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DEVIATION OPTIMAL LEARNING USING GREEDY
Q-AGGREGATION
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Given a finite family of functions, the goal of model selection aggrega-
tion is to construct a procedure that mimics the function from this family that
is the closest to an unknown regression function. More precisely, we consider
a general regression model with fixed design and measure the distance be-
tween functions by the mean squared error at the design points. While proce-
dures based on exponential weights are known to solve the problem of model
selection aggregation in expectation, they are, surprisingly, sub-optimal in de-
viation. We propose a new formulation called Q-aggregation that addresses
this limitation; namely, its solution leads to sharp oracle inequalities that are
optimal in a minimax sense. Moreover, based on the new formulation, we de-
sign greedy Q-aggregation procedures that produce sparse aggregation mod-
els achieving the optimal rate. The convergence and performance of these
greedy procedures are illustrated and compared with other standard methods
on simulated examples.

1. Introduction. Model selection is one of the major aspects of statistical
learning and, as such, has received considerable attention over the past decades.
More recently, the seminal works of Nemirovski (2000) and Tsybakov (2003) have
introduced an idealized setup to study the properties of model selection procedures
independently of the models themselves. We consider this so-called pure model se-
lection aggregation (or simply MS aggregation) framework for the simple model
of Gaussian regression with fixed design.

Let x1, . . . , xn be n given design points in a space X , and let H = {f1, . . . , fM}
be a given dictionary of real valued functions on X . The goal is to estimate an
unknown regression function η : X → R at the design points based on observations

Yi = η(xi) + ξi,

where ξ1, . . . , ξn are i.i.d. N (0, σ 2). Our main results are actually stated for sub-
Gaussian random variables, but since most of the literature is available only
for Gaussian noise, we temporarily make this assumption to ease comparisons
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throughout the Introduction. The performance of an estimator η̂ is measured by its
mean square error (MSE) defined by

MSE(η̂) = 1

n

n∑
i=1

(
η(xi) − η̂(xi)

)2
.

In the pure model selection aggregation framework, the goal is to build an es-
timator η̂ that mimics the function fj in the dictionary with the smallest MSE.
Formally, a good estimator η̂ should satisfy the following oracle inequality in a
certain probabilistic sense:

MSE(η̂) ≤ min
j=1,...,M

MSE(fj ) + �n,M

(
σ 2)

,(1.1)

where the remainder term �n,M > 0 should be as small as possible. Note that or-
acle inequality (1.1) is a truly finite sample result, and the remainder term should
show the interplay between the three fundamental parameters of the problem: the
“dimension” M , the sample size n and the noise level σ 2. Most oracle inequalities
for model selection aggregation have been produced in expectation [see the refer-
ences in Rigollet and Tsybakov (2012)] with notable exceptions [Audibert (2008),
Dai and Zhang (2011), Gaïffas and Lecué (2011), Lecué and Mendelson (2009),
Rigollet (2012)] who produced oracle inequalities that hold with high probability
and to which we will come back later.

From the early days of the pure model selection problem, it has been established
[see, e.g., Rigollet (2012), Tsybakov (2003)] that the smallest possible order for
�n,M(σ 2) was σ 2(logM)/n for oracle inequalities in expectation, where “smallest
possible” is understood in the following minimax sense. There exists a dictionary
H = {f1, . . . , fM} such that the following holds. For any estimator η̂, there exists
a regression function η such that

E MSE(η̂) ≥ min
j=1,...,M

MSE(fj ) + Cσ 2 logM

n

for some positive constant C. Moreover, it follows from the same results that this
lower bound holds not only in expectation but also with positive probability.

The established terminology model selection is somewhat misleading. Indeed,
while the goal is to mimic the best model in the dictionary H, it has been shown
[see Rigollet and Tsybakov (2012), Theorem 2.1] that there exists a dictionary H
such that any estimator (selector) η̂ restricted to be one of the elements of H
cannot satisfy an oracle inequality such as (1.1) with a remainder term of order
smaller than σ

√
(logM)/n, which is clearly suboptimal. Rather than model selec-

tion, model averaging has been successfully employed to derive oracle inequalities
in expectation such as (1.1). More precisely, model averaging consists in choosing
η̂ as a convex combination of the fj s with carefully chosen weights. Let � be the
flat simplex of RM defined by

� =
{
λ = (λ1, . . . , λM)� ∈ RM :λj ≥ 0,

M∑
j=1

λj = 1

}
.
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Each λ ∈ � yields an aggregate estimator η̂ = fλ, where

fλ =
M∑

j=1

λjfj .

This is why we refer to this problem as model selection aggregation or MS aggre-
gation. The early papers of Catoni (1999) and Yang (1999) introduced and proved
optimal theoretical guarantees for a model averaging estimator called progressive
mixture that was later studied in Audibert (2008) and Juditsky, Rigollet and Tsy-
bakov (2008) from various perspectives. This estimator is based on exponential
weights, which, since then, have been predominantly used and have led to optimal
oracle inequalities in expectation. Let π = (π1, . . . , πM)� ∈ � be a given prior
and β > 0 be a temperature parameter, then the j th exponential weight is given by

λEXP
j ∝ πj exp

(−nM̂SE(fj )/β
)
,(1.2)

where

M̂SE(fj ) = 1

n

n∑
i=1

(
Yi − fj (xi)

)2
.

The most common prior choice is the uniform prior π = (1/M, . . . ,1/M)�, but
other choices that put more or less weight on different functions of the dictio-
nary have been successfully applied to various related problems; see, for example,
Dalalyan and Salmon (2011), Rigollet and Tsybakov (2011, 2012). Note that pro-
gressive mixture contains an extra averaging step which is irrelevant to the fixed
design problem that we study here, but we implement it in Section 5 for compari-
son with the nonaveraged procedure.

The fixed design Gaussian regression was considered in Dalalyan and Tsybakov
(2007, 2008) who proved an oracle inequality of the form (1.1) with optimal re-
mainder term. This result suffers two deficiencies: first, it can be extended to other
types of noise, but not to sub-Gaussian distributions in general. Second, and per-
haps most importantly, it holds only in expectation and not with high probability.
While this second limitation may have followed the proof technique, we actually
show in Section 3 that it is inherent to exponential weights. Consequently, we say
that exponential weights are deviation suboptimal since the expectation of the re-
sulting MSE is of the optimal order, but the deviations around the expectation are
not. Note also that the original paper of Dalalyan and Tsybakov (2007) made some
boundedness assumption on the distance between function in the dictionary H and
the regression function η. This assumption was lifted in their subsequent paper
[Dalalyan and Tsybakov (2008)]. In this paper, we make no such assumption ex-
cept for the lower bound, which, of course, makes our result even stronger.

