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FLEXIBLE GENERALIZED VARYING COEFFICIENT
REGRESSION MODELS

BY YOUNG K. LEE1, ENNO MAMMEN AND BYEONG U. PARK2

Kangwon National University, Universität Mannheim
and Seoul National University

This paper studies a very flexible model that can be used widely to an-
alyze the relation between a response and multiple covariates. The model is
nonparametric, yet renders easy interpretation for the effects of the covariates.
The model accommodates both continuous and discrete random variables for
the response and covariates. It is quite flexible to cover the generalized vary-
ing coefficient models and the generalized additive models as special cases.
Under a weak condition we give a general theorem that the problem of es-
timating the multivariate mean function is equivalent to that of estimating
its univariate component functions. We discuss implications of the theorem
for sieve and penalized least squares estimators, and then investigate the out-
comes in full details for a kernel-type estimator. The kernel estimator is given
as a solution of a system of nonlinear integral equations. We provide an it-
erative algorithm to solve the system of equations and discuss the theoretical
properties of the estimator and the algorithm. Finally, we give simulation re-
sults.

1. Introduction. The varying coefficient regression model, proposed by
Hastie and Tibshirani (1993), and studied by Yang et al. (2006), Roca-Pardinas and
Sperlich (2010) and Lee, Mammen and Park (2012), is known to be a useful tool
for analyzing the relation between a response and a multivariate covariate. For a re-
sponse Y and covariates X and Z, they assumed that the mean regression function,
m(x, z) ≡ E(Y |X = x,Z = z), takes the form m(x, z) = x1f1(z1)+· · ·+xdfd(zd)

for some unknown univariate functions fj . The model is simple in structure, gives
easy interpretation, and yet is flexible since the dependence of the response vari-
able on the covariates is modeled in a nonparametric way. The major hurdle in the
practical application of this model is that one needs to pair up each “X-covariate”
with only one “Z-covariate.” Typically this is not the case in practice. In princi-
ple, each X-covariate may interact with any number of Z-covariates to explain the
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variation in Y . Moreover, it is often difficult to differentiate X-types from Z-types
in a group of the covariates.

In this paper we are concerned with quite a more flexible setting than the
usual varying coefficient model. Suppose that we are given a group of covariates,
X1, . . . ,XD . Let X = (X1, . . . ,XD)� and d be an integer such that d ≤ D. The
model we are interested in assumes that there is a link function, say g, such that
the mean function m(x) ≡ E(Y |X = x) satisfies

g
(
m(x)

) = x1

(∑
k∈I1

f1k(xk)

)
+ · · · + xd

(∑
k∈Id

fdk(xk)

)
,(1.1)

where the index sets Ij ⊂ {1,2, . . . ,D} are known, and each Ij does not include j .
The covariates that enter into one of the coefficient functions fjk , that is, Xk for k ∈
C ≡ ⋃d

j=1 Ij are of continuous type. For simplicity, we assume that Xk with k ∈ C
are supported on the interval [0,1]. We allow some of the covariates Xj , for 1 ≤
j ≤ d , to be discrete random variables. We also allow that C and {1,2, . . . , d} may
have common indices. Let C0 = C ∩ {1,2, . . . , d}. The case C0 = ∅, that is, C =
{d+1, . . . ,D}, corresponds to the situation where one can distinguish between two
groups of covariates, {X1, . . . ,Xd} and {Z1, . . . ,Zp} ≡ {Xd+1, . . . ,Xd+p} with
D = d + p. In this case, the model reduces to

g
(
m(x, z)

) = x1

(∑
k∈I1

f1k(zk)

)
+ · · · + xd

(∑
k∈Id

fdk(zk)

)
,(1.2)

where Ij ⊂ {1,2, . . . , p} are index sets of Zk . The latter model arises, for example,
when one takes all Xj , for 1 ≤ j ≤ d , to be discrete covariates. The above model
reduces further to the nonparametric generalized additive model of Yu, Park and
Mammen (2008) if we take d = 1 and X1 ≡ 1.

The functions fjk in the representation (1.1) are not identifiable. To see
this, consider the case where d = D = 3, I1 = {2,3}, I2 = {3}, I3 = {2} so that
C = C0 = {2,3}. In this case, x1[f12(x2) + f13(x3)] + x2f23(x3) + x3f32(x2) =
x1[g12(x2)+g13(x3)]+x2g23(x3)+x3g32(x2), if g12(x2) = f12(x2)+c, g13(x3) =
f13(x2)− c, g23(x3) = f23(x3)+ x3 and g32(x2) = f32(x2)− x2 for some constant
c. To make all fjk identifiable, we use the following constraints:∫

fjk(xk)wk(xk) dxk = 0, k ∈ C,1 ≤ j ≤ d,

(1.3) ∫
xkfjk(xk)wk(xk) dxk = 0, j, k ∈ C0

for nonnegative weight functions wk , where C0 = {1,2, . . . , d} ∩ C . With these
constraints we may rewrite model (1.1) as

g
(
m(x)

) =
d∑

j=1

αjxj + ∑
j<k

j,k∈C0

αjkxjxk +
d∑

j=1

xj

(∑
k∈Ij

fjk(xk)

)
.(1.4)
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We think that our approach broadens the field of applications of varying coef-
ficient models essentially. The link function allows us to have a discrete response.
Furthermore, our model frees us from the restrictive settings of the usual varying
coefficient model that one should differentiate between two types of covariates,
X- and Z-type as in (1.2), and that each covariate appears in only one “nonlinear
interaction term.” In the case where X1, . . . ,Xq , for some q ≤ D − 2, are dis-
crete and the remaining covariates are continuous random variables, our approach
allows fitting the full model, where Ij = {q + 1, . . . ,D} for all 1 ≤ j ≤ q and
Ij = {q + 1, . . . , j − 1, j + 1, . . . ,D} for q + 1 ≤ j ≤ D:

g
(
m(x)

) = x1

(
D∑

k=q+1

f1k(xk)

)
+ · · · + xq

(
D∑

k=q+1

fpk(xk)

)

(1.5)

+ xq+1

(
D∑

k=q+2

fq+1,k(xk)

)
+ · · · + xD

(
D−1∑

k=q+1

fDk(xk)

)
.

One may fit the full model in an exploratory analysis of the data, and find a parsi-
monious model, deleting some of the functions fjk in the full model, that fits the
data well.

We stress that fitting model (1.1) is not more complex than fitting other varying
coefficient models such as g(m(x)) = x1f1(xd+1) + · · · + xdfd(x2d). The com-
plexity is only in notation and theory, yet it gives full flexibility in modeling
via varying coefficients. Think of the case where the true model is g(m(x)) =
x1f12(x2) + x2f21(x1). In this case, g(m(x)) may not be well approximated by ei-
ther x1f12(x2) or x2f21(x1) alone. Each additive term in g(m(x)) is interpreted
as a (linear)× (nonlinear) interaction. With x2 being held fixed, modeling by
x1f12(x2) alone, for example, reflects only the linear effect of X1, while modeling
by x1f12(x2) + x2f21(x1) accommodates the nonlinear effect of X1 as well.

Xue and Yang (2006) discussed a special case of model (1.2) where one can dif-
ferentiate between X-type and Z-type variables and all Ij = {1,2, . . . , p}. They
proved that the functions fjk with the constraints (1.3) are identifiable. The es-
sential assumption was that the smallest eigenvalue of E(XX�|Z = z) is bounded
away from zero where X = (X1, . . . ,Xd)� and Z = (Z1, . . . ,Zp)�, although they
put a stronger one; see their condition (C2). Their approach cannot be extended to
our model (1.1). To see this, consider the model (1.5) and think of E(XX�|Xc =
xc) where X = (X1, . . . ,XD)� and Xc = (Xq+1, . . . ,XD)�. Certainly, the matrix
is singular for all xc if D − q ≥ 2. One of our main tasks in this paper is to relax
the requirement that the smallest eigenvalue of E(XX�|Xc = xc) is bounded away
from zero; see assumption (A0) in Section 2. This weaker condition is typically
satisfied. In Lemma 1 in the Appendix, we show that, under the weaker condi-
tion, the L2-norms of m and of the function tuple (fjk :k ∈ Ij ,1 ≤ j ≤ d) in the
model (1.1) are equivalent, modulo the norming constraints (1.3). This has impor-
tant implications in estimating the model (1.1). First, it implies that the functions
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fjk are identifiable. For some types of estimators of m, it also gives directly the
first-order properties of the corresponding estimators of fjk . In the next section,
we discuss the implications. In the subsequent sections, we focus on the smooth
backfitting method of estimating the model (1.1), where we also use the main idea
contained in Lemma 1 to derive its asymptotic properties. The original idea of
smooth backfitting was introduced by Mammen, Linton and Nielsen (1999) for
fitting additive models, and it has been further developed in other contexts; see Yu,
Park and Mammen (2008) and Lee, Mammen and Park (2010, 2012), for example.

