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A PENALIZED EMPIRICAL LIKELIHOOD METHOD IN HIGH
DIMENSIONS1

BY SOUMENDRA N. LAHIRI AND SUBHADEEP MUKHOPADHYAY

Texas A&M University

This paper formulates a penalized empirical likelihood (PEL) method
for inference on the population mean when the dimension of the observations
may grow faster than the sample size. Asymptotic distributions of the PEL
ratio statistic is derived under different component-wise dependence struc-
tures of the observations, namely, (i) non-Ergodic, (ii) long-range dependence
and (iii) short-range dependence. It follows that the limit distribution of the
proposed PEL ratio statistic can vary widely depending on the correlation
structure, and it is typically different from the usual chi-squared limit of the
empirical likelihood ratio statistic in the fixed and finite dimensional case.
A unified subsampling based calibration is proposed, and its validity is estab-
lished in all three cases, (i)–(iii). Finite sample properties of the method are
investigated through a simulation study.

1. Introduction. In a seminal paper, Owen (1988) introduced the empirical
likelihood (EL) method for statistical inference on population parameters in a
nonparametric framework, and showed that it enjoyed properties similar to the
likelihood-based inference methods in a more traditional parametric framework.
Following Owen (1988), the EL method has been extended to various complex
inference problems; see, for example, Diccicio, Hall and Romano (1991), Hall
and Chen (1993), Qin and Lawless (1994), Owen (2001), Bertail (2006), Hjort,
McKeague and Van Keilegom (2009), Chen, Peng and Qin (2009) and the refer-
ences therein. An extension of the EL method in the high-dimensional context,
where the dimension p of the observations increases with the sample size n,
is given by Hjort, McKeague and Van Keilegom (2009). Hjort, McKeague and
Van Keilegom (2009) derives the limit distribution of the EL ratio statistic based on
p-dimensional estimating equations when p → ∞ with n at the rate p = o(n1/3).
Chen, Peng and Qin (2009) improved upon the rate restriction in Hjort, McKeague
and Van Keilegom (2009) and established a nondegenerate limit distribution of the
EL ratio statistic, allowing p = o(n1/2) under suitable regularity conditions.

For applications to high-dimensional problems, such as those involving gene
expression data, one encounters a p that is typically much larger than the sample
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size n. However, extension of the EL to such high-dimensional problems is itself
a daunting task because the (standard) EL method is known to fail in such situa-
tions. An important result of Tsao (2004) shows that the definition of the EL for a
p-dimensional population mean based on a sample size n breaks down on a set of
positive probability whenever p > n/2; further, this probability is asymptotically
nonnegligible. The main reason for this surprising behavior of the EL is that for
p > n/2, the convex hull of n random vectors in R

p is too small a set to contain the
true mean with high probability. As a result, the standard EL approach cannot be
applied to the “large p small n” problems with p > n/2. An alternative formula-
tion of the EL in such situations (called the adjusted EL) is given by Chen, Variyath
and Abraham (2008), which is further refined and studied by Emerson and Owen
(2009). The adjusted EL method adds additional pseudo-observations [a single one
in Chen, Variyath and Abraham (2008) and two in Emerson and Owen (2009)] so
as to cover a hypothesized value of the mean parameter within the convex hull of
the augmented data set, thereby making the adjusted EL well-defined. A second
approach, due to Bartolucci (2007), is to drop the convex hull constraint in the for-
mulation of the EL altogether and redefine the likelihood of a hypothesized value
of the parameter by penalizing the unconstrained EL using the Mahalanobis dis-
tance. The penalized EL (PEL) of Bartolucci (2007) is well defined for all values
of p ≤ n, as long as the sample covariance matrix is nonsingular. However, due to
the use of the inverse of the sample covariance matrix in its formulation, the PEL
of Bartolucci (2007) is also not well defined for p > n. Bartolucci (2007) estab-
lishes a chi-squared limit of the PEL for the population mean in the case where the
dimension p is fixed and finite for all n. Other variants of the PEL where a penalty
function is added to the standard EL, in the spirit of the penalized likelihood work
of Fan and Li (2001) and Fan and Peng (2004), are considered by Otsu (2007) and
Tang and Leng (2010). Both these papers consider the high dimensional set up and
establish validity of their methods still requiring p to grow at most as a fractional
power of the sample size n. In this paper, we introduce a modified version of the
PEL method of Bartolucci (2007) that is computationally simpler and that is ap-
plicable to a large class of “large p small n” problems, allowing p to grow faster
than n. This is an important step in generalizing the EL in high dimensions beyond
the p ≤ n threshold where the standard EL and its existing variants fail.

To briefly describe the proposed methodology and the main results of the paper,
suppose that X1, . . . ,Xn are independent and identically distributed (i.i.d.) R

p-
valued random vectors with mean μ ∈ R

p , 1 < p < ∞. Denote the j th component
of a p-vector x by xj , j = 1, . . . , p. The proposed PEL employs a multiplicative
penalty term to penalize the likelihood of a hypothesized value μ of the popula-
tion mean as a quadratic function of the distance between the sample mean and μ.
However, unlike Bartolucci’s (2007) method, the use of the inverse sample covari-
ance matrix is completely avoided, as consistency of the sample covariance matrix
in the high dimensional case for all the dependence structures that we consider
in this paper is not guaranteed. The proposed PEL instead uses a component-wise
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scaling to bring up the varying degrees of variability (variances) along different
components to a common level, and then it applies an overall penalty on the sum
of the squared rescaled differences; see (2.1) in Section 2 below. As a result, the
proposed PEL is well-defined for all values of n,p ≥ 1. Further, this approach
has the added advantage that it does not require inversion of a high-dimensional
matrix, and therefore, it is computationally much simpler.

For investigations into the theoretical properties of the proposed PEL method,
we allow the components of X1 to be dependent. The range of dependence that we
consider covers the cases of:

(i) short-range dependence (SRD), where roughly speaking, the average of
the components of X1 satisfies a central limit theorem (CLT) under suitable mo-
ment conditions; cf. Ibragimov and Linnik (1971);

(ii) long-range dependence (LRD), where under suitable regularity conditions,
the average of the components satisfies noncentral limit theorems [Taqqu (1975,
1977), Dobrushin and Major (1979)];

(iii) nonergodicity (NE), where the dependence is so strong that the average of
the components even fails to satisfy a (strong) law of large numbers.

We refer to the LRD and SRD cases collectively as the ergodic (E)-case, as the
negative logarithm of the PEL ratio statistic Kn (say) here satisfies a law of large
numbers without further centering and scaling, for any rate of growth of p; cf. Re-
mark 4.2 below. However, such degenerate limits laws are not always the most use-
ful in practice as these only lead to conservative large sample inference procedures.
By using suitable centering and scaling, we are able to further refine these results
and establish convergence in distribution to nondegenerate limits. Specifically, we
show that under SRD, Kn with centering at 1 [for c∗ = 1 in condition (C.2)(ii) be-
low] and scaling by square-root of the dimension p of the observations converges
to a Normal limit, very much like the results of Hjort, McKeague and Van Kei-
legom (2009) and Chen, Peng and Qin (2009), but allowing a much faster rate
of growth of p and allowing a more general dependence framework. In the long
range dependent (also abbreviated as LRD) case, Kn with a suitable normalization
can have both Normal and non-Normal limits. For the Normal limit, the centering
and the scaling sequences are the same as those used in the SRD case, except at
the boundary layer of dependence where the Normal limit switches over to the
non-Normal limit. For the non-Normal limit under LRD, the centering term is the
same as that in the SRD case, but the scaling depends on the rate of decay of the
auto-correlation coefficient of the components of X1 (up to a possibly unknown
permutation). Finally, in comparison to the E-case, Kn in the NE-case is shown
to converge in distribution to a stochastic integral, and it does NOT require any
further centering and scaling.

The growth rate of p, for which a nondegenerate limit law holds for a suitably
transformed Kn, primarily depends on the strength of dependence among the com-
ponents of the observations; cf. Figure 1. In the NE-case, p can grow arbitrarily
fast (e.g., polynomial, exponential, super-exponential, etc.) as a function of n. In
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FIG. 1. Envelope for the growth rates of p for a nondegenerate limit law of the PEL ratio statistic.
The smaller the α, the stronger is the dependence.

the E-case, although a degenerate limit law holds for an arbitrary growth rate of p,
for a nondegenerate limit, p must admit a suitable upper bound. In particular, for
the Normal limit in the E-case (excluding the boundary case), the growth rate of
p as a function of n is p = o(n2). For the non-Normal limit under the E-case,
p = o(n1/α) for 0 < α < 1/2 where, roughly speaking, α denotes the exponent of
the rate of decay of the autocorrelation among the components of X1, up to a per-
mutation; cf. condition (C.4)α , Section 3. The boundary case is given by α = 1/2,
where the growth rate is slightly smaller and is given by p = o(n/[logn]2). From
Figure 1, it follows that the stronger the dependence among the components of the
observations, the higher is the allowable growth rate of p as a function of n for a
nondegenerate limit. The limiting case α → 0+ is the NE-case. Here the nonde-
generate limit for the the negative logarithm of the PEL ratio statistic holds for an
arbitrary growth rate of p as a function of n.

It is worth pointing out that in most cases, the limit distribution of the PEL ratio
statistic is not distribution free in the sense that the asymptotic approximation to
the distribution of the PEL ratio statistic requires the knowledge of one or more
unknown population parameters. As a result, the limit laws are not directly usable
in practice. To address this issue, we propose a calibration procedure based on the
subsampling method. We show that under mild conditions, the subsampling based
calibration method is consistent under all three types of dependence structures.