For regression with random design, Audibert (2008) observed also that var-
ious progressive mixture rules are deviation suboptimal. In the same paper, he
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addressed this issue by proposing the STAR algorithm which is optimal both
in expectation and in deviations under the uniform prior and, remarkably, does
not require any parameter tuning as opposed to progressive mixture rules. Also
for random design, Lecué and Mendelson (2009) followed by Gaïffas and Lecué
(2011) proposed deviation optimal methods based on the same sample splitting
idea. However, sample splitting method do not carry to fixed design. Subsequently,
Rigollet (2012) proposed a new estimator, similar to the one studied in the rest of
the paper and that enjoys the same theoretical properties as the STAR algorithm but
for fixed design regression. However, while it is the solution of a convex optimiza-
tion problem, Rigollet’s method comes without implementation. Finally, a first
implementation of a greedy algorithm that enjoys optimal deviation was proposed
in Dai and Zhang (2011). Our subsequent results extend both the results of Rigollet
(2012) and Dai and Zhang (2011) in various directions.

In Section 2 of the present paper, we study the deviation suboptimality of two
commonly used aggregate estimators: the aggregate by exponential weights and
the aggregate by projection. Then, in Section 3, we extend the original method
of Rigollet (2012) in several directions. First and foremost, our extension allows
us to put a prior weight on each element of the dictionary. These prior weights
appear explicitly in the oracle inequalities that are derived in Section 3. Both the
method of Rigollet (2012) and ours are solutions of convex optimization problems.
In Section 4, we propose efficient greedy model averaging (GMA) procedures that
approximately solve the newly proposed Q-aggregation formulations. It is shown
that GMA can produce sparse model aggregates that achieve optimal deviation
bounds. The performance of different model selection and aggregation estimators
are compared in Section 5.

NOTATION. For any vector v, we denote by vj its j th coordinate. Moreover,
for any functions f,g : X → R, we define the pseudo-norm

‖f ‖2 = 1

n

n∑
i=1

f (xi)
2,

and the associated inner product

〈f,g〉 = 1

n

n∑
i=1

f (xi)g(xi).

Also, we define the function Y : X → R to be any function such that Y(xi) = Yi .
Observe that with the above notation, we have

M̂SE(f ) = ‖Y − f ‖2, MSE(f ) = ‖η − f ‖2.

Finally, for any p ≥ 1, we denote by | · |p the 
p norm.
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2. Deviation suboptimality of commonly used estimators. It is well known
[see, e.g., Rigollet and Tsybakov (2012)] that the exponential weights λEXP defined
in (1.2) are the solution of the following minimization problem:

λEXP ∈ argmin
λ∈�

{
M∑

j=1

λj M̂SE(fj ) + β

n

M∑
j=1

λj log
(

λj

πj

)}
.(2.1)

It was shown in Dalalyan and Tsybakov (2007, 2008) that for β ≥ 4σ 2, it holds

E MSE(fλEXP) ≤ min
j=1,...,M

{
MSE(fj ) + β

n
log

(
π−1

j

)}
.(2.2)

The proof of this result relies heavily on the fact that the oracle inequality holds in
expectation and whether the result also holds with high probability arises as a nat-
ural question. While the paper of Audibert (2008) does not cover the fixed design
Gaussian regression framework of our paper and concerns exponential weights
with an extra averaging step, it contributed to the common belief that exponen-
tial weights would be suboptimal in deviation. In particular, Lecué and Mendelson
(2012) derived lower bounds for the performance of exponential weights in expec-
tation when β is chosen below a certain constant threshold in the case of regression
with random design. Moreover, they proved deviation sub-optimality of exponen-
tial weights when β is less than

√
n/(logn). However, these lower bounds rely

heavily on the fact that the design is random and do not extend to the fixed design
case. In particular, their construction uses Y ≡ 0, which is clearly an easy problem
in the fixed design case. Proposition 2.1 states precisely that exponential weights
are deviation suboptimal, if β is chosen small enough and in particular if β is any
constant with respect to M and n.

Another natural solution to solve the MS aggregation problem is to take the
vector of weights λPROJ defined by

λPROJ ∈ argmin
λ∈�

M̂SE(fλ).(2.3)

We call λPROJ the vector of projection weights since the aggregate estimator fλPROJ

is the projection of Y onto the convex hull of the fj s.
It has been established that this choice is near-optimal for the more difficult

problem of convex aggregation with fixed design [see Juditsky and Nemirovski
(2000), Nemirovski (2000), Rigollet (2012)] where the goal is to mimic the best
convex combination of the fj s as opposed to simply mimicking the best of them.
More precisely, it follows from Theorem 3.5 in Rigollet (2012) that

E MSE(fλPROJ) ≤ min
λ∈�

MSE(fλ) + 2σ

√
logM

n

≤ min
j=1,...,M

MSE(fj ) + 2σ

√
logM

n
,
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and a similar oracle inequality also holds with high probability. The second in-
equality is very coarse, and it is therefore natural to study whether a finer anal-
ysis of this estimator would yield an optimal oracle inequality for the aggregate
fλPROJ both in expectation and with high probability. This question was investi-
gated by Lecué and Mendelson (2009) who proved that fλPROJ cannot satisfy an
oracle inequality of the form (1.1) with high probability and with a remainder term
�n,M(σ 2) of order smaller than n−1/2. Their proof, however, heavily uses the fact
that the design is random, and we extend it to the fixed design case in Proposi-
tion 2.2 below.

For both aggregates considered below, we use the following notation. For each
j = 1, . . . ,M , we identify the functions fj on {x1, . . . , xn} with a vector fj =
(fj (x1), . . . , fj (xn)) ∈ Rn where we systematically use the gothic font to identify
such vectors throughout the rest of the section. Moreover, for any vector of weights
λ ∈ RM , we write fλ = (fλ(x1), . . . , fλ(xn)).

2.1. Aggregate by exponential weights. Consider the following dictionary H.
Assume that M,n ≥ 3. Let e(1) = (1,0, . . . ,0)� ∈ Rn and e(2) = (0,1,0, . . . ,

0)� ∈ Rn be the first two vectors of the canonical basis of Rn. Moreover, let
e(3), . . . ,e(M) ∈ Rn be M − 2 unit vectors of Rn that are orthogonal to both e(1)

and e(2). Let f1, . . . , fM be such that

f1 = σ
√

ne(1), f2 = σ(1 + √
n)e(2),

and for any j = 3, . . . ,M , fj is defined by

fj = f2 + σαj e(j),

where α3, . . . , αM ≥ 0 are tuning parameters to be chosen later. Moreover, take
the regression function η ≡ 0 so that MSE(f1) ≤ MSE(fj ) for any j ≥ 2. Observe
that ‖fj‖ ≥ σ so that the following lower bounds cannot be interpreted as artifacts
of scaling the signal-to-noise ratio.