Earlier works on varying coefficient models focused on the model m(x, z) =
x1f1(z) + · · · + xdfd(z), where a single covariate Z (univariate or multivari-
ate) enters into all coefficient functions. This model was proposed and studied
by Chen and Tsay (1993), Kauermann and Tutz (1999), Fan and Zhang (1999,
2000), Cai, Fan and Li (2000), Cai, Fan and Yao (2000) and Fan, Yao and
Cai (2003). Mammen and Nielsen (2003) added a link function to this model:
g(m(x, z)) = x1f1(z) + · · · + xdfd(z). The case where fj are time-varying was
treated by Hoover et al. (1998), Huang, Wu and Zhou (2002, 2004), Wang, Li and
Huang (2008), and Noh and Park (2010). Heim et al. (2007) also considered the
case where all coefficient functions are defined on a single 3D spatial space. Fitting
these models is simple. A univariate or multivariate smoothing across the single
variable Z, or on a time scale, or on a multidimensional spatial space, gives di-
rectly estimators of fj without further projection (by marginal integration or back-
fitting, e.g.) onto relevant function spaces. However, this suffers from the curse of
dimensionality when the dimension of Z is high. For this reason, most works were
focused on univariate Z. Some time series models related to the functional coeffi-
cient model, with Xj being unobserved common factors that depend on time, have
been proposed and studied by, for example, Fengler, Härdle and Mammen (2007)
and Park et al. (2009).

2. Equivalence in entropies of function classes. In this section we will show
that the nonparametric components, fjk :k ∈ Ij ,1 ≤ j ≤ d , of our model (1.4) with
constraints (1.3) can be estimated with a one-dimensional nonparametric rate. This
means that our model avoids the curse of dimensionality. It is easy to check that
the function m(x) can be estimated with a one-dimensional rate. This follows by
application of results from empirical process theory; see below. We will use that
the L2-norms of m and of the tuples (α;fjk : 1 ≤ j ≤ d, k ∈ Ij ) are equivalent; see
Lemma 1 in the proofs section. Here, α denotes the vector with elements αj : 1 ≤
j ≤ d , αjk : j < k, j, k ∈ C0. Our next result uses this fact to show that the rate for
the estimation of m carries over to the estimation of (α;fjk : 1 ≤ j ≤ d, k ∈ Ij ).

In the description of our method and in our theory we will also make use of a
different representation of the model (1.4). In this representation of the model, we
collect those coefficients that are functions of the same continuous covariate and
put them together as an additive component. Suppose that, among X1, . . . ,Xd in
model (1.4), there are r (0 ≤ r ≤ d) variables whose indices do not enter into C .
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Without loss of generality, we denote them by X1, . . . ,Xr . Let p = D − r ≥ 2 be
the number of indices in C . Thus C = {r + 1, . . . , r + p} and C0 = {r + 1, . . . , d}.
Define

X̃k = {Xj : r + k ∈ Ij ,1 ≤ j ≤ d}, 1 ≤ k ≤ p.(2.1)

The vector X̃k is the collection of all Xj , for 1 ≤ j ≤ d , that have interactions
with Xr+k in the form of Xjfj,r+k(Xr+k). Thus, X̃k does not include Xr+k as
its element. Let dk denote the number of the index sets Ij that contain r + k.
Thus, X̃k is of dk-dimension. Likewise, for a given vector x, we denote the above
rearrangements of x by x̃k,1 ≤ k ≤ p. Also, define fk = {fj,r+k : r + k ∈ Ij ,1 ≤
j ≤ d} for 1 ≤ k ≤ p. Then model (1.4) can be represented as

g
(
m(x)

) =
d∑

j=1

αjxj + ∑
j<k

j,k∈C0

αjkxjxk + x̃�
1 f1(xr+1) + · · · + x̃�

p fp(xr+p).(2.2)

To give an example of the above representation, consider the case where d =
D = 3, I1 = {2,3}, I2 = {3}, I3 = {2} so that C = C0 = {2,3}. In this case, r = 1,
x̃1 = (x1, x3)

�, x̃2 = (x1, x2)
�, f1 = (f12, f32)

�, f2 = (f13, f23)
�, and thus

x1
[
f12(x2) + f13(x3)

] + x2f23(x3) + x3f32(x2) = x̃�
1 f1(x2) + x̃�

2 f2(x3).

Suppose now that one has an estimator m̂ of m with

g
(
m̂(x)

) =
d∑

j=1

α̂j xj + ∑
j<k

j,k∈C0

α̂jkxjxk +
d∑

j=1

xj

(∑
k∈Ij

f̂jk(xk)

)
,(2.3)

where the estimated functions f̂jk satisfy the constraints in (1.3). We make the
following assumption:

(A0) It holds that the product measure
∏D

j=1 PXj
has a density w.r.t. the distri-

bution PX of X that is bounded away from zero and infinity on the support of PX.
Here, PXj

is the marginal distribution of Xj . The marginal distributions are ab-
solutely continuous w.r.t. Lebesgue measure or they are discrete measures with a
finite support. Furthermore, the weight functions wj for j ∈ C in the constraints
in (1.3) are chosen so that wj/pXj

is bounded away from zero and infinity on the
support of PXj

. Here, pXj
is the density of Xj . The smallest eigenvalues of the

matrices E[X̃kX̃�
k |Xr+k = zk] for 1 ≤ k ≤ p are bounded away from zero for zk

in the support of pXr+k
.

The condition on E[X̃kX̃�
k |Xr+k = zk] in (A0) is typically satisfied. For ex-

ample, consider the model (1.5), where X1, . . . ,Xq are discrete random variables
whose indices do not enter into C . Thus, r = q and p = D − q . According to con-
figuration (2.1), we get X̃k = (Xj : 1 ≤ j ≤ D,j 	= q + k)� which is the covariate
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vector X without Xq+k . In this case, E[X̃kX̃�
k |Xr+k = zk] is positive definite if

the support of the conditional distribution PX̃k |Xq+k=zk
contains (D − 1) linearly

independent vectors.
We get the following theorem for the rate of convergence of the components

of m̂.

THEOREM 1. Suppose that assumption (A0) applies, and that an estimator m̂

of m with (2.3) and (1.3) satisfies that, for a null sequence κn,∫ [
g
(
m̂(x)

) − g
(
m(x)

)]2
PX(dx) = Op

(
κ2
n

)
.(2.4)

Then it holds that∫ [
f̂jk(xk) − fjk(xk)

]2
pXk

(xk) dxk = Op

(
κ2
n

)
for all k ∈ Ij ,1 ≤ j ≤ d .

It is easy to construct estimators that fulfill (2.4). We will discuss this for
the case where i.i.d. observations (Xi , Y i) are made on the random vector
(X, Y ) with Xi ≡ (Xi

1, . . . ,X
i
D)� of D-dimension. Examples for estimators

that fulfill (2.4) are sieve estimators or penalized least squares estimators. If
one makes entropy conditions on some function classes Fjk , then Theorem 1
can be used to show that the entropy conditions carry over to the class M =
{m :g(m(x)) has the structure (1.4) for some α ∈ A and fjk ∈ Fjk, k ∈ Ij ,1 ≤
j ≤ d} for some compact set A. Using empirical process methods one can then
show that sieve estimators or penalized least squares estimators fulfill (2.4). Be-
low we outline this for the case where Fjk are the classes of l-times differentiable
functions for some l ≥ 2.

The penalized least squares estimator (α̂PEN; f̂ PEN
jk : 1 ≤ j ≤ d, k ∈ Ij ) mini-

mizes

n−1
n∑

i=1

{
Yi − g−1

(
d∑

j=1

αjX
i
j + ∑

j<k

j,k∈C0

αjkX
i
jX

i
k

(2.5)

+
d∑

j=1

Xi
j

∑
k∈Ij

fjk

(
Xi

k

))}2

+ λ2
nJ (f),

where we put J (f) = ∑
k∈I1

∫
Dl

zf1k(z)
2 dz + · · · + ∑

k∈Id

∫
Dl

zfdk(z)
2 dz. Here,

the functions f̂ PEN
jk are chosen so that (1.3) holds, and for a function g, Dl

zg de-
notes its lth order derivative. We get the following result for the rate of convergence
of the penalized least squares estimators f̂ PEN

jk .
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COROLLARY 1. Suppose that all assumptions of Theorem 1 hold, that the link
function g has an absolutely bounded derivative, and that the estimators f̂ PEN

jk of
fjk are defined by (2.5). Suppose that, for k ∈ Ij ,1 ≤ j ≤ d , the functions fjk

have square integrable derivatives of order l. Furthermore, assume that the (con-
ditional) distribution of εi = Yi −m(Xi ),1 ≤ i ≤ n, has subexponential tails. That
is, there are constants tε, cε > 0 such that

sup
1≤i≤n

E
[
exp

(
t |εi |)|X1, . . . ,Xn]

< cε

almost surely for |t | ≤ tε . Choose λn such that λ−1
n = Op(nl/(2l+1)) and λn =

Op(n−l/(2l+1)). Then it holds that∫ [
f̂ PEN

jk (z) − fjk(z)
]2

pXk
(z) dz = Op

(
n−2l/(2l+1)),

∫
Dl

zf̂
PEN
jk (z)2 dz = Op(1)

for all k ∈ Ij ,1 ≤ j ≤ d .

