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CONVERGENCE ANALYSIS OF THE GIBBS SAMPLER FOR
BAYESIAN GENERAL LINEAR MIXED MODELS WITH

IMPROPER PRIORS

BY JORGE CARLOS ROMÁN AND JAMES P. HOBERT1

Vanderbilt University and University of Florida

Bayesian analysis of data from the general linear mixed model is chal-
lenging because any nontrivial prior leads to an intractable posterior density.
However, if a conditionally conjugate prior density is adopted, then there is a
simple Gibbs sampler that can be employed to explore the posterior density.
A popular default among the conditionally conjugate priors is an improper
prior that takes a product form with a flat prior on the regression parame-
ter, and so-called power priors on each of the variance components. In this
paper, a convergence rate analysis of the corresponding Gibbs sampler is un-
dertaken. The main result is a simple, easily-checked sufficient condition for
geometric ergodicity of the Gibbs–Markov chain. This result is close to the
best possible result in the sense that the sufficient condition is only slightly
stronger than what is required to ensure posterior propriety. The theory devel-
oped in this paper is extremely important from a practical standpoint because
it guarantees the existence of central limit theorems that allow for the com-
putation of valid asymptotic standard errors for the estimates computed using
the Gibbs sampler.

1. Introduction. The general linear mixed model (GLMM) takes the form

Y = Xβ + Zu + e,(1)

where Y is an N ×1 data vector, X and Z are known matrices with dimensions N ×
p and N ×q , respectively, β is an unknown p×1 vector of regression coefficients,
u is a random vector whose elements represent the various levels of the random
factors in the model and e ∼ NN(0, σ 2

e I ). The random vectors e and u are assumed
to be independent. Suppose there are r random factors in the model. Then u and Z

are partitioned accordingly as u = (uT
1 uT

2 · · · uT
r )T and Z = (Z1 Z2 · · · Zr),

where ui is qi × 1, Zi is N × qi and q1 + · · · + qr = q . Then

Zu =
r∑

i=1

Ziui,
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and it is assumed that u ∼ Nq(0,D), where D = ⊕r
i=1 σ 2

ui
Iqi

. Let σ 2 denote the
vector of variance components, that is, σ 2 = (σ 2

e σ 2
u1

· · · σ 2
ur

)T . For background
on this model, which is sometimes called the variance components model, see
Searle, Casella and McCulloch (1992).

A Bayesian version of the GLMM can be assembled by specifying a prior dis-
tribution for the unknown parameters, β and σ 2. A popular choice is the proper
(conditionally) conjugate prior that takes β to be multivariate normal, and takes
each of the variance components to be inverted gamma. One obvious reason for
using such a prior is that the resulting posterior has conditional densities with
standard forms, and this facilitates the use of the Gibbs sampler.

In situations where there is little prior information, the hyperparameters of this
proper prior are often set to extreme values as this is thought to yield a “noninfor-
mative” prior. Unfortunately, these extreme proper priors approximate improper
priors that correspond to improper posteriors, and this results in various forms
of instability. This problem has led several authors, including Daniels (1999) and
Gelman (2006), to discourage the use of such extreme proper priors, and to rec-
ommend alternative default priors that are improper, but lead to proper posteriors.
Consider, for example, the one-way random effects model given by

Yij = β + αi + eij ,(2)

where i = 1, . . . , c, j = 1, . . . , ni , the αi’s are i.i.d. N(0, σ 2
α ), and the eij ’s, which

are independent of the αi’s, are i.i.d. N(0, σ 2
e ). This is an important special case

of model (1). (See Section 5 for a detailed explanation of how the GLMM reduces
to the one-way model.) The standard diffuse prior for this model, which is among

those recommended by Gelman (2006), has density 1/(σ 2
e

√
σ 2

α ). This prior, like
many of the improper priors for the GLMM that have been suggested and stud-
ied in the literature, is called a “power prior” because it is a product of terms,
each a variance component brought to a (possibly negative) power. Of course, like
the proper conjugate priors mentioned above, power priors also lead to posteriors
whose conditional densities have standard forms.

In this paper, we consider the following parametric family of priors for (β, σ 2):

p
(
β,σ 2;a, b

) = (
σ 2

e

)−(ae+1)
e−be/σ

2
e

[
r∏

i=1

(
σ 2

ui

)−(ai+1)
e
−bi/σ

2
ui

]
I
R

r+1+
(
σ 2),(3)

where a = (ae, a1, . . . , ar) and b = (be, b1, . . . , br) are fixed hyperparameters, and
R+ := (0,∞). By taking b to be the vector of 0’s, we can recover the power priors
described above. Note that β does not appear on the right-hand side of (3); that is,
we are using a so-called flat prior for β . Consequently, even if all the elements of
a and b are strictly positive, so that every variance component gets a proper prior,
the overall prior remains improper. There have been several studies concerning
posterior propriety in this context, but it is still not known exactly which values of
a and b yield proper posteriors. The best known result is due to Sun, Tsutakawa
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and He (2001), and we state it below so that it can be used in a comparison later in
this section.

Define θ = (βT uT )T and W = (X Z), so that Wθ = Xβ + Zu. Let y denote
the observed value of Y , and let φd(x;μ,�) denote the Nd(μ,�) density evalu-
ated at the vector x. By definition, the posterior density is proper if

m(y) :=
∫

R
r+1+

∫
Rp+q

π∗(θ, σ 2|y)dθ dσ 2 < ∞,

where

π∗(θ, σ 2|y) = φN

(
y;Wθ,σ 2

e I
)
φq(u;0,D)p

(
β,σ 2;a, b

)
.(4)

A routine calculation shows that the posterior is improper if rank(X) < p. The
following result provides sufficient (and nearly necessary) conditions for propriety.
(Throughout the paper, the symbol P subscripted with a matrix will denote the
projection onto the column space of that matrix.)

THEOREM 1 [Sun, Tsutakawa and He (2001)]. Assume that rank(X) = p, and
let t = rank(ZT (I − PX)Z) and SSE = ‖(I − PW)y‖2. If the following four con-
ditions hold, then m(y) < ∞:

(A) For each i ∈ {1,2, . . . , r}, one of the following holds:

(A1) ai < bi = 0; (A2) bi > 0;
(B) for each i ∈ {1,2, . . . , r}, qi + 2ai > q − t ;
(C) N + 2ae > p − 2

∑r
i=1 aiI(−∞,0)(ai);

(D) 2be + SSE > 0.

If m(y) < ∞, then the posterior density is well defined (i.e., proper) and is
given by π(θ, σ 2|y) = π∗(θ, σ 2|y)/m(y), but it is intractable in the sense that
posterior expectations cannot be computed in closed form, nor even by classical
Monte Carlo methods. However, there is a simple two-step Gibbs sampler that can
be used to approximate the intractable posterior expectations. This Gibbs sampler
simulates a Markov chain, {(θn, σ

2
n )}∞n=0, that lives on X = R

p+q × R
r+1+ , and has

invariant density π(θ, σ 2|y). If the current state of the chain is (θn, σ
2
n ), then the

next state, (θn+1, σ
2
n+1), is simulated using the usual two steps. Indeed, we draw

θn+1 from π(θ |σ 2
n , y), which is a (p+q)-dimensional multivariate normal density,

and then we draw σ 2
n+1 from π(σ 2|θn+1, y), which is a product of r + 1 univariate

inverted gamma densities. The exact forms of these conditional densities are given
in Section 2.

Because the Gibbs–Markov chain is Harris ergodic (see Section 2), we can use
it to construct consistent estimates of intractable posterior expectations. For k > 0,
let Lk(π) denote the set of functions g : Rp+q × R

r+1+ → R such that

Eπ |g|k :=
∫

R
r+1+

∫
Rp+q

∣∣g(θ, σ 2)∣∣kπ(
θ, σ 2|y)dθ dσ 2 < ∞.
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If g ∈ L1(π), then the ergodic theorem implies that the average

gm := 1

m

m−1∑
i=0

g
(
θi, σ

2
i

)

is a strongly consistent estimator of Eπg, no matter how the chain is started. Of
course, in practice, an estimator is only useful if it is possible to compute an asso-
ciated (probabilistic) bound on the difference between the estimate and the truth.
Typically, this bound is based on a standard error. All available methods of comput-
ing a valid asymptotic standard error for gm are based on the existence of a central
limit theorem (CLT) for gm [see, e.g., Bednorz and Łatuszyński (2007), Flegal, Ha-
ran and Jones (2008), Flegal and Jones (2010), Jones et al. (2006)]. Unfortunately,
even if g ∈ Lk(π) for all k > 0, Harris ergodicity is not enough to guarantee the
existence of a CLT for gm [see, e.g., Roberts and Rosenthal (1998, 2004)]. The
standard method of establishing the existence of CLTs is to prove that the under-
lying Markov chain converges at a geometric rate.