Assume that M ≥ 4 and n ≥ 3. We call low temperatures, parameters β > 0
such that

β ≤ 2σ 2√n

log(8
√

n)
.(2.4)

In particular the exponential weights employed in the literature on MS aggregation
use the low temperature β = 4σ 2; see, for example, (2.2) above.

PROPOSITION 2.1. Fix M ≥ 4, n ≥ 3 and assume that the noise random vari-
ables ξ1, . . . , ξn are i.i.d. N (0, σ 2). Let η and H be defined as above. Then, the
aggregate estimator fλEXP with exponential weights λEXP given by (1.2) satisfies

MSE(fλEXP) ≥ min
j=1,...,M

MSE(fj ) + σ 2

4
√

n
,
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with probability at least 0.07 at low temperatures, for any α3, . . . , αM ≥ 0.
Moreover, if M ≥ 8

√
n and for any j ≥ 3, we have

2
√

2 log(100M) ≤ αj ≤ n1/4,(2.5)

then, the same result holds at any temperature, with probability at least 0.06.

PROOF. Note first that by homogeneity, one may assume that σ = 1. More-
over, write for simplicity λ = λEXP. If we assume λ1 ≤ 1/2, we obtain

|fλ|22 − |f1|22 ≥ ∣∣λ1f1 + (1 − λ1)f2
∣∣2
2 − |f1|22

= (1 − λ1)
2|f2|22 − (

1 − λ2
1
)|f1|22

(2.6)
≥ 2(1 − λ1)

2√n + [
(1 − λ1)

2 − (
1 − λ2

1
)]

n

≥ √
n/2 − 2λ1n.

We first treat the low temperature case where β is chosen as in (2.4). Define the
event

E = {
nM̂SE(f2) + 2

√
n ≤ nM̂SE(f1)

}
,

and observe that η ≡ 0 gives

E = {
2〈f2 − f1, ξ〉2 ≥ |f2|22 − |f1|22 + 2

√
n
}
.(2.7)

On the one hand, we have |f2|22 − |f1|22 = 1 + 2
√

n, and on the other hand

|f2 − f1|22 = |f2|22 + |f1|22 = (2n + 2
√

n + 1) ≥ 1
8(1 + 4

√
n)2.

Thus, we have

P(E) ≥ P
(
2〈f2 − f1, ξ〉2 ≥ 2

√
2|f2 − f1|2) = P(Z ≥ √

2) ≥ 0.07,(2.8)

where Z ∼ N (0,1). In view of (1.2), on the event E, we have

λ1 ≤ λ2e
−2/β

√
n ≤ 1

8
√

n
≤ 1

2

for low temperature β chosen as in (2.4). Together with (2.6), it yields

|fλ|22 − |f1|2 ≥
√

n

4
.

We now turn to the case of potentially high temperatures. Actually, the following
proof holds for any temperature β as long as the αj s are chosen small enough. In
this case, we can expect the M exponential weights to take comparable values. To
that end, define for each j = 2, . . . ,M , the event

Fj = {
M̂SE(fj ) ≤ M̂SE(f1)

}
.
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Define F = ⋂M
j=2 Fj , and denote by Fc

j the complement of Fj . Recall that |fj |22 =
|f2|22 + α2

j so that

Fc
j = {

2〈fj − f1, ξ〉2 ≤ |fj |22 − |f1|22
}

= {
2〈f2 − f1, ξ〉2 + 2〈fj − f2, ξ〉2 ≤ |f2|22 − |f1|22 + α2

j

}
⊂ Ec ∪ Gj,

where the E is defined in (2.7), and Gj is defined as

Gj = {
2〈fj − f2, ξ〉2 ≤ α2

j − 2
√

n
}
.

In view of (2.5), we have

P(Gj ) ≤ P
(
2〈fj − f2, ξ〉2 ≤ −α2

j

) ≤ P
(
Z ≥

√
2 log(100M)

) ≤ 0.01

M
.

Therefore,

P
(
Fc) ≤ P

(
Ec) +

M∑
j=2

P(Gj ) ≤ 0.93 + 0.01 = 0.94.

Note now that on the event F , for any j = 2, . . . ,M , we have λj ≥ λ1 so that
λ1 ≤ 1/M ≤ 1/2. Together with (2.6), it yields

|fλ|22 − |f1|22 ≥
√

n

2
− 2n

M
≥

√
n

4
,

where, in the last inequality, we used the fact that M ≥ 8
√

n. �

2.2. Aggregate by projection. Our lower bound for the aggregate by projection
relies on a different construction of the dictionary. Let m be the smallest integer
that satisfies m2 ≥ 4n/13 and let n,M be large enough to ensure that m ≥ 16,
M − 1 ≥ 2m. Let e(1), . . . ,e(m) ∈ Rn be the first m vectors of the canonical basis
of Rn. For any j = 1, . . . ,M , the fj s are defined as

fj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
ne(j), if 1 ≤ j ≤ m,

−√
ne(j), if m + 1 ≤ j ≤ 2m,

0, if j = 2m + 1,

f1, if j > 2m + 1.

Moreover, define η ≡ 0 so that 0 = MSE(f2m+1) ≤ MSE(fj ) for all j ≤ M .

PROPOSITION 2.2. Fix n ≥ 416,M ≥ √
n, and assume that the noise random

variables ξ1, . . . , ξn are i.i.d. N (0, σ 2). Let η and H be defined as above. Then the
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projection aggregate estimator fλPROJ with weights λPROJ defined in (2.3) is such
that

MSE(fλPROJ) ≥ min
j=1,...,M

MSE(fj ) + σ 2
√

48n
,

with probability larger than 1/4. Moreover, the above lower bound holds with
arbitrary large probability if n is chosen large enough.

PROOF. Note first that by homogeneity, one may assume that σ = 1. Next,
observe that fλPROJ = (Pmξ,0, . . . ,0)� ∈ Rn, where Pmξ ∈ Rm is the projection of
ξ̃ = (ξ1, . . . , ξm)� onto Bm

1 (
√

n), the 
1-ball of Rm with radius
√

n.
Let E denote the event on which |ξ̃ |1 ≤ √

n and observe that, on this event, we
have Pmξ = ξ̃ . It yields

nMSE(fλPROJ) =
m∑

j=1

ξ2
j = |ξ̃ |22.

Let now F denote the event on which |ξ̃ |22 ≥ m/2, and note that on E ∩F , it holds

MSE(fλPROJ) ≥ m

2n
≥

√
1

13n
.

To conclude our proof, it remains to bound from below the probability of E ∩F .
The bounds below follow from the fact that |ξ̃ |22 follows a chi-squared distribution
with m degrees of freedom. We begin by the event E. Using Hölder’s inequality,
we have

P
(
Ec) ≤ P

(
|ξ̃ |22 ≥ n

m

)
= P

(
|ξ̃ |22 − E|ξ̃ |22 ≥ n

m
− m

)
.