The key step in the proofs is to derive a quadratic asymptotic approximation to
Kn under all three cases of dependence. This is presented in Lemma 6.2 for the
NE-case and in the proof of Theorem 3.2 for the E-case. The derivation of the limit
law in the NE-case uses some weak convergence and operator convergence results
on Hilbert spaces. On the other hand, in the E-case, refined approximations to Kn

are required to go beyond their degenerate limits. See Section 6 for more details.
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The rest of the paper is organized as follows. In Section 2, we describe the PEL
methodology. In Section 3, we introduce the asymptotic framework and establish
the limit distributions of the logarithm of the PEL ratio statistic under the three de-
pendence scenarios. In Section 4, we describe the subsampling method and prove
its validity for all three cases. We report the results from a moderately large simu-
lation study in Section 5. Proofs of the results are given in Section 6.

2. Formulation of the PEL. Let X1, . . . ,Xn be i.i.d. random vectors with
mean μ ∈ R

p . Let Xij denote the j th component of Xi , 1 ≤ i ≤ n, 1 ≤ j ≤ p.
Also, let A′ denote the transpose of a matrix A. We define the penalized empirical
likelihood (PEL) of a plausible value μ = (μ1, . . . ,μp)′ of the population mean as

Ln(μ) = sup
(π1,...,πn)′∈�n

{(
n∏

i=1

πi

)
exp

(
−λ

p∑
j=1

δj

[
n∑

i=1

πi(Xij − μj)

]2)}
,(2.1)

where �n = {(π1, . . . , πn)
′ ∈ [0,1]n :

∑n
i=1 πi = 1}, δj ’s are component specific

weights (which may be random), and λ = λn ∈ [0,∞) is an overall penalty factor.
Here we use

δj ≡ δnj = s−2
nj 1(snj 
= 0),(2.2)

where s2
nj = n−1 ∑n

i=1(Xij − X̄nj )
2 is the sample variance of the j th components

of X1, . . . ,Xn, X̄nj = n−1 ∑n
i=1 Xij and where 1(·) denotes the indicator function.

This choice of the component-wise scaling allows us to adjust for the heteroscedas-
ticity along different co-ordinates of X1 and therefore, the overall penalization pa-
rameter λ gives comparable weights to all components. In addition, the choice of
the penalty function makes the proposed PEL invariant with respect to component-
wise scaling, which is an inherently desirable property, particularly while deal-
ing with high-dimensional variables, where the assumption of homoscedasticity
among a large number of components is unrealistic. The maximizer of the product∏n

i=1 πi in (2.1) without the penalty term is given by πi = 1/n for i = 1, . . . , n.
Hence, the PEL ratio statistic at a plausible value μ of the mean vector is defined
as

Rn(μ) = nnLn(μ).

We now compare our formulation with the PEL of Bartolucci (2007), which is
defined as

LB
n (μ) = sup

(π1,...,πn)′∈�n

{(
n∏

i=1

πi

)
exp

(
−n(v − μ)′V †−1

n (v − μ)

2h2

)}
,(2.3)

where v = ∑n
i=1 πiXi , V †

n = n−1 ∑n
i=1(Xi − X̄n)(X̄i − X̄n)

′ is the sample covari-
ance matrix, and h is a penalty parameter. Note that for a large p ∈ (1, n], the
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sample variance matrix Vn is ill-conditioned, if the smallest eigen-value of the un-
derlying covariance matrix � (say) of X1 is not bounded away from zero, and it
is always singular when p > n, requiring further modifications to make (2.3) well
defined. Under either of the two scenarios, the PEL based on (2.3) can be com-
putationally demanding and unstable. In comparison, the component-wise scaling
in (2.1) only involves 1-dimensional operations which is computationally much
simpler and feasible even for a large p. A second limitation of (2.3) is the lack
of attractive theoretical properties of V −1

n (or of its variants) in high dimensions.
Indeed, consistency of the sample covariance matrix (and its banded or tapered
versions) in the high-dimensional setting is questionable in presence of strong cor-
relations among the components of X1 that we consider here. Existing work on
consistency of the sample covariance matrix is known only under suitable con-
ditions of sparsity or weak dependence; cf. Bickel and Levina (2008), El Karoui
(2008), Cai, Zhang and Zhou (2010). Our formulation also avoids this problem
altogether by using component-wise scaling.

For the sake of completeness, we also briefly describe the penalized EL ap-
proach of Otsu (2007) and Tang and Leng (2010), specialized to the case of the
mean parameter μ for simplicity of exposition. Let LST

n (μ) = sup{∏n
i=1 πi : (π1,

. . . , πn) ∈ �n,
∑n

i=1 πi(Xi −μ) = 0} denote the standard EL for μ. Also, let pλ(·)
be a penalty function, such as the smoothly clipped absolute deviation (SCAD)
penalty function of Fan and Li (2001). Then, the penalized EL considered by Otsu
(2007) and Tang and Leng (2010) is of the form

LOTL
n (μ) = LST

n (μ) exp

(
−n

p∑
j=1

pλ(μj )

)
,(2.4)

where μ = (μ1, . . . ,μp)′. For the case of a more general parameter θ defined
through a set of estimating equations, the formulation of Otsu (2007) and Tang
and Leng (2010) replaces LST

n (μ) in (2.4) by the corresponding version of the
standard EL for θ ; cf. Qin and Lawless (1994). As a result, irrespective of the
target parameter, since (2.4) is directly based on the standard EL, this formulation
of the penalized EL also suffers from the same limitations as the standard EL. In
particular, this approach also fails in high dimensions whenever p > n/2.

In the next section, we investigate theoretical properties of the proposed PEL
method (2.1) under the dependence structures described in Section 1.

3. Limit distributions.

3.1. General framework. We establish the limit distribution theory for the
PEL ratio statistic in a triangular array set up, with n denoting the variable driving
the asymptotics. Thus, the vectors X1, . . . ,Xn depend on n as are their distribu-
tions and the dimension p. However, we often suppress the dependence on n for
simplicity of notation. The limit distribution of the PEL ratio statistic depends
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on the degree of dependence among the components of X1, . . . ,Xn. As stated in
Section 1, we can broadly classify the dependence structure into two categories:
(i) Non-Ergodic (NE) and (ii) Ergodic (E). In the NE-case, the dependence among
the components of each Xi is so strong [cf. condition (C.3) below] that even the
law of large numbers fails. In this case, we show that under appropriate conditions,
the PEL ratio statistic has a nondegenerate limit. In contrast, in the E-case, the cor-
responding limit is degenerate, and further centering and scaling are needed for
nondegenerate limit laws which, in turn, depend the type of dependence (SRD or
LRD). We begin with the NE-case.

3.2. Limit distribution for the nonergodic case. We need to introduce some
notation at this stage. Let ρn(j, l) denote the correlation between X1j and X1l ,
1 ≤ j, l ≤ p. Let σ 2

nj = Var(X1j ) and DX
nj = {x ∈ R :P(X1j = x) > 0}, 1 ≤ j ≤ p,

n ≥ 1. Write C to denote a generic constant in (0,∞). Also, for any two se-
quences {an}n≥1 and {bn}n≥1 ∈ (0,∞), write an ∼ bn if an/bn → 1 as n → ∞. Let
L2[0,1] denote the set of all square integrable functions on [0,1] (with respect to
the Lebesgue measure on [0,1]), equipped with the inner product 〈f,g〉 = ∫ 1

0 fg,
f,g ∈ L2[0,1]. Let {φk :k ∈ N} denote a complete orthonormal basis of L2[0,1],
where N = {1,2, . . .} denotes the set of all positive integers. For any (bounded)
jointly measurable function h : [0,1]2 → R, define the operator ϒh on L2[0,1] by
ϒhf = ∫

[0,1] h(·;u)f (u)du for f ∈ L2[0,1]. For x, y ∈ R, let x ∧ y = min{x, y}.
We shall make use of the following conditions for deriving the limit distribution

of − logRn(μ). The values of the integers r and s below will be specified later in
the statements of the theorems.

CONDITIONS.

(C.1) (i) max{E[σ 2
nj δj ]s : 1 ≤ j ≤ p} = O(1) for a given s ∈ N.

(ii) lim supn→∞ max{P(Xnj = x) :x ∈ DX
nj ,1 ≤ j ≤ p} < 1.

(C.2) (i) For a given r ∈ N, max{E|X1j |r : 1 ≤ j ≤ p} < C.

(ii) λn = c∗n/p for some c∗ ∈ (0,∞).
(C.3) There exists a correlation function ρ0(·, ·) of a mean-square continuous pro-

cess on [0,1], and for each n ≥ 1, there exists a permutation ιn of {1, . . . , pn}
such that ρn(j, l) = ρ0(

ιn(j)
p

, ιn(l)
p

). Further, with c∗ as in (C.2), ρ0(·, ·) sat-
isfies the following:

(i) 4c2∗
∫ 1

0
∫ 1

0 ρ2
0(u, v) dudv < 1;

(ii) sup{|ρ0(u + h1, v + h2) − ρ0(u, v)| : |h1| ≤ δ, |h2| ≤ δ} ≤ g(δ)H(u, v)

for all u, v,u + h1, v + h2 ∈ [0,1] for some function g(·) satis-
fying g(δ) → 0 as δ ↓ 0 and for some function H(·, ·) satisfying∑

k≥1〈|φk|, |ϒHφk|〉 < ∞;
(iii)

∑
k≥1〈φk,ϒ0φk〉 converges, where ϒ0 = ϒh with h = ρ0.
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We now briefly comment on the conditions. Condition (C.1)(i) is a moment con-
dition on the scaled component-wise weights δj ’s and requires finiteness of the sth
negative moment of the sample variance s2

nj ’s (scaled by the respective expected

values σ 2
nj ’s). This condition holds in the case of Gaussian Xij ’s whenever the the

sample size n > 2s. Condition (C.1)(ii) is a mild condition—it says that none of
the Xij ’s take a single value with probability approaching one. This condition triv-
ially holds if the components of X1 are continuous and also in the discrete case, if
the supports of X1j ’s contain at least two values with asymptotically nonvanishing
probabilities. Condition (C.2)(i) is a moment condition that will be used with dif-
ferent values of r in the main theorems of this section, while (C.2)(ii) specifies the
growth rate of the penalty parameter for a nondegenerate limit of − logRn(μ0).
However, unlike the standard usage of the penalty parameter in the context of vari-
able selection, where different choices of the parameter lead to different sets of
variables being chosen, here the key role of the penalty parameter is to stabilize
the contribution from the sum of component-wise squared differences to the over-
all “likelihood” in (2.1). Finally, consider condition (C.3) that specifies the non-
ergodic structure of the Xi’s. Note that, up to a (possibly unknown) permutation
of the co-ordinates, the components of X1 are essentially correlated as strongly
as the variables W(t)’s coming from a constant mean, mean-square continuous
process {W(t) : t ∈ [0,1]} (say) with covariance function ρ0(·). In this case, the
dependence among the variables W(i/p) and W(j/p), 1 ≤ i < j ≤ p is so strong
that the average p−1 ∑p

j=1 W(j/p) may not converge to a constant as p → ∞, as
one would expect from the well-known ergodic theorems.