Let B(X) denote the Borel sets in X, and let P n : X × B(X) → [0,1] denote the
n-step Markov transition function of the Gibbs–Markov chain. That is, P n((θ,

σ 2),A) is the probability that (θn, σ
2
n ) ∈ A, given that the chain is started at

(θ0, σ
2
0 ) = (θ, σ 2). Also, let 	(·) denote the posterior distribution. The chain is

called geometrically ergodic if there exist a function M : X → [0,∞) and a con-
stant 
 ∈ [0,1) such that, for all (θ, σ 2) ∈ X and all n = 0,1, . . . , we have∥∥P n((θ, σ 2), ·) − 	(·)∥∥TV ≤ M

(
θ, σ 2)
n,

where ‖ · ‖TV denotes the total variation norm. The relationship between geomet-
ric convergence and CLTs is simple: if the chain is geometrically ergodic and
Eπ |g|2+δ < ∞ for some δ > 0, then there is a CLT for gm. Our main result (The-
orem 2 in Section 3) provides conditions under which the Gibbs–Markov chain is
geometrically ergodic. The conditions of Theorem 2 are not easy to interpret, and
checking them may require some nontrivial numerical work. On the other hand,
the following corollary to Theorem 2 is a slightly weaker result whose conditions
are very easy to check and understand.

COROLLARY 1. Assume that rank(X) = p. If the following four conditions
hold, then the Gibbs–Markov chain is geometrically ergodic.

(A) For each i ∈ {1,2, . . . , r}, one of the following holds:

(A1) ai < bi = 0; (A2) bi > 0;
(B′) for each i ∈ {1,2, . . . , r}, qi + 2ai > q − t + 2;
(C′) N + 2ae > p + t + 2;
(D) 2be + SSE > 0.
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As we explain in Section 2, the best result we could possibly hope to obtain is
that the Gibbs–Markov chain is geometrically ergodic whenever the posterior is
proper. With this in mind, note that the conditions of Corollary 1 are very close to
the conditions for propriety given in Theorem 1. In fact, the former imply the latter.
To see this, assume that (A), (B′), (C′) and (D) all hold. Then, obviously, (B) holds,
and all that remains is to show that (C) holds. This would follow immediately if
we could establish that

t ≥ −2
r∑

i=1

aiI(−∞,0)(ai).(5)

We consider two cases. First, if
∑r

i=1 I(−∞,0)(ai) = 0, then it follows that
−2

∑r
i=1 aiI(−∞,0)(ai) = 0, and (5) holds (since t is nonnegative). On the other

hand, if
∑r

i=1 I(−∞,0)(ai) > 0, then there is at least one negative ai , and (B′) im-
plies that

r∑
i=1

(qi + 2ai)I(−∞,0)(ai) > q − t.

This inequality combined with the fact that q = q1 + · · · + qr yields

t > q −
r∑

i=1

(qi + 2ai)I(−∞,0)(ai) ≥ −2
r∑

i=1

aiI(−∞,0)(ai),

so (5) holds, and this completes the argument.
The strong similarity between the conditions of Corollary 1 and those of Theo-

rem 1 might lead the reader to believe that the proofs of our results rely somehow
on Theorem 1. This is not the case, however. In fact, we do not even assume pos-
terior propriety before embarking on our convergence rate analysis; see Section 3.

The only other existing result on geometric convergence of Gibbs samplers for
linear mixed models with improper priors is that of Tan and Hobert (2009), who
considered (a slightly reparameterized version of) the one-way random effects
model (2) and priors with b = (be, b1) = (0,0). We show in Section 5 that our
Theorem 2 (specialized to the one-way model) improves upon the result of Tan
and Hobert (2009) in the sense that our sufficient conditions for geometric con-
vergence are weaker. Moreover, it is known in this case exactly which priors lead
to proper posteriors (when SSE > 0), and we use this fact to show that our results
can be very close to the best possible. For example, if the standard diffuse prior is
used, then the posterior is proper if and only if c ≥ 3. On the other hand, our results
imply that the Gibbs–Markov chain is geometrically ergodic as long as c ≥ 3, and
the total sample size, N = n1 + n2 + · · ·+ nc, is at least c + 2. The extra condition
that N ≥ c + 2 is extremely weak. Indeed, SSE > 0 implies that N ≥ c + 1, so,
for fixed c ≥ 3, our condition for geometric ergodicity fails only in the single case
where N = c + 1.
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An analogue of Corollary 1 for the GLMM with proper priors can be found in
Johnson and Jones (2010). In contrast with our results, one of their sufficient con-
ditions for geometric convergence is that XT Z = 0, which rarely holds in practice.
Overall, the proper and improper cases are similar, in the sense that geometric er-
godicity is established via geometric drift conditions in both cases. However, the
drift conditions are quite disparate, and the analysis required in the improper case
is substantially more demanding. Finally, we note that the linear models consid-
ered by Papaspiliopoulos and Roberts (2008) are substantively different from ours
because these authors assume that the variance components are known.

The remainder of this paper is organized as follows. Section 2 contains a for-
mal definition of the Gibbs–Markov chain. The main convergence result is stated
and proven in Section 3, and an application involving the two-way random effects
model is given in Section 4. In Section 5, we consider the one-way random ef-
fects model and compare our conditions for geometric convergence with those of
Tan and Hobert (2009). Finally, Section 6 concerns an interesting technical issue
related to the use of improper priors.

2. The Gibbs sampler. In this section, we formally define the Markov chain
underlying the Gibbs sampler, and state some of its properties. Recall that θ =
(βT uT )T , σ 2 = (σ 2

e σ 2
u1

· · · σ 2
ur

)T and π∗(θ, σ 2|y) is the potentially improper,
unnormalized posterior density defined at (4). Suppose that∫

Rp+q
π∗(θ, σ 2|y)dθ < ∞(6)

for all σ 2 outside a set of measure zero in R
r+1+ , and that∫

R
r+1+

π∗(θ, σ 2|y)dσ 2 < ∞(7)

for all θ outside a set of measure zero in R
p+q . These two integrability conditions

are necessary, but not sufficient, for posterior propriety. (Keep in mind that it is not
known exactly which priors yield proper posteriors.) When (6) and (7) hold, we
can define conditional densities as follows:

π
(
θ |σ 2, y

) = π∗(θ, σ 2|y)∫
Rp+q π∗(θ, σ 2|y)dθ

and π
(
σ 2|θ, y

) = π∗(θ, σ 2|y)∫
R

r+1+
π∗(θ, σ 2|y)dσ 2 .

Clearly, when the posterior is proper, these conditionals are the usual ones based
on π(θ, σ 2|y). When the posterior is improper, they are incompatible conditional
densities; that is, there is no (proper) joint density that generates them. In either
case, we can run the Gibbs sampler as usual by drawing alternately from the two
conditionals. However, as we explain below, if the posterior is improper, then the
resulting Markov chain cannot be geometrically ergodic. Despite this fact, we do
not restrict attention to the cases where the sufficient conditions for propriety in
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Theorem 1 are satisfied. Indeed, we hope to close the gap that currently exists
between the necessary and sufficient conditions for propriety by finding weaker
conditions than those in Theorem 1 that imply geometric ergodicity (and hence
posterior propriety).

We now provide a set of conditions that guarantee that the integrability condi-
tions are satisfied. Define

s̃ = min{q1 + 2a1, q2 + 2a2, . . . , qr + 2ar,N + 2ae}.
The proof of the following result is straightforward and is left to the reader.

PROPOSITION 1. The following four conditions are sufficient for (6) and (7)
to hold:

(S1) rank(X) = p;
(S2) min{b1, b2, . . . , br} ≥ 0;
(S3) 2be + SSE > 0;
(S4) s̃ > 0.