Next, using the fact that m2 ≤ 8n/13 together with Laurent and Massart [(2000),
Lemma 1], we get

P
(
Ec) ≤ P

(
|ξ̃ |22 − E|ξ̃ |22 ≥ 5m

8

)
≤ e−m/16.

Moreover, using Laurent and Massart [(2000), Lemma 1], we also get that

P
(
Fc) = P

(
|ξ̃ |22 − E|ξ̃ |22 ≤ −m

2

)
≤ e−m/16.

Therefore, since n ≥ 416 implies m ≥ 16, we get

P(E ∩ F) ≥ 1 − P
(
Ec) − P

(
Fc) ≥ 1 − 2e−m/16 ≥ 1 − 2/e ≥ 1/4. �

Note that we employed a different dictionary for each of the aggregates. There-
fore, it may be the case that choosing the right aggregate for the right dictionary
gives the correct deviation bounds. In the next section, we propose a new aggre-
gate estimator called Q-aggregate, that automatically adjusts the aggregate to the
dictionary at hand.
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3. Deviation optimal model selection by Q-aggregation. According to
(2.1), the weight vector λEXP considered in the previous section minimizes a pe-
nalized linear interpolation of the function λ → M̂SE(fλ). The major novelty of the
method introduced in Rigollet (2012) compared to exponential weighting is to add
a quadratic term to this linear interpolation. We introduce a family of estimators
that extends the original estimator of Rigollet in two directions: (i) it allows for a
prior weighting of the functions in the dictionary, and (ii) it allows to put different
weight of each of the component of the fitting criterion via the tuning parameter ν

introduced below.
Let π ∈ � be a given prior, and define the following entropic penalty:

Kρ(λ,π) =
M∑

j=1

λj log
(

ρ(λj )

πj

)
,

where ρ is a real valued function on [0,1] that satisfies ρ(t) ≥ t such that
t �→ t logρ(t) is convex. We are particularly interested in the choices ρ = 1, the
constant function equal to 1, which leads to a penalty that is linear in �, and
ρ(t) = t , the identity function of [0,1], which leads to the well-known Kullback–
Leibler penalty employed in exponential weights.

Given a dictionary H and observations Y1, . . . , Yn, let Q :� → R be the func-
tion defined by

Q(λ) = (1 − ν)M̂SE(fλ) + ν

M∑
j=1

λj M̂SE(fj ) + β

n
Kρ(λ,π),(3.1)

where ν ∈ [0,1]. Let λ̃ ∈ � be such that

λ̃ ∈ argmin
λ∈�

Q(λ).(3.2)

We call fλ̃ the Q-aggregate estimator. Note that on the one hand, if ν = 1 and
ρ(t) = t , then λ̃ = λEXP, the exponential weights defined in (1.2). On the other
hand, choosing ν = 0, ρ(t) = 1 and π to be the uniform prior yields λ̃ = λPROJ,
the projection weights.

The next theorem shows that the Q-aggregate estimator is optimal both in ex-
pectation and in deviation. It holds under less restrictive conditions on the noise
random variable ξ1, . . . , ξn. We say that the random vector ξ = (ξ1, . . . , ξn)

� is
sub-Gaussian with variance proxy σ 2 > 0, if for all t ∈ Rn, its moment generating
function satisfies

E
[
et�ξ ] ≤ e(σ 2|t |22)/2.

Note that if ξ ∼ Nn(0,�), then ξ is sub-Gaussian with variance proxy given by
σ 2 = ‖�‖op, where ‖�‖op denotes the largest eigenvalue of the covariance ma-
trix �.
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Let P be defined on the simplex � by

P(λ) = (1 − ν)MSE(fλ) + ν

M∑
j=1

λj MSE(fj ).

THEOREM 3.1. Fix ν ∈ (0,1) and π ∈ �. Moreover, assume that the noise
random variables ξ1, . . . , ξn are independent and sub-Gaussian with variance

proxy σ 2. Then for any β ≥ 2σ 2

min(ν,1−ν)
and any δ ∈ (0,1), the Q-aggregate es-

timator fλ̃ satisfies

MSE(fλ̃) ≤ min
λ∈�

{
P(λ) + β

n
Kρ(λ,π) + β

n
log(1/δ)

}
,

with probability 1 − δ. Moreover,

E MSE(fλ̃) ≤ min
λ∈�

{
P(λ) + β

n
Kρ(λ,π)

}
.

Theorem 3.1 follows directly from Theorem 4.1 below, so we prove only the
latter in Appendix A.1.

Our theorem implies that the Q-aggregate can compete with an arbitrary fλ in
the convex hull with λ ∈ �. However, we are mainly interested in MS aggregation,
where λ is at a vertex of the simplex �. With ν ∈ (0,1), the theorem implies that
the Q-aggregate estimator is deviation optimal, unlike the aggregate with expo-
nential weights. This is explicitly stated in the following corollary, which shows
that our estimator solves optimally the problem of MS aggregation. Its proof fol-
lows by simply restricting the infimum over � to the minimum over its vertices
in Theorem 3.1. Nonetheless, it is worth pointing out that our analysis focuses on
deviation bounds, and it does not allow us to recover (2.2) for the aggregate with
exponential weights when ν = 1.

COROLLARY 3.1. Under the assumptions of Theorem 3.1, the Q-aggregate
estimator fλ̃ satisfies

MSE(fλ̃) ≤ min
j

{
MSE(fj ) + β

n
log

(
ρ(1)

πj δ

)}
,

with probability 1 − δ. Moreover,

E MSE(fλ̃) ≤ min
j

{
MSE(fj ) + β

n
log

(
ρ(1)

πj

)}
.

REMARK 3.1. If we set ρ(t) = 1 and employ the uniform prior πj =
1/M,j = 1, . . . ,M , then the optimization of the criterion Q is independent of β .
In this case, we may simply set ν = 1/2, and the Q-aggregate estimator becomes
parameter free, and we recover the original aggregate of Rigollet (2012).
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4. Algorithms. In the previous section, we introduced and analyzed the Q-
aggregate estimator. It can be easily seen that if M is moderate, then it can be com-
puted efficiently since it requires solving the convex optimization problem (3.2).
The purpose of this section is to propose greedy model averaging (GMA) proce-
dures that can approximately solve the Q-aggregation formulation (3.2). More-
over, GMA leads to sparse estimators (i.e., the resulting estimators only aggre-
gate a small number of dictionary functions) that achieve the optimal deviation
bounds. These algorithms are thus appealing for their simplicity and statistical in-
terpretability.

4.1. Approximate Q-aggregation. Most numerical optimization algorithms do
not find the exact minimum of the objective function Q, but only approximate
solutions. We introduce two algorithms that minimize Q approximately, with a
very specific error term for the optimization task. It relies on the following quantity.
Given a dictionary H, for any λ ∈ �, let V (λ) denote its variance on H and be
defined by

V (λ) =
M∑

j=1

λj‖fj − fλ‖2.

