization, the non-Euclidean
Block Matching Pursuit algorithm. We close by presenting a numerical study
to investigate the effect of different block regularizations and demonstrate the
performance of the proposed recoveries.

1. Introduction.

The problem. Our goal in this paper is to estimate a linear transform Bx ∈ R
N

of a vector x ∈ R
n from the observations

y = Ax + u + ξ.(1.1)

Here A is a given m × n sensing matrix, B is a given N × n matrix, and u + ξ is
the observation error; in this error, u is an unknown nuisance known to belong to
a given compact convex set U ⊂ R

m symmetric w.r.t. the origin, and ξ is random
noise with known distribution P .

Received November 2011; revised September 2012.
1Supported by the Office of Naval Research Grant N000140811104.
2Supported by the NSF Grant DMS-09-14785.
MSC2010 subject classifications. Primary 62G08, 62H12; secondary 90C90.
Key words and phrases. Sparse recovery, nonparametric estimation by convex optimization, ora-

cle inequalities.

3077

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/12-AOS1057
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3078 JUDITSKY, KILINÇ KARZAN, NEMIROVSKI AND POLYAK

We assume that the space R
N where Bx lives is represented as R

N = R
n1 ×

· · · × R
nK , so that a vector w ∈ R

N is a block vector: w = [w[1]; . . . ;w[K]] with
blocks w[k] ∈ R

nk , 1 ≤ k ≤ K .3 In particular, Bx = [B[1]x; . . . ;B[K]x] with
nk × n matrices B[k], 1 ≤ k ≤ K . While we do not assume that the vector x is
sparse in the usual sense, we do assume that the linear transform Bx to be esti-
mated is s-block sparse, meaning that at most a given number, s, of the blocks
B[k]x, 1 ≤ k ≤ K , are nonzero.

The recovery routines we intend to consider are based on block-�1 minimiza-
tion, that is, the estimate ŵ(y) of w = Bx is Bẑ(y), where ẑ(y) is obtained by
minimizing the norm

∑K
k=1‖B[k]z‖(k) over signals z ∈ R

n with Az “fitting,” in
a certain precise sense, the observations y. Above, ‖ · ‖(k) are given in advance
norms on the spaces R

nk where the blocks of Bx take their values.
In the sequel we refer to the given in advance collection S = (B,n1, . . . , nK,

‖ · ‖(1), . . . ,‖ · ‖(K)) as the representation structure (r.s.). Given such a representa-
tion structure S and a sensing matrix A, our ultimate goal is to understand how well
one can recover the s-block-sparse transform Bx by appropriately implementing
block-�1 minimization.

Related Compressed Sensing research. Our situation and goal form a straight-
forward extension of the usual sparsity/block sparsity framework of Compressed
Sensing. Indeed, the standard representation structure with B = In, nk = 1, and
‖ · ‖(k) = | · |, 1 ≤ k ≤ K = n, leads to the standard Compressed Sensing setting—
recovering a sparse signal x ∈ R

n from its noisy observations (1.1) via �1 min-
imization. The case of nontrivial block structure {nk,‖ · ‖(k)}Kk=1 and B = In is
generally referred to as block-sparse, and has been considered in numerous recent
papers. Block-sparsity (with B = In) arises naturally (see, e.g., [13] and references
therein) in a number of applications such as multi-band signals, measurements of
gene expression levels or estimation of multiple measurement vectors sharing a
joint sparsity pattern. Several methods of estimation and selection extending the
“plain” �1-minimization to block sparsity were proposed and investigated recently.
Most of the related research focused so far on block regularization schemes—
group Lasso recovery of the form

x̂(y) ∈ Arg min
z=[z1;...;zK ]∈Rn=R

n1×···×RnK

{
‖Az − y‖2

2 + λ

K∑
k=1

∥∥z[k]∥∥2

}

(here ‖ · ‖2 is the Euclidean norm of the block). In particular, the literature on
“plain Lasso” (the case of nk = 1,1 ≤ k ≤ K = n) has an important counterpart

3We use MATLAB notation: [u,v, . . . , z] is the horizontal concatenation of matrices u,v, . . . , z of
common height, while [u;v; . . . ; z] is the vertical concatenation of matrices u,v, . . . , z of common
width. All vectors are column vectors.
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on group Lasso; see, for example, [2, 4, 9, 11–15, 22, 25–28, 30, 32] and the refer-
ences therein. Another celebrated technique of sparse recovery, the Dantzig selec-
tor, originating from [6], has also been extended to handle block-sparse structures
[16, 23]. Most of the cited papers focus on bounding recovery errors in terms of
the magnitude of the observation noise and “s-concentration” of the true signal x

(the distance from the space of signals with at most s nonzero blocks—the sum of
magnitudes ‖x[k]‖2 of all but the s largest in magnitude blocks in x). Typically,
these results rely on natural block analogy (“Block RIP;” see, e.g., [13]) of the
celebrated Restricted Isometry Property introduced by Candés and Tao [7, 8] or
on block analogies [24] of the Restricted Eigenvalue Property introduced in [5]. In
addition to the usual (block)-sparse recovery, our framework also allows to handle
group sparse recovery with overlapping groups by properly defining the corre-
sponding B matrix.

Contributions of this paper. The first (by itself, minor) novelty in our problem
setting is the presence of the linear mapping B . We are not aware of any preceding
work handling the case of a “nontrivial” (i.e., different from the identity) B . We
qualify this novelty as minor, since in fact the case of a nontrivial B can be reduced
to the one of B = In.4 However, “can be reduced” is not the same as “should be
reduced,” since problems with nontrivial B mappings arise in many applications.
This is the case, for example, when x is the solution of a linear finite-difference
equation with a sparse right-hand side (“evolution of a linear plant corrected from
time to time by impulse control”), where B is the matrix of the corresponding
finite-difference operator. Therefore, introducing B adds some useful flexibility
(and as a matter of fact costs nothing, as far as the theoretical analysis is con-
cerned).

We believe, however, that the major novelty in what follows is the emphasis on
verifiable conditions on matrix A and the r.s. S which guarantee good recovery
of the transform Bx from noisy observations of Ax, provided that the transform
in question is nearly s-block sparse, and the observation noise is low. Note that
such efficiently verifiable guarantees cannot be obtained from the “classical” con-
ditions5 used when studying theoretical properties of block-sparse recovery (with
a notable exception of the Mutual Block-Incoherence condition of [12]). For ex-
ample, given A and S , one cannot answer in any reasonable time if the (Block-)
Restricted Isometry or Restricted Eigenvalue property holds with given parame-
ters. While the efficient verifiability is by no means necessary for a condition to be

4Assuming, for example, that x �→ Bx is an “onto” mapping, we can treat Bx as our signal,
the observations being Py, where P is the projector onto the orthogonal complement to the linear
subspace A · KerB in R

m; with y = Ax + u + ξ , we have Py = GBx + P(u + ξ) with an explicitly
given matrix G.

5Note that it has been recently proved in [29] that computing the parameters involved in verification
of Nullspace condition as well as RIP for sparse recovery is NP-hard.
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meaningful and useful, we believe that verifiability has its value and is worthy of
being investigated. In particular, it allows us to design new recovery routines with
explicit confidence bounds for the recovery error and then optimize these bounds
with respect to the method parameters. In this respect, the current work extends the
results of [19–21], where �1 recovery of the “usual” sparse vectors was considered
(in the first two papers—in the case of uncertain-but-bounded observation errors,
and in the third—in the case of Gaussian observation noise). Specifically, we pro-
pose here new routines of block-sparse recovery which explicitly utilize a contrast
matrix, a kind of “validity certificate,” and show how these routines may be tuned
to attain the best performance bounds. In addition to this, verifiable conditions
pave the way of efficiently designing sensing matrices which possess certifiably
good recovery properties for block-sparse recovery (see [17] for implementation
of such an approach in the usual sparsity setting).

The main body of the paper is organized as follows: in Section 2 we formulate
the block-sparse recovery problem and introduce our core assumption—a family
of conditions Qs,q , 1 ≤ q ≤ ∞, which links the representation structure S and
sensing matrix A ∈ R

m×n with a contrast matrix H ∈ R
m×M . Specifically, given s

and q ∈ [1,∞] and a norm ‖ · ‖, the condition Qs,q on an m × M contrast matrix
H requires ∃κ ∈ [0,1/2) such that

∀(
x ∈ R

n)
Ls,q(Bx) ≤ s1/q

∥∥HT Ax
∥∥ + κs1/q−1L1(Bx)

holds, where for w = [w[1]; . . . ;w[K]] ∈ R
N and p ∈ [1,∞],

Lp(w) = ∥∥[∥∥w[1]∥∥(1); . . . ;
∥∥w[K]∥∥(K)

]∥∥
p

and

Ls,p(w) = ∥∥[∥∥w[1]∥∥(1); . . . ;
∥∥w[K]∥∥(K)

]∥∥
s,p,

where ‖u‖s,p is the norm on R
K defined as follows: we zero out all but the s largest

in magnitude entries in vector u, and take the ‖ · ‖p-norm of the resulting s-sparse
vector. Then, by restricting our attention to the standard representation structures,
we study the relation between condition Qs,q and the usual assumptions used to
validate block-sparse recovery, for example, Restricted Isometry/Eigenvalue Prop-
erties and their block versions.

In Section 3 we introduce two recovery routines based on the L1(·) norm:

• regular �1 recovery [cf. (block-) Dantzig selector]

x̂reg(y) ∈ Arg min
z∈Rn

{
L1(Bz) :

∥∥HT (y − Az)
∥∥∞ ≤ ρ

}
,

where with probability 1 − ε, ρ[=ρ(H, ε)] is an upper bound on the ‖ · ‖-norm
of the observation error;
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• penalized �1 recovery [cf. (block-) Lasso]

x̂pen(y) ∈ Arg min
z∈Rn

[
L1(Bz) + 2s

∥∥HT (y − Az)
∥∥∞

]
,

where s is our guess for the number of nonvanishing blocks in the true signal Bx.