Note that SSE = SSE(X,Z,y) = ‖y − Wθ̂‖2, where W = (X Z) and θ̂ =
(WT W)−WT y. Therefore, if condition (S3) holds, then for all θ ∈ R

p+q ,

2be + ‖y − Wθ‖2 = 2be + ‖y − Wθ̂‖2 + ‖Wθ − Wθ̂‖2 ≥ 2be + SSE > 0.

Note also that if N > p + q , then SSE is strictly positive with probability one
under the data generating model.

Assume now that (S1)–(S4) hold so that the conditional densities are well de-
fined. Routine manipulation of π∗(θ, σ 2|y) shows that π(θ |σ 2, y) is a multivariate
normal density with mean vector

m =
[ (

XT X
)−1

XT
(
I − (

σ 2
e

)−1
ZQ−1ZT (I − PX)

)
y(

σ 2
e

)−1
Q−1ZT (I − PX)y

]

and covariance matrix

V =
[
σ 2

e

(
XT X

)−1 + RQ−1RT −RQ−1

−Q−1RT Q−1

]
,

where Q = (σ 2
e )−1ZT (I − PX)Z + D−1 and R = (XT X)−1XT Z.

Things are a bit more complicated for π(σ 2|θ, y) due to the possible existence
of a bothersome set of measure zero. Define A = {i ∈ {1,2, . . . , r} :bi = 0}. If A is
empty, then π(σ 2|θ, y) is well defined for every θ ∈ R

p+q , and it is the following
product of r + 1 inverted gamma densities:

π
(
σ 2|θ, y

) = fIG

(
σ 2

e ; N

2
+ ae, be + ‖y − Wθ‖2

2

)

×
r∏

i=1

fIG

(
σ 2

ui
; qi

2
+ ai, bi + ‖ui‖2

2

)
,
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where

fIG(v; c, d) =
⎧⎨
⎩

dc

�(c)vc+1 e−d/v, v > 0,

0, v ≤ 0,

for c, d > 0. On the other hand, if A is nonempty, then∫
R

r+1+
π∗(θ, σ 2|y)dσ 2 = ∞,

whenever θ ∈ N := {θ ∈ R
p+q :

∏
i∈A ‖ui‖ = 0}. The fact that π(σ 2|θ, y) is not

defined when θ ∈ N is irrelevant from a simulation standpoint because the prob-
ability of observing a θ in N is zero. However, in order to perform a theoretical
analysis, the Markov transition density (Mtd) of the Gibbs Markov chain must be
defined for every θ ∈ R

p+q . Obviously, the Mtd can be defined arbitrarily on a set
of measure zero. Thus, for θ /∈ N , we define π(σ 2|θ, y) as in the case where A is
empty, while if θ ∈ N , we define it to be fIG(σ 2

e ;1,1)
∏r

i=1 fIG(σ 2
ui

;1,1). Note
that this definition can also be used when A is empty if we simply define N to be
∅ in that case.

The Mtd of the Gibbs–Markov chain, {(θn, σ
2
n )}∞n=0, is defined as

k
(
θ, σ 2|θ̃ , σ̃ 2) = π

(
σ 2|θ, y

)
π
(
θ |σ̃ 2, y

)
.

It is easy to see that the chain is ψ-irreducible, and that π∗(θ, σ 2|y) is an invariant
density. It follows that the chain is positive recurrent if and only if the posterior
is proper [Meyn and Tweedie (1993), Chapter 10]. Since a geometrically ergodic
chain is necessarily positive recurrent, the Gibbs–Markov chain cannot be geomet-
rically ergodic when the posterior is improper. The point here is that conditions
implying geometric ergodicity also imply posterior propriety.

The marginal sequences, {θn}∞n=0 and {σ 2
n }∞n=0, are themselves Markov chains;

see, for example, Liu, Wong and Kong (1994). The σ 2-chain lives on R
r+1+ and

has Mtd given by

k1
(
σ 2|σ̃ 2) =

∫
Rp+q

π
(
σ 2|θ, y

)
π
(
θ |σ̃ 2, y

)
dθ

and invariant density
∫
Rp+q π∗(θ, σ 2|y)dθ . Similarly, the θ -chain lives on R

p+q

and has Mtd

k2(θ |θ̃ ) =
∫

R
r+1+

π
(
θ |σ 2, y

)
π
(
σ 2|θ̃ , y

)
dσ 2

and invariant density
∫
R

r+1+
π∗(θ, σ 2|y)dσ 2. Since the two marginal chains are

also ψ-irreducible, they are positive recurrent if and only if the posterior is proper.
Moreover, when the posterior is proper, routine calculations show that all three
chains are Harris ergodic; that is, ψ-irreducible, aperiodic and positive Harris re-
current; see Román (2012) for details. An important fact that we will exploit is that
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geometric ergodicity is a solidarity property for the three chains {(θn, σ
2
n )}∞n=0,

{θn}∞n=0 and {σ 2
n }∞n=0; that is, either all three are geometric or none of them is

[Diaconis, Khare and Saloff-Coste (2008), Liu, Wong and Kong (1994), Roberts
and Rosenthal (2001)]. In the next section, we prove that the Gibbs–Markov chain
converges at a geometric rate by proving that one of the marginal chains does.

3. The main result. In order to state the main result, we need a bit more
notation. For i ∈ {1, . . . , r}, define Ri to be the qi × q matrix of 0’s and 1’s such
that Riu = ui . In other words, Ri is the matrix that extracts ui from u. Here is our
main result.

THEOREM 2. Assume that (S1)–(S4) hold so that the Gibbs sampler is well
defined. If the following two conditions hold, then the Gibbs–Markov chain is ge-
ometrically ergodic:

(1) For each i ∈ {1,2, . . . , r}, one of the following holds:

(i) ai < bi = 0; (ii) bi > 0.

(2) There exists an s ∈ (0,1] ∩ (0, s̃/2) such that

2−s(p + t)s
�(N/2 + ae − s)

�(N/2 + ae)
< 1(8)

and

2−s
r∑

i=1

{
�(qi/2 + ai − s)

�(qi/2 + ai)

}(
tr
(
Ri(I − PZT (I−PX)Z)RT

i

))s
< 1,(9)

where t = rank(ZT (I − PX)Z) and PZT (I−PX)Z is the projection onto the column
space of ZT (I − PX)Z.

REMARK 1. It is important to reiterate that, by themselves, (S1)–(S4) do not
imply that the posterior density is proper. Of course, if conditions (1) and (2) in
Theorem 2 hold as well, then the chain is geometric, so the posterior is necessarily
proper.

REMARK 2. A numerical search could be employed to check the second
condition of Theorem 2. Indeed, one could evaluate the left-hand sides of (8)
and (9) at all values of s on a fine grid in the interval (0,1] ∩ (0, s̃/2). The
goal, of course, would be to find a single value of s at which both (8) and (9)
are satisfied. It can be shown that, if there does exist an s ∈ (0,1] ∩ (0, s̃/2)

such that (8) and (9) hold, then N + 2ae > p + t and, for each i = 1,2, . . . , r ,
qi + 2ai > tr(Ri(I − PZT (I−PX)Z)RT

i ). Thus, it would behoove the user to verify
these simple conditions before engaging in any numerical work.
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REMARK 3. When evaluating (9), it may be helpful to write PZT (I−PX)Z as
UT P�U , where U and � are the orthogonal and diagonal matrices, respectively,
in the spectral decomposition of ZT (I − PX)Z. That is, U is a q-dimensional
orthogonal matrix and � is a diagonal matrix containing the eigenvalues of ZT (I −
PX)Z. Of course, the projection P� is a q × q binary diagonal matrix whose ith
diagonal element is 1 if and only if the ith diagonal element of � is positive.

REMARK 4. Note that
r∑

i=1

tr
(
Ri(I − PZT (I−PX)Z)RT

i

) = tr

[
(I − PZT (I−PX)Z)

(
r∑

i=1

RT
i Ri

)]

= tr(I − PZT (I−PX)Z)

= rank(I − PZT (I−PX)Z)

= q − t.