For given εV , ε > 0, we call fλ̃ε
an (εV , ε)-approximate Q-aggregate if the vector

of weights λ̃ε ∈ � is such that

Q(λ̃ε) ≤ min
λ∈�

{
Q(λ) + εV V (λ) + ε

}
.(4.1)

Before going into the detailed description of the algorithms we state a generaliza-
tion of Theorem 3.1 that is valid not only for exact minimizers of Q but also for
approximate minimizers. Hereafter, we use the convention 0/0 = 0.

THEOREM 4.1. Let ε, εV , ν > 0 be such that ν + εV < 1 and fix π ∈ �.
Moreover, assume that the noise random variables ξ1, . . . , ξn are independent sub-
Gaussians with variance proxy σ 2. Fix any θ ∈ (εV /(ν+εV ),1], and choose β > 0
such that

β ≥ 2σ 2 max
{

1

ν − εV (1 − θ)/θ
; 1

(1 − θ)(1 − ν − εV )

}
.(4.2)

Then for any δ ∈ (0,1), any (εV , ε)-approximate Q-aggregate estimator fλ̃ε
satis-

fies

MSE(fλ̃ε
) ≤ min

λ∈�

{
P(λ) + εV V (λ) + ε

θ
+ β

n
Kρ(λ,π)

}
+ β

n
log(1/δ),(4.3)

with probability 1 − δ. Moreover,

E MSE(fλ̃ε
) ≤ min

λ∈�

{
P(λ) + εV V (λ) + ε

θ
+ β

n
Kρ(λ,π)

}
.(4.4)
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REMARK 4.1. If εV = 0, then (4.2) reduces to β ≥ 2σ 2/min(ν; (1 − θ)(1 −
ν)). Thus if ν < 1/2, we can take θ = 1−ν(1−ν) and β ≥ 2σ 2/ν. If ν ≥ 1/2, then
for any θ ∈ (0,1], we have min(ν; (1 − θ)(1 − ν)) = (1 − θ)(1 − ν). Furthermore,
if ε = 0, then in the case ν ≥ 1/2 we can let θ → 0 and obtain Theorem 3.1.

REMARK 4.2. Theorem 4.1 is related to PAC-Bayes-type inequalities that
also employ entropy regularization. In particular, the proof involves an interpo-
lated risk with variance correction, and such techniques have also appeared in ear-
lier papers such as Audibert (2004) under different context.

Clearly the smaller the εV and ε, the better the oracle inequality. Nevertheless,
in the canonical example where π is the uniform prior, it is sufficient to have ε uni-
formly bounded by C(logM)/n for some C > 0 in order to maintain a statistical
accuracy of the same order as that of the true Q-aggregate. However, if an estima-
tor has error term with ε = 0 and a constant εV > 0, then it achieves a statistical
accuracy of the same order as that of the true Q-aggregate because the variance
term εV V vanishes at the vertices of the simplex �. This is the main reason to
differentiate εV and ε in (4.1). As we will show later on, specially designed greedy
algorithms can lead to an error term with ε = 0, and thus such greedy algorithms
achieve optimal deviation bounds for MS aggregation.

4.2. Greedy Q-aggregation. Optimizing convex functions over convex sets
is the bread and butter of modern statistical computing, with many algorithms
ranging from gradient descent to interior point (IP) methods [see, e.g., Boyd and
Vandenberghe (2004) for a recent overview]. For simple constraints sets such as
the simplex � considered here, so-called proximal methods [see, e.g., Beck and
Teboulle (2009)] have shown very promising performance, especially when M

becomes large. However, the most efficient of these methods (IP and proximal
methods) does not output a sparse solution in a general case.

In the sequel, we focus on simple greedy model averaging algorithms (i.e., each
iteration takes the form of a greedy selection of a function in the dictionary) that
enjoy the following property. After k iterations, these algorithms return a vec-
tor λ(k) such that (i), λ(k) has at most k nonzero coefficients, and (ii) fλ(k) is an
approximate Q-aggregate estimator, where the quality of the approximation will
be made explicit. Specifically, appropriately designed greedy algorithms can give
ε = 0 in (4.1) for all k ≥ 2, and thus achieve optimal deviation bounds using only
k ≥ 2 dictionary functions.

Minimizing a quadratic objective over the simplex � is a common problem
in statistics and optimization. We focus on greedy algorithms introduced into the
statistical literature by Jones (1992). In optimization, greedy algorithms over sim-
plex � are known as Frank–Wolfe-type (or reduced gradient) methods. Their name
refers to the original paper of Frank and Wolfe (1956).
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We consider a few variants of greedy algorithms described in Algorithms 1
and 2. In these algorithms, e(j) denotes the j th vector of the canonical basis of
RM . Both algorithms can be seen as greedy algorithms that add at most one func-
tion from the dictionary at each iteration. This feature is attractive as it outputs a
k-sparse solution that depends on at most k functions from the dictionary after k

iterations. Each algorithm contains two variants: GMA-0 and GMA-0+ in Algo-
rithm 2, and GMA-1 and GMA-1+ in Algorithm 1. At the same sparsity level k,
the GMA-0+ (resp., GMA-1+) variant can further reduce approximation error of
GMA-0 (resp., GMA-1) in (4.1) via a more aggressive optimization step. This kind
of additional optimization is referred to as fully-corrective step [Shalev-Shwartz,
Srebro and Zhang (2010)], which is known to improve performance in practice.
The difference between Algorithms 1 and 2 is that the former uses first order in-
formation, namely the gradient ∇Q, to pick the best coordinate J (k) (which is the
standard Frank–Wolfe procedure in the greedy algorithm literature), while the lat-
ter uses only zero order information, namely, the coordinate that minimizes the
objective value Q(·) (which is relatively uncommon in the greedy algorithm lit-
erature). A similar algorithm with the purpose of solving MS aggregation has ap-
peared in Dai and Zhang (2011).

Note that both algorithms give approximate solutions λ(k) that converges to
the optimal solution of (3.2); that is, when k → ∞, we have εV → 0 and ε → 0
in (4.1). The classical Frank–Wolfe style analysis of greedy algorithms leads to the
same convergence rate for both approaches with error term of εV = 0 and ε > 0
in (4.1). The result is presented below in Proposition 4.1. Moreover, we present
a new analysis that differentiates these two algorithms. Specifically we obtain a
convergence result in Theorem 4.2 below with error term of ε = 0 in (4.1) for Al-
gorithm 2 when k ≥ 2 (but we are unable to prove the same result for Algorithm 1).
The importance of achieving error with ε = 0 is that for k ≥ 2, Algorithm 2 can
produce a k-sparse approximate solution λ(k) of (3.2) that achieves optimal devia-
tion.