Under condition Qs,q , we establish performance guarantees of these recoveries,
that is, explicit upper bounds on the size of confidence sets for the recovery er-
ror Lp(B(x̂ − x)), 1 ≤ p ≤ q . Our performance guarantees have the usual natural
interpretation—as far as recovery of transforms Bx with small s-block concentra-
tion6 is concerned, everything is as if we were given the direct observations of Bx

contaminated by noise of small L∞ magnitude.
Similar to the usual assumptions from the literature, conditions Qs,q are gen-

erally computationally intractable, nonetheless, we point out a notable exception
in Section 4. When all block norms are ‖ · ‖(k) = ‖ · ‖∞, the condition Qs,∞,
the strongest among our family of conditions, is efficiently verifiable. Besides, in
this situation, the latter condition is “fully computationally tractable,” meaning
that one can optimize efficiently the bounds for the recovery error over the con-
trast matrices H satisfying Qs,∞ to design optimal recovery routines. In addition
to this, in Section 4.2, we establish an oracle inequality which shows that exis-
tence of the contrast matrix H satisfying condition Qs,∞ is not only sufficient but
also necessary for “good recovery” of block-sparse signals in the L∞-norm when
‖ · ‖(k) = ‖ · ‖∞.

In Section 5 we provide a verifiable sufficient condition for the validity of Qs,q

for general q , assuming that S is �r -r.s. [i.e., ‖ · ‖(k) = ‖ · ‖r , 1 ≤ k ≤ K], and,
in addition, r ∈ {1,2,∞}. This sufficient condition can be used to build a “quasi-
optimal” contrast matrix H . We also relate this condition to the Mutual Block-
Incoherence condition of [12] developed for the case of �2-r.s. with B = In. In
particular, we show in Section 5.4 that the Mutual Block-Incoherence is more con-
servative than our verifiable condition, and thus is “covered” by the latter. “Lim-
its of performance” of our verifiable sufficient conditions are investigated in Sec-
tion 5.3.

In Section 6 we describe a computationally cheap alternative to block-�1
recoveries—a non-Euclidean Block Matching Pursuit (NEBMP) algorithm. As-
suming that S is either �2-, or �∞-r.s. and that the verifiable sufficient condition
Qs,∞ is satisfied, we show that this algorithm (which does not require optimiza-
tion) provides performance guarantees similar to those of regular/penalized �1 re-
coveries.

We close by presenting a small simulation study in Section 7.
Proofs of all results are given in the supplementary article [18].

6s-block concentration of a block vector w is defined as L1(w) − Ls,1(w).
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2. Problem statement.

Notation. In the sequel, we deal with:

• signals—vectors x = [x1; . . . ;xn] ∈ R
n, and an m × n sensing matrix A;

• representations of signals—block vectors w = [w[1]; . . . ;w[K]] ∈ W :=
R

n1
w[1] × · · · × R

nK

w[K], and the representation matrix B = [B[1]; . . . ;B[K]],
B[k] ∈ R

nk×n; the representation of a signal x ∈ R
n is the block vector w = Bx

with the blocks B[1]x, . . . ,B[K]x.

From now on, the dimension of W is denoted by N :

N = n1 + · · · + nK.

The factors R
nk of the representation space W are equipped with norms ‖·‖(k); the

conjugate norms are denoted by ‖ · ‖(k,∗). A vector w = [w[1]; . . . ;w[K]] from
W is called s-block-sparse, if the number of nonzero blocks w[k] ∈ R

nk in w

is at most s. A vector x ∈ R
n will be called s-block-sparse, if its representation

Bx is so. We refer to the collection S = (B,n1, . . . , nK,‖ · ‖(1), . . . ,‖ · ‖(K)) as
the representation structure (r.s. for short). The standard r.s. is given by B = In,
K = N , n1 = · · · = nn = 1 and ‖ · ‖(k) = | · |, 1 ≤ k ≤ N , and an �r -r.s. is the r.s.
with ‖ · ‖(k) = ‖ · ‖r , 1 ≤ k ≤ K .

For w ∈ W , we call the number ‖w[k]‖(k) the magnitude of the kth block in
w and denote by ws the representation vector obtained from w by zeroing out
all but the s largest in magnitude blocks in w (with the ties resolved arbitrarily).
For I ⊂ {1, . . . ,K} and a representation vector w, wI denotes the vector obtained
from w by keeping intact the blocks w[k] with k ∈ I and zeroing out all remaining
blocks. For w ∈ W and 1 ≤ p ≤ ∞, we denote by Lp(w) the ‖ · ‖p-norm of
the vector [‖w[1]‖(1); . . . ; ‖w[K]‖(K)], so that Lp(·) is a norm on W with the
conjugate norm L∗

p(w) = ‖[‖w[1]‖(1,∗); . . . ; ‖w[K]‖(K,∗)]‖p∗ where p∗ = p
p−1 .

Given a positive integer s ≤ K , we set Ls,p(w) = Lp(ws). Note that Ls,p(·) is
a norm on W . We define the s-block concentration of a vector w as υs(w) =
L1(w − ws).

Problem of interest. Given an observation

y = Ax + u + ξ,(2.1)

of unknown signal x ∈ R
n, we want to recover the representation Bx of x, know-

ing in advance that this representation is “nearly s-block-sparse,” that is, the rep-
resentation can be approximated by an s-block-sparse one; the L1-error of this
approximation, that is, the s-block concentration, υs(Bx), will be present in our
error bounds.

In (2.1) the term u + ξ is the observation error; in this error, u is an unknown
nuisance known to belong to a given compact convex set U ⊂ R

m symmetric w.r.t.
the origin, and ξ is random noise with known distribution P .
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Condition Qs,q(κ). We start with introducing the condition which will be in-
strumental in all subsequent constructions and results. Let a sensing matrix A and
an r.s. S = (B,n1, . . . , nK,‖ · ‖(1), . . . ,‖ · ‖(K)) be given, and let s ≤ K be a posi-
tive integer, q ∈ [1,∞] and κ ≥ 0. We say that a pair (H,‖ · ‖), where H ∈ R

m×M

and ‖ · ‖ is a norm on R
M , satisfies the condition Qs,q(κ) associated with the ma-

trix A and the r.s. S , if

∀x ∈ R
n Ls,q(Bx) ≤ s1/q

∥∥HT Ax
∥∥ + κs1/q−1L1(Bx).(2.2)

The following observation is evident:

OBSERVATION 2.1. Given A and an r.s. S , let (H,‖ · ‖) satisfy Qs,q(κ). Then
(H,‖ · ‖) satisfies Qs,q ′(κ ′) for all q ′ ∈ (1, q) and κ ′ ≥ κ . Besides this, if s ′ ≤ s

is a positive integer, ((s/s′)1/qH,‖ · ‖) satisfies Qs′,q((s′/s)1−1/qκ). Furthermore,
if (H,‖ · ‖) satisfies Qs,q(κ), and q ′ ≥ q , a positive integer s′ ≤ s, and κ ′ are
such that κ ′(s′)1/q ′−1 ≥ κs1/q−1, then (s1/q(s′)−1/q ′

H,‖ · ‖) satisfies Qs′,q ′(κ ′).
In particular, when s′ ≤ s1−1/q , the fact that (H,‖ · ‖) satisfies Qs,q(κ) implies
that (s1/qH,‖ · ‖) satisfies Qs′,∞(κ).

Relation to known conditions for the validity of sparse �1 recovery. Note that
whenever

S = (
B,n1, . . . , nK,‖ · ‖(1), . . . ,‖ · ‖(K)

)
is the standard r.s., the condition Qs,q(κ) reduces to the condition Hs,q(κ) intro-
duced in [19]. On the other hand, condition Qs,p(κ) is closely related to other
known conditions, introduced to study the properties of recovery routines in the
context of block-sparsity. Specifically, consider an r.s. with B = In, and let us
make the following observation:

Let (H,‖ · ‖∞) satisfy Qs,q(κ) and let λ̂ be the maximum of the Euclidean
norms of columns in H . Then

∀x ∈ R
n Ls,q(x) ≤ λ̂s1/q‖Ax‖2 + κs1/q−1L1(x).(2.3)

Let us fix the r.s. S2 = (In, n1, . . . , nK,‖ · ‖2, . . . ,‖ · ‖2). Condition (2.3) with
κ < 1/2 plays a crucial role in the performance analysis of the group-Lasso and
Dantzig Selector. For example, the error bounds for Lasso recovery obtained in
[24] rely upon the Restricted Eigenvalue assumption RE(s,κ) as follows: there
exists κ > 0 such that

L2
(
xs) ≤ 1

κ
‖Ax‖2 whenever 3L1

(
xs) ≥ L1

(
x − xs).

In this case Ls,1(x) ≤ √
sLs,2(x) ≤

√
s

κ
‖Ax‖2 whenever 4Ls,1(x) ≥ L1(x), so that

∀x ∈ R
n Ls,1(x) ≤ s1/2

κ
‖Ax‖2 + 1

4
L1(x),(2.4)
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which is exactly (2.3) with q = 1, κ = 1/4 and λ̂ = (κ
√

s)−1 (observe that (2.4) is
nothing but the “block version” of the Compatibility condition from [31]).