Under conditions (C.1)–(C.3), the limit distribution of the log-PEL ratio statistic
is given by a stochastic integral, as shown by the following result.

THEOREM 3.1. Let conditions (C.1), (C.2) and (C.3) hold with s = 4 and
r = 8, let μ0 denote the true value of μ and let p → ∞ as n → ∞. Then

− logRn(μ0) →d c∗
∫ 1

0

∫ 1

0
�0(u, v)Z(u)Z(v) dudv,(3.1)

where Z(·) is a zero mean Gaussian process on [0,1] with covariance function
ρ0(·) and where the function �0(·, ·) is defined as

�0(u, v) =
∞∑

k=0

(−2)kck∗ρ
∗(k)
0 (u, v), 0 < u,v < 1,(3.2)

with ρ
∗(0)
0 (u, v) = 1, ρ

∗(1)
0 (u, v) = ρ0(u, v) and for k ≥ 1,

ρ
∗(k+1)
0 (u, v) =

∫ 1

0
· · ·

∫ 1

0

{
k−1∏
j=1

ρ0(uj , uj+1)

}
ρ0(u1, u)ρ0(uk, v) du1 · · · duk.
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For a general definition of a stochastic integral of the form (3.1), see Cramer
and Leadbetter (1967). Note that under condition (C.3), by repeated application of
the Cauchy–Schwarz inequality, for k ≥ 1,

sup
u,v∈[0,1]

∣∣ρ∗(k+1)
0 (u, v)

∣∣ ≤ (1 − δ)k−1[2c∗]−(k+1) for some δ ∈ (0,1),

and hence, the limiting stochastic integral is well defined.
Theorem 3.1 shows that under a suitable choice of the penalty parameter,

namely, λ = c∗n/p, the negative log PEL ratio statistic has a nondegenerate limit
distribution. Note that, unlike the standard version of the EL, we do not use the
multiple 2 before − logRn(μ0). This is a direct artifact of the additional penalty
term that we use in the formulation of PEL. Also, unlike most high-dimensional
problems where the validity of a large sample inference procedure breaks down
beyond a certain (often exponential) rate of growth of p, the PEL and the associ-
ated limit distribution of − logRn(μ0) in the NE-case remains valid for arbitrary
rate of growth of p as a function of the sample size. Thus, in the NE-case, it is
possible to carry out simultaneous hypothesis testing for a very large number of
parameters even with a moderately large sample.

3.3. Limit distribution for the ergodic case. In the E-case, we shall make use
of the following conditions, for α ∈ (0,∞):

(C.4)α There exists a covariance function ρα(·) on Z ≡ {0,±1,±2, . . .}, and
for each n ≥ 1, there exists a (possibly unknown) permutation ιn of {1, . . . , pn}
such that ρα(k) ∼ C|k|−α as k → ∞ and

sup
1≤j,l≤p

∣∣∣∣ ρn(j, l)

ρα(ιn(j) − ιn(l))
− 1

∣∣∣∣ = o(1) as n → ∞.

(C.5)α There exists a constant C > 0 such that

�̌n(k) ≤ Ck−α for all k ≥ 1, n > C,

where �̌n(·) denotes the �-mixing coefficient of the variables {X̃1j : 1 ≤ j ≤ p},
defined by �̌n(k) = sup{|P(A ∩ B) − P(A)P (B)|/√P(A)P (B) :A ∈ F m

1 ,B ∈
F p

m+k,1 ≤ m ≤ p − k}. Here, F b
a denotes the σ -field generated by {X̃1j :a ≤ j ≤

b}, 1 ≤ a ≤ b ≤ p, X̃1j = X1τ(j), and τ = τn is the inverse of the permutation ιn
in (C.4)α .

Condition (C.4)α says that up to a (possibly unknown) permutation of the co-
ordinates, the components of the Xi-vectors have a dependence structure that is
asymptotically similar to the one given by ρα(·). Note that the sum

∑∞
k=0 |ρα(k)|

diverges if and only if α ≤ 1, and therefore, we classify the dependence struc-
ture of the X1j ’s as LRD or SRD according to α ≤ 1 or α > 1, respectively; cf.
Beran (1994). Condition (C.5)α is a decay condition on the �-mixing coefficient
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of the reordered variables {X̃1j : 1 ≤ j ≤ p}. Note that by (C.4)α , the correlation
coefficient between X̃1j and X̃1k is ρα(j − k)(1 + o(1)), and therefore, the re-
ordered sequence {X̃1j : 1 ≤ j ≤ p} behaves approximately like a stationary time
series with the natural time-index j . Thus, condition (C.5)α specifies the degree of
dependence of the Xij ’s, up to a permutation that need not be known to the user.

3.3.1. Results under short-range dependence. The following result shows that
the log-PEL ratio statistic in the SRD case converges to a Normal limit after a
suitable centering and after scaling by the “standard factor” p1/2.

THEOREM 3.2. Let conditions (C.1), (C.2) and (C.4)α , (C.5)α hold for some
α > 1, s ≥ 6, r ≥ 12. Let κ2 = 2c2∗

∑∞
k=0 ρ0(k)2. Then, for p = o(n2),

p1/2[− logRn(μ0) − c∗
] →d N

(
0, κ2)

.(3.3)

We now comment on Theorem 3.2. From the proof, it follows that the distribu-
tion of the log-PEL ratio statistic, for a given sample size, is close to the sum of p

weakly dependent chi-squared random variables with one degree of freedom. As
a result, centering at 1 and scaling by p1/2 yields a nondegenerate Normal limit.
The effect of the weak dependence shows up in the variance of the limiting Normal
distribution, which depends on the correlation structure of the components of X1.
It is worth noting that in the SRD case, one can use Normal critical points with an
estimated variance to calibrate simultaneous tests of p hypotheses using the EL.

Theorem 3.2 extends existing results on the EL in more than one direction.
Hjort, McKeague and Van Keilegom (2009) and Chen et al. (2009) proved a ver-
sion of the result (i.e., a Normal limit) for the standard log-EL ratio statistic in
increasing dimensions with centering at 1 and scaling by p1/2. In comparison,
Theorem 3.2 relaxes the restriction on the dimension p of the parameter μ, by
allowing it to grow faster than the sample size. This should be compared with the
best available rate of p = o(n1/2), obtained by Chen et al. (2009). Further, Theo-
rem 3.2 covers a wide range of dependence structures of the components of X1j ’s
which are not covered by the earlier results (e.g., here the minimum eigen-value
of the covariance matrix of X1 need not be bounded away from zero). However,
the most important implication of Theorem 3.2 is that under SRD, the penalization
step circumvents the limitation of the standard EL which is known to break down
beyond the threshold p ≤ n/2, as shown by Tsao (2004).

3.3.2. Results under long-range dependence. For α ∈ (0,1], the sum∑∞
k=1 ρ0(k) fails to converge absolutely, and we refer to this as the LRD case.

Sums of LRD random variables are known to have either a Normal or a non-
Normal limit, depending on the value of α. The next result deals with the case
where α can be very small, and the limit law is non-Normal. Further, the scaling
also depends on the correlation decay parameter α, as shown by Theorem 3.3. Let
�(α) = ∫ ∞

0 tα−1e−t dt and ι = √−1.
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THEOREM 3.3. Let conditions (C.1), (C.2) and (C.4)α , (C.5)α hold for some
α ∈ (0, 1

2), s ≥ 6 and r ≥ 12. If p = o(n1/α), then

pα
n

[− logRn(μ0) − c∗
] →d W,(3.4)

where W is defined in terms of a bivariate Wiener–Itô integral with respect to the
random spectral measure ζ of the Gaussian white noise process as

W = c∗
[
2�(α)

]−1
∫ exp(ι[x1 + x2]) − 1

ι[x1 + x2] |x1x2|(α−1)/2 dζ(x1) dζ(x2).

Theorem 3.3 shows that under very strong dependence (i.e., for small values
of α) in the E-case, the log-PEL ratio statistic, with the same centering but a dif-
ferent scaling factor, has a nondegenerate limit distribution and the limit law is
non-Normal. Further, the range p for which the result holds is p = o(n1/α), which
is a decreasing function of α. Thus, the stronger the dependence among the co-
ordinates of X1j ’s, the larger is the allowable growth rate of p as a function of n

for the validity of the limit distribution.
Theorems 3.2 and 3.3 exhaust the types of limit laws for the log-PEL ratio statis-

tic in the E-case. However, in terms of the rate of decay of the correlation function,
these leave out the case where α ∈ [1/2,1]. Although α ∈ [1/2,1] corresponds
to LRD in the traditional sense, the centered and scaled versions of the log-PEL
ratio statistic continue to have a Normal limit as shown by the following result.
Curiously, the scaling sequence as well as the growth rate of p depend on whether
α = 1/2 or α ∈ (1/2,1].