Moreover, when r > 1, the matrix I − PZT (I−PX)Z has q = q1 + q2 + · · · + qr di-
agonal elements, and the (nonnegative) term tr(Ri(I − PZT (I−PX)Z)RT

i ) is simply
the sum of the qi diagonal elements that correspond to the ith random factor.

REMARK 5. Recall from the Introduction that Corollary 1 provides an alter-
native set of sufficient conditions for geometric ergodicity that are harder to satisfy,
but easier to check. A proof of Corollary 1 is given at the end of this section.

We will prove Theorem 2 indirectly by proving that the σ 2-chain is geometri-
cally ergodic (when the conditions of Theorem 2 hold). This is accomplished by
establishing a geometric drift condition for the σ 2-chain.

PROPOSITION 2. Assume that (S1)–(S4) hold so that the Gibbs sampler is
well defined. Under the two conditions of Theorem 2, there exist a ρ ∈ [0,1) and a
finite constant L such that, for every σ̃ 2 ∈ R

r+1+ ,

E
(
v
(
σ 2)|σ̃ 2) ≤ ρv

(
σ̃ 2) + L,(10)

where the drift function is defined as

v
(
σ 2) = α

(
σ 2

e

)s +
r∑

i=1

(
σ 2

ui

)s + α
(
σ 2

e

)−c +
r∑

i=1

(
σ 2

ui

)−c
,

and α and c are positive constants. Hence, under the two conditions of Theorem 2,
the σ 2-chain is geometrically ergodic.

REMARK 6. The formulas for ρ = ρ(α, s, c) and L = L(α, s, c) are provided
in the proof, as is a set of acceptable values for the pair (α, c). Recall that the value
of s is given to us in the hypothesis of Theorem 2.
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PROOF OF PROPOSITION 2. The proof has two parts. In part I, we establish
the validity of the geometric drift condition, (10). In part II, we use results from
Meyn and Tweedie (1993) to show that (10) implies geometric ergodicity of the
σ 2-chain.

Part I. By conditioning on θ and iterating, we can express E(v(σ 2)|σ̃ 2) as

E

[
αE

((
σ 2

e

)s |θ) + E

(
r∑

i=1

(
σ 2

ui

)s |θ
)

+ αE
((

σ 2
e

)−c|θ) + E

(
r∑

i=1

(
σ 2

ui

)−c|θ
)∣∣∣∣σ̃ 2

]
.

We now develop upper bounds for each of the four terms inside the square brackets.
Fix s ∈ S := (0,1] ∩ (0, s̃/2), and define

G0(s) = 2−s �(N/2 + ae − s)

�(N/2 + ae)

and, for each i ∈ {1,2, . . . , r}, define

Gi(s) = 2−s �(qi/2 + ai − s)

�(qi/2 + ai)
.

Note that, since s ∈ (0,1], (x1 + x2)
s ≤ xs

1 + xs
2 whenever x1, x2 ≥ 0. Thus,

E
((

σ 2
e

)s |θ) = 2sG0(s)

(
be + ‖y − Wθ‖2

2

)s

≤ 2sG0(s)

[
bs
e +

(‖y − Wθ‖2

2

)s]

= G0(s)
(‖y − Wθ‖2)s + 2sG0(s)b

s
e.

Similarly,

E
((

σ 2
ui

)s |θ) = 2sGi(s)

(
bi + ‖ui‖2

2

)s

≤ Gi(s)
(‖ui‖2)s + 2sGi(s)b

s
i .

Now, for any c > 0, we have

E
((

σ 2
e

)−c|θ) = 2−cG0(−c)

(
be + ‖y − Wθ‖2

2

)−c

≤ 2−cG0(−c)

(
be + SSE

2

)−c

and, for each i ∈ {1,2, . . . , r},

E
((

σ 2
ui

)−c|θ) = 2−cGi(−c)

(
bi + ‖ui‖2

2

)−c

≤ Gi(−c)
[(‖ui‖2)−c

I{0}(bi) + (2bi)
−cI(0,∞)(bi)

]
.
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Recall that A = {i :bi = 0}, and note that E(
∑r

i=1(σ
2
ui

)−c|θ) can be bounded
above by a constant if A is empty. Thus, we consider the case in which A is empty
separately from the case where A �= ∅. We begin with the latter, which is the more
difficult case.

Case I: A is nonempty. Combining the four bounds above (and applying
Jensen’s inequality twice), we have

E
(
v
(
σ 2)|σ̃ 2) ≤ αG0(s)

[
E
(‖y − Wθ‖2|σ̃ 2)]s +

r∑
i=1

Gi(s)
[
E
(‖ui‖2|σ̃ 2)]s

(11)
+ ∑

i∈A

Gi(−c)E
[‖ui‖−2c|σ̃ 2] + κ(α, s, c),

where

κ(α, s, c) = α2sG0(s)b
s
e + 2s

r∑
i=1

Gi(s)b
s
i + α2−cG0(−c)

(
be + SSE

2

)−c

+ ∑
i : bi>0

Gi(−c)(2bi)
−c.

Appendix A.2 contains a proof of the following inequality:

E
[‖y − Wθ‖2|σ̃ 2] ≤ (p + t)σ̃ 2

e + (∥∥(I − PX)y
∥∥ + ∥∥(I − PX)Z

∥∥K)2
,(12)

where ‖ · ‖ with a matrix argument denotes the Frobenius norm, and the constant
K = K(X,Z,y) is defined and shown to be finite in Appendix A.1. It follows
immediately that[

E
(‖y − Wθ‖2|σ̃ 2)]s ≤ (p + t)s

(
σ̃ 2

e

)s + (∥∥(I − PX)y
∥∥ + ∥∥(I − PX)Z

∥∥K)2s
.

In Appendix A.3, it is shown that, for each i ∈ {1,2, . . . , r}, we have

E
[‖ui‖2|σ̃ 2] ≤ ξi σ̃

2
e + ζi

r∑
j=1

σ̃ 2
uj

+ (‖Ri‖K)2
,

where ξi = tr(Ri(Z
T (I − PX)Z)+RT

i ), ζi = tr(Ri(I − PZT (I−PX)Z)RT
i ) and A+

denotes the Moore–Penrose inverse of the matrix A. It follows that

[
E
(‖ui‖2|σ̃ 2)]s ≤ ξ s

i

(
σ̃ 2

e

)s + ζ s
i

r∑
j=1

(
σ̃ 2

uj

)s + (‖Ri‖K)2s
.(13)

In Appendix A.4, it is established that, for any c ∈ (0,1/2), and for each i ∈
{1,2, . . . , r}, we have

E
[‖ui‖−2c|σ̃ 2] ≤ 2−c �(qi/2 − c)

�(qi/2)

[
λc

max
(
σ̃ 2

e

)−c + (
σ̃ 2

ui

)−c]
,(14)
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where λmax denotes the largest eigenvalue of ZT (I − PX)Z. Using (12)–(14) in
(11), we have

E
(
v
(
σ 2)|σ̃ 2) ≤ α

(
δ1(s) + δ2(s)

α

)(
σ̃ 2

e

)s + δ3(s)

r∑
j=1

(
σ̃ 2

uj

)s
(15)

+ α
δ4(c)

α

(
σ̃ 2

e

)−c + δ5(c)
∑
j∈A

(
σ̃ 2

uj

)−c + L(α, s, c),

where

δ1(s) := G0(s)(p + t)s, δ2(s) :=
r∑

i=1

ξ s
i Gi(s), δ3(s) :=

r∑
i=1

ζ s
i Gi(s),

δ4(c) := 2−cλc
max

∑
i∈A

Gi(−c)
�(qi/2 − c)

�(qi/2)
,

δ5(c) := 2−c max
i∈A

[
Gi(−c)

�(qi/2 − c)

�(qi/2)

]

and

L(α, s, c) = κ(α, s, c) + αG0(s)
(∥∥(I − PX)y

∥∥ + ∥∥(I − PX)Z
∥∥K)2s

+
r∑

i=1

Gi(s)
(‖Ri‖K)2s

.

Hence,

E
(
v
(
σ 2)|σ̃ 2) ≤ ρ(α, s, c)v

(
σ̃ 2) + L(α, s, c),

where

ρ(α, s, c) = max
{
δ1(s) + δ2(s)

α
, δ3(s),

δ4(c)

α
, δ5(c)

}
.