We now discuss sieve estimation of m. We will do this for spline sieves. De-
note by Gn,c the space of all spline functions of order l with knot points 0,
L−1

n ,2L−1
n , . . . ,1 and with lth derivative absolutely bounded by c. The spline sieve

estimator (α̂SIEVE; f̂ SIEVE
jk : 1 ≤ j ≤ d, k ∈ Ij ) minimizes

n−1
n∑

i=1

{
Yi − g−1

(
d∑

j=1

αjX
i
j + ∑

j<k

j,k∈C0

αjkX
i
jX

i
k

(2.6)

+
d∑

j=1

Xi
j

∑
k∈Ij

fjk

(
Xi

k

))}2

over all functions fjk in Gn,c. Again, the functions f̂ SIEVE
jk are chosen so that (1.3)

holds. We get the following result for the rate of convergence of the sieve estima-
tors f̂ SIEVE

jk .

COROLLARY 2. Suppose that all assumptions of Theorem 1 hold, that the
link function g has an absolutely bounded derivative and that the estimators
f̂ SIEVE

jk of fjk are defined by (2.6). Suppose that, for k ∈ Ij ,1 ≤ j ≤ d , the func-
tions fjk have derivatives of order l that are absolutely bounded by c. Further-
more, assume that E|ε|γ < ∞ holds for some γ > 2 + l−1. Choose Ln such that
L−1

n = O(n−1/(2l+1)) and Ln = O(n1/(2l+1)). Then it holds that∫ [
f̂ SIEVE

jk (z) − fjk(z)
]2

pXk
(z) dz = Op

(
n−2l/(2l+1))

for all k ∈ Ij ,1 ≤ j ≤ d .
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Both results, Corollaries 1 and 2, can be generalized to quasi-likelihood estima-
tion. Then, the estimators are defined as in (2.5) or (2.6), respectively, but with the
squared error (y − g−1(u))2 replaced by Q(g−1(u), y). For the definition of Q,
see the next section. One can show that the results of Corollaries 1 and 2 still
hold under the additional assumptions (A1) and (A2) of Mammen and van de Geer
(1997). This can be proved along the lines of arguments of the latter paper. In the
subsequent sections, we discuss kernel estimation of the model (1.1).

3. Estimation based on kernel smoothing. We will introduce a kernel es-
timator based on backfitting and develop a complete asymptotic theory for this
estimator. Again, we will do this for the case where i.i.d. observations (Xi , Y i)

are made on the random vector (X, Y ). Model (1.1) can be rewritten as (1.4) with
constraints (1.3). It can be shown that the parameters αj and αjk in (1.4) can be
estimated at a faster rate than the nonparametric functions fjk . For this reason
we neglect the parametric parts for simplicity of presentation. Thus we consider
model (1.1) with the constraints (1.3). In this setting, our alternative representa-
tion (2.2) becomes

g
(
m(x)

) = x̃�
1 f1(xr+1) + · · · + x̃�

p fp(xr+p).(3.1)

Let Q be the quasi-likelihood function such that ∂Q(μ,y)/∂μ = (y −
μ)/V (μ), where V is a function for modeling the conditional variance v(x) ≡
var(Y |X = x) by v(x) = V (m(x)). The quasi-likelihood for the mean regression
function m is then given by

∑n
i=1 Q(m(Xi ), Y i), and taking into account the struc-

ture of the model (3.1) the quasi-likelihood for fk is
n∑

i=1

Q
(
g−1(

X̃i�
1 f1

(
Xi

r+1
) + · · · + X̃i�

p fp
(
Xi

r+p

))
, Y i).(3.2)

We take the smooth backfitting approach [Mammen, Linton and Nielsen (1999),
Yu, Park and Mammen (2008), Lee, Mammen and Park (2010, 2012)]. We maxi-
mize the integrated kernel-weighted quasi-likelihood

LQ(η) ≡
∫

n−1
n∑

i=1

Q
(
g−1(

η1(z1)
�X̃i

1 + · · · + ηp(zp)�X̃i
p

)
, Y i)

(3.3)
× Kh

(
Xc,i , z

)
dz

over the tuple of functions (η1, . . . ,ηp), each ηk being a vector of univariate func-
tions that satisfy the constraints of (1.3), where Xc,i = (Xi

r+1, . . . ,X
i
r+p)� and

z = (z1, . . . , zp)�. Here and throughout the paper, we label the elements of a tu-
ple η in such a way that

η(z) = (
η1(z1)

�, . . . ,ηp(zp)�
)�

,
(3.4)

ηk = {ηj,r+k : r + k ∈ Ij ,1 ≤ j ≤ d}
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with r introduced at the beginning of Section 2, and with this representation the
constraints of (1.3) on the elements of η are∫

ηjl(u)wl(u) du = 0, r + 1 ≤ l ≤ r + p,1 ≤ j ≤ d;
(3.5) ∫

uηjl(u)wl(u) du = 0, r + 1 ≤ j, l ≤ d.

We take a kernel such that∫
Khj

(u, v) dv = 1 for all values of u.(3.6)

This kernel can be constructed from the standard kernel of the form Khj
(u − v) ≡

h−1
j K((u − v)/hj ), where K is a symmetric nonnegative function, in such a way

that Khj
(u, v) = Khj

(u − v)/
∫

Khj
(u − w)dw. It was used in Mammen, Linton

and Nielsen (1999), Yu, Park and Mammen (2008) and Lee, Mammen and Park
(2010, 2012), and will be used in our technical arguments.

The smooth backfitting estimators of fk in our model (3.1) are f̂k which
maximize LQ at (3.3). In Section 4, we detail an iterative procedure to get
the estimators. Here, we provide their theoretical properties. We begin with
some notational definitions. We let pXc denote the marginal density of Xc =
(Xr+1, . . . ,Xr+p)�. Also, we let pj and pjk be the marginal densities of Xr+j

and (Xr+j ,Xr+k), respectively. Define Qr(u, y) = ∂rQ(g−1(u), y)/∂ur and
Wj (z;η) = (Wj1(z;η), . . . ,Wjp(z;η)), where

Wjk(z;η) = −E
[
Q2

(
X̃�η

(
Xc),m(X)

)
X̃j X̃�

k |Xc = z
]
pXc (z)

for 1 ≤ j, k ≤ p, and X̃ = (X̃�
1 , . . . , X̃�

p )�. Let

W(z;η) = (
W1(z;η)�, . . . ,Wp(z;η)�

)� = W(z;η)�.

Throughout this paper we write W(z) = W(z; f), where f is the true tuple of the
coefficient functions. With slight abuse of notation, we also write

Wjk(zj , zk;η) = −E
[
Q2

(
X̃�η

(
Xc),m(X)

)
X̃j X̃�

k |Xr+j = zj ,Xr+k = zk

]
× pjk(zj , zk),

Wjj (zj ;η) = −E
[
Q2

(
X̃�η

(
Xc),m(X)

)
X̃j X̃�

k |Xr+j = zj

]
pj (zj ).

It follows that

Wjj (zj ;η) =
∫

Wjj (z;η) dz−j ,Wjk(zj , zk;η) =
∫

Wjk(z;η) dz−(j,k),

Wjj (zj ) =
∫

Wjj (z) dz−j ,Wjk(zj , zk) =
∫

Wjk(z) dz−(j,k).

Here and throughout the paper, z−j for a given vector z denotes the vector without
its j th entry, and z−(j,k) without its j th and kth entries. Due to the conditions (A0)
and (A1), Wjj (zj ) is positive definite for all zj ∈ [0,1]. However, W(z) may not
be positive definite.
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The relevant space of functions we are dealing with is the one that consists
of tuples η of univariate functions with the representation at (3.4) such that its
elements satisfy the constraints (3.5). For any two functions η(1) and η(2) of this
type, define 〈η(1),η(2)〉# = ∫

η(1)�(z)W(z)η(2)(z) dz whenever it exists. We denote
by H(W) the resulting space of tuples η. The space is equipped with the inner
product 〈·, ·〉#. Let ‖ · ‖# be its induced norm, that is, ‖η‖2

# = ∫
η(z)�W(z)η(z) dz.

Define p
(1)
j,X(x) = ∂pX(x)/∂xr+j . Likewise, define m

(1)
j (x) = ∂m(x)/∂xr+j and

m
(2)
j (x) = ∂2m(x)/∂x2

r+j . Let �jk denote a dj -vector such that its 	th element

jk,	 = 1 if the 	th element of x̃j in our rearrangement (2.1) equals xr+k and

jk,	 = 0 otherwise. Define a (d1 +· · ·+dp)-vector �k by ��

k = (��
1k, . . . ,�

�
pk).

In the assumptions given in the Appendix, we assume n1/5hj → cj as n → ∞ for
some constants 0 < cj < ∞. For such constants, define

β̃j (zj ) = Wjj (zj )
−1pj (zj )

p∑
k=1

c2
kE

(
bjk(X)|Xr+j = zj

) ∫
t2K(t) dt,

where bjk(X) are dj -vectors given by

bjk(X) =
(
m

(1)
k (X) − ��

k f(Xc)

g′(m(X))

)

×
[

X̃j

V (m(X))g′(m(X))

p
(1)
k,X(X)

pX(X)

− X̃j�
�
k f(Xc)

(
V ′(m(X))

V (m(X))2g′(m(X))2 + g′′(m(X))

V (m(X))g′(m(X))3

)

+ �jk

V (m(X))g′(m(X))

]

+ 1

2

X̃j

V (m(X))g′(m(X))

(
m

(2)
k (X) + g′′(m(X))(��

k f(Xc))2

g′(m(X))3

)
.