THEOREM 3.4. Let conditions (C.1), (C.2) and (C.4)α , (C.5)α hold for some
1/2 ≤ α ≤ 1, s ≥ 6, r ≥ 12.

(i) If 1/2 < α ≤ 1 and p = o(n2), then (3.3) holds.
(ii) If α = 1/2 and p = o([n/ logn]2), then

[p logp]1/2[− logRn(μ0) − c∗
] →d N

(
0, c2∗

)
.(3.5)

Thus, it follows from Theorem 3.4 that the log-PEL ratio statistic is asymptot-
ically Normal for all α ≥ 1/2, although the components of Xi’s have LRD when
α ∈ [1/2,1]. The peculiar behavior of the scaling sequence at the boundary value
α = 1/2 is essentially determined by the growth rate of the series

∑p
j=1 ρ2

α(j) as
p → ∞, which is asymptotically equivalent to logp for α = 1/2 but it is bounded
for α > 1/2.

REMARK 3.1. Proofs of Theorems 3.2–3.4 show that for any p → ∞,
− logRn(μ0) →p c∗ as n → ∞, that is, the log-PEL ratio statistic has a degen-
erate limit under all sub-cases of the E-case, for arbitrarily large p as a function
of n. However, for nondegenerate limits, refined approximations to the difference
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[− logRn(μ0) − c∗] are needed. Here, we are able to show that an approximation
of the form

− logRn(μ0) − c∗ = Tn + En(3.6)

holds for all sub-cases of the E-case, where Tn is a centered sum and where En is
an error term, roughly of the order of Op(n−1). Further, Tn has a nondegenerate
limit up to a suitable scaling, as a function of p, depending on the dependence
structure of the X1j ’s. The bounds on the growth rate of p in the different sub-cases
of the E-case are then determined by the requirement that the scaled error term be
asymptotically negligible. For example, in the SRD case, p1/2Tn →d N(0, κ2) and
hence, p1/2En →p 0 if and only if p1/2/n → 0, which is equivalent to the bound
p = o(n2). Similar considerations lead to the respective upper bounds in the other
sub-cases of the E-case.

REMARK 3.2. It is worth pointing out that the PEL can be used for con-
structing “conservative” large sample simultaneous tests of the p hypotheses
H0 :μ = μ0 for arbitrarily large p in the E-case. Indeed, for p growing faster
than the upper bounds given in Theorems 3.2–3.4, a conservative large sample si-
multaneous test of H0 :μ = μ0 rejects H0 if |c∗ + logR(μ0)| > n−1 logn. Note
that by (3.6), this test attains the ideal level 0 asymptotically.

4. A subsampling based calibration. In this section, we describe a nonpara-
metric calibration method based on subsampling to approximate the quantiles of
the nondegenerate limit laws in both E- and NE-cases, which typically involve
unknown population parameters and hence, cannot be used directly in practice.
Let Xn(I ) = {Xi : i ∈ I } be a subset of {X1, . . . ,Xn} where I ⊂ {1, . . . , n} is of
size m and where 1 < m < n (specific conditions on m are given below). On
each Xn(I ), we employ the PEL method and obtain a version of the PEL ratio
statistic R∗

m(μ; I ), by replacing n with m and X1, . . . ,Xn by Xn(I ) in the def-
initions Rn(μ). First consider the NE case. Here, the subsampling estimator of
the distribution function GNE

n (·) ≡ P(− logRn(μ0) ≤ ·) under the null hypothesis
H0 :μ = μ0 is given by

ĜNE
n (x) = |In|−1

∑
I∈In

1
(− logR∗

m(μ0; I ) ≤ x
)
, x ∈ R,

where In is a collection of subsets of {1, . . . , n} of size m and where |A| denotes
the size of a set A. All possible subsets of size m cannot be used mainly due to
the sheer number of such sets, and hence, only a small fraction of these subsets are
used to compute ĜNE

n (·) in practice. In view of the block resampling methods for
time series data, here we shall take In to be the collection of all overlapping blocks
(subsets) of size m contained in {1, . . . , n}. Then, we have the following result in
the NE case.
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THEOREM 4.1. Suppose that the conditions of Theorem 3.1 hold and that

m−1 + m/n = o(1) as n → ∞.(4.1)

Then, supx∈R |ĜNE
n (x) − GNE

n (x)| →p 0 as n → ∞.

Next consider the E-case. Note that for α = 1/2, the limit of the log-PEL ratio
statistic is N(0,1), which is distribution free. One can carry out a simple test [cf.
Beran (1994)] to ascertain if “H :α = 1/2” is true and then use the limit distribu-
tion directly to conduct the PEL test of the simultaneous p hypotheses H0 :μ = μ0
using the N(0,1) critical points, without the need for an alternative calibration. As
a result, we concentrate on the values of α 
= 1/2 in the E-case. Let α̂n be an esti-
mator of the correlation parameter α; cf. Remark 4.1 below. Let R∗

m(μ0; I ) denote
the PEL ratio statistic based on the subsample X (I ) under μ0, and define

V ∗
m(I) = b̂n

[− logR∗
m(μ0; I ) − c∗

]
, I ∈ In,

where b̂n = pα̂n∧1/2. Then, a subsampling estimator of the distribution of Vn ≡
b̂n[− logRn(μ0) − c∗] is given by Ĝn,α(x) = |In|−1 ∑

I∈In
1(− logV ∗

m(I) ≤
x), x ∈ R and we have the following results.

THEOREM 4.2. Suppose that there exists a c0 ∈ R such that

(logp)[α̂ − α] →p c0 as n → ∞.(4.2)

(i) For α ∈ (1,∞), let the conditions of Theorem 3.2 and for α ∈ (1/2,1], let
those of Theorem 3.4(i) hold. If p/m2 + m/n = o(1), then

sup
x∈R

∣∣Ĝn,α(x) − P(Vn ≤ x)
∣∣ →p 0 as n → ∞.(4.3)

(ii) If the conditions of Theorem 3.3 hold for some α ∈ (0,1/2) and pα/m +
m/n = o(1), then (4.3) holds.

Theorem 4.2 shows that for both Normal and non-Normal limit laws under the
E-case, the subsampling method provides a valid approximation to the distribution
of the log-PEL ratio statistic. Hence, one can use the quantiles of the subsampling
estimators to calibrate simultaneous tests on μ in a unified manner. This is spe-
cially important in the case of non-Gaussian limit laws for which the quantiles are
difficult to derive. However, for α > 1/2, the limit distribution is Gaussian, and an
alternative approximation can be generated by using a Normal distribution with an
estimated variance. Indeed, the latter may be preferable to subsampling from the
computational point of view.

REMARK 4.1. In practice, the value of α is not known and must be estimated.
First consider the case where the permutation ιn(·) in (C.4)α is known. Then, we
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are essentially dealing with n i.i.d. copies of a time series of length p as obser-
vations. By using the n replicates of the time series, it is easy to modify standard
estimators of α based on a single time series [cf. Beran (1994)] to construct an
estimator α̂ of α satisfying α̂ − α = op(n−1/2[logp]−1) as n → ∞, which clearly
satisfies (4.2) with c0 = 0.

Next consider the case where the permutations ιn(·) are unknown. In this case,
it is not possible to identify pairs (j, l), 1 ≤ j, l ≤ p that correspond to the lag-
k correlation ρα(k). However, it is still possible to construct estimators of α that
satisfy (4.2). Define

α̂ = −(logp)−1 log

(
en + n−1

n∑
i=1

{
p−1

p∑
j=1

[Xij − X̄nj ]δ1/2
j

}2)
,(4.4)

where en = ∏p
j=1 1(snj = 0) and δj (and X̄nj and snj ) are as in (2.2). Note that α̂ is

invariant under permutations of the components of Xi’s and also under component-
wise location and scale transformations. In Section 6, we show that α̂ satisfies (4.2)
under the conditions of Theorem 4.2, even when ιn(·) is unknown. In the same
spirit, we may use the following estimator of the limiting variance κ2 in Theo-
rem 3.2 in the case where ιn(·) is unknown:

κ̂2 = 2c2∗
p−1∑
j=2

ĉ(1, j)21
(∣∣ĉ(1, j)

∣∣ > 2n−1/2 logn
)
,(4.5)

where ĉ(j, k) = n−1 ∑n
i=1(Xij − X̄nj )(Xkn − X̄nk)δj δk , 1 ≤ j, k ≤ p. Consistency

of κ̂2 holds under mild moment conditions; cf. Section 6.

REMARK 4.2. An important factor that impacts the accuracy of the subsam-
pling method is the choice of the subsample size m. Note that

m = C[np]α0/(1+α0)(4.6)

satisfies the requirements of Theorem 4.2, where α0 = min{α,1/2}. At this point,
we do not know the order of the optimal m for the different cases considered here.
In the next section, we address this through a numerical study and explore the
effects of different choices of m on the performance of the PEL method.

5. Numerical study. We assess finite sample performance of the PEL method
by simulation in a variety of settings. We considered different combinations of the
sample size n and the dimension p, with p ≈ 2n1/3, n/2,2n and n = 40 and 200.
The testing problem we considered is H0 :μ = 0, although any other value of μ

may be used in H0, as the PEL criterion is location invariant. We generated i.i.d.
random p-vectors X1, . . . ,Xn where the p coordinates of Xi’s had one of the
three different types of dependence structures, namely: (i) non-Ergodic, (ii) LRD
and (iii) SRD, as follows.
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5.1. Algorithms for generating the data.