We must now show that there exists a triple (α, s, c) ∈ R+ × S × (0,1/2) such
that ρ(α, s, c) < 1. We begin by demonstrating that, if c is small enough, then
δ5(c) < 1. Define ã = −maxi∈A ai . Also, set C = (0,1/2) ∩ (0, ã). Fix c ∈ C and
note that

δ5(c) = max
i∈A

[
�(qi/2 + ai + c)

�(qi/2 + ai)

�(qi/2 − c)

�(qi/2)

]
.

For any i ∈ A, c + ai < 0, and since s̃ > 0, it follows that

0 <
qi

2
+ ai <

qi

2
+ ai + c <

qi

2
.

But, �(x − z)/�(x) is decreasing in x for x > z > 0, so we have

�(qi/2 + ai)

�(qi/2 + ai + c)
= �(qi/2 + ai + c − c)

�(qi/2 + ai + c)
>

�(qi/2 − c)

�(qi/2)
,
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and it follows immediately that δ5(c) < 1 whenever c ∈ C. The two conditions of
Theorem 2 imply that there exists an s� ∈ S such that δ1(s

�) < 1 and δ3(s
�) < 1.

Let c� be any point in C, and choose α� to be any number larger than

max
{

δ2(s
�)

1 − δ1(s�)
, δ4

(
c�)}.

A simple calculation shows that ρ(α�, s�, c�) < 1, and this completes the argument
for case I.

Case II: A = ∅. Since we no longer have to deal with E(
∑r

i=1(σ
2
ui

)−c|θ), bound
(15) becomes

E
(
v
(
σ 2)|σ̃ 2) ≤ α

(
δ1(s) + δ2(s)

α

)(
σ̃ 2

e

)s + δ3(s)

r∑
j=1

(
σ̃ 2

uj

)s + L(α, s, c),

and there is no restriction on c other than c > 0. [Note that the constant term
L(α, s, c) requires no alteration when we move from case I to case II.] Hence,

E
(
v
(
σ 2)|σ̃ 2) ≤ ρ(α, s)v

(
σ̃ 2) + L(α, s, c),

where

ρ(α, s) = max
{
δ1(s) + δ2(s)

α
, δ3(s)

}
.

We must now show that there exists a (α, s) ∈ R+ × S such that ρ(α, s) < 1. As in
case I, the two conditions of Theorem 2 imply that there exists an s� ∈ S such that
δ1(s

�) < 1 and δ3(s
�) < 1. Let α� be any number larger than

δ2(s
�)

1 − δ1(s�)
.

A simple calculation shows that ρ(α�, s�) < 1, and this completes the argument
for case II. This completes part I of the proof.

Part II. We begin by establishing that the σ 2-chain satisfies certain properties.
Recall that its Mtd is given by

k1
(
σ 2|σ̃ 2) =

∫
Rp+q

π
(
σ 2|θ, y

)
π
(
θ |σ̃ 2, y

)
dθ.

Note that k1 is strictly positive on R
r+1+ × R

r+1+ . It follows that the σ 2-chain is
ψ-irreducible and aperiodic, and that its maximal irreducibility measure is equiva-
lent to Lebesgue measure on R

r+1+ ; for definitions, see Meyn and Tweedie (1993),
Chapters 4 and 5. Let P1 denote the Markov transition function of the σ 2-chain;
that is, for any σ̃ 2 ∈ R

r+1+ and any Borel set A,

P1
(
σ̃ 2,A

) =
∫
A

k1
(
σ 2|σ̃ 2)dσ 2.
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We now demonstrate that the σ 2-chain is a Feller chain; that is, for each fixed open
set O , P1(·,O) is a lower semi-continuous function on R

r+1+ . Indeed, let {σ̃ 2
m}∞m=1

be a sequence in R
r+1+ that converges to σ̃ 2 ∈ R

r+1+ . Then

lim inf
m→∞ P1

(
σ̃ 2

m,O
) = lim inf

m→∞

∫
O

k1
(
σ 2|σ̃ 2

m

)
dσ 2

= lim inf
m→∞

∫
O

[∫
Rp+q

π
(
σ 2|θ, y

)
π
(
θ |σ̃ 2

m,y
)
dθ

]
dσ 2

≥
∫
O

∫
Rp+q

π
(
σ 2|θ, y

)[
lim inf
m→∞ π

(
θ |σ̃ 2

m,y
)]

dθ dσ 2

=
∫
O

[∫
Rp+q

π
(
σ 2|θ, y

)
π
(
θ |σ̃ 2, y

)
dθ

]
dσ 2

= P1
(
σ̃ 2,O

)
,

where the inequality follows from Fatou’s lemma, and the third equality follows
from the fact that π(θ |σ 2, y) is continuous in σ 2; for a proof of continuity, see
Román (2012). We conclude that P1(·,O) is lower semi-continuous, so the σ 2-
chain is Feller.

The last thing we must do before we can appeal to the results in Meyn and
Tweedie (1993) is to show that the drift function, v(·), is unbounded off compact
sets; that is, we must show that, for every d ∈ R, the set

Sd = {
σ 2 ∈ R

r+1+ :v
(
σ 2) ≤ d

}
is compact. Let d be such that Sd is nonempty (otherwise Sd is trivially compact),
which means that d and d/α must be larger than 1. Since v(σ 2) is a continuous
function, Sd is closed in R

r+1+ . Now consider the following set:

Td = [
(d/α)−1/c, (d/α)1/s] × [

d−1/c, d1/s] × · · · × [
d−1/c, d1/s].

The set Td is compact in R
r+1+ . Since Sd ⊂ Td , Sd is a closed subset of a compact

set in R
r+1+ , so it is compact in R

r+1+ . Hence, the drift function is unbounded off
compact sets.

Since the σ 2-chain is Feller and its maximal irreducibility measure is equivalent
to Lebesgue measure on R

r+1+ , Meyn and Tweedie’s (1993) Theorem 6.0.1 shows
that every compact set in R

r+1+ is petite. Hence, for each d ∈ R, the set Sd is petite,
so v(·) is unbounded off petite sets. It now follows from the drift condition (10)
and an application of Meyn and Tweedie’s (1993) Lemma 15.2.8 that condition
(iii) of Meyn and Tweedie’s (1993) Theorem 15.0.1 is satisfied, so the σ 2-chain is
geometrically ergodic. This completes part II of the proof. �

We end this section with a proof of Corollary 1.
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PROOF OF COROLLARY 1. It suffices to show that, together, conditions (B′)
and (C′) of Corollary 1 imply the second condition of Theorem 2. Clearly, (B′) and
(C′) imply that s̃/2 > 1, so (0,1] ∩ (0, s̃/2) = (0,1]. Take s� = 1. Condition (C′)
implies

2−s�

(p + t)s
� �(N/2 + ae − s�)

�(N/2 + ae)
= p + t

N + 2ae − 2
< 1.

Now, we know from Remark 4 that
∑r

i=1 tr(Ri(I − PZT (I−PX)Z)RT
i ) = q − t .

Hence,

2−s�
r∑

i=1

{
�(qi/2 + ai − s�)

�(qi/2 + ai)

}(
tr
(
Ri(I − PZT (I−PX)Z)RT

i

))s�

=
r∑

i=1

tr(Ri(I − PZT (I−PX)Z)RT
i )

qi + 2ai − 2

≤
∑r

i=1 tr(Ri(I − PZT (I−PX)Z)RT
i )

minj∈{1,2,...,r}{qj + 2aj − 2}
= q − t

minj∈{1,2,...,r}{qj + 2aj − 2} < 1,

where the last inequality follows from condition (B′). �

4. An application of the main result. In this section, we illustrate the appli-
cation of Theorem 2 using the two-way random effects model with one observation
per cell. The model equation is

Yij = β + αi + γj + εij ,

where i = 1,2, . . . ,m, j = 1,2, . . . , n, the αi’s are i.i.d. N(0, σ 2
α ), the γj ’s are

i.i.d. N(0, σ 2
γ ) and the εij ’s are i.i.d. N(0, σ 2

e ). The αi’s, γj ’s and εij ’s are all
independent.