Let β∗(z) = (β∗j (zj ) : 1 ≤ j ≤ p) be a solution of

β∗j (zj ) = β̃j (zj ) − ∑
k 	=j

∫ [
Wjj (zj )

]−1Wjk(zj , zk)β∗k(zk) dzk,

(3.7)
1 ≤ j ≤ p,

and put βj (zj ) to be the normalized versions of β∗j (zj ) so that they satisfy
the constraints (3.5). Below in a theorem we show that β(z) ≡ (β1(z1)

�, . . . ,

βp(zp)�)� is the asymptotic bias of the smooth backfitting estimator f̂(z) =
(f̂1(z1)

�, . . . , f̂p(zp)�)�.
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For the special case where the matrix W(z) is invertible, one has an interpreta-
tion of β(z) as the projection of the asymptotic bias of the full-dimensional local
quasi-likelihood estimator that maximizes

n−1
n∑

i=1

Q
(
g−1(

η1(z)
�X̃i

1 + · · · + ηp(z)�X̃i
p

)
, Y i)Kh(Xc,i , z).

One can check that its asymptotic bias, βmlt(z), is given by

βmlt(z) = W(z)−1pXc (z)
p∑

k=1

c2
kE

(
bk(X)|Xc = z

) ∫
t2K(t) dt,

where bk(X)� = (b1k(X)�, . . . ,bpk(X)�).
The tuple βmlt does not belong to H(W). The asymptotic bias β(z) of the

smooth backfitting estimator f̂(z) is identical to the projection of βmlt onto H(W),
that is, β = argminη∈H(W) ‖βmlt − η‖#. This projection interpretation of β(z) is
not available if W(z) is not invertible. In general, one has to define β(z) through
the integral equations (3.7).

For the asymptotic variance of f̂, we define

�j (zj ) = 1

cjpj (zj )

∫
K2(t) dt

[
E

( X̃j X̃�
j

V (m(X))g′(m(X))2

∣∣∣Xr+j = zj

)]−1

× E

( v(X)X̃j X̃�
j

V (m(X))2g′(m(X))2

∣∣∣Xr+j = zj

)

×
[
E

( X̃j X̃�
j

V (m(X))g′(m(X))2

∣∣∣Xr+j = zj

)]−1

,

where v(x) is the conditional variance of Y given X = x.

THEOREM 2. Under (A0) in Section 2 and those (A1)–(A5) in the Ap-
pendix, there exists a unique maximizer f̂ of the integrated kernel-weighted quasi-
likelihood (3.3) with probability tending to one. The maximizer f̂ satisfies∫ ∣∣f̂(z) − f(z)

∣∣2pZ(z) dz = Op

(
n−4/5)

,

sup
zj∈[2hj ,1−2hj ]

∣∣f̂j (zj ) − fj (zj )
∣∣ = Op

(
n−2/5

√
logn

)
,

where | · | denote the Euclidean norm.

THEOREM 3. Assume that (A0) in Section 2 and those (A1)–(A5) in the
Appendix hold. Then, for all z in the interior of the support of pXc , it fol-
lows that n2/5(f̂j (zj ) − fj (zj )) are jointly asymptotically normal with mean
(β1(z1)

�, . . . ,βp(zp)�)� and variance diag(�j (zj )).
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In the special case where m(x) = x1f1(xp+1) + · · · + xpfd(x2p) for x =
(x1, . . . , x2p)�, thus the link g is the identity function and Q(μ,y) = −(y−μ)2/2,
the asymptotic bias and variance of f̂j (zj ) stated in Theorem 3 coincide with those
in Theorem 2 of Lee, Mammen and Park (2012). This can be seen by noting
that W(z) is invertible in this case, and that V = g′ = 1, X̃ = (X1, . . . ,Xp)�,
Xc = (Xp+1, . . . ,X2p)� and W(z)−1E(X̃Xj |Xc = z)pXc (z) = 1j where 1j is the
p-dimensional unit vector with the j th entry being equal to one.

Theorem 3 can be also viewed as an extension of Theorem 2 of Yu, Park and
Mammen (2008). In the latter work, smooth backfitting for the additive model
g(m(z)) = f1(z1) + · · · + fp(zp) for a link g was considered. As we mentioned
earlier, model (3.1) reduces to the above model by taking dk ≡ 1, X̃k = Xk ≡ 1
for 1 ≤ k ≤ p and r = p. In this case, W(z) is not invertible so that the projection
interpretation of β(z) is not valid. If one replaces m(x) in the formula of β̃j (zj ) by
g−1(f (xc)) ≡ g−1(f1(xr+1) + · · · + fp(xr+p)), Wjk by the corresponding quan-
tities for the latter model, which are

Wjk(zj , zk) =
∫

V
(
g−1(

f (z)
))−1

g′(g−1(
f (z)

))−2
pXc (z) dz−(j,k),

Wjj (zj ) =
∫

V
(
g−1(

f (z)
))−1

g′(g−1(
f (z)

))−2
pXc (z) dz−j ,

then one can verify that the solution of the system of integral equations in (3.7)
concides with the asymptotic bias in Yu, Park and Mammen (2008). The asymp-
totic variance �j (zj ) given above also reduces to the one in Yu, Park and Mam-
men (2008).

REMARK 1. In the case where the link g in model (3.1) is the identity (or
a linear) function and when the covariates Xj are independent, one may apply
marginally a kernel smoothing method to estimating each coefficient function. To
see this, suppose that all X̃j contains 1 as their first entry and any entry of X̃j

does not equal to any of Xr+k , k 	= j . Then, E(Y |X̃j ,Xr+j ) = X̃�
j [fj (Xr+j )+ cj ]

for some constant vector cj . This means that fj minimizes E[Y − X̃�
j ηj (Xr+1)]2

over ηj subject to a normalization. Thus, the marginal smoothing that minimizes

n−1 ∑n
i=1(Y

i − η�
j X̃i

j )
2Khj

(Xi
r+j , zj ) for each j and each point zj gives a con-

sistent estimator of fj (zj ). This marginal smoothing approach is not valid, even
with independent covariates, in case the link function g is nonlinear. In the latter
case, one needs to use a projection method such as the smooth backfitting defined
above, or a marginal integration technique, to obtain appropriate estimators.

4. Implementation. In this section, we discuss how to find f̂ maximizing LQ

at (3.3). Our method of finding f̂ is based on an iteration scheme. By considering
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the Fréchet differentials of LQ, we see that∫
n−1

n∑
i=1

Q1
(
X̃i�f̂(z), Y i)X̃i

jKh
(
Xc,i , z

)
dz−j = 0j ,

(4.1)
1 ≤ j ≤ p, zj ∈ [0,1],

where 0j is the zero vector of dimension dj . The system of equations is nonlinear.
We take the Newton–Raphson approach to find a solution by iteration. For a vector
of functions (η�

1 , . . . ,η�
p )� where ηj (z) = ηj (zj ), define

F̂j (η)(zj ) =
∫

n−1
n∑

i=1

Q1
(
X̃i�η(z), Y i)X̃i

jKh
(
Xc,i , z

)
dz−j .(4.2)

The system of equations in (4.1) is then expressed as F̂j (f̂) = 0j ,1 ≤ j ≤ p. Our
algorithm runs an outer iteration which is based on a Newton–Raphson approxi-
mation of the system of equations. Each outer-step solves a linearized system of
equations to update the approximation of f̂, which requires an additional iteration,
called inner iteration.

To describe the algorithm, suppose that we are at the sth outer-step to update
f̂[s−1] in the previous outer-step. Considering the Fréchet differentials of F̂j at
f̂[s−1], we get the following approximation: for 1 ≤ j ≤ p,

F̂j (f̂)(zj ) � F̂j

(
f̂[s−1])(zj )

+
p∑

k=1

∫
n−1

n∑
i=1

Q2
(
X̃i�f̂[s−1](z), Y i)(4.3)

× X̃i
j X̃i�

k

[
f̂k(zk) − f̂[s−1]

k (zk)
]
Kh

(
Xc,i , z

)
dz−j .

This gives an updating equation for f̂[s]. Define, for 1 ≤ j ≤ p and for 1 ≤ j 	= k ≤
p,

Ŵ[s]
jk (zj , zk) = −

∫
n−1

n∑
i=1

Q2
(
X̃i�f̂[s](z), Y i)X̃i

j X̃i�
k Kh

(
Xc,i , z

)
dz−(j,k),

Ŵ[s]
jj (zj ) = −

∫
n−1

n∑
i=1

Q2
(
X̃i�f̂[s](z), Y i)X̃i

j X̃i�
j Kh

(
Xc,i , z

)
dz−j .

Define δ̃
[s]
j (zj ) = [Ŵ[s]

jj (zj )]−1F̂j (f̂[s])(zj ). Also, let δ̂
[s]
j (zj ) = f̂[s]j (zj ) −

f̂[s−1]
j (zj ). We get from (4.3) the following linearized system of updating equa-

tions:

δ̂
[s]
j (zj ) = δ̃

[s−1]
j (zj ) − ∑

k 	=j

∫ [
Ŵ[s−1]

jj (zj )
]−1Ŵ[s−1]

jk (zj , zk)δ̂
[s]
k (zk) dzk,

(4.4)
1 ≤ j ≤ p.
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Solving the system of equations (4.4) for δ̂
[s]
j and then updating f̂[s−1]

j by f̂[s]j =
f̂[s−1]
j + δ̂

[s]
j constitutes the sth step in the outer iteration. Below in Theorem 4, we

show that the outer iteration converges to a solution that satisfies (4.1).