Recall that a sensing matrix A ∈ R
m×n satisfies the Block Restricted Isometry

Property BRIP(δ, k) (see, e.g., [13]) with δ ≥ 0 and a positive integer k if for every
x ∈ R

n with at most k nonvanishing blocks one has

(1 − δ)‖x‖2
2 ≤ xT AT Ax ≤ (1 + δ)‖x‖2

2.(2.5)

PROPOSITION 2.1. Let A ∈ R
m×n satisfy BRIP(δ,2s) for some δ < 1 and

positive integer s. Then:

(i) The pair (H = s−1/2√
1−δ

Im,‖ ·‖2) satisfies the condition Qs,2(
δ

1−δ
) associated

with A and the r.s. S2.
(ii) The pair (H = 1

1−δ
A,L∞(·)) satisfies the condition Qs,2(

δ
1−δ

) associated
with A and the r.s. S2.

Our last observation here is as follows: let (H,‖ · ‖) satisfy Qs,q(κ) for the r.s.
given by (B,n1, . . . , nK,‖ · ‖2, . . . ,‖ · ‖2), and let d = maxk nk . Then (H,‖ · ‖)
satisfies Qs,q(

√
dκ) for the r.s. given by (B,n1, . . . , nK,‖ · ‖∞, . . . ,‖ · ‖∞).

3. Accuracy bounds for �1 block recovery routines. Throughout this sec-
tion we fix an r.s. S = (B,n1, . . . , nK,‖ ·‖(1), . . . ,‖ ·‖(K)) and a sensing matrix A.

3.1. Regular �1 recovery. We define the regular �1 recovery as

x̂reg(y) ∈ Arg min
u

{
L1(Bu) :

∥∥HT (Au − y)
∥∥ ≤ ρ

}
,(3.1)

where the contrast matrix H ∈ R
m×M , the norm ‖ · ‖ and ρ > 0 are parameters of

the construction.

THEOREM 3.1. Let s be a positive integer, q ∈ [1,∞], κ ∈ (0,1/2). Assume
that the pair (H,‖ · ‖) satisfies the condition Qs,q(κ) associated with A and r.s. S ,
and let


 = 
ρ,U = {
ξ :

∥∥HT (u + ξ)
∥∥ ≤ ρ ∀u ∈ U

}
.(3.2)

Then for all x ∈ R
n, u ∈ U and ξ ∈ 
 one has

Lp

(
B

[
x̂reg(Ax + u + ξ) − x

])
(3.3)

≤ 4(2s)1/p

1 − 2κ

[
ρ + 1

2s
L1

(
Bx − [Bx]s)], 1 ≤ p ≤ q.

The above result can be slightly strengthened by replacing the assumption that
(H,‖ · ‖) satisfies Qs,q(κ), κ < 1/2, with a weaker, by Observation 2.1, assump-
tion that (H,‖ · ‖) satisfies Qs,1(κ) with κ < 1/2 and satisfies Qs,q(κ) with some
(perhaps large) κ :
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THEOREM 3.2. Given A, r.s. S , integer s > 0, q ∈ [1,∞] and ε ∈ (0,1), as-
sume that (H,‖ · ‖) satisfies the condition Qs,1(κ) with κ < 1/2 and the condition
Qs,q(κ) with some κ ≥ κ, and let 
 be given by (3.2). Then for all x ∈ R

n, u ∈ U ,
ξ ∈ 
 and p,1 ≤ p ≤ q , it holds

Lp

(
B

[
x̂reg(Ax + u + ξ) − x

])
(3.4)

≤ 4(2s)1/p[1 + κ − κ]q(p−1)/(p(q−1))

1 − 2κ

[
ρ + L1(Bx − [Bx]s)

2s

]
.

3.2. Penalized �1 recovery. The penalized �1 recovery is

x̂pen(y) ∈ Arg min
u

{
L1(Bu) + λ

∥∥HT (Ax − y)
∥∥}

,(3.5)

where H ∈ R
m×M , ‖ · ‖ and a positive real λ are parameters of the construction.

THEOREM 3.3. Given A, r.s. S , integer s, q ∈ [1,∞] and ε ∈ (0,1), assume
that (H,‖ · ‖) satisfies the conditions Qs,q(κ) and Qs,1(κ) with κ < 1/2 and
κ ≥ κ.

(i) Let λ ≥ 2s. Then for all x ∈ R
n, y ∈ R

m it holds for 1 ≤ p ≤ q

Lp

(
B

[
x̂pen(y) − x

])
≤ 4λ1/p

1 − 2κ

[
1 + κλ

2s
− κ

]q(p−1)/(p(q−1))

(3.6)

×
[∥∥HT (Ax − y)

∥∥ + 1

2s
L1

(
Bx − [Bx]s)].

In particular, with λ = 2s we have for 1 ≤ p ≤ q

Lp

(
B

[
x̂pen(y) − x

])
≤ 4(2s)1/p

1 − 2κ
[1 + κ − κ]q(p−1)/(p(q−1))(3.7)

×
[∥∥HT (Ax − y)

∥∥ + 1

2s
L1

(
Bx − [Bx]s)].

(ii) Let ρ ≥ 0 and 
 be given by (3.2). Then for all x ∈ R
n, u ∈ U and all ξ ∈ 


one has for 1 ≤ p ≤ q

λ ≥ 2s ⇒ Lp

(
B

[
x̂pen(Ax + u + ξ) − x

])
≤ 4λ1/p

1 − 2κ

[
1 + κλ

2s
− κ

]q(p−1)/(p(q−1))

×
[
ρ + 1

2s
L1

(
Bx − [Bx]s)],(3.8)
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λ = 2s ⇒ Lp

(
B

[
x̂pen(Ax + u + ξ) − x

])
≤ 4(2s)1/p

1 − 2κ
[1 + κ − κ]q(p−1)/(p(q−1))

×
[
ρ + 1

2s
L1

(
Bx − [Bx]s)].

Discussion. Let us compare the error bounds of the regular and the penal-
ized �1 recoveries associated with the same pair (H,‖ · ‖) satisfying the condition
Qs,q(κ) with κ < 1/2. Given ε ∈ (0,1), let

ρε

[
H,‖ · ‖] = min

{
ρ : Prob

{
ξ :

∥∥HT (u + ξ)
∥∥ ≤ ρ ∀u ∈ U

} ≥ 1 − ε
};(3.9)

this is nothing but the smallest ρ such that

Prob(ξ ∈ 
ρ,ε) ≥ 1 − ε(3.10)

[see (3.2)] and, thus, the smallest ρ for which the error bound (3.3) for the reg-
ular �1 recovery holds true with probability 1 − ε (or at least the smallest ρ for
which the latter claim is supported by Theorem 3.1). With ρ = ρε[H,‖ · ‖], the
regular �1 recovery guarantees (and that is the best guarantee one can extract from
Theorem 3.1) that

(!) For some set 
, Prob{ξ ∈ 
} ≥ 1 − ε, of “good” realizations of the random compo-
nent ξ of the observation error, one has

Lp
(
B

[
x̂(Ax + u + ξ) − x

])
(3.11)

≤ 4(2s)1/p

1 − 2κ

[
ρε

[
H,‖ · ‖] + L1(Bx − [Bx]s)

2s

]
, 1 ≤ p ≤ q,

whenever x ∈ R
n,u ∈ U , and ξ ∈ 
.

The error bound (3.7) [where we can safely set κ = κ , since Qs,q(κ) implies
Qs,1(κ)] says that (!) holds true for the penalized �1 recovery with λ = 2s. The
latter observation suggests that the penalized �1 recovery associated with (H,‖ · ‖)
and λ = 2s is better than its regular counterpart, the reason being twofold. First,
in order to ensure (!) with the regular recovery, the “built in” parameter ρ of this
recovery should be set to ρε[H,‖ · ‖], and the latter quantity is not always easy
to identify. In contrast to this, the construction of the penalized �1 recovery is
completely independent of a priori assumptions on the structure of observation
errors, while automatically ensuring (!) for the error model we use. Second, and
more importantly, for the penalized recovery the bound (3.11) is no more than
the “worst, with confidence 1 − ε, case,” and the typical values of the quantity
‖HT (u + ξ)‖ which indeed participates in the error bound (3.6) are essentially
smaller than ρε[H,‖ · ‖]. Our numerical experience fully supports the above sug-
gestion: the difference in observed performance of the two routines in question,
although not dramatic, is definitely in favor of the penalized recovery. The only
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potential disadvantage of the latter routine is that the penalty parameter λ should
be tuned to the level s of sparsity we aim at, while the regular recovery is free of
any guess of this type. Of course, the “tuning” is rather loose—all we need (and
experiments show that we indeed need this) is the relation λ ≥ 2s, so that a rough
upper bound on s will do; note, however, that the bound (3.6) deteriorates as λ

grows.

4. Tractability of condition Qs,∞(κ), �∞-norm of the blocks. We have
seen in Section 3 that given a sensing matrix A and an r.s. S = (B,n1, . . . , nK,

‖ · ‖(1), . . . ,‖ · ‖(K)) such that the associated conditions Qs,q(κ) are satisfiable, we
can validate the �1 recovery of nearly s-block-sparse signals, specifically, we can
point out �1-type recoveries with controlled (and small, provided so are the obser-
vation error and the deviation of the signal from an s-block-sparse one). The bad
news here is that, in general, condition Qs,q(κ), as well as other conditions for the
validity of �1 recovery, like Block RE/RIP, cannot be verified efficiently. The latter
means that given a sensing matrix A and a r.s. S , it is difficult to verify that a given
candidate pair (H,‖ · ‖) satisfies condition Qs,q(κ) associated with A and S . For-
tunately, one can construct “tractable approximations” of condition Qs,q(κ), that
is, verifiable sufficient conditions for the validity of Qs,q(κ). The first good news is
that when all ‖ · ‖(k) are the uniform norms ‖ · ‖∞ and, in addition, q = ∞ [which,
by Observation 2.1, corresponds to the strongest among the conditions Qs,q(κ)

and ensures the validity of (3.3) and (3.6) in the largest possible range 1 ≤ p ≤ ∞
of values of p], the condition Qs,q(κ) becomes “fully computationally tractable.”
We intend to demonstrate also that the condition Qs,∞(κ) is in fact necessary for
the risk bounds of the form (3.3)–(3.8) to be valid when p = ∞.