5.1.1. The nonergodic case.

(1) Consider the basis functions in L2[0,1] given by φj (t) = sin (2πjt)/
√

2
for j = 1,2, . . . ,15 and φj (t) = cos (2π(j − 15)t)/

√
2, for j = 16,2, . . . ,30 and

φ0(t) ≡ 1.
(2) Generate Zj ∼ N(0,1) i.i.d. and let λj = (exp {1} + 1) for all j .
(3) Define X1j = σj ·W(j/p), j = 1,2, . . . , p, where W(·) = ∑30

j=0 Zjφj (·)λj

and where σj ≡ σjn are scalars in (0,∞).

Then, X1 = {X11,X12, . . . ,X1p} is a nonergodic series. Replicates of X1 yield
X1, . . . ,Xn in the NE-case.

5.1.2. Long-range dependence. For the LRD case, we follow a setup similar
to that used in Hall, Jing and Lahiri (1998). We generate stationary increments
of a self-similar process with self-similarity parameter (or Hurst constant) H =
1
2(2 − α) ∈ (1/2,1) for α ∈ (0,1). The algorithm is as follows:

(1) Generate a random sample Zp0 = {Z10, . . . ,Zp0} from N(0,1).
(2) Define Zp ≡ UT Zp0, where U is obtained by Cholesky factorization of R

into R = UT U and where R = ((rij )) with rij = ρα(|i − j |), and

ρα(k) = 1
2

{
(k + 1)2H + (k − 1)2H − 2k2H }

, k ≥ 1,(5.1)

and ρα(0) = 1. Note that ρα(k) ∼ Ck−αask → ∞.

Replicates of Zp give the variables X1, . . . ,Xn in the LRD case.
For the simulation study here, we considered the NE-case (α = 0) where the

data were generated by the algorithm in Section 5.1.1 and the LRD cases α =
0.1 and 0.8 based on the algorithm of Section 5.1.2. For the SRD case (α = ∞),
X1 was generated by an ARMA(2,3) process with N(0,1) error variables and
parameter vector (−0.4,0.1;0.3,0.5,0.1).

5.2. Choice of the subsample size. We also considered different choices of the
subsample size m in order to get some insight into its effects on the accuracy of
the subsampling calibration. Note that the feasible choices of the subsample size
depend on the relative growth rates of both n and p as well as on the strength
of dependence, here quantified by α. For each pair (p,n), we considered three
choices of the subsample size m (denoted by the generic symbols m1,m2,m3),
depending on the dependence structure. Specifically, for the SRD case (α = ∞),
we set

mi = c0
i · [np]1/3, i = 1,2,3,

where c0
1 = 0.5, c0

2 = 1 and c0
3 = 2. Note that in this case, the random variables

in X1, . . . ,Xn form a series of length np and are weakly dependent. Further, the
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target parameter for the subsampling method in the SRD case (and also in the LRD
case with α > 1/2) is the variance of the limiting Normal distribution. Hence, in
view of the well-known results on optimal block length (for variance estimation)
[cf. Hall, Horowitz and Jing (1995), Lahiri (2003)], the above choices of the mi ’s
are reasonable.

Next consider the case α = 0.1 under LRD, where the limit distribution is non-
Normal. From the proofs of Theorems 3.2 and 4.2, it follows that the prescription
for m in (4.6) attempts to balance the bias of the subsampling approximation to the
limit distribution and its variance. However, for a very small value of α, a direct
application of (4.6) leads to a very small fractional exponent of np, which may be
too small in practice. In such situations, particularly where p is not very large and
the LRD exponent α is small, we use the threshold n1/3 and set

mi ≡ mi(α) = c0
i · max

{[np]α/(1+α), n1/3}
, i = 1,2,3,

where c0
i ’s are as before. The rationale behind this modification is that for p small,

we simply treat X1, . . . ,Xn as a weakly dependent multivariate time series and
again employ the known results on the optimal block size.

Finally, consider the NE-case, α = 0. Note that for α = 0, p can grow at an
arbitrary rate with the sample size n for the validity of Theorems 3.1 and 4.1.
Hence, in this case, our choice of m depends only on the sample size. We con-
sider the “canonical” choice m1 = n1/3 as well as the larger values m2 = n1/2 and
m3 = 2n1/2 to explore the effects of a larger subsample size on the accuracy of the
subsampling calibration method.

5.3. Results.

5.3.1. Levels of significance in simultaneous tests. Here we consider finite
sample accuracy of the proposed PEL method for simultaneous testing of the p

hypotheses

H0 :μ = 0 vs. μ 
= 0(5.2)

at the levels of significance a = 0.1,0.05. The correlation parameter α for the
subsampling based calibration was estimated by averaging the Taqqu, Teverovsky
and Willinger (1995) estimator of the Hurst parameter (H ) from each of the p-
time series and by setting α̂ = (2 − 2Ĥ ). Further, we have used the interior-point
method [cf. Wright (1997)] as a fast optimization tool for computing the PEL ra-
tio statistic, which can handle high-dimensional optimization problems efficiently.
Tables 1 and 2 report the attained levels of significance based on 500 simulation
runs and n = 200 for the target significance levels of 0.05 and 0.10, respectively,
for different values of p, m, and α.

From the tables, it follows that the PEL does a reasonable job of simultaneous
testing of p hypotheses for all 4 cases of dependence, for appropriately chosen sub-
sample size. Comparing the attained level of significance, it is clear that the best
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TABLE 1
Empirical levels of significance â for the subsampling based PEL, with sample size n = 200 at 0.05

significance level and c∗ = 1. Here we have reported |0.05 − â|

p1 = 20 p2 = 100 p3 = 400

α m1 m2 m3 m1 m2 m3 m1 m2 m3

0.0 0.0092 0.0063 0.0190 0.0090 0.0114 0.0162 0.0089 0.0103 0.0091
0.1 0.0099 0.0081 0.0171 0.0045 0.0069 0.0129 0.0149 0.0134 0.0094
0.8 0.0079 0.0031 0.0061 0.0086 0.0042 0.0081 0.0101 0.0099 0.0190
∞ 0.0059 0.0091 0.0010 0.0020 0.0104 0.0039 0.0091 0.0159 0.0078

choice of the subsample size critically depends on the relative sizes of n and p, and
more importantly, on the type of dependence among the components of X1. Fur-
ther, rather surprisingly, the PEL tests at the level of significance 0.05 turned out
to be more accurate (on an absolute scale) than at the level 0.1, for the subsample
sizes considered here.

We also considered the effect of the penalty parameter λn = c∗n/p on the per-
formance of the PEL test. In the supplementary material Lahiri and Mukhopadhyay
(2012) (hereafter referred to as [LM]), we report the empirical levels of signifi-
cance of the PEL test for n = 200 and the target level 0.1 for two other choices of
the constant c∗, namely, c∗ = 0.5 and c∗ = 2.0. The results for the choice c∗ = 2
are qualitatively similar to those reported in Table 2 (with c∗ = 1); in comparison,
the accuracy for the case c∗ = 0.5 appears to be slightly better than the c∗ = 1
case. A similar pattern was observed for the 0.05 level of significance. We also
considered the accuracy of the empirical significance levels of the PEL tests at a
relatively smaller sample size n = 40, for c∗ = 1 and α = 0.1; cf. [LM]. The PEL
has a reasonable performance even at this low sample size; see [LM] for details.

5.3.2. Finite sample power properties. To get some idea about the power
properties of the PEL tests, we computed the probability of Type II error for a

TABLE 2
Empirical levels of significance â for the subsampling based PEL, with sample size n = 200 at 0.1

significance level and c∗ = 1. Here we have reported |0.1 − â|

p1 = 20 p2 = 100 p3 = 400

α m1 m2 m3 m1 m2 m3 m1 m2 m3

0.0 0.170 0.020 0.075 0.221 0.142 0.090 0.075 0.152 0.227
0.1 0.030 0.033 0.033 0.012 0.005 0.011 0.112 0.133 0.066
0.8 0.011 0.045 0.087 0.123 0.082 0.018 0.108 0.027 0.069
∞ 0.138 0.135 0.065 0.050 0.011 0.003 0.048 0.054 0.026
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TABLE 3
Power of the proposed PEL, with sample size n = 200 at 0.1 significance level and c∗ = 1

p1 = 20 p2 = 100 p3 = 400

α m1 m2 m3 m1 m2 m3 m1 m2 m3

0.0 0.569 0.681 0.929 0.515 0.643 0.791 0.87 0.834 0.766
0.1 0.66 0.71 0.85 0.569 0.903 0.676 0.794 0.8 0.868
0.8 0.515 0.883 0.688 0.75 0.997 0.488 0.70 0.87 0.90
∞ 0.510 0.622 0.870 0.739 0.778 0.996 0.802 0.790 0.939

level 0.1 PEL test with n = 200 and c∗ = 1 under the alternative μ = μ1 where
the first p/2 components of μ1 were equal to 1 and the rest were 0. Table 3 gives
the power of the PEL test at level 0.1 under μ = μ1 for different combinations of
p, α and m. From Table 3, it appears that the power can be reasonably high for a
suitable choice of the subsample size, although the maximum value critically de-
pends on the dimension p of the parameters and the strength of dependence α. In
particular, the PEL attains a higher (maximum) power under weaker dependence
(α = 0.8,∞) than under strong dependence (α = 0,0.1).