The following proposition follows from the standard analysis in Frank and
Wolfe (1956), Jones (1992). It shows that the estimators λ(k) from Algorithms 1
and 2 converge to the optimal solution of the Q-aggregation formulation (3.2).
Therefore when k → ∞, λ(k) achieves optimal deviation bound. However, a dis-
advantage of the bound is that the result does not imply optimal deviation bounds
for λ(k) when k is small (e.g., when k = 2).

PROPOSITION 4.1. Assume that the dictionary H is such that maxj ‖fj‖ ≤ L.
Fix ν ∈ (0,1/2) and π ∈ �. Moreover, assume that the noise random variables
ξ1, . . . , ξn are independent and sub-Gaussian with variance proxy σ 2. Take ρ = 1
and

β ≥ 2σ 2

ν
.
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Algorithm 1 Greedy model averaging (GMA-1 and GMA-1+)
Input: Noisy observation Y, dictionary H = {f1, . . . , fM}, prior π ∈ �, parame-

ters ν,β .
Output: Aggregate estimator fλ(k) .

Let λ(0) = 0, fλ(0) = 0.
for k = 1,2, . . . do

Set αk = 2
k+1

J (k) = arg minj (∇Q(λ(k)))j

option-1 (GMA-1) λ(k) = λ(k−1) + αk(e(J (k)) − λ(k−1))

option-2 (GMA-1+) λ(k) = arg minλ∈� Q(λ) s.t. λj = 0 for j /∈
{J (1), . . . , J (k)}

end for

Then, for any k ≥ 1, the aggregate estimator fλ(k) where λ(k) is output by GMA-1
or GMA-0 (or GMA-1+ or GMA-0+) after k steps, satisfies

MSE(fλ(k)) ≤ min
j

{
MSE(fj ) + β

n
log

(
1

πjδ

)}
+ 16(1 − ν)2L2

1 − 2ν

1

k + 3
,

with probability 1 − δ. Moreover,

E MSE(fλ(k)) ≤ min
j

{
MSE(fj ) + β

n
log

(
1

πj

)}
+ 16(1 − ν)2L2

1 − 2ν

1

k + 3
.

REMARK 4.3. For simplicity, we consider the case of ν < 1/2, although sim-
ilar bounds can be obtained with ν ≥ 1/2.

REMARK 4.4. The result of Proposition 4.1 follows from the classical greedy
algorithm analysis in Barron (1993), Frank and Wolfe (1956), Jones (1992). In

Algorithm 2 Greedy model averaging (GMA-0 and GMA-0+)
Input: Noisy observation Y, dictionary H = {f1, . . . , fM}, prior π ∈ �, parame-

ters ν,β .
Output: Aggregate estimator fλ(k) .

Let λ(0) = 0, fλ(0) = 0.
for k = 1,2, . . . do

Set αk = 2
k+1

J (k) = arg minj Q(λ(k−1) + αk(e(j) − λ(k−1)))

option-1 (GMA-0) λ(k) = λ(k−1) + αk(e(J (k)) − λ(k−1))

option-2 (GMA-0+) λ(k) = arg minλ∈� Q(λ) s.t. λj = 0 for j /∈
{J (1), . . . , J (k)}

end for
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particular, the result for λ(k) output by GMA-1 is well known in the literature;
see also Clarkson (2008), Jaggi (2011). For completeness, we include the proof
in Appendix A.3 especially since the greedy step in GMA-0 (and GMA-0+) is
relatively uncommon.

REMARK 4.5. It is known that the fully-corrective variants GMA-0+ and
GMA-1+ generally achieve better performance than their partially-corrective
counterparts GMA-0 and GMA-1 at the same sparsity level k. Although our anal-
ysis does not show their advantages, faster convergence rates can be obtained for
fully-corrective algorithms under additional assumptions [Shalev-Shwartz, Srebro
and Zhang (2010)]. Since the issue is not essential for our paper, we only illustrate
the benefit of fully-corrective updates by experiments.

REMARK 4.6. It follows from the proof of Proposition 4.1 that GMA-0 can
be used to optimize the function Q over the simplex �. Therefore, we can use it as
a subroutine for option-2 in the description of Algorithms 2 and 1. More precisely,
the following bound holds:

Q
(
λ(k)) ≤ min

λ∈�
Q(λ) + 16(1 − ν)L2

k + 3
.

For the approximation error 16(1−ν)2L2

1−2ν
1

k+3 to be of the same order as the esti-
mation error, one may choose k such that

k ≥ 16(1 − ν)2L2n

β(1 − 2ν) log(1/πmax)
− 3,

where πmax = maxj πj . In particular, if π is the uniform prior, then fλ(k) solves the
problem of MS aggregation optimally after

k ≥ 16(1 − ν)2L2n

β(1 − 2ν) log(M)
− 3

iterations.
Note that the above theorem requires the somewhat unpleasant assumption that

the functions in the dictionary are uniformly bounded in ‖ · ‖ norm. Indeed, this
assumption has not appeared so far and is therefore not natural in this problem.

More importantly, the bound only leads to optimal deviation for large k of the
order n/ log(M). The cause of this unpleasant issue is that the error term is with
ε �= 0 and εV = 0 in (4.1). In order to obtain optimal deviation bound, we have
to derive an error bound of the form (4.1) with either ε = O(log(M)/n), or with
ε = 0 and εV �= 0. In the later case, we allow εV to be relatively large, which means
that we do not have to solve (3.2) accurately. The following theorem shows that
such an error bound (with ε = 0) can be achieved via GMA-0 (and GMA-0+);
in addition, this result removes the assumption on the boundedness of dictionary
function.
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THEOREM 4.2. Fix ν ∈ (0,1), k ≥ 2 and π ∈ �. Moreover, assume that the
noise random variables ξ1, . . . , ξn are independent and sub-Gaussian with vari-
ance proxy σ 2. Take ρ = 1 and

β ≥ 2σ 2 inf
θ∈(0,1] max

{
1

ν − (4(1 − ν)(1 − θ))/((k + 3)θ)
;

1

(1 − θ)(1 − ν)(1 − 4/(k + 3))

}
.

Then the aggregate estimator fλ(k) where λ(k) is output by GMA-0 (or GMA-0+)
after k steps, satisfies

MSE(fλ(k)) ≤ min
j

{
MSE(fj ) + β

n
log

(
1

πjδ

)}
,

with probability 1 − δ. Moreover,

E MSE(fλ(k)) ≤ min
j

{
MSE(fj ) + β

n
log

(
1

πj

)}
.

REMARK 4.7. The theorem implies deviation bounds of the optimal order for
all k ≥ 2, and the constant β decreases to 2σ 2/min(ν,1 − ν) as in Theorem 3.1
when k → ∞. Such results indicate that the choice of ν is not critical and any
positive constant leads to the same optimal bound. However, we can optimize the
constant by choosing ν = 1/2 and we use this value in the simulations.