4.1. Condition Qs,∞(κ): Tractability and the optimal choice of the contrast
matrix H .

Notation. In the sequel, given r, θ ∈ [1,∞] and a matrix M , we denote by
‖M‖r,θ the norm of the linear operator u �→ Mu induced by the norms ‖ · ‖r and
‖ · ‖θ on the argument and the image spaces:

‖M‖r,θ = max
u : ‖u‖r≤1

‖Mu‖θ .

We denote by ‖M‖(�,k) the norm of the linear mapping u �→ Mu : Rn� → R
nk

induced by the norms ‖ · ‖(�), ‖ · ‖(k) on the argument and on the image spaces.
Further, Rowk[M] stands for the transpose of the kth row of M and Colk[M] stands
for kth column of M . Finally, ‖u‖s,q is the �q -norm of the vector obtained from a
vector u ∈ R

k by zeroing all but the s largest in magnitude entries in u.
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Main result. Consider r.s. S∞ = (B,n1, . . . , nK,‖ · ‖∞, . . . ,‖ · ‖∞). We claim
that in this case the condition Qs,∞(κ) becomes fully tractable. Specifically, we
have the following.

PROPOSITION 4.1. Let a matrix A ∈ R
m×n, the r.s. S∞, a positive integer s

and reals κ > 0, ε ∈ (0,1) be given.

(i) Assume that a triple (H,‖ · ‖, ρ), where H ∈ R
m×M , ‖ · ‖ is a norm on

R
M , and ρ ≥ 0, is such that

(!) (H,‖ · ‖) satisfies Qs,∞(κ), and the set 
 = {ξ :‖HT [u+ ξ ]‖ ≤ ρ ∀u ∈ U } satisfies
Prob(ξ ∈ 
) ≥ 1 − ε.

Given H , ‖ · ‖, ρ, one can find efficiently N = n1 + · · · + nK vectors h1, . . . , hN

in R
m and N × N block matrix V = [V k�]Kk,�=1 (the blocks V k� of V are nk × n�

matrices) such that

(a) B = V B + [
h1, . . . , hN ]T

A,

(b)
∥∥V k�

∥∥∞,∞ ≤ s−1κ ∀k, � ≤ K,(4.1)

(c) Probξ

(

+ :=

{
ξ : max

u∈U
uT hi + ∣∣ξT hi

∣∣ ≤ ρ,1 ≤ i ≤ N
})

≥ 1 − ε

(note that the matrix norm ‖A‖∞,∞ = maxj ‖Rowj [A]‖1 is simply the maximum
�1-norm of the rows of A).

(ii) Whenever vectors h1, . . . , hN ∈ R
m and a matrix V = [V k�]Kk,�=1 with nk ×

n� blocks V k� satisfy (4.1), the m × N matrix Ĥ = [h1, . . . , hN ], the norm ‖ · ‖∞
on R

N and ρ form a triple satisfying (!).
Discussion. Let a sensing matrix A ∈ R

m×n and a r.s. S∞ be given, along with
a positive integer s, an uncertainty set U , a distribution P of ξ and ε ∈ (0,1).
Theorems 3.1 and 3.3 say that if a triple (H,‖ · ‖, ρ) is such that (H,‖ · ‖) satisfies
Qs,∞(κ) with κ < 1/2 and H,ρ are such that the set 
 given by (3.2) satisfies
(3.10), then for the regular �1 recovery associated with (H,‖ · ‖, ρ) and for the
penalized �1 recovery associated with (H,‖ · ‖) and λ = 2s, the following holds:

∀(
x ∈ R

n, u ∈ U , ξ ∈ 

)

Lp

(
B

[
x̂(Ax + u + ξ) − x

]) ≤ 4(2s)1/p

1 − 2κ

[
ρ + 1

2s
L1

(
Bx − [Bx]s)],(4.2)

1 ≤ p ≤ ∞.

Proposition 4.1 states that when applying this result, we lose nothing by restricting
ourselves with triples H = [h1, . . . , hN ] ∈ R

m×N , N = n1 + · · · + nK , ‖ · ‖ =
L∞(·), ρ ≥ 0 which can be augmented by an appropriately chosen N × N matrix
V to satisfy relations (4.1). In the rest of this discussion, it is assumed that we are
speaking about triples (H,‖ · ‖, ρ) satisfying the just defined restrictions.
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The bound (4.2) is completely determined by two parameters—κ (which should
be < 1/2) and ρ; the smaller are these parameters, the better are the bounds. In
what follows we address the issue of efficient synthesis of matrices H with “as
good as possible” values of κ and ρ.

Observe first that H = [h1, . . . , hN ] and κ should admit an extension by a ma-
trix V to a solution of the system of convex constraints (4.1)(a), (4.1)(b). In the
case of ξ ≡ 0 the best choice of ρ, given H , is

ρ = max
i

μU
(
hi) where μU (h) = max

u∈U
uT h.

Consequently, in this case the “achievable pairs” ρ, κ form a computationally
tractable convex set

Gs =
{
(κ, ρ) :∃H = [

h1, . . . , hN ] ∈ R
m×N,

V = [
V k� ∈ R

nk×n�
]K
k,�=1 :B = V B + HT A,∥∥V k�

∥∥∞,∞ ≤ κ

s
,μU

(
hi) ≤ ρ,1 ≤ i ≤ N

}
.

When ξ does not vanish, the situation is complicated by the necessity to maintain
the validity of the restriction

Prob
(
ξ ∈ 
+) := Prob

{
ξ :μU

(
hi) + ∣∣ξT hi

∣∣ ≤ ρ,1 ≤ i ≤ N
}

(4.3)
≥ 1 − ε,

which is a chance constraint in variables h1, . . . , hN,ρ and as such can be “compu-
tationally intractable.” Let us consider the “standard” case of Gaussian zero mean
noise ξ , that is, assume that ξ = Dη with η ∼ N (0, Im) and known D ∈ R

m×m.
Then (4.3) implies that

ρ ≥ max
i

[
μU

(
hi) + Erfinv

(
ε

2

)∥∥DT hi
∥∥

2

]
.

On the other hand, (4.3) is clearly implied by

ρ ≥ max
i

[
μU

(
hi) + Erfinv

(
ε

2N

)∥∥DT hi
∥∥

2

]
.

Ignoring the “gap” between Erfinv( ε
2) and Erfinv( ε

2N
), we can safely model the

restriction (4.3) by the system of convex constraints

μU
(
hi) + Erfinv

(
ε

2N

)∥∥DT hi
∥∥

2 ≤ ρ, 1 ≤ i ≤ N.(4.4)
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Thus, the set Gs of admissible κ,ρ can be safely approximated by the computa-
tionally tractable convex set

G∗
s =

{
(κ, ρ) :∃[

H = [
h1, . . . , hN ] ∈ R

m×N,

V = [
V k� ∈ R

nk×n�
]K
k,�=1

]
:

(4.5) {
B = BV + HT A,

∥∥V k�
∥∥∞,∞ ≤ κ

s
,1 ≤ k, � ≤ K,

max
u∈U

uT hi + Erfinv
(

ε

2N

)∥∥DT hi
∥∥

2 ≤ ρ,1 ≤ i ≤ N

}}
.

4.2. Condition Qs,∞(κ): Necessity. In this section, as above, we assume that
all norms ‖ · ‖(k) in the r.s. S∞ are �∞-norms; we assume, in addition, that ξ is
a zero mean Gaussian noise: ξ = Dη with η ∼ N (0, Im) and known D ∈ R

m×m.
From the above discussion we know that if, for some κ < 1/2 and ρ > 0, there
exist H = [h1, . . . , hN ] ∈ R

m×N and V = [V k� ∈ R
nk×n�]Kk,�=1 satisfying (4.1),

then regular and penalized �1 recoveries with appropriate choice of parameters
ensure that

∀(
x ∈ R

n, u ∈ U
)

Probξ

(∥∥B[
x − x̂(Ax + u + ξ)

]∥∥∞ ≤ 4

1 − 2κ

[
ρ + L1(Bx − [Bx]s)

2s

])
(4.6)

≥ 1 − ε.

We are about to demonstrate that this implication can be “nearly inverted”:

PROPOSITION 4.2. Let a sensing matrix A, an r.s. S∞ with ‖ · ‖(k) = ‖ · ‖∞,
1 ≤ k ≤ K , an uncertainty set U , and reals κ > 0, ε ∈ (0,1/2) be given. Suppose
that the observation error “is present,” specifically, that for every r > 0, the set
{u + De :u ∈ U ,‖e‖2 ≤ r} contains a neighborhood of the origin.

Given a positive integer S, assume that there exists a recovering routine x̂ satis-
fying an error bound of the form (4.6), specifically, such that for all x ∈ R

n, u ∈ U ,

Probξ

(∥∥B[
x − x̂(Ax + u + ξ)

]∥∥∞ ≤ α + S−1L1
(
Bx − [Bx]S)) ≥ 1 − ε(4.7)

for some α > 0. Then there exist H = [h1, . . . , hN ] ∈ R
m×N and V = [V k� ∈

R
nk×n�]Kk,�=1 satisfying

(a) B = V B + HT A,

(b)
∥∥V k�

∥∥∞,∞ ≤ 2S−1 ∀k, � ≤ K,(4.8)

(c) with ρ := max
1≤i≤N

[
max
u∈U

uT hi + Erfinv
(

ε

2N

)∥∥DT hi
∥∥

2

]
,
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one has ρ ≤ 2α when D = 0, ρ ≤ 2α
Erfinv(ε/(2N))

Erfinv(ε)
when D �= 0, and for ξ =

Dη,η ∼ N (0, Im) one has

Probξ

(

+ :=

{
ξ : max

u∈U
uT hi + ∣∣ξT hi

∣∣ ≤ ρ,1 ≤ i ≤ N
})

≥ 1 − ε.