We begin by explaining how to put this model in GLMM (matrix) form. There
are a total of N = m × n observations and we arrange them using the usual (lexi-
cographical) ordering

Y = (Y11 · · ·Y1n Y21 · · ·Y2n · · · Ym1 · · ·Ymn )T .

Since β is a univariate parameter common to all of the observations, p = 1 and
X is an N × 1 column vector of ones, which we denote by 1N . There are r = 2
random factors with q1 = m and q2 = n, so q = m + n. Letting ⊗ denote the
Kronecker product, we can write the Z matrix as (Z1 Z2), where Z1 = Im ⊗ 1n

and Z2 = 1m ⊗ In. We assume throughout this section that SSE > 0.
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We now examine conditions (8) and (9) of Theorem 2 for this particular model.
A routine calculation shows that ZT (I − PX)Z is a block diagonal matrix given
by

n

(
Im − 1

m
Jm

)
⊕ m

(
In − 1

n
Jn

)
,

where Jd is a d × d matrix of ones (and ⊕ is the direct sum operator). It follows
immediately that

t = rank
(
ZT (I − PX)Z

) = rank
(
Im − 1

m
Jm

)
+ rank

(
In − 1

n
Jn

)
= m + n − 2.

Hence, (8) becomes

2−s(m + n − 1)s
�(mn/2 + ae − s)

�(mn/2 + ae)
< 1.

Now, it can be shown that

I − PZT (I−PX)Z =
(

1

m
Jm

)
⊕

(
1

n
Jn

)
.

Hence, we have

tr
(
R1(I − PZT (I−PX)Z)RT

1
) = tr

(
1

m
Jm

)
= 1

and

tr
(
R2(I − PZT (I−PX)Z)RT

2
) = tr

(
1

n
Jn

)
= 1.

Therefore, (9) reduces to

2−s

{
�(m/2 + a1 − s)

�(m/2 + a1)
+ �(n/2 + a2 − s)

�(n/2 + a2)

}
< 1.

Now consider a concrete example in which m = 5, n = 6, and the prior is

IR+(σ 2
e )IR+(σ 2

α )IR+(σ 2
γ )

σ 2
e

√
σ 2

ασ 2
γ

.

So, we are taking be = b1 = b2 = ae = 0 and a1 = a2 = −1/2. Corollary 1 implies
that the Gibbs–Markov chain is geometrically ergodic whenever m,n ≥ 6, but this
result is not applicable when m = 5 and n = 6. Hence, we turn to Theorem 2. In
this case, s̃ = 4, so we need to find an s ∈ (0,1] such that

2−s max
{
(10)s

�(30/2 + 0 − s)

�(30/2 + 0)
,

�(5/2 + (−1/2) − s)

�(5/2 + (−1/2))
+ �(6/2 + (−1/2) − s)

�(6/2 + (−1/2))

}
< 1.

The reader can check that, when s = 0.9, the left-hand side is approximately 0.87.
Therefore, Theorem 2 implies that the Gibbs–Markov chain is geometrically er-
godic in this case.
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5. Specializing to the one-way random effects model. The only other exist-
ing results on geometric convergence of Gibbs samplers for linear mixed models
with improper priors are those of Tan and Hobert (2009) (hereafter, T&H). These
authors considered the one-way random effects model, which is a simple, but im-
portant special case of the GLMM given in (1). In this section, we show that our
results improve upon those of T&H.

Recall that the one-way model is given by

Yij = β + αi + eij ,(16)

where i = 1, . . . , c, j = 1, . . . , ni , the αi’s are i.i.d. N(0, σ 2
α ), and the eij ’s, which

are independent of the αi’s, are i.i.d. N(0, σ 2
e ). It is easy to see that (16) is a special

case of the GLMM. Obviously, there are a total of N = n1 +· · ·+nc observations,
and we arrange them in a column vector with the usual ordering as follows:

Y = (Y11 · · ·Y1n1 Y21 · · ·Y2n2 · · · Yc1 · · ·Ycnc )T .

As in the two-way model of Section 4, β is a univariate parameter common to all
of the observations, so p = 1 and X = 1N . Here there is only one random factor
(with c levels), so r = 1, q = q1 = c and Z = ⊕c

i=1 1ni
. Of course, in this case,

SSE = ∑c
i=1

∑ni

j=1(yij − yi)
2, where yi = n−1

i

∑ni

j=1 yij . We assume throughout
this section that SSE > 0.

We note that T&H actually considered a slightly different parameterization of
the one-way model. In their version, β does not appear in the model equation (16),
but rather as the mean of the ui’s. In other words, T&H used the “centered” param-
eterization, whereas here we are using the “noncentered” parameterization. Román
(2012) shows that, because β and (α1 · · ·αc)

T are part of a single “block” in the
Gibbs sampler, the centered and noncentered versions of the Gibbs sampler con-
verge at exactly the same rate.

T&H considered improper priors for (β, σ 2
e , σ 2

α ) that take the form(
σ 2

e

)−(ae+1)
IR+

(
σ 2

e

)(
σ 2

α

)−(a1+1)
IR+

(
σ 2

α

)
,

and they showed that the Gibbs sampler for the one-way model is geometrically
ergodic if a1 < 0 and

N + 2ae ≥ c + 3 and
(17)

c min

{(
c∑

i=1

ni

ni + 1

)−1

,
n∗

N

}
< 2 exp

{
�

(
c

2
+ a1

)}
,

where n∗ = max{n1, n2, . . . , nc} and �(x) = d
dx

log(�(x)) is the digamma func-
tion.

We now consider the implications of Theorem 2 in the case of the one-way
model. First, t = rank(ZT (I −PX)Z) = c−1. Combining this fact with Remark 4,
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it follows that the two conditions of Theorem 2 will hold if a1 < 0, and there exists
an s ∈ (0,1) ∩ (0, a1 + c

2) ∩ (0, ae + N
2 ) such that

2−s max
{
cs �(N/2 + ae − s)

�(N/2 + ae)
,
�(c/2 + a1 − s)

�(c/2 + a1)

}
< 1.

Román (2012) shows that such an s does indeed exist (so the Gibbs chain is geo-
metrically ergodic) when

N + 2ae ≥ c + 2 and 1 < 2 exp
{
�

(
c

2
+ a1

)}
.(18)

Now, it’s easy to show that

1 ≤ c min

{(
c∑

i=1

ni

ni + 1

)−1

,
n∗

N

}
.

Consequently, if (17) holds, then so does (18). In other words, our sufficient condi-
tions are weaker than those of T&H, so our result improves upon theirs. Moreover,
in contrast with the conditions of T&H, our conditions do not directly involve the
group sample sizes, n1, n2, . . . , nc.

Of course, the best result possible would be that the Gibbs–Markov chain is
geometrically ergodic whenever the posterior is proper. Our result is very close to
the best possible in the important case where the standard diffuse prior is used;
that is, when a1 = −1/2 and ae = 0. The posterior is proper in this case if and
only if c ≥ 3 [Sun, Tsutakawa and He (2001)]. It follows from (18) that the Gibbs–
Markov chain is geometrically ergodic as long as c ≥ 3, and the total sample size,
N = n1 + n2 + · · · + nc, is at least c + 2. This additional sample size condition is
extremely weak. Indeed, the positivity of SSE implies that N ≥ c + 1, so, for fixed
c ≥ 3, our condition for geometric ergodicity fails only in the single case where
N = c + 1. Interestingly, in this case, the conditions of Corollary 1 reduce to c ≥ 5
and N ≥ c + 3.

6. Discussion. Our decision to work with the σ 2-chain rather than the θ -chain
was based on an important technical difference between the two chains that stems
from the fact that π(σ 2|θ, y) is not continuous in θ for each fixed σ 2 (when the set
A is nonempty). Indeed, recall that, for θ /∈ N ,

π
(
σ 2|θ, y

) = fIG

(
σ 2

e ; N

2
+ ae, be + ‖y − Wθ‖2

2

)

×
r∏

i=1

fIG

(
σ 2

ui
; qi

2
+ ai, bi + ‖ui‖2

2

)
,

but for θ ∈ N ,

π
(
σ 2|θ, y

) = fIG
(
σ 2

e ;1,1
) r∏
i=1

fIG
(
σ 2

ui
;1,1

)
.
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Also, recall that the Mtd of the σ 2-chain is given by

k1
(
σ 2|σ̃ 2) =

∫
Rp+q

π
(
σ 2|θ, y

)
π
(
θ |σ̃ 2, y

)
dθ.