Moreover, a careful inspection of the proof indicates that fλ(k) where λ(k) is out-
put by GMA-0 (or GMA-0+) after k steps is a (εV ,0)-approximate Q-aggregate
estimator with εV = 4(1 − ν)/(k + 3). As a result, the condition ν + εV < 1 of
Theorem 4.1 requires that k ≥ 2.

To get a better quantitative idea of the result, we illustrate the particular choice
ν = 1/2. In this case, it can be easily shown that the optimal θ is given by θ�

k =
2/(

√
k + 3 + 2). Therefore, in this case, one may take

β ≥ 4σ 2

1 − 2/
√

k + 3
.

In particular, for k = 2, it is sufficient to take β = 20σ 2/(1 + 2/
√

5) ≥ 37σ 2. Al-
though it achieves the optimal rate for MS aggregation, the large constant implies
that it is still beneficial to run the algorithm for more than two iterations. This is
confirmed by our experiments.

It is worth pointing out that with flat prior, the first stage estimator fλ(1) = f
ĵ

is

simply the empirical risk minimizer with ĵ ∈ argminj M̂SE(fj ). We have already
pointed out that this estimator achieves sub-optimal deviation bounds; therefore the
requirement of k ≥ 2 in our analysis is natural. With k = 2, the estimator fλ(2) is
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related to the STAR algorithm, which can be regarded as a two-stage greedy algo-
rithm that minimizes the empirical loss function instead of the Q-aggregation loss
investigated in this paper. This means that we cannot directly generalize the STAR
algorithm to more than two stages since it converges to fλPROJ which is known to
be suboptimal for MS aggregation.

Notice that Theorem 4.2 has consequences on optimization problems beyond
the scope of this paper. Indeed, we constructed a greedy algorithm for which the
approximation error at each iteration is expressed as a function (here εV V ) and
not simply a constant as usual. This construction allowed us to derive convergence
rate that achieves optimal deviation bounds for greedy model averaging, and to
avoid stringent and unnatural conditions on the boundedness of the problem. One
of the key aspects of the function εV V is that it vanishes on the set of vertices. We
believe that this technique may find applications in other optimization problems.

5. Numerical experiments. Although optimal deviation bounds are obtained
for greedy Q aggregation with k ≥ 2, our analysis suggests that the performance
can increase when k increases (due to reduced constants). The purpose of this
section is to illustrate this behavior using numerical examples. We focus on the
average performance of different algorithms and configurations.

We identify a function f with a vector (f (x1), . . . , f (xn))
� ∈ Rn. Define

f1, . . . , fM so that the n × M design matrix X = [f1, . . . , fM ] has i.i.d. standard
Gaussian entries. Let In denote the identity matrix of Rn, and let � ∼ Nn(0, In) be
a random vector. The regression function is defined by η = f1 + 0.5�. Note that
typically f1 will be the closest function to η but not necessarily. The noise vector
ξ ∼ Nn(0,4In) is drawn independently of X.

We define the oracle model (OM) fj�, where j� = argminj MSE(fj ). The per-
formance difference between an estimator η̂ and the oracle model fj� is measured
by the regret defined as

R(η̂) = MSE(η̂) − MSE(fj�).

We run GMA-0, GMA-0+, GMA-1 and GMA-1+ algorithms for k iterations up
to k = 40. The temperature β of the exponential weights (EXP) is tuned via 10-fold
cross-validation. The projection aggregation (PROJ) estimator is obtained from
GMA-0 with ν = 0 for 250 iterations following Remark 4.6. The fully-corrective
optimization steps in GMA-0+ and GMA-1+ are implemented using GMA-0 and
GMA-1 restricted to the support {J (1), . . . , J (k)} at each step k. The purpose is to
achieve better performance at the same sparsity level k.

Since the target is η = f1 + 0.5�, and f1 and � are random Gaussian vectors,
the oracle model is likely f1 (but it may not be f1 due to the mis-specification
vector �). The noise σ = 2 is relatively large, which implies a situation where the
best convex aggregation does not outperform the oracle model. This is the scenario
considered in this paper. For simplicity, all algorithms use a flat prior πj = 1/M

for all j .
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TABLE 1
Performance comparison

STAR EXP PROJ

0.43 ± 0.41 0.386 ± 0.47 0.407 ± 0.28

ν = 0.5 k = 1 k = 2 k = 5 k = 20 k = 40

GMA-0 0.508 ± 0.76 0.42 ± 0.53 0.358 ± 0.42 0.336 ± 0.38 0.332 ± 0.37
GMA-0+ 0.508 ± 0.76 0.366 ± 0.5 0.341 ± 0.4 0.336 ± 0.38 0.336 ± 0.38
GMA-1 0.54 ± 0.79 0.683 ± 0.44 0.391 ± 0.38 0.342 ± 0.36 0.334 ± 0.37
GMA-1+ 0.54 ± 0.79 0.381 ± 0.46 0.338 ± 0.38 0.336 ± 0.38 0.336 ± 0.38

The experiment is performed with the parameters n = 50, M = 200, and σ = 2,
and repeated for 500 replications. In order to avoid cluttering, the detailed regret
of different algorithms are given in Table 2 in the Appendix B. Table 1 is a simpli-
fied comparison of commonly used estimators (EXP and PROJ as well as STAR)
with GMA-0, GMA-0+, GMA-1 and GMA-1+ and ν = 0.5. The regret is reported
using the “mean ± standard deviation” format.

The results in Table 1 indicate that for GMA-0 (or GMA-0+), from k = 1 (cor-
responding to MS aggregation) to k = 2, there is significant reduction of error.
The performance of GMA-0 (or GMA-0+) with k = 2 is comparable to that of the
STAR algorithm. This is not surprising as STAR can be regarded as the stage-2
greedy model averaging estimator based on empirical risk minimization. We also
observe that the error keeps decreasing (but at a slower pace) when k > 2, which is
consistent with Theorem 4.2. It means that in order to achieve good performance,
it is necessary to use more stages than k = 2 [although this does not change the
O(1/n) rate for the regret, it can significantly reduce the constant]. It becomes bet-
ter than EXP when k is as small as 5, which still gives a relatively sparse averaged
model.

Figure 1 compares the MSE performance of different values of ν for greedy al-
gorithms considered in the paper. It shows that for the scenario we are interested in
(i.e., where the noise is relatively large, and the best single model is nearly as good
as the best convex hull combination), it is beneficial to choose ν = 0.5. Note that
the greedy procedure with ν = 0 converges to the convex hull projection aggre-
gate estimator fλPROJ which we have shown to be sub-optimal for MS aggregation.
Therefore these results are consistent with our theoretical analysis, and illustrate
the importance of Q-aggregation with ν > 0 for MS aggregation.