In other words (see Proposition 4.1), (H,L∞(·)) satisfies Qs,∞(κ) for s

“nearly as large as S,” namely, s ≤ κ
2 S, and H = [h1, . . . , hk], ρ satisfy condi-

tions (4.4) with ρ being “nearly α,” namely, ρ ≤ 2α in the case of D = 0 and
ρ ≤ 2Erfinv(ε/(2N))

Erfinv(ε)
when D �= 0. In particular, under the premise of Proposition 4.2,

the contrast optimization procedure of Section 4.1 supplies the matrix H such that
the corresponding regular or penalized recovery x̂(·) for all s ≤ S

8 satisfies

Probξ

{∥∥B[
x − x̂(y)

]∥∥∞ ≤ 4
[
4

Erfinv(ε/(2N))

Erfinv(ε)
α+s−1L1

(
Bx −[Bx]s)]}

≥ 1−ε.

5. Tractable approximations of Qs,q(κ). Aside from the important case of
q = ∞, ‖ · ‖(k) = ‖ · ‖∞ considered in Sections 4.1 and 4.2, condition Qs,q(κ)

“as it is” seems to be computationally intractable: unless s = O(1), it is unknown
how to check efficiently that a given pair (H,‖ · ‖) satisfies this condition, not
speaking about synthesis of a pair satisfying this condition and resulting in the best
possible error bound (3.3), (3.6) for regular and penalized �1-recoveries. We are
about to present verifiable sufficient conditions for the validity of Qs,q(κ) which
may become an interesting alternative for condition Qs,q(κ) for that purposes.

5.1. Sufficient condition for Qs,q(κ).

PROPOSITION 5.1. Suppose that a sensing matrix A, an r.s. S = (B,n1, . . . ,

nK,‖ · ‖(1), . . . ,‖ · ‖(K)), and κ ≥ 0 are given.
Let N = n1 +· · ·+nK , and let N ×N matrix V = [V k�]Kk,�=1 (V k� are nk ×n�)

and m × N matrix H satisfy the relation

B = V B + HT A.(5.1)

Let us denote

ν∗
s,q(V ) = max

1≤�≤K
max

w�∈R
n� : ‖w�‖(�)≤1

Ls,q

([
V 1�w�; . . . ;V K�w�]).

Then for all s ≤ K and all q ∈ [1,∞], we have

Ls,q(Bx) ≤ s1/qL∞
(
HT Ax

) + ν∗
s,q(V )L1(Bx) ∀x ∈ Rn.(5.2)

The result of Proposition 5.1 is a step toward developing a verifiable sufficient
condition for the validity of Qs,q . To get such a condition, we need an efficiently
computable upper bound of the quantity ν∗

s,q . In particular, if for a given positive
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integer s ≤ K and a real q ∈ [1,∞] there exist an upper bounding function νs,q(V )

such that

νs,q(·) is convex and νs,q(V ) ≥ ν∗
s,q(V ) ∀V(5.3)

and a matrix V such that

νs,q(V ) ≤ s1/q−1κ,(5.4)

then the pair (H,L∞(·)) satisfies Qs,q(κ). An important example of the upper
bound for ν∗

s,q(V ) which satisfies (5.4) is provided in the following statement.

PROPOSITION 5.2. Let � be a K×K matrix with entries [�]k,� = ‖V k�‖(�,k),
1 ≤ k, � ≤ K . Then

ν̂s,q(V ) := max
1≤k≤K

∥∥Colk[�]∥∥s,q ≥ ν∗
s,q(V ) ∀V(5.5)

[note that the inequality in (5.5) becomes equality when either q = ∞ or s = 1],
so that the condition

ν̂s,q(V ) ≤ s1/q−1κ(5.6)

taken along with (5.1) is sufficient for (H,L∞(·)) to satisfy Qs,q(κ).

When all ‖ · ‖(k) are the �∞-norms and q = ∞, the results of Propositions 5.1
and 5.2 recover Proposition 4.1. In the general case, they suggest a way to synthe-
size matrices H ∈ R

m×N which, augmented by the norm ‖ · ‖ = L∞(·), provably
satisfies the condition Qs,q(κ), along with a certificate V for this fact. Namely,
H and V should satisfy the system of linear equations (5.1) and, in addition, (5.4)
should hold for V with νs,q(·) satisfying (5.3). Further, for such a νs,q(·), (5.4) is a
system of convex constraints on V . Whenever these constraints are efficiently com-
putable, we get a computationally tractable sufficient condition for (H,L∞(·)) to
satisfy Qs,q(κ)—a condition which is expressed by an explicit system of efficiently
computable convex constraints (5.1), (5.4) on H and additional matrix variable V .

5.2. Tractable sufficient conditions and contrast optimization. The quantity
ν̂s,q(·) is the simplest choice of νs,q(·) satisfying (5.3). In this case, efficient com-
putability of the constraints (5.4) is the same as efficient computability of norms
‖ · ‖(k,�). Assuming that ‖ · ‖(k) = ‖ · ‖rk for every k in the r.s. S , the computability
issue becomes the one of efficient computation of the norms ‖ · ‖r�,rk . The norm
‖ · ‖r,θ is known to be generically efficiently computable in only three cases:

(1) θ = ∞, where ‖M‖r,∞ = ‖MT ‖1,r/(r−1) = maxi‖RowT
i (M)‖r/(r−1);

(2) r = 1, where ‖M‖1,θ = maxj‖Colj [M]‖θ ;
(3) r = θ = 2, where ‖M‖2,2 = σmax(M) is the spectral norm of M .
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Assuming for the sake of simplicity that in our r.s. ‖ · ‖(k) are r-norms with com-
mon value of r , let us look at three “tractable cases” as specified by the above
discussion—those of r = ∞, r = 1 and r = 2. In these cases, candidate contrast
matrices H are m × N , the associated norm ‖ · ‖ is L∞(·), and our sufficient con-
dition for H to be good [i.e., for (H,L∞(·)) to satisfy Qs,q(κ) with given κ < 1/2
and q] becomes a system S = Sκ,q of explicit efficiently computable convex con-
straints on H and additional matrix variable V ∈ R

N×N , implying that the set H
of good H is convex and computationally tractable, so that we can minimize effi-
ciently over H any convex and efficiently computable function. In our context, a
natural way to use S is to optimize over H ∈ H the error bound (3.11) or, which
is the same, to minimize over H the function ρ(H) = ρε[H,L∞(·)]; see (3.9),
where ε < 1 is a given tolerance. Taken literally, this problem still can be dif-
ficult, since the function ρ(H) is not necessarily convex and can be difficult to
compute even in the convex case. To overcome this difficulty, we again can use a
verifiable sufficient condition for the relation ρ(H) ≤ ρ, that is, a system T = Tε

of explicit efficiently computable convex constraints on variables H and ρ (and,
perhaps some slack variables ζ ) such that ρ(H) ≤ ρ for the (H,ρ)-component
of every feasible solution of T. With this approach, the design of the best, as al-
lowed by S and T, contrast matrix H reduces to solving a convex optimization
problem with efficiently computable constraints in variables H,V,ρ, specifically,
the problem

min
ρ,H,V,ζ

{ρ : H,V satisfy S; H,ρ, ζ satisfy T}.(5.7)

In the rest of this section we present explicitly the systems S and T for the three
tractable cases we are interested in, assuming the following model of observation
errors:

U = {
u = Ev :‖v‖2 ≤ 1

}; ξ = Dη,η ∼ N (0, Im),

where E,D ∈ R
m×m are given.

We use the following notation: the m × N matrix H is partitioned into m × nk

blocks H [k], 1 ≤ k ≤ K , according to the block structure of the representation
vectors; the t th column in H [k] is denoted hkt ∈ R

m, 1 ≤ t ≤ nk .
For derivations of the results to follow, see Section A.7 of the supplementary

article [18].

The case of r = ∞. The case of q = ∞ was considered in full details in Sec-
tion 4.1. When q ≤ ∞, one has

Sκ,q :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B = V B + HT A,

�k� := ∥∥V k�
∥∥∞,∞ = max

1≤t≤nk

∥∥Rowt

[
V k�]∥∥

1, 1 ≤ k, � ≤ K ,∥∥Col�[�]∥∥s,q ≤ s1/q−1κ, 1 ≤ � ≤ K ,

(5.8)
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Tε : Erfinv
(

ε

2N

)∥∥DT hkt
∥∥

2 + ∥∥ET hkt
∥∥

2 ≤ ρ,

1 ≤ t ≤ nk,1 ≤ k ≤ K.

The case of r = 2. Here

Sκ,q :

⎧⎪⎪⎨⎪⎪⎩
B = V B + HT A,

�k� := ∥∥V k�
∥∥

2,2 = σmax
(
V k�

)
, 1 ≤ k, � ≤ K ,∥∥Col�[�]∥∥s,q ≤ s1/q−1κ, 1 ≤ � ≤ K ,

Tε :∃{
Wk ∈ S

m,αk,βk, γk ∈ R
}K
k=1 :

(5.9) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σmax
(
ET H [k]) + αk ≤ ρ,[

Wk DT H [k]
HT [k]D αkInk

]
� 0,∥∥λ(Wk)

∥∥∞ ≤ βk,
∥∥λ(Wk)

∥∥
2 ≤ γk,

Tr(Wk) + 2
[
δβk +

√
δ2β2

k + 2δγ 2
k

] ≤ αk,

1 ≤ k ≤ K,

δ := ln(K/ε),

where S
m is the space of m × m symmetric matrices, and λ(W) is the vector of

eigenvalues of W ∈ S
m.