The system of equations (4.4) cannot be solved since to get δ̂
[s]
j one requires

knowledge of the other δ̂
[s]
k , k 	= j . To solve (4.4) we need an inner iteration. Sup-

pose that we are at the 	th inner-step of the sth outer-step to update δ̂
[s,	−1]
j ,1 ≤

j ≤ p, in the previous inner iteration step. We apply (4.4):

δ̂
[s,	]
j (zj ) = δ̃

[s−1]
j (zj ) − ∑

k 	=j

∫ [
Ŵ[s−1]

jj (zj )
]−1Ŵ[s−1]

jk (zj , zk)

(4.5)
× δ̂

[s,	−1]
k (zk) dzk, 1 ≤ j ≤ p.

Existence of a unique solution of (4.4) and the convergence of the inner iteration to

the solution are demonstrated below in Theorem 4. For the starting values δ̂
[s,0]
j in

the inner iteration of the sth outer-step, one may use the limit of the inner iteration

in the previous outer-step δ̂
[s−1,∞]
j .

For a convergence criterion of the outer iteration, one may check whether the
values of the left-hand side of (4.1) are sufficiently small, or use the difference
between the two updates f̂[s−1]

k and f̂[s]k :∫ ∣∣f̂[s]k (zk) − f̂[s−1]
k (zk)

∣∣2 dzk.(4.6)

In the latter case, one should use the normalized versions of the updates. Recall
the configuration of ηk in (3.4). The normalized version of a given set of tuples
η∗k may be obtained by the following formulas. Let the weight functions wl be
normalized so that

∫
wl(u)du = 1. Then

ηjl(u) = ηjl∗(u)

−
∫

η∗j l(u)wl(u) du, 1 ≤ j ≤ r or d + 1 ≤ l ≤ r + p,(4.7)

ηjl(u) = ηjl∗(u) − ajl − bjlu, r + 1 ≤ j, l ≤ d,

where

ajl =
∫

η∗j l(u)wl(u) du − bjl

∫
uwl(u) du,

bjl =
[∫ (

u −
∫

twl(t) dt

)2

wl(u)du

]−1

×
∫ (

u −
∫

twl(t) dt

)
η∗j l(u)wl(u) du.

One should also use the normalized δ̂j l for the convergence of the inner iteration.
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THEOREM 4. Assume that (A0) in Section 2 and (A1)–(A5) in the Appendix
hold. Then there exist constants 0 < C1, τ < ∞ and 0 < γ < 1 such that, if the
initial choice f̂[0] satisfies∫ ∣∣f̂[0](z) − f̂(z)

∣∣2pXc (z) dz ≤ τ 2(4.8)

with probability tending to one, then
∫ |f̂[s](z) − f̂(z)|2pXc (z) dz ≤ C14−(s−1)

γ 2s−1 with probability tending to one. Also, for each outer-step there exists a
solution of the system of equations (4.4) that is unique, and the inner itera-
tion converges at a geometric rate. Furthermore, if the initial choice f̂[0] satis-
fies (4.8) with probability tending to one, then there exist some constants 0 <

C2 < ∞ and 0 < ρ < 1 such that, with probability tending to one,
∫ |δ̂[s,	]

(z) −
δ̂
[s,∞]

(z)|2pXc (z) dz ≤ C2ρ
2	 for sufficiently large s, where δ̂

[s,∞]
is a solution of

the system of equations in (4.4).

The theorem shows that the number of iterations that is needed for a desired
accuracy of the calculation of the backfitting estimator does not depend on the
sample size. If the desired accuracy is of order n−c for some constant c, then
a logarithmic number of iterations suffices. Thus the complexity of the algorithm
only increases very moderately for increasing sample size. We have no good bound
on the required accuracy of the starting values, that is, on the choice of τ . In our
practical experience the algorithm was very robust against poor choices of the
starting value. In fact, in the simulation study we chose f̂[0] = 0 and it worked quite
well. A more deliberate choice is a version of the marginal integration estimator
studied by Yang et al. (2006), or a spline estimator that we discussed in Section 2.
These are consistent so that they satisfy the condition (4.8), but they cost additional
numerical computation.

As for the choices of the bandwidths hj , one may estimate the optimal band-
widths h

opt
j = c∗

j n
−1/5, where c∗ = (c∗

1, . . . , c
∗
p) is defined by

c∗ = arg min
c

p∑
j=1

∫ [∣∣βj (zj , c)
∣∣2 + trace

(
�j (zj , cj )

)]
pZj

(zj ) dzj .(4.9)

Here, we write βj (zj , c) and �j (zj , cj ), instead of βj (zj ) and �j (zj ) as de-
fined in Section 3, to stress their dependence on the vector of the bandwidth
constants c = (c1, . . . , cp). To describe a simple plug-in method, get parametric
estimates of fjk by maximizing (3.2) over the class of pth order polynomials

fjk(x) = a
(0)
jk + a

(1)
jk x + · · · + a

(p)
jk xp , and obtain a kernel estimate of the den-

sity pX. Then one can estimate βj by plugging these estimates into the formulas

of β̃j ,Wjj ,Wjk (j 	= k) and solving the system of equations in (3.7) by iteration.
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One can also estimate �j . Put these estimates of βj and �j into the right-hand
side of (4.9) to get an estimate of c∗. A similar idea was adopted by Lee, Mammen
and Park (2012) for the classical varying coefficient model. An alternative way
is to develop a method similar to the penalized least squares bandwidth selector
proposed by Mammen and Park (2005). This would need higher-order stochastic
expansions for the quasi-likelihood of the smooth backfitting estimators. Finally,
we want to mention that βj depends on the whole vector c contrary to �j , the
latter only involving cj . This is not the case with the local linear smooth backfit-
ting where both depend on cj only, see the next section. Thus, a grid search for c∗
at (4.9) may be computationally expensive for large p. In this case, one may apply
an iteration scheme which, in each iteration step, updates cj for 1 ≤ j ≤ p one by
one with the other ck, k 	= j , being held fixed at the values obtained in the previous
step.

5. Extension to higher-order local smoothing. In the previous two sections
we considered smooth backfitting based on Nadaraya–Watson smoothing. Here,
we discuss its extension to local polynomial smoothing. We focus on the local lin-
ear case. The extension to the general case is immediate, but needs more involved
notation. For a function η of interest, the basic idea of local linear smoothing is to
approximate η(u) for u near a point z by η(z) + η′(z)(u − x), where η′ is the first
derivative of η. Thus, we maximize

∫
n−1

n∑
i=1

Q
(
g−1(

X̃i�
1 η1

(
z1,X

i
r+1

) + · · · + X̃i�
p ηp

(
zp,Xi

r+p

))
, Y i)

× Kh
(
Xc,i , z

)
dz,

where ηj (zj ,X
i
r+j ) = ηj0(zj ) + ηj1(zj )h

−1
j (Xi

r+j − zj ). The maximizers, de-

noted by f̂j0 and f̂j1 which correspond to ηj0 and ηj1, respectively, are the esti-
mators of the true fj and hj f′j , where f′j is the vector of the first derivatives of the

entries in fj . Again, f̂j0 should be normalized according to (4.7).
To describe the algorithms, write f̂j = (f̂�j0, f̂�j1)

�. They satisfy F̂j (f̂1, . . . , f̂p) =
0j , 1 ≤ j ≤ p, where 0j denotes now the zero vector of dimension 2dj ,

F̂j (η1, . . . ,ηp) =
∫

n−1
n∑

i=1

Q1

( p∑
j=1

X̃i�
j ηj

(
zj ,X

i
r+j

)
, Y i

)

× a
(
Xi

r+j , zj

) ⊗ X̃i
jKh

(
Xc,i , z

)
dz−j

ηj = (η�
j0,η

�
j1)

� and a(Xi
r+j , zj ) = (1, h−1

j (Xi
r+j − zj ))

�. The expressions

for the updating equations at (4.4) and (4.5) are unchanged if, writing Ai
jk =
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a(Xi
r+j , zj )a(Xi

r+j , zk)
�, we redefine Ŵ[s]

jk , 1 ≤ j, k ≤ p, by

Ŵ[s]
jk (zj , zk) = −

∫
n−1

n∑
i=1

Q2

( p∑
j=1

X̃i�
j f̂[s]j

(
zj ,X

i
r+j

)
, Y i

)

× Ai
jk ⊗ X̃i

j X̃i�
k Kh

(
Xc,i , z

)
dz−(j,k),

Ŵ[s]
jj (zj ) = −

∫
n−1

n∑
i=1

Q2

( p∑
j=1

X̃i�
j f̂[s]j

(
zj ,X

i
r+j

)
, Y i

)

× Ai
jj ⊗ X̃i

j X̃i�
j Kh

(
Xc,i , z

)
dz−j .

Let �j be defined as in Section 3, and define βLL
j (zj ) to be the normalized

versions of c2
j

∫
t2K(t) dtf′′j (zj )/2 obtained by (4.7), where f′′j is the vector of the

second derivatives of the entries in fj .