Since the set N has measure zero, the “arbitrary part” of π(σ 2|θ, y) washes out
of k1. However, the same cannot be said for the θ -chain, whose Mtd is given by

k2(θ |θ̃ ) =
∫

R
r+1+

π
(
θ |σ 2, y

)
π
(
σ 2|θ̃ , y

)
dσ 2.

This difference between k1 and k2 comes into play when we attempt to apply cer-
tain “topological” results from Markov chain theory, such as those in Chapter 6
of Meyn and Tweedie (1993). In particular, in our proof that the σ 2-chain is a
Feller chain (which was part of the proof of Proposition 2), we used the fact that
π(θ |σ 2, y) is continuous in σ 2 for each fixed θ . Since π(σ 2|θ, y) is not continu-
ous, we cannot use the same argument to prove that the θ -chain is Feller. In fact,
we suspect that the θ -chain is not Feller, and if this is true, it means that our method
of proof will not work for the θ -chain.

It is possible to circumvent the problem described above by removing the set
N from the state space of the θ -chain. In this case, we are no longer required to
define π(σ 2|θ, y) for θ ∈ N , and since π(σ 2|θ, y) is continuous (for fixed σ 2) on
R

p+q \ N , the Feller argument for the θ -chain will go through. On the other hand,
the new state space has “holes” in it, and this could complicate the search for a
drift function that is unbounded off compact sets. For example, consider a toy drift
function given by v(x) = x2. This function is clearly unbounded off compact sets
when the state space is R, but not when the state space is R \ {0}. The modified
drift function v∗(x) = x2 + 1/x2 is unbounded off compact sets for the “holey”
state space.

T&H overlooked a set of measure zero (similar to our N ), and this oversight
led to an error in the proof of their main result (Proposition 3). However, Román
(2012) shows that T&H’s proof can be repaired and that their result is correct as
stated. The fix involves deleting the offending null set from the state space, and
adding a term to the drift function.

APPENDIX: UPPER BOUNDS

A.1. Preliminary results. Here is our first result.

LEMMA 1. The following inequalities hold for all σ 2 ∈ R
r+1+ and all i ∈

{1,2, . . . , r}:
(1) Q−1 � (ZT (I − PX)Z)+σ 2

e + (I − PZT (I−PX)Z)(
∑r

j=1 σ 2
uj

);

(2) tr((I − PX)ZQ−1ZT (I − PX)) ≤ rank(ZT (I − PX)Z)σ 2
e ;

(3) (RiQ
−1RT

i )−1 � ((σ 2
e )−1λmax + (σ 2

ui
)−1)Iqi

.
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PROOF. Recall from Section 3 that UT �U is the spectral decomposition of
ZT (I −PX)Z, and that P� is a binary diagonal matrix whose ith diagonal element
is 1 if and only if the ith diagonal element of � is positive. Let σ 2• = ∑r

j=1 σ 2
uj

.

Since (σ 2• )−1Iq � D−1, we have

(
σ 2

e

)−1
ZT (I − PX)Z + (

σ 2•
)−1

Iq � (
σ 2

e

)−1
ZT (I − PX)Z + D−1,

and this yields

Q−1 = ((
σ 2

e

)−1
ZT (I − PX)Z + D−1)−1

� ((
σ 2

e

)−1
ZT (I − PX)Z + (

σ 2•
)−1

Iq

)−1(19)

= UT (
�
(
σ 2

e

)−1 + Iq

(
σ 2•

)−1)−1
U.

Now let �+ be a diagonal matrix whose diagonal elements, {λ+
i }qi=1, are given by

λ+
i =

{
λ−1

i , λi �= 0,
0, λi = 0.

Note that, for each i ∈ {1,2, . . . , r}, we have

1

λi(σ 2
e )−1 + (σ 2• )−1 ≤ λ+

i σ 2
e + I{0}(λi)σ

2• .

This shows that(
�
(
σ 2

e

)−1 + Iq

(
σ 2•

)−1)−1 � �+σ 2
e + (I − P�)σ 2• .

Together with (19), this leads to

Q−1 � UT (
�
(
σ 2

e

)−1 + Iq

(
σ 2•

)−1)−1
U � UT (

�+σ 2
e + (I − P�)σ 2•

)
U

= (
ZT (I − PX)Z

)+
σ 2

e + UT (I − P�)Uσ 2• .

So to prove the first statement, it remains to show that UT (I − P�)U = I −
PZT (I−PX)Z . But notice that letting A = ZT (I − PX)Z and using its spectral de-
composition, we have

A
(
AT A

)+
AT = UT �U

(
UT �T �U

)+
UT �U

= UT �
(
�T �

)+
�U = UT P�U,

which implies that

I − PZT (I−PX)Z = I − A
(
AT A

)+
AT = I − UT P�U = UT (I − P�)U.

The proof of the first statement is now complete. Now let Z̃ = (I − PX)Z. Multi-
plying the first statement on the left and the right by Z̃ and Z̃T , respectively, and
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then taking traces yields

tr
(
Z̃Q−1Z̃T ) ≤ tr

(
Z̃
(
Z̃T Z̃

)+
Z̃T )

σ 2
e + tr

(
Z̃UT (I − P�)UZ̃T )

σ 2• .(20)

Since (Z̃T Z̃)(Z̃T Z̃)+ is idempotent, we have

tr
(
Z̃
(
Z̃T Z̃

)+
Z̃T ) = tr

(
Z̃T Z̃

(
Z̃T Z̃

)+) = rank
(
Z̃T Z̃

(
Z̃T Z̃

)+)
= rank

(
Z̃T Z̃

)
.

Furthermore,

tr
(
Z̃UT (I − P�)UZ̃T ) = tr

(
UT (I − P�)UZT (I − PX)Z

)
= tr

(
UT (I − P�)UUT �U

)
= tr

(
UT (I − P�)�U

) = 0,

where the last line follows from the fact that (I − P�)� = 0. It follows from (20)
that

tr
(
(I − PX)ZQ−1ZT (I − PX)

) ≤ rank
(
ZT (I − PX)Z

)
σ 2

e ,

and the second statement has been established. Recall from Section 3 that λmax is
the largest eigenvalue of ZT (I −PX)Z, and that Ri is the qi × q matrix of 0’s and
1’s such that Riu = ui . Now, fix i ∈ {1,2, . . . , r} and note that

Q = (
σ 2

e

)−1
ZT (I − PX)Z + D−1 � (

σ 2
e

)−1
λmaxIq + D−1.

It follows that

Ri

((
σ 2

e

)−1
λmaxIq + D−1)−1

RT
i � RiQ

−1RT
i ,

and since these two matrices are both positive definite, we have(
RiQ

−1RT
i

)−1 � (
Ri

((
σ 2

e

)−1
λmaxIq + D−1)−1

RT
i

)−1

= ((
σ 2

e

)−1
λmax + (

σ 2
ui

)−1)
Iqi

,

and this proves that the third statement is true. �

Let z̃i and yi denote the ith column of Z̃T = ((I − PX)Z)T and the ith compo-
nent of y, respectively. Also, define K to be

N∑
i=1

|yi |
√√√√√ sup

w∈R
N+q
+

tTi

(
ti t

T
i + ∑

j∈{1,2,...,N}\{i}
wj tj t

T
j +

N+q∑
j=N+1

wj tj t
T
j + wiIq

)−2

ti ,

where, for j = 1,2, . . . ,N , tj = z̃j , and for j ∈ {N + 1, . . . ,N + q}, the tj are the
standard orthonormal basis vectors in R

q ; that is, tN+l has a one in the lth position
and zeros everywhere else.
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LEMMA 2. For any σ 2 ∈ R
r+1+ , we have

h
(
σ 2) := ∥∥(σ 2

e

)−1
Q−1ZT (I − PX)y

∥∥ ≤ K < ∞.

The following result from Khare and Hobert (2011) will be used in the proof of
Lemma 2.

LEMMA 3. Fix n ∈ {2,3, . . .} and m ∈ N, and let x1, . . . , xn be vectors in R
m.