The case of r = 1. Here

Sκ,q :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B = V B + HT A,

�k� := ∥∥V k�
∥∥

1,1 = max
1≤t≤n�

∥∥Colt
[
V k�]∥∥

1, 1 ≤ k, � ≤ K ,∥∥Col�[�]∥∥s,q ≤ s1/q−1κ, 1 ≤ � ≤ K ,

Tε :∃{
λk ∈ R

m+,μk ≥ 0
}K
k=1 ∀(k ≤ K, t ≤ nk)(5.10) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Erfinv
(

ε

2Knk

) nk∑
t=1

∥∥DT hkt
∥∥

2 + 1

2

∑
i

λk
i + 1

2
μk ≤ ρ,[

Diag
{
λk

}
HT [K]E

ET H [k] μkInk

]
� 0.

5.3. Tractable sufficient conditions: Limits of performance. Consider the situ-
ation where all the norms ‖ · ‖(k) are ‖ · ‖r , with r ∈ {1,2,∞}. A natural question
about verifiable sufficient conditions for a pair (H,L∞(·)) to satisfy Qs,q(κ) is,
what are the “limits of performance” of these sufficient conditions? Specifically,
how large could be the range of s for which the condition can be satisfied by at
least one contrast matrix? Here is a partial answer to this question:
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PROPOSITION 5.3. Let A be an m × n sensing matrix which is “essentially
nonsquare,” specifically, such that 2m ≤ n, let the r.s. S be such that B = In, and
let nk = d , ‖ · ‖(k) = ‖ · ‖r , 1 ≤ k ≤ K , with r ∈ {1,2,∞}. Whenever an m × n

matrix H and n × n matrix V satisfy the conditions

I = V + HT A and
(5.11)

max
1≤�≤K

∥∥[∥∥V 1�
∥∥
r,r;

∥∥V 2�
∥∥
r,r; . . . ;

∥∥V K�
∥∥
r,r

]∥∥
s,q ≤ 1

2
s1/q−1

[cf. (5.1), (5.5) and (5.4)] with q ≥ 1, one has

s ≤ 3
√

m

2
√

d
.(5.12)

Discussion. Let the r.s. S in question be the same as in Proposition 5.3, and
let m × n sensing matrix A have 2m ≤ n. Proposition 5.3 says that in this case,
the verifiable sufficient condition, stated by Proposition 5.1, for satisfiability of
Qs,q(κ) with κ < 1/2 has rather restricted scope—it cannot certify the satisfiability

of Qs,q(κ), κ ≤ 1/2, when s ≥ 3
√

m

2
√

d
. Yet, the condition Qs,q(κ) may be satisfiable

in a much larger range of values of s. For instance, when the r.s. in question is the
standard one and A is a random Gaussian m × n matrix, the matrix A satisfies,
with overwhelming probability as m,n grow, the RIP(1

5 , s) condition for s as large
as O(1)m/

√
ln(n/m) (cf. [8]). By Proposition 2.1, this implies that (5

4A,‖ · ‖∞)

satisfies the condition Qs,2(
1
4) in essentially the same large range of s. There is,

however, an important case where the “limits of performance” of our verifiable
sufficient condition for the satisfiability of Qs,q(κ) implies severe restrictions on
the range of values of s in which the “true” condition Qs,q(κ) is satisfiable—this
is the case when q = ∞ and r = ∞. Combining Propositions 4.1 and 5.3, we
conclude that in the case of r.s. from Proposition 5.3 with r = ∞ and “sufficiently
nonsquare” (2m ≤ n) m × n sensing matrix A, the associated condition Qs,∞(1

2)

cannot be satisfied when s >
3
√

m

2
√

d
.

5.4. Tractable sufficient conditions and Mutual Block-Incoherence. We have
mentioned in the Introduction that, to the best of our knowledge, the only previ-
ously proposed verifiable sufficient condition for the validity of �1 block recovery
is the “mutual block incoherence condition” of [12]. Our immediate goal is to show
that this condition is covered by Proposition 5.1.

Consider an r.s. with B = In and with �2-norms in the role of ‖·‖(k), 1 ≤ k ≤ K ,
and let the sensing matrix A in question be partitioned as A = [A[1], . . . ,A[K]],
where A[k] has nk columns. Let us define the mutual block-incoherence μ of A

w.r.t. the r.s. in question as follows:

μ = max
1≤k,�≤K,

k �=�

σmax
(
C−1

k AT [k]A[�]) [
where Ck := AT [k]A[k]],(5.13)
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provided that all matrices Ck , 1 ≤ k ≤ K , are nonsingular, otherwise μ = ∞. Note
that in the case of the standard r.s., the just defined quantity is nothing but the
standard mutual incoherence known from the Compressed Sensing literature (see,
e.g., [10]).

In [12], the authors consider the same r.s. and assume that nk = d , 1 ≤ k ≤ K ,
and that the columns of A are of unit ‖ · ‖2-norm. They introduce the quantities

ν = max
1≤k≤K

max
1≤j �=j ′≤K

∣∣ColTj
[
A[k]]Colj ′

[
A[k]]∣∣,

(5.14)

μB = 1

d
max

1≤k,�≤K,

k �=�

σmax
(
AT [k]A[�])

and prove that an appropriate version of block-�1 recovery allows to recover ex-
actly every s-block-sparse signal x from the noiseless observations y = Ax, pro-
vided that

1 − (d − 1)ν > 0 and s < χ := 1 − (d − 1)ν + dμB

2dμB

.(5.15)

The following observation is almost immediate:

PROPOSITION 5.4. Given an m × n sensing matrix A and an r.s. S with
B = In, ‖·‖(k) = ‖·‖2, 1 ≤ k ≤ K , let A = [A[1], . . . ,A[K]] be the corresponding
partition of A.

(i) Let μ be the mutual block-incoherence of A w.r.t. S . Assuming μ < ∞, we
set

H = 1

1 + μ

[
A[1]C−1

1 ,A[2]C−1
2 , . . . ,A[K]C−1

K

]
(5.16)

where Ck = AT [k]A[k].
Then the contrast matrix H along with the matrix In − HT A satisfies condition
(5.1) (where B = In) and condition (5.6) with q = ∞ and

κ = μs

1 + μ
.

As a result, applying Proposition 5.1, we conclude that whenever

s <
1 + μ

2μ
,(5.17)

the pair (H,L∞(·)) satisfies Qs,∞(κ) with κ = μs
1+μ

< 1/2.
(ii) Suppose that nk = d, k = 1, . . . ,K , and let the quantities ν and μB defined

in (5.14) satisfy the relations (5.15). Then the mutual block-incoherence of A w.r.t.
the r.s. in question does not exceed μ̄ = dμB

1−(d−1)ν
. Furthermore, we have 1+μ̄

2μ̄
= χ ,

and (5.17) holds, and thus ensures that the contrast H , as defined in (5.16), and
L∞(·) satisfy Qs,∞(κ) with some κ < 1

2 .
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Let A = [Aij ] ∈ R
m×n be a random matrix with i.i.d. entries Aij ∼ N (0,m−1).

We have the following simple result.

PROPOSITION 5.5. Assume that B = In, nk = d and ‖ · ‖(k) = ‖ · ‖2 for all k.
There are absolute constants C1,C2 < ∞ (the corresponding bounds are provided
in Section A.10 of the supplementary article [18]) such that if m ≥ C1(d + ln(n)),
then the mutual block-incoherence μ of A satisfies

μ ≤ C2

√
d + ln(n)

m
(5.18)

with probability at least 1 − 1
n

.

The bound (5.18), along with Proposition 5.4(i), implies that when A is a Gaus-
sian matrix, all block-norms are the �2-norms and all nk = d with d “large enough”
[such that d−1 lnn = O(1)], the verifiable sufficient condition for Qs,∞(1

3) holds

with overwhelming probability for s = O(
√

m
d
). In other words, in this case the

(verifiable!) condition Qs,∞(κ) attains (up to an absolute factor) the limit of per-
formance stated in Proposition 5.3.

6. Matching pursuit algorithm for block recovery. The Matching Pursuit
algorithm for block-sparse recovery is motivated by the desire to provide a re-
duced complexity alternative to the algorithms using �1-minimization. Several im-
plementations of Matching Pursuit for block-sparse recovery have been proposed
in the Compressed Sensing literature [3, 4, 12, 13]. In this section we aim to show
that a pair H,V satisfying (5.1) and (5.4) where κ < 1/2 [and thus, by Proposi-
tion 5.1, such that (H,L∞(·)) satisfies Qs,∞(κ)] can be used to design a specific
version of the Matching Pursuit algorithm which we refer to as the non-Euclidean
Block Matching Pursuit (NEBMP) algorithm for block-sparse recovery.

We fix an r.s. S = (B,n1, . . . , nK,‖ · ‖(1), . . . ,‖ · ‖(K)) and assume that the
block norms ‖ · ‖(k), k = 1, . . . ,K , are either ‖ · ‖∞- or ‖ · ‖2-norms. Further-
more, we suppose that the matrix B is of full row rank, so that, given z ∈ R

N , one
can compute x such that z = Bx [e.g., x = B+z where B+ = BT (BBT )−1 is the
pseudo-inverse of B]. Let the noise ξ in the observation y = Ax + u + ξ be Gaus-
sian, ξ ∼ N (0,D), D ∈ R

m×m is known. Finally, we assume that we are in the sit-
uation of Section 5.2, that is, we have at our disposal an m×N , N = n1 +· · ·+nK ,
matrix H , an N × N block matrix V = [V k� ∈ R

nk×n�]Kk,�=1, a γ̄ > 0 and ρ ≥ 0
such that

(a) B = V B + HT A,

(b)
∥∥V k�

∥∥
(�,k) = [�]k,� ≤ γ̄ ∀k, � ≤ K,(6.1)

(c) Probξ

{

+ := {

ξ :L∞
(
HT [u + ξ ]) ≤ ρ ∀u ∈ U

}} ≥ 1 − ε.
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Algorithm 1 Non-Euclidean Block Matching Pursuit

1. Initialization: Set v(0) = 0, α0 = Ls,1(H
T y)+sρ+υ

1−sγ̄
.