5.3.3. Comparison with Normal calibration. Note that for α > 1/2, the limit
distribution of the logarithm of the PEL ratio statistic is Normal and therefore,
one can use the limiting Normal distribution with an estimated variance to conduct
the PEL test. In this section, we compare the performance of the subsampling-
based calibration with the Normal distribution-based calibration. To estimate the
asymptotic variance κ2 = 2c2∗

∑∞
k=0 ρ0(k)2, we first estimate ρ0(k) using the sam-

ple auto-covariance at lag-k based on the components of individual Xi’s and
then average them to get an estimate ρ̂n(k) of ρ0(k) for k = 1, . . . ,K where
K = min{p/2,p1/2}. Since κ2 involves the squares of ρ0(k), the plug-in estimator
is positive (with probability 1). Tables 4 and 5 compare the best performance of
the subsampling based PEL with the Normal, calibration-based PEL for n = 40
and n = 200, respectively.

Tables 4 and 5 show that, except for the small values of p, the subsampling-
based PEL method has a better accuracy (marked as bold) than the Normal,

TABLE 4
Comparison of the subsampling (SS) and Normal (G) calibrations for n = 40

p1 = 7 p2 = 20 p3 = 80

α G SS G SS G SS

0.8 0.122 0.151 0.132 0.080 0.136 0.081
∞ 0.098 0.092 0.030 0.111 0.076 0.093
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TABLE 5
Comparison of the subsampling (SS) and Normal (G) calibrations for n = 200

p1 = 7 p2 = 20 p3 = 80

α G SS G SS G SS

0.8 0.150 0.113 0.141 0.082 0.174 0.127
∞ 0.111 0.165 0.048 0.103 0.238 0.126

calibration-based PEL. However, the computational burden associated with the
subsampling method is typically larger than the Normal-based PEL.

6. Proofs. Note that for each n ≥ 1, the PEL likelihood function in (2.1) is
invariant with respect to (i) component-wise scaling and (ii) permutation of the
p components. Hence, all through this section, without loss of generality (w.l.g.),
we set the component-wise variance σ 2

nj = 1 and set the permutation ιn(j) = j for
all 1 ≤ j ≤ p and n ≥ 1. Let C,C(·) denote generic constants that depend only
on their arguments (if any), but not on n. Unless otherwise specified, dependence
on (limiting) population quantities [such as ρ0(·), mixing coefficients, etc.] are
dropped to simplify notation, and limits in all order symbols are taken by letting
n → ∞. For x ∈ R, let �x� denote the largest integer not exceeding x and let
x+ = max{x,0}.

6.1. Limit distribution in the nonergodic case.

LEMMA 6.1. For each n ≥ 1, let {Yij = Yijn,1 ≤ j ≤ p}, i = 1,2, . . . , n be
a collection of p = pn-dimensional random vectors with EY1j = 0 and EY 2

1j =
σ 2

nj ∈ (0,∞). Let δj ≡ δnj = s−2
nj 1(snj 
= 0) where s2

nj = n−1 ∑n
i=1(Yij − Ȳjn)

2

and Ȳnj = n−1 ∑n
i=1Yij . Also, let Zij = |Yij | − E|Yij |, Z̄jn = n−1 ∑n

i=1Zij ,
Wi(j, l) = YijYil − EYijYil , W̄n(j, l) = n−1 ∑n

i=1 Wi(j, l) and Djn = {y ∈
R :P(Y1j = y) > 0}. Suppose that (L.1) max{E(σ 2

nj δj )
4 : 1 ≤ j ≤ p} = O(1);

(L.2) max{E|Yij |8 : 1 ≤ j ≤ p} < C, and (L.3) lim supn→∞ max{P(Y1j = y) :y ∈
Djn, j = 1, . . . , p} < 1. Then:

(a) For k = 1,2,3,
∑p

j=1 δj Ȳ
2k
jn = Op(n−kp).

(b)
∑p

j=1 δj [Z̄2
jn + W̄ 2

jn] = Op(n−1p).

(c)
∑p

j=1
∑p

l=1(δj + 1)δlW̄
2
n (j, l) = Op(n−1p2).

(d) For r = 1,2, max1≤j≤n

∑p
j=1 δj |Y1j |r = O([pn]1/4).

(e)
∑p

j=1(δj − 1)2 = Op(n−1p).

PROOF. By replacing Yij ’s with Yij /σnj for all i, j , w.l.g., we can assume that
σnj = 1 for all j, n. First consider part (a), k = 3; the proofs of k = 1,2 are similar.
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By repeated use of Hölder’s inequality,

E
p∑

j=1

δj |Ȳnj |6 ≤ E

( p∑
j=1

δ4
j

)1/4( p∑
j=1

Ȳ 8
nj

)3/4

≤
(

E
p∑

j=1

δ4
j

)1/4(
E

p∑
j=1

Ȳ 8
nj

)3/4

,

which is O(pn−3), by (L.1), (L.2). This proves (a). Parts (b) and (c) follow by
similar arguments. As for part (d), note that (for r = 2)

E

(
max

1≤i≤n

p∑
j=1

δjY
2
ij

)
≤

[
nE

( p∑
j=1

δjY
2
1j

)4]1/4

≤ n1/4

[
E

( p∑
j=1

δ4
j

)1/4(
E

p∑
j=1

|Y1j |8/3

)3/4]1/4

≤ Cn1/4p1/4.

Finally consider part (e). Note that for j = 1,2, . . . , p

δj − 1 = 1 − s2
nj

s2
nj

1(snj 
= 0) − 1(snj = 0)

= δj

[
Ȳ 2

nj − n−1
n∑

i=1

(
Y 2

ij − 1
)] − 1(snj = 0)

= δj Ȳ
2
nj − δj Wn(j, j) − 1(snj = 0),

so that

δj = 1(snj 
= 0) + δj Ȳ
2
nj − δj Wn(j, j).(6.1)

Part (e) can now be proved using (L.1)–(L.3) and the Cauchy–Schwarz inequality.
We omit the details to save space. �

LEMMA 6.2. Under the conditions of Theorem 3.1,

− logRn(μ0) = nγn

(
Ȳn1

σn1
, . . . ,

Ȳnp

σnp

)
(Ip + 2γnAn)

−1
(

Ȳn1

σn1
, . . . ,

Ȳnp

σnp

)′
+ op(1),

where Ȳnj = n−1 ∑n
i=1Yij , Yij = Xij − μj , 1 ≤ j ≤ p,1 ≤ i ≤ n and An =

((ρn(i − j)))p×p .

PROOF. W.l.g., let σnj = 1 for all 1 ≤ j ≤ p,1 ≤ i ≤ n. Note that

− logRn(μ0) = min
{
f (π1, . . . , πn) : (π1, . . . , πn)

′ ∈ �n

}
,(6.2)

where f (π1, . . . , πn) = −∑n
i=1 log(nπi) + λn

∑p
j=1 δj (

∑n
i=1 πiYij )

2. Since f (·)
is strictly convex in π1, . . . , πn over a closed convex set �n ⊂ R

n, it has a unique
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minimizer in �n. [The maximum of f (·) over �n is +∞.] To find the minimizer,
we use a Lagrange multiplier η and solve the set of equations

∂

∂πk

g(π1, . . . , πn;η) = 0, 1 ≤ k ≤ n,

∂

∂η
g(π1, . . . , πn;η) = 0,

where g(π1, . . . , πn;η) = ∑n
i=1 log(nπi) − λn

∑p
j=1 δj (

∑n
i=1 πiYij )

2 +
η(

∑n
i=1 πi − 1). This leads to the equations

0 = π−1
k − 2λn

p∑
j=1

δj

(
n∑

i=1

πiYij

)
Ykj + η, 1 ≤ k ≤ n and 1 =

n∑
i=1

πi,

which, in turn, yield the implicit solution

η = 2λn

p∑
j=1

δjM
2
nj − n and

(6.3)

π−1
k = n

{
1 + 2γn

p∑
j=1

δjMnj Ykj − 2γn

p∑
j=1

M2
nj δj

}
, 1 ≤ k ≤ n,

where γn = λn/n and Mnj = ∑n
i=1 πiYij . To obtain a more explicit approximation,

we show that πk’s are of the form πk = n−1(1 + op(1)) uniformly in k. In view of
Brouwer’s fixed point theorem [cf. Milnor (1965)], it is enough to show that, with
a−1
n = n−1/2 log(n),

max
1≤k≤n

∣∣∣∣∣1

n

{
1 + 2γn

p∑
j=1

δjMnj Ykj − 2γn

p∑
j=1

M2
nj δj

}−1

− 1

n

∣∣∣∣∣
(6.4)

= Op

(
n−1a−1

n

)
whenever max{|πk −n−1| : 1 ≤ k ≤ n} = O(n−1a−1

n ). To prove (6.4), we first show
that

sup

{
γn

p∑
j=1

δj M2
nj : (π1, . . . , πn)

′ ∈ �0
n

}
= Op

(
a−2
n

)
,(6.5)

where �0
n = {(π1, . . . , πn)

′ ∈ �n : |πk − n−1| ≤ Ca−1
n n−1 for all 1 ≤ k ≤ n}. Note

that for any (π1, . . . , πn)
′ ∈ �0

n,
∑n

i=1 πi = 1 = ∑n
i=1(1/n) �⇒ ∑n

i=1(1 −nπi) =
0 �⇒ ∑

i (1 − nπi)+ = ∑
i (nπi − 1)+. Also, (nπi − 1)+ > 0 if and only if (iff)

nπi > 1 and similarly, (1−nπi)+ > 0 iff nπi < 1. Hence, using the bound “|nπi −
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1| ≤ Ca−1
n for all i = 1, . . . , n,” we have∣∣∣∣∣

n∑
i=1

(nπi)
−1 − n

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(1 − nπi)+
nπi

−
n∑

i=1

(nπi − 1)+
nπi

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(1 − nπi)+
1 − (1 − nπi)+

−
n∑

i=1

(nπi − 1)+
1 + (nπi − 1)+

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(1 − nπi)
2+

[
1 + O(an)

] +
n∑

i=1

(nπi − 1)2+
[
1 + O(an)

]∣∣∣∣∣
≤ 2C2na−2

n for large n.