THEOREM 5. Under (A0) in Section 2 and (A1)–(A5) in the Appendix,
Theorems 2 and 4 remain valid for the local linear smooth backfitting esti-
mators (f̂j0, f̂j1) and for their algorithms, respectively. As a version of The-
orem 3, n2/5(f̂j0(zj ) − fj (zj )) are jointly asymptotically normal with mean
(βLL

1 (z1)
�, . . . ,βLL

p (zp)�)� and variance diag(�j (zj )).

6. Simulation study. In the simulation study, we considered a binary re-
sponse Y taking values 0 and 1, and took the following model for the mean func-
tion m(x):

g
(
m(X)

) = f02(X2) + f03(X3) + X1
(
f12(X2) + f13(X3)

)
(6.1)

+ X3f32(X2) + X2f23(X3),

where g(u) = log(u/(1 − u)) is the logit link and f02(z) = z2, f03(z) = 4(z −
0.5)2, f12(z) = z, f13(z) = cos(2πz), f32(z) = e2z−1, f23(z) = sin(2πz). The co-
variate X1 was a discrete random variable having Bernoulli(0.5) distribution, and
X2 and X3 were uniform(0,1) random variables. The three covariates were in-
dependent. We chose two sample sizes n = 500 and 1000. The number of sam-
ples was 500. For the initial estimate, we used f̂[0] = 0. The weight functions
wl were wl(z) = I[0,1](z) for all l. We used the Epanechnikov kernel function
K(u) = (3/4)(1 − u2)I[−1,1](u) and took the theoretically optimal bandwidths
as defined at (4.9), which were h

opt
1 = 0.4328, h

opt
2 = 0.2789 for n = 500, and

h
opt
1 = 0.3768, h

opt
2 = 0.2428 for n = 1000, in our simulation setting.

In the simulation, we also computed the cubic spline estimates with K knots
placed evenly on the interval [0,1]. We used the power basis for cubic splines:
s0(z) = 1, s1(z) = z, s2(z) = z2, s3(z) = z3, s3+k(z) = (z − ξk)

3+, where ξk are the
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TABLE 1
Integrated mean squared errors (IMSE), integrated squared biases (ISB) and integrated

variance (IV) of the two methods, cubic spline (SPL) and smooth backfitting (SBF), for the
model (6.1)

f02 f12 f32 f03 f13 f23

SPL n = 500 IMSE 0.2607 0.2145 0.5034 0.2631 0.2274 0.5857
ISB 0.0013 0.0004 0.0011 0.0006 0.0044 0.0159
IV 0.2594 0.2141 0.5022 0.2624 0.2230 0.5699

n = 1000 IMSE 0.1106 0.0817 0.2122 0.1074 0.0938 0.2453
ISB 0.0001 0.0004 0.0001 0.0001 0.0006 0.0104
IV 0.1105 0.0813 0.2121 0.1073 0.0932 0.2349

SBF n = 500 IMSE 0.0315 0.0399 0.0274 0.1071 0.1073 0.1685
ISB 0.0035 0.0112 0.0128 0.0090 0.0543 0.0808
IV 0.0280 0.0288 0.0147 0.0981 0.0531 0.0877

n = 1000 IMSE 0.0214 0.0210 0.0254 0.0526 0.0702 0.1103
ISB 0.0021 0.0057 0.0107 0.0062 0.0384 0.0544
IV 0.0193 0.0153 0.0147 0.0464 0.0318 0.0559

knot points. If one applies directly the power basis to the model (6.1), one may
suffer from “near singularity” of the resulting design matrix. This is because the
functions fjk without satisfying our constraints are not identifiable. Taking into
consideration the constraints, we adjusted the power basis so that s1 is orthogonal
to s0, and sj for 2 ≤ j ≤ K + 3, are orthogonal to s0 and s1. The dimension of the
power basis for the cubic spline approximation of the model (6.1) equals 6K + 19.
The number of knots taken was K = 1 which gave the best performance. The
performance of the spline estimators got worse quickly as K increased.

Table 1 shows the results based on 500 datasets. For each component function
fjk , the table provides the integrated mean squared error (IMSE),

∫
E[f̂jk(z) −

fjk(z)]2 dz. The main lesson is that the spline estimators have much larger vari-
ances than the smooth backfitting estimators, while the former have smaller biases.
Overall, the smooth backfitting method works quite well. Comparing the values of
IMSEs for the two sample sizes, the results for the smooth backfitting method
reflect the asymptotic effects fairly well. Note that the theoretical reduction of
IMSE from n = 500 to n = 1000 equals (0.5)4/5 � 0.574. In the simulation we
also found the iterative algorithm of the smooth backfitting method in Section 4
converged very fast. The outer loop typically converged in five iterations with the
criterion value 10−4 for the normalized difference (4.6), and that the inner loop
converged in three iterations.

We also investigated how the additional terms in the modeling (1.1) affected the
estimation precision when the true model was given by

g
(
m(x, z)

) = x1f1(z1) + · · · + xdfd(zd)
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for a set of covariates (X1, . . . ,Xd;Z1, . . . ,Zd). In the latter model, each covariate
appears in only one nonlinear interaction term. For this, we estimated the following
model:

g
(
m(X,Z)

) = f01(Z1) + f02(Z2) + X1
(
f11(Z1) + f12(Z2)

)
(6.2)

+ X2
(
f21(Z1) + f22(Z2)

)
,

where f01(z) = f02(z) = 0, f11(z) = cos(2πz), f12(z) = 0, f21(z) = 0, f22(z) =
sin(2πz), and the link g was the same as in the first example. The covariate X1 was
a discrete random variable having Bernoulli(0.5) distribution, X2 was the standard
normal random variable and Z1 and Z2 were uniform(0,1) random variables. The
four covariates were independent. The theoretically optimal bandwidths as defined
at (4.9) were h

opt
1 = 0.2405, h

opt
2 = 0.2469 for n = 500 and h

opt
1 = 0.2093, h

opt
2 =

0.2149 for n = 1000, and we used these in the simulation.
The main purpose of this additional simulation is to compare our estimators

based on the working model (6.2) with the “oracle” estimators which use the
knowledge that f01(z) = f02(z) = f12(z) = f21(z) = 0. The system of updating
equations for the oracle estimators in our setting is given by (4.4) with the follow-
ing modifications of Ŵ

[s]
jk (zj , zk) and F̂j (η)(zj ): for j 	= k,

Ŵ
[s]
jk (zj , zk) = −n−1

n∑
i=1

Q2
(
Xi

1f̂
[s]
11 (z1) + Xi

2f̂
[s]
22 (z2), Y

i)Xi
jX

i
kKh

(
Zi , z

)
,

Ŵ
[s]
jj (zj ) = −

∫
n−1

n∑
i=1

Q2
(
Xi

1f̂
[s]
11 (z1) + Xi

2f̂
[s]
22 (z2), Y

i)

× (
Xi

j

)2
Kh

(
Zi , z

)
dz−j ,

F̂j (η)(zj ) =
∫

n−1
n∑

i=1

Q1
(
Xi

1η11(z1) + Xi
2η22(z2), Y

i)Xi
jKh

(
Zi , z

)
dz−j ,

where Zi = (Zi
1,Z

i
2)

�, z = (z1, z2)
� and η(z) = (η11(z1), η22(z2))

�. Note that all
these terms are a scalar, not a matrix or a vector.

Table 2 shows the results based on 500 datasets. For each of the nonzero com-
ponent functions, the table provides ISB, IV and IMSE. We see that the smooth
backfitting estimators perform fairly well in comparison with their oracle versions.
In particular, both have nearly the same IMSE, ISB and IV for the estimation of
the second component function f22. For estimating f11, the smooth backfitting
procedure with the extended model (6.2) gave almost the same bias as the oracle
procedure, but a larger variance than the latter. This may be expected since the
former has the additional component function f12 in the estimation. This was not
the case with the estimation of f22, however. The main reason is that the variances
of the estimators depend highly on the design of the regressor X2. Recall that in
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TABLE 2
Comparison of the smooth backfitting estimators under the extended model (6.2) and the

corresponding oracle estimators

f11 f22

Oracle n = 500 IMSE 0.0680 0.0639
SBF ISB 0.0285 0.0421

IV 0.0395 0.0218

n = 1000 IMSE 0.0400 0.0433
ISB 0.0183 0.0309
IV 0.0216 0.0124

SBF n = 500 IMSE 0.1057 0.0638
based on (6.2) ISB 0.0273 0.0408

IV 0.0784 0.0230

n = 1000 IMSE 0.0627 0.0427
ISB 0.0180 0.0299
IV 0.0447 0.0128

parametric linear regression the variance of the least squares estimator of a regres-
sion coefficient gets smaller as the corresponding regressor is more variable. In
our setting, the variability of X2 is four times as high as that of X1. This relatively
high variability of X2 alleviated the extra sampling variability of the SBF estimator
under the model (6.2).

APPENDIX: TECHNICAL DETAILS

A.1. Proof of Theorem 1. The statement of Theorem 1 follows immediately
from the following lemma.