2. Step k, k = 1,2, . . . : Given v(k−1) ∈ R
n and αk−1 ≥ 0, compute

2.1. g = HT (y − Av(k−1)) and vector � = [�[1], . . . ,�[K]] ∈ R
N by setting for

j = 1, . . . ,K :

�[j ] = g[j ]
‖g[j ]‖2

[∥∥g[j ]∥∥2 − γ̄ αk−1 − ρ
]
+ if ‖ · ‖(j) = ‖ · ‖2;

(6.2)
�ji = sign(gji)

[|gji | − γ̄ αk−1 − ρ
]
+, 1 ≤ i ≤ nj , if ‖ · ‖(j) = ‖ · ‖∞,

where wji is ith entry in j th block of a representation vector w and [a]+ =
max{a,0}.

2.2. Choose v(k) such that B(v(k) − v(k−1)) = �, set

αk = 2sγ̄ αk−1 + 2sρ + υ.(6.3)

and loop to step k + 1.

3. Output: The approximate solution found after k iterations is v(k).

Given observation y, a positive integer s and a real υ ≥ 0 [υ is our guess for an
upper bound on L1(Bx − [Bx]s)], consider Algorithm 1. Its convergence analysis
is based upon the following:

LEMMA 6.1. In the situation of (6.1), let sγ̄ < 1. Then whenever ξ ∈ 
+, for
every x ∈ R

n with L1(Bx − [Bx]s) ≤ υ and every u ∈ U , the following holds true.
When applying Algorithm 1 to y = Ax + u + ξ , the resulting approximations

Bv(k) to Bx and the quantities αk for all k satisfy the relations

(ak) for all 1 ≤ j ≤ K
∥∥(

Bv(k) − Bx
)[j ]∥∥(j) ≤ ∥∥(Bx)[j ]∥∥(j),

(bk) L1
(
Bx − Bv(k)) ≤ αk and L∞

(
Bx − Bv(k+1)) ≤ 2γ̄ αk + 2ρ.

Note that if 2sγ̄ < 1, then also sγ̄ < 1, so that Lemma 6.1 is applicable. Fur-
thermore, in this case, by (6.3), the sequence αk converges exponentially fast to
the limit α∞ := 2sρ+υ

1−2sγ̄
:

L1
(
Bv(k) − Bx

) ≤ αk = (2sγ̄ )k[α0 − α∞] + α∞.

Along with the second inequality of (bk), this implies the bounds

L∞
(
Bv(k) − Bx

) ≤ 2γ̄ αk−1 + 2ρ ≤ αk

s
,

and since Lp(w) ≤ L1(w)1/pL∞(w)(p−1)/p for 1 ≤ p ≤ ∞, we have

Lp

(
Bv(k) − Bx

) ≤ s(1−p)/p[
(2sγ̄ )k[α0 − α∞] + α∞

]
.

The bottom line here is as follows.
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PROPOSITION 6.1. Suppose that a collection (H,L∞(·), ρ, γ̄ , ε) satisfies
(6.1), and let the parameter s of Algorithm 1 satisfy 2κ := 2sγ̄ < 1. Then for
all ξ ∈ 
+, u ∈ U , x ∈ R

n such that L1(Bx − [Bx]s) ≤ υ , Algorithm 1 as applied
to y = Ax + u + ξ ensures that for every t = 1,2, . . . one has

Lp

(
Bv(t) − Bx

)
≤ s1/p

[
2ρ + s−1υ

1 − 2κ
+ (2κ)t

(
s−1(Ls,1(H

T y) + υ) + ρ

1 − κ
− 2ρ + s−1υ

1 − 2κ

)]
for all 1 ≤ p ≤ ∞’s [cf. (4.2)].

Note that Proposition 6.1 combined with Proposition 5.4 essentially covers the
results of [12] on the properties of the Matching Pursuit algorithm for the block-
sparse recovery proposed in this reference.

7. Numerical illustration. In the theoretical part of this paper we consid-
ered the situation where the sensing matrix A and the r.s. S = (B,n1, . . . , nK,

‖ · ‖(1), . . . ,‖ · ‖(K)) were given, and we were interested in understanding:

(A) whether �1 recovery allows to recover the representations Bx of all s-
block-sparse signals with a given s in the absence of observation noise, and

(B) how to choose the best (resulting in the smallest possible error bounds) pair
(H,‖ · ‖).7
Note that our problem setup involves a number of components. While in typi-
cal applications sensing matrix A, representation matrix B and the dimensions
n1, . . . , nK of the block vectors may be thought as given by the “problem’s
physics,” it is not the case for the block norms ‖ · ‖(k). Their choice (which does
affect the �1 recovery routines) appears to be unrelated to the model of the data.

The first goal of our experiments is to understand how to choose the block norms
in order to validate �1 recovery for the largest possible value of the sparsity param-
eter s; here “to validate” means to provide guarantees of small recovery error for
all s-block-sparse signals when the observation error is small (which implies, of
course, the exactness of the recovery in the case of noiseless observation). Here
we restrict ourselves to the case of �r -r.s. with r ∈ {1,2,∞}. By reasons explained
in the discussion in Section 3, we consider here only the case of the penalized �1
recovery with m × N contrast matrix H (where, as always, N = n1 + · · · + nK ),

7Needless to say, the results presented so far do not pretend to provide full answers to these ques-
tions. Our verifiable sufficient conditions for the validity of �1 block recovery supply only lower
bounds on the largest s = s∗ for which the answer to (A) is positive. Similarly, aside of the case
q = ∞, ‖ · ‖(k) = ‖ · ‖∞, 1 ≤ k ≤ K , our conditions for the validity of block-�1 recovery are only
sufficient, meaning that optimizing the error bound over (H,‖ · ‖) allowed by these conditions may
only yield suboptimal recovery routines.
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‖ · ‖ = L∞(·),8 and with λ = 2s [see (3.5)]. Besides this, we assume, mainly for
the sake of notational convenience, that B = In.

Let us fix A ∈ R
m×n,B = In,K,n1, . . . , nK (n1 + · · · + nK = n =: N ). By

Proposition 5.1, for every matrix H ∈ R
m×n setting

V ≡ [
V k� ∈ R

nk×n�
]K
k�=1 = I − HT A,

�r(H) = [∥∥V k�
∥∥
r,r

]K
k,�=1,

(7.1)
κ

r,s
1 (H) = max

1≤�≤K

∥∥Col�
[
�r(H)

]∥∥
s,1,

κr,s∞ (H) = s max
1≤k,�≤K

[
�r(H)

]
k,�,

the pair (H,L∞(·)) satisfies the conditions Qs,q(κ
r,s
q (H)), q = 1 and q = ∞, pro-

vided that the block norms are the �r -ones. In particular, when κ
r,s
1 (H) < 1/2, the

penalized �1/�r recovery [i.e., the recovery (3.1) with all block norms being the
�r -ones] “is valid” on s-block-sparse signals, meaning exactly that this recovery
ensures the validity of the error bounds (3.8) with q = ∞, κ = κ

r,s
1 , κ = κr,s∞ (and,

in particular, recovers exactly all s-block-sparse signals when there is no observa-
tion noise).

Our strategy is as follows. For each value of r ∈ {1,2,∞}, we consider the
convex optimization problem

min
H∈Rm×n

{
κ

r,s
1 (H) := max

�≤K

∥∥Col�
[
�r(H)

]∥∥
s,1

}
,

find the largest s = s(r) for which the optimal value in this problem is < 1/2,
and denote by H(r), r ∈ {1,2,∞} the corresponding optimal solution. In addition
to these “marked” contrast matrices, we consider two more contrasts, H(MI) and
H(MBI), based on the mutual block-incoherence condition and given by the calcu-
lation (5.13) for the cases of the “standard” (1-element blocks in x = Bx) and the
actual block structures, respectively.

Now, given the set H = {H(MI),H (MBI),H (1),H (2),H (∞)} of m × n candidate
contrast matrices, we can choose the “most powerful” penalized �1/�r recovery
suggested by H as follows: for every H ∈ H and for every p ∈ {1,2,∞}, we find
the largest s = s(H,p) for which κ

r,p
1 (H) < 1/2, and then define the quantity

s∗ = s∗(H) = max{s(H,p) :H ∈ H,p ∈ {1,2,∞}} along with H∗ ∈ H and p∗ ∈
{1,2,∞} such that s∗ = s(H∗,p∗). The penalized �1/�p∗ recovery utilizing the
contrast matrix H∗ and the norm L∞(·) associated with block norms ‖ · ‖p∗ of the
blocks is definitely valid for s = s∗(H), and this is the largest sparsity range, as
certified by our sufficient conditions, for the validity of �1/�r recovery, which we
can get with contrast matrices from H. Note that s∗ ≥ max[s(1), s(2), s(∞)], that

8These are exactly the pairs (H,‖ · ‖) covered by the sufficient conditions for the validity of �1
recovery; see Proposition 5.1.
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is, the resulting range of values of s is also the largest we can certify using our
sufficient conditions, with no restriction on the contrast matrices.