By (6.3), n−1 ∑n
k=1(nπk)

−1 − 1 = 2γn

∑p
j=1 δj Mnj [Ȳnj − Mnj ]. Hence by Lem-

ma 6.1 and the Cauchy–Schwarz inequality,

2C2

a2
n

≥ 2γn

∣∣∣∣∣
p∑

j=1

δj Mnj [Ȳnj − Mnj ]
∣∣∣∣∣

≥ 2

(
γn

p∑
j=1

δj M2
nj

)1/2[(
γn

p∑
j=1

δj M2
nj

)1/2

− Op

(
n−1/2)]

uniformly in (π1, . . . , πn) ∈ �0
n, for n large. Consequently, (6.5) holds. Now us-

ing (6.5), (6.3), the Cauchy–Schwarz inequality and Lemma 6.1, (6.4) follows.
Hence, by Brouwer’s fixed point theorem [cf. Milnor (1965)], there exists a solu-
tion (π0

1 , . . . , π0
n) of (6.3) satisfying the bound

max
{∣∣π0

k − n−1∣∣ : 1 ≤ k ≤ n
} = Op

(
n−1a−1

n

)
.(6.6)

Using the second derivative condition, it is easy to verify that (π0
1 , . . . , π0

n) is a
local minimizer of f (·). In view of the strict convexity of f (·) on �n, it also
follows that (π0

1 , . . . , π0
n) is the unique minimizer of f (·) over �n.

Next let �1n = 2nγ 2
n

∑p
j=1

∑p
l=1 ρn(j, l)δj δlM0

nj M0
nl , where M0

nj =∑n
i=1 π0

i Yij ,1 ≤ j ≤ p. Then, from (6.3), we have

− logRn(μ0) ≡ f
(
π0

1 , . . . , π0
n

)
=

n∑
i=1

log

{
1 + 2γn

p∑
j=1

δj M0
njYij − 2γn

p∑
j=1

δj

(
M0

nj

)2
}

+ nγn

p∑
j=1

δj

(
M0

nj

)2

≡
n∑

i=1

{
2γn

p∑
j=1

δj M0
njYij − 2γn

p∑
j=1

δj

(
M0

nj

)2
}

− �1n
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+ R1n + nγn

p∑
j=1

δj

(
M0

nj

)2

= 2nγn

p∑
j=1

δj M0
nj Ȳij − nγn

p∑
j=1

δj

(
M0

nj

)2 − �1n + R1n

≡ 2nγn

p∑
j=1

M0
nj Ȳij − nγn

p∑
j=1

(
M0

nj

)2

− 2nγ 2
n

p∑
j=1

p∑
l=1

ρn(j, l)M
0
nj M0

nl + R2n

≡ nγn(Ȳn1, . . . , Ȳnp)(Ip + 2γnAn)
−1(Ȳn1, . . . , Ȳnp)′ + R3n,

where the remainder terms Rkn’s are defined by subtraction. By the next lemma,
Rkn = op(1) for k = 1,2,3. Hence, Lemma 6.2 is proved. �

LEMMA 6.3. Under the conditions of Theorem 3.1,
∑3

k=1 |Rkn| = op(1).

PROOF. See [LM] for details. �

PROOF OF THEOREM 3.1. Recall that σnj = 1,∀j, n. We carry out the proof
in 2 steps.

Step (I): Let Zn(t) = ∑p
j=1(

√
nȲnj )1((j−1)/p,j/p](t), t ∈ (0,1] and let Zn(0) ≡

Zn(0+). Then, P(Zn ∈ L2[0,1]) = 1. The first step is to prove that Zn(·) →d Z(·)
as elements of L2[0,1]. Recall that {φj : j ∈ N} is a complete orthonormal basis
for L2[0,1]. By Theorem 1.84 of Van der Vaart and Wellner (1996), it enough to
show that:

(i) For any 0 < t1 < · · · < tr ≤ 1, 1 ≤ r < ∞,(
Zn(t1), . . . ,Zn(tr )

) →d (
Z(t1), . . . ,Z(tr )

)
,(6.7)

(ii) For any ε > 0, δ > 0, there exists N = N(ε, δ) ∈ N such that

lim sup
n→∞

P

( ∞∑
k=N

∣∣〈Zn,φk〉
∣∣2 > δ

)
< ε.(6.8)

Part (i) can be proved using Theorem 11.1.6 of Athreya and Lahiri (2006); we omit
the routine details. For part (ii), it is enough to show that

lim
N→∞ lim sup

n→∞
E

( ∞∑
k=N

∣∣〈Zn,φk〉
∣∣2)

= 0.(6.9)
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Let Ij = (
j−1
p

,
j
p
], j = 1, . . . , p. Then, by Fubini’s theorem and (C.3),

E
∞∑

k=1

∣∣〈Zn,φk〉
∣∣2 =

∞∑
k=1

p∑
j=1

p∑
l=1

∫
Ij

∫
Il

φk(t)φk(s)ρ0(j/p, l/p)ds dt

(6.10)

=
∞∑

k=1

∫ 1

0

∫ 1

0
φk(t)φk(s)ρ0(s, t) ds dt + o(1),

which equals
∑∞

k=1〈φk,�0φk〉+o(1). Next, using |ρn(·, ·)| ≤ 1 and
∫ |φk(t)|dt ≤

(
∫

φ2
k (t))

1/2 = 1, one can show that for each fixed k ∈ N,

E
∣∣〈Zn,φk〉

∣∣2 =
p∑

j=1

p∑
l=1

∫
Ij

∫
Il

φk(t)φk(s)ρ0(j/p, l/p)ds dt

(6.11)

→
∫ 1

0

∫ 1

0
φk(t)φk(s)ρ0(s, t) ds dt = 〈φk,ϒ0φk〉.

By (6.10), (6.11) and (C.3), (6.8) follows. Thus, Zn →d Z on L2[0,1].
Step (II): Next we establish weak convergence of the quadratic form:

np−1Ȳ′
n(Ip + 2γnAn)

−1Ȳn =
∞∑

k=0

np−1Ȳ′
n(−2γnAn)

kȲn.(6.12)

Note that by condition (C.3), ‖γnAn‖2 ≤ γ 2
n

∑p
j=1

∑p
l=1 ρ2

0(j/p, l/p) →
c2∗

∫ 1
0

∫ 1
0 ρ2

0(x, y) dx dy ∈ (0,1/4). Hence there exists a nonrandom εo ∈ (0,1)

such that for any fixed m ∈ N and for n sufficiently large (not depending on m),
∞∑

k=m

∣∣np−1(Ȳn1, . . . , Ȳnp)(−2γnAn)
k(Ȳn1, . . . , Ȳnp)′

∣∣
(6.13)

≤
∞∑

k=m

p−1
p∑

j=1

(
√

nȲnj )
2‖2γnAn‖k ≤ ∥∥Zn(·)

∥∥2
∞∑

k=m

εk
o.

Next, let an.k(j, l) denote the (j, l)th element of (γnAn)
k . Note that ρ0(·, ·) is

uniformly continuous on [0,1]2. Hence, using induction and condition (C.3), it
can be shown that for any k ∈ N,∑{∣∣an,k(j, l) − p−1ck∗ρ

∗(k)
0 (j/p, l/p)

∣∣ : 1 ≤ j, l ≤ p
} = o(1).

By the continuous mapping theorem, it now follows that for any fixed m,
m∑

k=0

n

p
Ȳ′

n(−2γnAn)
kȲn =

m∑
k=0

(−2)k

p

p∑
j=1

p∑
k=1

Zn(j/p)Zn(l/p)an.k(j, l)

(6.14)

→d
m∑

k=0

(−2)k
∫ 1

0

∫ 1

0
Z(u)Z(v)ck∗ρ

∗(k)
0 (u, v) dudv.
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Thus, by (6.14), partial sums of the infinite series in (6.12) converge to the partial
sums of the limit series for any fixed m. By (6.13), the tail of the infinite series
in (6.12) is negligible. It can be shown (cf. [LM]) that the tail of the limit series
is also negligible. Since, ‖Zn(·)‖2 →d ‖Z(·)‖2, by (6.12)–(6.14) and Lemmas 6.1,
6.3, the theorem is proved. �

6.2. Limit distribution for the ergodic case. We prove Theorem 3.2 and 3.3,
using different arguments than the proof of Theorem 3.1. This is necessitated by
the fact that we need more accurate bounds on the remainder terms that must
become negligible after the scaling (e.g., by pα0 ). We will also use the notation
Ou

p(·) to denote a bound that holds uniformly over i ∈ {1, . . . , n} as n → ∞. For
example, �in = Ou

p(a−1
n ) means max{|�in| : 1 ≤ i ≤ n} = Op(a−1

n ) an n → ∞.
Similarly, define ou

p(·).

PROOF OF THEOREM 3.2. For 1 ≤ i ≤ n, let �in = 2γn

∑p
j=1 δj M0

njYij ,

Dn = 2γn

∑p
j=1 δj (M0

nj )
2 and �0

in = �in − Dn. Then, π0
i = 1/[n(1 + �0

in)]. Now

using |π0
i − 1/n| ≤ a−1

n n−1 for 1 ≤ i ≤ n, one can show (cf. [LM]) that∣∣�0
in

∣∣ = Ou
p

(
a−1
n

)
and |�in| = Ou

p

(
a−1
n

)
.(6.15)

Hence, by Taylor’s expansion of log(1 + x) around x = 0,

− logRn(μ0) =
n∑

i=1

log
(
1 + �0

in

) + λ

p∑
j=1

δj

(
M0

nj

)2

=
[

2nγn

p∑
j=1

δjM
0
nj Ȳnj − n

2
Dn

]
− 2−1

[
n∑

i=1

�2
in + 2Dn

n∑
j=1

�jn

]
(6.16)

+ 3−1
n∑

i=1

�3
in + Op

(
na−4

n

)
.