LEMMA 1. Under assumption (A0), it holds that there exist constants 0 <

C1 < C2 such that for two tuples (α, fjk : 1 ≤ j ≤ d, k ∈ Ij ) and (α∗, f ∗
jk : 1 ≤ j ≤

d, k ∈ Ij ) it holds that

C1

∫ [
g
(
m(x)

) − g
(
m∗(x)

)]2
PX(dx)

≤ ∣∣α − α∗∣∣2∗ +
d∑

j=1

∑
k∈Ij

[
fjk(xk) − f ∗

jk(xk)
]2

pXk
(xk) dxk(A.1)

≤ C2

∫ [
g
(
m(x)

) − g
(
m∗(x)

)]2
PX(dx).
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Here, pXk
is the density of Xk , and

|α|2∗ =
∫ (

d∑
j=1

αjxj + ∑
j<k

j,k∈C0

αjkxjxk

)2

PX(dx),

g
(
m(x)

) =
d∑

j=1

αjxj + ∑
j<k

j,k∈C0

αjkxjxk + x̃�
1 f1(xr+1) + · · · + x̃�

p fp(xr+p),(A.2)

g
(
m∗(x)

) =
d∑

j=1

α∗
j xj + ∑

j<k

j,k∈C0

α∗
jkxjxk + x̃�

1 f∗1(xr+1) + · · · + x̃�
p f∗p(xr+p).

PROOF. We only prove the second inequality of (A.1). The first one follows
by direct arguments. We first observe that because of assumption (A0) it holds that
for constants c1, c2 > 0,∫ [

g
(
m(x)

) − g
(
m∗(x)

)]2
PX(dx)

≥ c1

∫ [
g
(
m(x)

) − g
(
m∗(x)

)]2
D∏

l=1

PXl
(dxl)

≥ c2

∫ [
g
(
m(x)

) − g
(
m∗(x)

)]2 ∏
l∈C

wl(xl) dxl

∏
l /∈C

PXl
(dxl).

Denote by I the right-hand side of the second inequality. Due to the constraints
of (1.3) and the fact that x̃k does not include xr+k , those terms

d∑
j=1

(
αj − α∗

j

)
xj + ∑

j<k

j,k∈C0

(
αjk − α∗

jk

)
xjxk,

x̃�
1

(
f1(xr+1) − f∗1(xr+1)

)
, . . . , x̃�

p

(
fp(xr+p) − f∗p(xr+p)

)
are orthogonal in L2(μ), where μ is the product measure defined by μ(dx) =∏

j∈C wj(xj ) dxj

∏
j /∈C PXj

(dxj ). By this and by making use of (A0) again, we
get

I = c2

∫ [
d∑

j=1

(
αj − α∗

j

)
xj + ∑

j<k

j,k∈C0

(
αjk − α∗

jk

)
xjxk

]2 ∏
l∈C

wl(xl) dxl

∏
l /∈C

PXl
(dxl)

+ c2

p∑
k=1

∫ [
x̃�
k

(
fk(xr+k) − f∗k(xr+k)

)]2 ∏
l∈C

wl(xl) dxl

∏
l /∈C

PXl
(dxl)



FLEXIBLE VARYING COEFFICIENT MODELS 1927

≥ c3
∣∣α − α∗∣∣2∗

+ c3

p∑
k=1

∫ [
x̃�
k

(
fk(xr+k) − f∗k(xr+k)

)]2
PXr+k

(dxr+k)

D∏
l∈I∗

k

PXl
(dxl)

for some constants c3 > 0 and where I ∗
k denotes the set of indices of x̃k . The

second inequality of (A.1) now follows because the smallest eigenvalues of∫
x̃k x̃�

k

∏D
l∈I∗

k
PXl

(dxl) can be bounded from below by a positive constant times

the smallest eigenvalue of E[X̃kX̃�
k ] = ∫

x̃k x̃�
k PX̃k

(d x̃k), where PX̃k
denotes the

distribution of X̃k . These eigenvalues can be bounded away from zero by assump-
tion (A0). �

A.2. Proof of Corollaries 1 and 2. For the proof of these two corollaries, we
apply Theorem 1. We have to show that (2.4) holds with κn = nl/(2l+1) for the
penalized least squares estimator and the spline sieve estimator, respectively.

For the proof of Corollary 1, we apply Theorem 10.2 in van de Geer (2000).
As discussed in van de Geer (2000) the statement of the theorem remains valid
for errors with subexponential tails if the entropy bounds hold for entropies with
bracketing. For the application of this theorem one needs results on the entropy
with bracketing for the class of functions m that fulfill (1.4) with fjk in Sobolev
classes. Because g has an absolutely bounded derivative, Lemma 1 implies that
the well-known entropy conditions for Sobolev classes carry over to the classes of
functions m. This proves Corollary 1.

For the proof of Corollary 2 we use Theorem 1 in Chen and Shen (1998).
Compare also Theorem 10.11 in van de Geer (2000). Using the above entropy
bound one can easily verify Conditions A.1–A.4 in Chen and Shen (1998) with
l(θ, (X, Y )) = (m(X) − Y)2, θ = (α, fjk;1 ≤ j ≤ d, k ∈ Ij ) and m as given
at (A.2). Note that l(θ, (X, Y )) − l(θ0, (X, Y )) = (m(X) − m0(X))2 − 2(m(X) −
m0(X))ε, where θ0 = (α0, f0jk;1 ≤ j ≤ d, k ∈ Ij ) is the true tuple, m0 de-
notes the true underlying regression function and ε = Y − m0(X). To check the
conditions compare also the proof of Proposition 1 in the latter paper. In par-
ticular, their condition A.4 holds with s = 2l/(2l + 1). This follows because
for two functions g1, g2 : [0,1] → R with |Dl

zg1(z)| ≤ L, |Dl
zg2(z)| ≤ L and∫ 1

0 (g1(z) − g2(z))
2 dz ≤ δ2, it holds that |g1(z) − g2(z)| ≤ 2(2L)1−cδ1−c with

c = 2l(2l + 1)−1; see Lemma 2 in Chen and Shen (1998). The necessary condi-
tions are simplified because we assume that the data are i.i.d.; see also Remark 1(b)
in Chen and Shen (1998). To get ε

(2−s)/(γ−1)
n Bn ≥ 1 at the end of their proof of

Theorem 3 one needs that (2 − s)/(γ − 1) < s which is equivalent to γ > 2 + l−1.
One can check that their proof goes through with this constraint. Thus it suffices
for the i.i.d. case that E|ε|γ < ∞ holds for some γ > 2 + l−1.
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A.3. Additional assumptions for kernel smoothing. We assume the density
of Xc is supported on [0,1]p . Thus, the integration at (3.6) is over [0,1]. We note
that, for the normalized kernel Khj

(uj , zj ) introduced in Section 3, [2hj ,1 − 2hj ]
is the interior region for zj that does not have a boundary effect. In addition to
assumption (A0) in Section 2, we collect the conditions we use for the theory in
Sections 3 and 5.

(A1) The quasi-likelihood function Q(μ,y) is three times continuously differ-
entiable with respect to μ for each y in its range, Q2(u, y) < 0 for u ∈ R and y

in its range, the link function g is three times continuously differentiable, V is
twice continuously differentiable and the conditional variance function v(x) =
var(Y |X = x) is continuous in xc = (xr+1, . . . , xr+p)� for each (x1, . . . , xr). The
densities pXj

for r + 1 ≤ j ≤ r + p are bounded away from zero on [0,1]. The
function V and the derivative g′ are bounded away from zero. The higher-order
derivatives g′′ and g′′′ are bounded. The weight function w is continuously differ-
entiable and fulfills w(0) = w(1) = 0.

(A2) The partial derivatives ∂pX(x)/∂xc of the joint density function pX exist
and are continuous in xc for all (x1, . . . , xr).

(A3) The components of fj are twice continuously differentiable.
(A4) E|Y |α < ∞ for some α > 5/2.
(A5) The kernel function K is bounded, symmetric about zero, has compact

support, say [−1,1], and is Lipschitz continuous. The bandwidths hj depend on
the sample size n and satisfy n1/5hj → cj as n → ∞ for some constants 0 < cj <

∞.

A.4. Preliminaries for the proofs of theorems 2–4. The population versions
of F̂j are defined by

Fj (η)(zj ) =
∫

E
[
Q1

(
X̃�η(z),m(X)

)
X̃j |Xc = z

]
pXc (z) dz−j .

For the empirical versions of Wjk(z;η), Wj (z;η) and W(z;η) introduced in Sec-
tion 3, we define

Ŵjk(z;η) = −n−1
n∑

i=1

Q2
(
X̃i�η(z), Y i)X̃i

j X̃i�
k Kh

(
Xc,i , z

)
,

and then define Ŵj (z;η) and Ŵ(z;η) in the same way as we define Wj (z;η) and
W(z;η), respectively. We write Ŵjk(z) = Ŵjk(z; f) in case the true f enters into
the place of η.

For a tuple δ ∈ H(W), let F̂′
j (η)(δ) denote the Fréchet differential of F̂j at η to

the direction of δ. Then

F̂′
j (η)(δ)(zj ) = −

∫
Ŵj (z;η)δ(z) dz−j .



FLEXIBLE VARYING COEFFICIENT MODELS 1929

The second term on the right-hand side of (4.3) is simply F̂′
j (f̂

[s−1])(f̂ −
f̂[s−1])(zj ). The population versions of F̂′

j (η) are defined by F′
j (η)(δ)(zj ) =

− ∫
Wj (z;η)δ(z) dz−j . Define a linear operator F̂′(η) by

F̂′(η)(δ) = ((
F̂′

1(η)(δ)
)�

, . . . ,
(
F̂′

p(η)(δ)
)�)�

.