Then

Cm,n(x1;x2, . . . , xn) := sup
w∈R

n+
xT

1

(
x1x

T
1 +

n∑
i=2

wixix
T
i + w1I

)−2

x1

is finite.

PROOF OF LEMMA 2. Recall that we defined z̃i and yi to be the ith column
of Z̃T = ((I − PX)Z)T and the ith component of y, respectively. Now,

h
(
σ 2) = ∥∥(ZT (I − PX)Z + σ 2

e D−1)−1
ZT (I − PX)y

∥∥
=

∥∥∥∥∥
N∑

i=1

(
Z̃T Z̃ + σ 2

e D−1)−1
z̃iyi

∥∥∥∥∥
≤

N∑
i=1

∥∥(Z̃T Z̃ + σ 2
e D−1)−1

z̃iyi

∥∥

=
N∑

i=1

∥∥∥∥∥
(

N∑
j=1

z̃j z̃
T
j + σ 2

e D−1

)−1

z̃iyi

∥∥∥∥∥
=

N∑
i=1

|yi |Ki

(
σ 2),

where

Ki

(
σ 2) :=

∥∥∥∥
(
z̃i z̃

T
i + ∑

j∈{1,2,...,N}\{i}
z̃j z̃

T
j + σ 2

e D−1
)−1

z̃i

∥∥∥∥.
For each i ∈ {1,2, . . . ,N}, define

K̂i =
√√√√√ sup

w∈R
N+q
+

tTi

(
ti t

T
i + ∑

j∈{1,2,...,N}\{i}
wj tj t

T
j +

N+q∑
j=N+1

wj tj t
T
j + wiIq

)−2

ti ,
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and notice that K can be written as K = ∑N
i=1 |yi |K̂i . Therefore, it is enough to

show that, for each i ∈ {1,2, . . . ,N}, Ki(σ
2) ≤ K̂i < ∞. Now,

K2
i

(
σ 2) = z̃T

i

(
z̃i z̃

T
i + ∑

j∈{1,2,...,N}\{i}
z̃j z̃

T
j + σ 2

e D−1
)−2

z̃i

= z̃T
i

(
z̃i z̃

T
i + ∑

j∈{1,2,...,N}\{i}
z̃j z̃

T
j + σ 2

e

(
D−1 − 1

σ 2•
Iq

)
+ σ 2

e

σ 2•
Iq

)−2

z̃i

≤ sup
w∈R

N+q
+

tTi

(
ti t

T
i + ∑

j∈{1,2,...,N}\{i}
wj tj t

T
j +

N+q∑
j=N+1

wj tj t
T
j + wiIq

)−2

ti

= K̂2
i .

Finally, an application of Lemma 3 shows that K̂2
i is finite, and the proof is com-

plete. �

Let χ2
k (μ) denote the noncentral chi-square distribution with k degrees of free-

dom and noncentrality parameter μ.

LEMMA 4. If J ∼ χ2
k (μ) and γ ∈ (0, k/2), then

E
[
J−γ ] ≤ 2−γ �(k/2 − γ )

�(k/2)
.

PROOF. Since �(x − γ )/�(x) is decreasing for x > γ > 0, we have

E
[
J−γ ] =

∞∑
i=0

μie−μ

i!
∫

R+
x−γ

[
1

�(k/2 + i)2k/2+i
xk/2+i−1e−x/2

]
dx

= 2−γ
∞∑
i=0

μie−μ

i!
�(k/2 + i − γ )

�(k/2 + i)

≤ 2−γ �(k/2 − γ )

�(k/2)
. �

A.2. An upper bound on E[‖y − Wθ‖2|σ 2]. We remind the reader that θ =
(βT uT )T , W = (X Z), and that π(θ |σ 2, y) is a multivariate normal density with
mean m and covariance matrix V . Thus,

E
[‖y − Wθ‖2|σ 2] = tr

(
WV WT ) + ‖y − Wm‖2,(21)
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and we have

tr
(
WV WT )

= σ 2
e tr(PX) + tr

(
PXZQ−1ZT PX

) − 2 tr
(
ZQ−1ZT PX

) + tr
(
ZQ−1ZT )

= pσ 2
e − tr

(
ZQ−1ZT PX

) + tr
(
ZQ−1ZT )

= pσ 2
e + tr

(
ZQ−1ZT (I − PX)

)
(22)

= pσ 2
e + tr

(
(I − PX)ZQ−1ZT (I − PX)

)
≤ pσ 2

e + rank
(
ZT (I − PX)Z

)
σ 2

e

= (p + t)σ 2
e ,

where the inequality is an application of Lemma 1. Finally, a simple calculation
shows that

y − Wm = (I − PX)
[
I − (

σ 2
e

)−1
ZQ−1ZT (I − PX)

]
y.

Hence,

‖y − Wm‖ = ∥∥(I − PX)y − (
σ 2

e

)−1
(I − PX)ZQ−1ZT (I − PX)y

∥∥
≤ ∥∥(I − PX)y

∥∥ + ∥∥(σ 2
e

)−1
(I − PX)ZQ−1ZT (I − PX)y

∥∥
(23)

≤ ∥∥(I − PX)y
∥∥ + ∥∥(I − PX)Z

∥∥∥∥(σ 2
e

)−1
Q−1ZT (I − PX)y

∥∥
≤ ∥∥(I − PX)y

∥∥ + ∥∥(I − PX)Z
∥∥K,

where ‖ · ‖ denotes the Frobenius norm and the last inequality uses Lemma 2.
Finally, combining (21), (22) and (23) yields

E
[‖y − Wθ‖2|σ 2] ≤ (p + t)σ 2

e + (∥∥(I − PX)y
∥∥ + ∥∥(I − PX)Z

∥∥K)2
.

A.3. An upper bound on E[‖ui‖2|σ 2]. Note that

E
[‖ui‖2|σ 2] = E

[‖Riu‖2|σ 2] = tr
(
RiQ

−1RT
i

) + ∥∥E[
Riu|σ 2]∥∥2

.(24)

By Lemma 1, we have

tr
(
RiQ

−1RT
i

) ≤ tr
(
Ri

(
ZT (I − PX)Z

)+
RT

i

)
σ 2

e

+ tr
(
Ri(I − PZT (I−PX)Z)RT

i

) r∑
j=1

σ 2
uj

(25)

= ξiσ
2
e + ζi

r∑
j=1

σ 2
uj

.

Now, by Lemma 2,∥∥E[
Riu|σ 2]∥∥ ≤ ‖Ri‖

∥∥E[
u|σ 2]∥∥ = ‖Ri‖h(σ 2) ≤ ‖Ri‖K.(26)
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Combining (24), (25) and (26) yields

E
[‖ui‖2|σ 2] ≤ ξiσ

2
e + ζi

r∑
j=1

σ 2
uj

+ (‖Ri‖K)2
.

A.4. An upper bound on E[(‖ui‖2)−c|σ 2]. Fix i ∈ {1,2, . . . , r}. Given σ 2,
(RiQ

−1RT
i )−1/2ui has a multivariate normal distribution with identity covariance

matrix. It follows that, conditional on σ 2, the distribution of uT
i (RiQ

−1RT
i )−1ui

is χ2
qi

(w). It follows from Lemma 4 that, as long as c ∈ (0,1/2), we have

E
[[

uT
i

(
RiQ

−1RT
i

)−1
ui

]−c|σ 2] ≤ 2−c �(qi/2 − c)

�(qi/2)
.

Now, by Lemma 1,

E
[(‖ui‖2)−c|σ 2]

= ((
σ 2

e

)−1
λmax + (

σ 2
ui

)−1)c
E
[[

uT
i

((
σ 2

e

)−1
λmax + (

σ 2
ui

)−1)
Iqi

ui

]−c|σ 2]
≤ ((

σ 2
e

)−1
λmax + (

σ 2
ui

)−1)c
E
[[

uT
i

(
RiQ

−1RT
i

)−1
ui

]−c|σ 2]
≤ ((

σ 2
e

)−1
λmax + (

σ 2
ui

)−1)c2−c �(qi/2 − c)

�(qi/2)

≤ 2−c �(qi/2 − c)

�(qi/2)

[
λc

max
(
σ 2

e

)−c + (
σ 2

ui

)−c]
.
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