There exist Enj = n−1 ∑n
i=1[Yij · Ou

p(a−4
n )], 1 ≤ j ≤ p, such that (cf. [LM])

M0
nj = Ȳnj − n−1

n∑
i=1

Yij�in + DnȲnj + n−1
n∑

i=1

Yij

[
�2

in + 2�inDn

]
(6.17)

− n−1
n∑

i=1

Yij (�in)
3 + Enj ;

L1n ≡ 2γnn

p∑
j=1

δjM
0
nj Ȳnj − n

2
Dn the lead term of − logRn(μ)
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= γnn

p∑
j=1

δjM
0
nj Ȳnj +

n∑
i=1

�2
in/2 +

n∑
i=1

�4
in/2 − 1

2

(
n∑

i=1

�in

)
Dn

− 1

2

n∑
i=1

�3
in −

n∑
i=1

�2
inDn +

n∑
i=1

�in · Ou
p

(
a−4
n

)
.

Hence, from (6.16),

− logRn(μ) = nγn

p∑
j=1

δjM
0
nj Ȳnj − 3

2

(
n∑

i=1

�in

)
Dn − 1

6

n∑
i=1

�3
in

(6.18)
+ Op

(
na−4

n

)
.

Next, define β2
n = p

∑p
k=1 k−α . Then,

β2
n ∼

⎧⎪⎨
⎪⎩

Cp, if α > 1,

Cp logp, if α = 1,

Cp2−α, if 0 < α < 1.

(6.19)

Note that for any 1 ≤ i ≤ n, EȲnjYij = n−1 ∑n
k=1 EYkjYij = 1/n. Let Vin ≡

γn

∑p
j=1(δj ȲnjYij − 1/n) and DY

nj ≡ {y :P(Y1j = y) > 0}. Then there exists a
δ ∈ (0,1) such that by using (6.1) and the conditions of Theorem 3.2, one gets (cf.
[LM])

E
n∑

i=1

V 2
in ≤ C

[
nE

{
γn

p∑
j=1

(ȲnjY1j − 1/n)

}2

+ nE

{
γn

p∑
j=1

δj Ȳ
3
njY1j

}2

+ nE

{
γn

p∑
j=1

δj W̄n(j, j)ȲnjY1j

}2

+ nE

{
γn

p∑
j=1

Y 2
ij1(snj = 0)

}2]
(6.20)

≤ Cp−2β2
n + O

(
n−1) + nδn−2

∑
y∈DY

nj

y2P(Y1j = y)

≤ Cp−2β2
n + O

(
n−1)

.

Using (6.17), (6.20) and the Cauchy–Schwartz inequality, one can show that

nγn

p∑
j=1

δjM
0
nj Ȳnj = nγn

p∑
j=1

δj Ȳ
2
nj −

n∑
i=1

�in[Vin + 1/n]
(6.21)

+ Op

(
a−2
n

) + Op

(
a−1
n p−1βn

)
.
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Also, from (6.17), for any 1 ≤ k ≤ n, we have

�kn = 2γn

p∑
j=1

δjM
0
njYkj

≡ 2γn

p∑
j=1

δj ȲnjYkj − 2

n
�kn + R1n(k)

≡
(

1 + 2

n

)−1

2γn

( p∑
j=1

ȲnjYkj

)
+ R2n(k),

where R1n(k) and R2n(k) are remainder terms satisfying (cf. [LM])
n∑

k=1

R2
ln(k) = Op

(
na−2

n p−2β2
n + na−4

n

)
, l = 1,2.

Next, using similar arguments and noting that EW̄n(j, j)Ȳ 2
nj = O(n−2) and

Var(W̄n(j, j)Ȳ 2
nj ) ≤ Cn−3 for all j , one can show (cf. [LM]) that

n∑
i=1

�in(Vin + 1/n) =
(

n

n + 2

)
2γ 2

n

n∑
i=1

( p∑
j=1

ȲnjYij

)2(
1 + op(1)

)
,(6.22)

nγn

p∑
j=1

δj Ȳ
2
nj = nγn

p∑
j=1

Ȳ 2
nj + Op

(
n−1 + n−1/2p−1βn

)
,(6.23)

n∑
i=1

�3
in =

(
n

n + 2

)
8γ 2

n

[
n∑

i=1

( p∑
j=1

ȲnjYij

)3](
1 + op(1)

)
(6.24)

= Op

(
n−1 + n−1/2p−1βn

)
.

Using (6.18), (6.21) and (6.22)–(6.24) and the fact that EȲnjYij = n−1 and
Var(ȲnjYij ) ≤ Cn−1 for all i, j , one can conclude (cf. [LM])

− logRn(μ0) = nγn

p∑
j=1

Ȳ 2
nj − 2

n
+ Op

(
na−4

n

) + Op

(
a−1
n p−1βn

)
.(6.25)

Set an = n1/2(p/n2)1/10. Then an → ∞, an = o(n1/2) and
√

p.n.a−4
n = o(1),

there by making the last two terms in (6.25) o(p−1/2) whenever p = o(n2). Now
Theorem 3.2 follows by adapting the proof of the CLT for a stationary sequence
of �-mixing random variables to triangular arrays. �

PROOF OF THEOREM 3.3. Arguments in the proof of Theorem 3.2 yield the
asymptotic approximation for − logRn(μ0) in (6.25) with β2

n ∼ cp2−α for all 0 <
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α < 1/2. Now choose an → ∞ to satisfy pα[n−1 + na−4
n + a−1

n p−1βn] → 0, for
example, an = n1/2[pα/n]1/5. Then it follows that

pα(− logRn(μ0) − c∗
) = c∗pα

(
1

p

p∑
j=1

{
(
√

nȲnj )
2 − 1

}) + op(1).

In the case where Xnj ’s are Gaussian with �n(i, j) = �α(i − j), the leading term
has the same distribution as Wn ≡ (p−2+2α)1/2 ∑p

j=1(Z
2
j −1), where {Zj } is a sta-

tionary Gaussian process with correlation function �α(·). Then the result of Taqqu
(1975) implies the Wn →d W , and the theorem follows. In the general case when
Xnj ’s are not Gaussian, the theorem follows by using convergence of moments of√

nȲn to the moments of N(0,1) and a variant of the diagram formula; cf. Arcones
(1994). �

PROOF OF THEOREM 3.4. Similar to the proof of Theorem 3.3; see [LM].
�

PROOF OF THEOREM 4.1. Note that In = {Ii : 1 ≤ i ≤ n − m + 1} with Ii =
{i, i + 1, . . . , i + m − 1}. Let

Uj(x) ≡
jm∧n−m+1∑
i=(j−1)m+1

1
(− logR∗

m(μ0, Ii) ≤ x
)
, x ∈ R,

for 1 ≤ j ≤ M where M = �(n − m + 1)/m� is the smallest integer not less than
(n − m + 1)/m. By the independence of Uj(x) and Uj+k(x) for k ≥ 2, one can
show (cf. [LM]) that for each x ∈ R,

E
(
ĜNE

n (x) − P
(− logR∗

m(μ0, Ii) ≤ x
))2

(6.26)
≤ Cn−2Mm2 = o(1).

The next arguments are similar to the proof of the Glivenko–Cantelli theorem [cf.
Theorem 13.3 of Billingsley (1999)] and the continuity of the limit distribution of
− logRn(μ0); one can complete the proof; see [LM]. �

PROOF OF THEOREM 4.2. Similar to the proof of Theorem 4.1. �

PROOF OF REMARK 4.1. Here we outline a proof of consistency of the per-
mutation invariant estimators α̂ and κ̂ of Remark 4.1. W.l.g, suppose that μ = 0
and σnj = 0 for all j , n. First consider the estimator α̂ in (4.4). Let An = {snj 
= 0
for all j = 1, . . . , p}, n ≥ 1. Then, by condition (C.1), P(Ac

n) = O(pδn−1) for
some δ ∈ (0,1). On the set An, en = 0, and using arguments similar to those in the
proof of Lemma 6.2, one can show that

en + n−1
n∑

i=1

{
p−1

p∑
j=1

[Xij − X̄nj ]δ1/2
j

}2

= n−1
n∑

i=1

X̄2
ip + Rn,
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where Rn = op(p−α). Note that EI11 ∼ 2Cp−α

(1−α)(2−α)
for 0 < α < 1 and Var(I11) =

O(n−1p−2α). Now it is easy to verify that α̂ satisfies (4.2).
To prove the consistency of κ̂ of (4.4), using moderate deviation inequalities

[cf. Götze and Hipp (1978)], one can conclude that

P
(∣∣ĉ(j, k) − c(j, k)

∣∣ > n−1/2 logn for some 1 ≤ j, k ≤ p
) = o(1).(6.27)

Next note that Ck−α ≤ n−1/2 logn for all k > n1/(2α). This implies that only
O(n1/(2α))-many correlation terms contribute to κ̂ , with probability tending to one.
Now using (6.27) for the nonvanishing terms and the fact that α > 1/2, one can
prove consistency of κ̂ . �
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SUPPLEMENTARY MATERIAL

Numerical results and proofs (DOI: 10.1214/12-AOS1040SUPP; .pdf). Addi-
tional simulation results and some details of proofs.
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