Likewise, define F′(η) from F′
j (η). In the proofs below, we use f = (f�1 , . . . , f�p )�

to denote the true vector of univariate functions.

A.5. Proof of Theorem 2. In addition to ‖ · ‖# introduced in Section 3,
we consider two other norms. Let ‖ · ‖2 be the L2(pXc )-norm defined by
‖η‖2

2 = ∫ |η(z)|2pXc (z) dz. Define ‖η‖∞ = max{sup2h1≤z1≤1−2h1
|η1(z1)|, . . . ,

sup2hp≤zp≤1−2hp
|ηp(zp)|}, where | · | denotes the Euclidean norm. As in Sec-

tion 3, we write W(z) = W(z; f), Wjj (zj ) = Wjj (zj ; f), etc., for the true tuple f.
For a linear operator F that maps H(W) to H(W), let ‖F ‖op denote its operator-
norm defined by ‖F ‖op = sup‖δ‖=1 ‖F (δ)‖. Here and below, if not specified, ‖ · ‖
is either ‖ · ‖2 or ‖ · ‖∞. We prove

P
(
F̂′(f) is invertible and

∥∥F̂′(f)−1∥∥
op ≤ C1

) → 1,(A.3)

P
(∥∥F̂′(η) − F̂′(η′)∥∥

op ≤ C2
∥∥η − η′∥∥ for all η,η′ ∈ Br(f)

) → 1,(A.4)

for some constants r,C1,C2 > 0, where Br(f) is a ball centered on f with radius r .
Then, the theorem follows from Newton–Kantorovich theorem [see, e.g., Deimling
(1985)] since ‖F̂(f)‖2 = Op(n−2/5) and ‖F̂(f)‖∞ = Op(n−2/5√logn).

By the standard techniques of kernel smoothing, one can show that, uniformly
for z ∈ [0,1]p , Ŵjk(zj , zk) ≡ ∫

Ŵjk(z) dz−(j,k) converges to Wjk(zj , zk) and
Ŵjj (zj ) ≡ ∫

Ŵjj (z) dz−j to Wjj (zj ), for 1 ≤ j 	= k ≤ p. This gives the uni-
form convergence of F̂′(f)(δ) to F′(f)(δ) over δ such that ‖δ‖ ≤ R, where R > 0
is an arbitrary positive real number. Thus, to prove (A.3) it suffices to show
that F′(f) is invertible and has a bounded inverse. For this claim we first show
that the map F′(f) : H(W) → H(W) is one-to-one. Suppose that F′(f)(δ) = 0 for
some δ ∈ H(W). We have to show that δ = 0. From F′(f)(δ) = 0 we get that
δj (zj )

� ∫
Wj (z)δ(z) dz−j = 0 for all 1 ≤ j ≤ p. This implies

0 =
p∑

j=1

∫ [∫
δj (zj )

�
∫

Wj (z)δ(z) dz−j

]
dzj

≥
p∑

j=1

p∑
k=1

∫ (
x̃�
j δj (xr+j )

)(
x̃�
k δk(xr+k)

)
PX(dx)

= c

∫ ( p∑
j=1

x̃�
j δj (xr+j )

)2

PX(dx)
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for some positive constant c > 0. Here, for the inequality we used that V (u)g′(u)2

is bounded from above for u in any compact set. Applying the arguments in the
proof of Lemma 1, we get that δ = 0 a.s. This proves the claim that the map
F′(f) : H(W) → H(W) is one-to-one.

Next, using the fact that 〈F′(f)(δ),η〉# = 〈δ,F′(f)(η)〉# for all δ,η ∈ H(W), one
can show that F′(f) is onto. Thus, F′(f) is invertible. To verify that F′(f)−1 is
bounded, it suffices to prove that the bijective linear operator F′(f) is bounded,
due to the bounded inverse theorem. From the assumption (A1) and the fact that
support of the density of X is bounded, we get

∥∥F′(f)(δ)
∥∥2

# =
∫ ∣∣F′(f)(δ)(z)

∣∣2pXc (z) dz ≤ C3‖δ‖2
2,∥∥F′(f)(δ)

∥∥∞ ≤ C4‖δ‖∞
for some constants C3,C4 > 0. This concludes that F′(f) is bounded in both of the
norms ‖ · ‖2 and ‖ · ‖∞.

The claim (A.4) holds since, for any given r > 0, there exists a constant C5 > 0
such that, with probability tending to one, ‖F̂′(η)(δ) − F̂′(η′)(δ)‖ ≤ C5‖η − η′‖ ·
‖δ‖ for all η,η′ ∈ Br(f).

A.6. Proof of Theorem 3. Let δ̌ denote a solution of the following equations:

δ̌j (zj ) = δ̃j (zj )
(A.5)

− ∑
k 	=j

∫
Ŵjj (zj )

−1Ŵjk(zj , zk)δ̌k(zk) dzk, 1 ≤ j ≤ p,

where δ̃j (zj ) = Ŵjj (zj )
−1F̂j (f)(zj ). We first remark that δ̌ exists and is unique,

with probability tending to one. Define f̃ = f + δ̌. We claim

‖f̃ − f‖∞ = Op

(
n−2/5

√
logn

)
.(A.6)

Define F̃j for 1 ≤ j ≤ p by

F̃j (η)(zj ) = F̂j (f)(zj )

+
p∑

k=1

∫
n−1

n∑
i=1

Q2
(
X̃i�f(z), Y i)

× X̃i
j X̃i�

k

[
ηk(zk) − fk(zk)

]
Kh

(
Xc,i , z

)
dz−j .

Note that f̃ is the solution of the system of equations F̃j (η) = 0j ,1 ≤ j ≤ p

by the definitions of δ̌j and δ̃j . Thus, the claim (A.6) ensures that F̂j (f̃)(zj ) =
F̃j (f̃)(zj )+op(n−2/5) = op(n−2/5), uniformly for zj ∈ [2hj ,1−2hj ]. Also, (A.6)
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and (A.4) give (A.3) with f being replaced by f̃. This establishes ‖f̂ − f̃‖∞ =
op(n−2/5). The theorem follows since

n2/5δ̌(z)
d→N

((
β1(z1)

�, . . . ,βp(zp)�
)�

,diag
(
�j (zj )

))
,

the latter being proved similarly as in the proof of Theorem 2 of Lee, Mammen
and Park (2012).

It remains to prove (A.6). The Fréchet differential of F̃j at η to the direction δ,
which we denote by F̃′

j (η)(δ), does not depend on η since F̃j (η) is linear in η. In

fact F̃′
j (η)(δ) = F̂′

j (f)(δ) for all η. This means that F̃(f) = F̂(f) and F̃′(η) = F̂′(f)
for all η, so that (A.3) and (A.4) are valid for F̃. As in the proof of Theorem 2, this
implies (A.6).

A.7. Proof of Theorem 4. An application of Newton–Kantorovich theorem
gives the first part of the theorem. For the proof of the second part of the theorem,

we rewrite a full cycle of the iteration step in (4.5) as δ̂
[s,	] = δ̂

[s−1]
+ +Â[s−1]δ̂[s,	−1]

with appropriate definitions of δ̂
[s−1]
+ and Â[s−1]. Note that δ̂

[s−1]
+ differs from the

tuple with elements δ̃
[s−1]
j . Also, we can write a full cycle of the iteration step for

solving (A.5) as δ̌
[	] = δ̌+ + Ǎδ̌

[	−1]
with appropriate definitions of δ̌+ and Ǎ.

Finally, we can write δ[	] = δ+ +Aδ[	−1] with appropriate definitions of δ+ and A

for a full cycle of

δ
[	]
j (zj ) = Wjj (zj )

−1Fj (f)(zj ) − ∑
k 	=j

∫ [
Wjj (zj )

]−1Wjk(zj , zk)δ
[	−1]
k (zk) dzk,

1 ≤ j ≤ p.

For the convergence of the last iteration, we note that the projection operators
πkj : Hk(W) → Hj (W) for all 1 ≤ j 	= k ≤ p are Hilbert–Schmidt, where Hk(W)

is a subspace of H(W) such that η ∈ Hk(W) if and only if ηl = 0 for all l 	= k, and
elements of ηk with the configuration at (3.4) satisfy the constraints (3.5). This
implies there exist constants C0 and 0 < ρ0 < 1, with∫ [

δ[	](z) − δ[∞](z)
]�W(z)

[
δ[	](z) − δ[∞](z)

]
dz ≤ C0ρ

2	
0(A.7)

for some limiting function δ[∞].
We now apply ‖Ǎ − A‖ = op(1), ‖δ̌+ − δ+‖ = op(1) and sups ‖Â[s] − Ǎ‖ ≤

c, sups ‖δ̂[s]
+ − δ̌+‖ ≤ c with probability tending to one, for some constant c >

0 that can be made as small as we like by choosing τ small enough. This and
equation (A.7) implies that for some constants C∗ and 0 < ρ∗ < 1,∫ [

δ̂
[s,	]

(z) − δ̂
[s,∞]

(z)
]�W(z)

[
δ̂
[s,	]

(z) − δ̂
[s,∞]

(z)
]
dz ≤ C∗ρ2	∗ ,

with probability tending to one. This completes the proof of Theorem 4.
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