Implementation. We have tested the outlined strategy in the following problem
setup:

• the sensing matrices A are of size (m = 96) × (n = 128), B = I with K = 32
four-element blocks in Bx = x;

• the 96 × 128 sensing matrices A are built as follows: we first draw a matrix at
random from one of the following distributions:
– type H: randomly selected 96 × 128 submatrix of the 128 × 128 Hadamard

matrix,9

– type G: 96 × 128 matrix with independent N (0,1) entries,
– type R: 96×128 matrix with independent entries taking values ±1 with equal

probabilities,
– type T: random 96 × 128 matrix of the structure arising in Multi-Task Learn-

ing (see, e.g., [1] and references therein): the consecutive 4-column parts of
the matrix are block-diagonal with four 24 × 1 diagonal blocks with indepen-
dent N (0,1) entries,

and then scale the columns of the selected matrix to have their ‖·‖2-norms equal
to 1.

The results we report describe 4 experiments differing from each other by the
type of the (randomly selected) matrix A.10

In Table 1, we display the certified sparsity levels of penalized �1/�r recoveries
for the candidate contrast matrices. In addition, we present valid upper bounds
s̄(r) on the “r-goodness” s∗(A, r) of A, defined as the largest s such that the �1/�r

recovery in the noiseless case recovers exactly the representations of all s-block-
sparse vectors, that is,

s∗(A, r) = max

{
s :x = Arg min

z∈Rn

{
K∑

k=1

∥∥[z]k∥∥r :Az = Ax

}

for all s-block-sparse x.

}

9The Hadamard matrices Hk of order 2k × 2k , k = 0,1, . . . , are given by the recurrence H0 = 1,
Hk+1 = [Hk,Hk;Hk,−Hk]. They are symmetric matrices with ±1 entries and rows orthogonal to
each other.

10As far as our experience shows, the results remain nearly the same across instances of A drawn
from the same distribution, so that only one experiment for each type of distribution in question
appears to be representative enough.
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TABLE 1
Certified sparsity levels for penalized �1/�r -recoveries for candidate contrast matrices.
For each candidate and each value of r we present in the corresponding cells the triple

s(H, r)|κr,s(H,r)
1 (H)|κr,s(H,r)∞ (H). s̄(r): a computed upper bound on r-goodness

s∗(A, r) of A. Italic: the best sparsity s∗(H) certified by our sufficient conditions
for the validity of penalized recovery

A r H(MI) H(MBI) H(1)

H 1 2 0.4727 0.509 2 0.444 0.460 3 0.429 0.429
2 2 0.436 0.436 2 0.429 0.429 3 0.429 0.429
∞ 2 0.473 0.509 2 0.444 0.460 3 0429 0.429

G 1 0 0.000 0.000 0 0.000 0.000 3 0.467 0.900
2 0 0.000 0.000 1 0.368 0.368 1 0.300 0.300
∞ 0 0.000 0.000 0 0.000 0.000 0 0.000 0.000

R 1 0 0.0000 0.000 0 0.000 0.000 3 0.477 0.853
2 0 0.000 0.000 1 0.354 0.354 1 0.284 0.284
∞ 0 0.000 0.000 0 0.000 0.000 1 0.482 0.482

T 1 1 0.384 0.384 1 0.399 0.399 2 0.383 0.383
2 1 0.384 0.384 1 0.399 0.399 2 0.383 0.383
∞ 1 0.384 0.384 1 0.399 0.399 2 0.383 0.383

A r H(2) H(∞) s̄(r)

H 1 2 0.487 0.519 3 0.429 0.429 4
2 3 0.429 0.429 3 0.429 0.429 3
∞ 2 0.487 0.519 3 0.429 0.429 3

G 1 1 0.301 0.301 1 0.489 0.489 5
2 3 0.447 0.458 2 0.479 0.549 5
∞ 1 0.305 0.305 3 0.483 0.823 4

R 1 1 0.291 0.291 1 0.498 0.498 5
2 3 0.438 0.440 1 0.264 0.264 5
∞ 1 0.286 0.286 3 0.489 0.739 5

T 1 2 0.383 0.383 2 0.383 0.383 3
2 2 0.383 0.383 2 0.383 0.383 3
∞ 2 0.383 0.383 2 0.383 0.383 3

We present on Figure 1 examples of “bad” signals [i.e., (s̄(r) + 1)-block-sparse
signals which are not recovered correctly by the latter procedure].11

On the basis of this experiment we can make two tentative conclusions:

11It is immediately seen that whenever B is of full row rank, the nullspace property “Ls,1(Bx) <
1
2L1(Bx) for all x ∈ KerA with Bx �= 0” is necessary for s to be ≤ s∗(A, ·). As a result, for B’s
of full row rank, s∗(A, r) can be upper-bounded in a manner completely similar to the case of the
standard r.s.; see [21], Section 4.1.
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FIG. 1. “Bad” (s̄(r) + 1)-block-sparse signals (blue) and their �1/�r recoveries (red) from noise-
less observations, H-matrix A.

• the �1/�2 recovery with the contrast matrix H(2) and the �1/�∞ recovery with
the contrast matrix H(∞) were able to certify the best levels of allowed sparsity
(when compared to other candidate matrices from H);

• in our experiments, the upper bounds s̄(r) on the r-goodness s∗(A, r) of A are
close to the corresponding certified lower bounds s∗(H, r) = maxH∈H s(H, r).

Numerical evaluation of recovery errors. The objective of the next experiment
is to evaluate the accuracy of penalized �1/�r recoveries in the noisy setting. As
above, we consider the contrast matrices from H = {H(MI),H (MBI),H (1),H (2),

H (∞)}. Note that it is possible to improve the error bound by optimizing it over
H as it was done in Section 5.2. In the experiments to be reported this additional
optimization, however, did not yield a significant improvement (which perhaps
reflects the “nice conditioning” of the sensing matrices we dealt with), and we do
not present the simulation results for optimized contrasts here:

• We ran four series of simulations corresponding to the four instances of the
sensing matrix A we used. The series associated with a particular A was as
follows:

• Given A, we associate with it the five aforementioned candidate contrast ma-
trices from H. Combining these matrices with 3 values of r (r = 1,2,∞), we
get 15 recovery routines. In addition to these 15 routines, we also included the
block Lasso recovery as described in [24]. In our notation, this recovery is (cf.
[24], (2.2))

x̂Lasso(y) ∈ Arg min
z

{
1

m
‖Az − y‖2

2 + 2
K∑

k=1

λk

∥∥z[k]∥∥2

}
(z[k], 1 ≤ k ≤ K , are the blocks in z = Bz), with the penalty coefficients λk

chosen according to the equality version of the relations in [24], Theorem 3.1,
used with q = 2.

Each of the 16 resulting recovery routines was tested on two samples, each contain-
ing 100 randomly generated recovery problem instances. In each problem instance
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the true signal was randomly generated with s nonzero blocks, and the observa-
tions were corrupted by pure Gaussian white noise: y = Ax +σξ , ξ ∼ N (0, I ). In
the first sample, s was set to the best value s∗(H) of block sparsity we were able
to certify; in the second, s = 2s∗(H) was used. The parameter λ of the penalized
recoveries was set to 2s (and thus was tuned to the actual sparsity of test signals).
In both samples, we used σ = 0.001.

We compare the recovery routines on the basis of their ratings computed as fol-
lows: given a recovery problem instance from the sample, we applied to it every
one of our 16 recovery routines and measured the 16 resulting ‖ · ‖∞-errors. Di-
viding the smallest of these errors by the error of a given routine, we obtain “the
rating” of the routine in this particular simulation. Thus, all ratings are ≤ 1; and
the routine which attains the best ‖ · ‖∞ recovery error for the current data is rated
“1.0.” For the remaining routines, the closer to 1 is the rating of the routine, the
closer is the routine to the “winner” of the current simulation. The final rating of
a given recovery routine is its average rating over all 800 = 4 × 2 × 100 recovery
problem instances processed in the experiment.

The resulting ratings are presented in Table 2. The “winner” is the routine asso-
ciated with r = 2 and H = H(2). Surprisingly, the second best routine is associated
with the same r = 2 and the simplest contrast H(MI), an outsider in terms of the
data presented in Table 1. This inconsistency may be explained by the fact that
the data in Table 1 describe the guaranteed worst-case behavior of our recovery
routines, which may be quite different from their “average behavior,” reflected by
Table 2. Our tentative conclusion on the basis of the data from Tables 1 and 2 is
that the penalized �1/�2 recovery associated with the contrast matrix H(2) may
be favorable when recovery guarantees are to be associated with good numerical
performance.

The above comparison was carried out for σ set to 0.001. The conducted ex-
periments show that for the routines in question and our purely Gaussian model
of observation errors, the recovery errors are, typically, proportional to σ . This is
illustrated by the plots on Figure 2 where we traced the average (over 40 experi-
ments for every grid value of σ ) signal-to-noise ratio (the ratio of the ‖ · ‖∞-error
of the recovery to σ ) of our favorable recovery (r = 2, H = H(2)) and the corre-
sponding performance figure for block Lasso.

TABLE 2
Ratings of recovery routines

r H(MI) H(MBI) H(1) H(2) H(∞) Lasso

1 0.30 0.20 0.53 0.60 0.54 N/A
2 0.76 0.51 0.75 0.79 0.75 0.19
∞ 0.25 0.18 0.44 0.48 0.44 N/A
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FIG. 2. Average over 40 experiments ratio of ‖ · ‖∞ recovery error to σ vs. σ . In blue: �1/�2
recovery with H = H(2); in red: Lasso recovery.

SUPPLEMENTARY MATERIAL

Supplement to “Accuracy guaranties for �1 recovery of block-sparse sig-
nals” (DOI: 10.1214/12-AOS1057SUPP; .pdf). The proofs of the results stated in
the paper and the derivations for Section 5.2 are provided in the supplementary
article [18].

http://dx.doi.org/10.1214/12-AOS1057SUPP
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