Figure 2 compares the MSE of different greedy procedures at ν = 0.5 (addi-
tional comparisons at ν = 0.1 and ν = 0 can be found in Figure 3 in the Ap-
pendix B). It shows that the classical first order greedy method GMA-1 generally
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FIG. 1. Regrets R(fλ(k) ) versus iterations k for ν = 0.5,0.1,0, under 500 replications.

performs worse than GMA-0 for all k and especially when k is small. This is con-
sistent with our theoretical analysis since Theorem 4.2 only applies to GMA-0.
The experiments show that the fully-corrective variants GMA-0+ and GMA-1+
can potentially give more accurate results than GMA-0 and GMA-1 at the same
sparsity level k.

APPENDIX A: PROOFS

A.1. Proof of Theorem 4.1. Let λ̃ be such that

Q(λ̃) ≤ min
λ∈�

{
Q(λ) + εV V (λ) + ε

}
.

Fix θ ∈ (0,1) and for any λ ∈ �, define λθ ∈ � by λθ = (1 − θ)λ̃ + θλ.
Note that

P(λ̃) − P(λθ ) = (1 − ν)
[
MSE(fλ̃) − MSE(fλθ )

] + νθ

M∑
j=1

(λ̃j − λj )MSE(fj ).
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FIG. 2. Regrets R(fλ(k) ) versus iterations k of different greedy procedures at ν = 0.5, under 500
replications.

Moreover, it is not hard to verify that

MSE(fλ̃) − MSE(fλθ ) = θ MSE(fλ̃) − θ MSE(fλ) + θ(1 − θ)‖fλ̃ − fλ‖2.

The above two displays and the definition of P(λ) yield

P(λ̃) − P(λθ ) = θ
[
P(λ̃) − P(λ)

] + θ(1 − θ)(1 − ν)‖fλ̃ − fλ‖2.(A.1)

Moreover, by the definition of λ̃, we have

Q(λ̃) ≤ Q(λθ) + εV V (λθ ) + ε.

By replacing Q(λ̃) and Q(λθ) with the expansion

Q(λ) = P(λ) + 〈ξ , ξ〉 − 2〈ξ , fλ − η〉 + β

n
Kρ(λ,π),

where ξ = Y − η, we obtain

P(λ̃) − P(λθ ) ≤ 2〈ξ , fλ̃ − fλθ 〉 + β

n
Kρ(λθ ,π) − β

n
Kρ(λ̃, π) + εV V (λθ ) + ε

≤ 2〈ξ , fλ̃ − fλθ 〉 + βθ

n
Kρ(λ,π) − βθ

n
Kρ(λ̃, π) + εV V (λθ ) + ε,
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where in the second inequality, we applied Jensen’s inequality with λθ = (1 −
θ)λ̃ + θλ to the convex function λ �→ Kρ(λ,π). Plugging (A.1) into this and di-
viding by θ , we get

P(λ̃) − P(λ) ≤ R̃n(fλ) − (1 − θ)(1 − ν)‖fλ̃ − fλ‖2

(A.2)

+ β

n
Kρ(λ,π) + εV

θ
V (λθ ) + ε

θ
,

where, using the fact that fλ̃ − fλθ = θ(fλ̃ − fλ), we can take

R̃n(fλ) = 2〈ξ , fλ̃ − fλ〉 − β

n
Kρ(λ̃, π).

The following lemma allows us to control R̃n(fλ) both in expectation and with high
probability.

LEMMA A.1. Let the noise vector ξ = (ξ1, . . . , xn)
� be sub-Gaussian with

variance proxy σ 2. Then, for any β > 0, λ ∈ RM , we have

E exp

(
n

β
R̃n(fλ) − 2σ 2n

β2

M∑
j=1

λ̃jϒj (λ)

)
≤ 1,

where ϒj(λ) = ‖fj − fλ‖2.

PROOF. Fix λ ∈ RM . Using successively Jensen’s inequality and the assump-
tion that t ≤ ρ(t) yields

E exp

(
nR̃n(fλ)

β
− 2σ 2n

β2

M∑
j=1

λ̃jϒj (λ)

)

= E exp

[
M∑

j=1

λ̃j

(
2n

β
〈ξ , fj − fλ〉 − log

(
ρ(λ̃j )

πj

)
− 2σ 2n

β2 ϒj(λ)

)]

≤ E

M∑
j=1

λ̃j exp
(

2n

β
〈ξ , fj − fλ〉 − log

(
ρ(λ̃j )

πj

)
− 2σ 2n

β2 ϒj(λ)

)

≤
M∑

j=1

πjE exp
(

2n

β
〈ξ , fj − fλ〉 − 2σ 2n

β2 ϒj(λ)

)
.

Observe now that since ξ is sub-Gaussian, we have

E exp
(

2n

β
〈ξ , fj − fλ〉

)
≤ exp

(
2nσ 2

β2 ‖fλ − fj‖2
)

= exp
(

2nσ 2

β2 ϒj(λ)

)
.

This completes the proof of our lemma. �
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To prove the first result of Theorem 4.1, note that Lemma A.1 together with a
Chernoff bound yield that for any δ ∈ (0,1),

R̃n(fλ) ≤ 2σ 2

β

M∑
j=1

λ̃j‖fj − fλ‖2 + β log(1/δ)

n
(A.3)

with probability at least 1 − δ. By combining (A.2) and (A.3), and using the defi-
nition of P(λ̃), we obtain

(1 − ν)MSE(fλ̃) + ν

M∑
j=1

λ̃j MSE(fj )

≤ P(λ) + 2σ 2

β

M∑
j=1

λ̃j‖fj − fλ‖2 + β log(1/δ)

n
(A.4)

− (1 − θ)(1 − ν)‖fλ̃ − fλ‖2 + β

n
Kρ(λ,π) + εV

θ
V (λθ ) + ε

θ
.

The following identities follows directly from algebra:

M∑
j=1

λ̃j MSE(fj ) = MSE(fλ̃) + V (λ̃),

M∑
j=1

λ̃j‖fj − fλ‖2 = V (λ̃) + ‖fλ̃ − fλ‖2.

Together with (A.4), they yield

MSE(fλ̃) ≤ P(λ) +
(

2σ 2

β
− ν

)
V (λ̃) + β log(1/δ)

n

+
[

2σ 2

β
− (1 − θ)(1 − ν)

]
‖fλ̃ − fλ‖2 + β

n
Kρ(λ,π)(A.5)

+ εV

θ
V (λθ ) + ε

θ
.

We now use the following identity which again follows directly from algebra:

V (λθ ) = θV (λ) + (1 − θ)V (λ̃) + θ(1 − θ)‖fλ̃ − fλ‖2.

Together with (A.5), we obtain

MSE(fλ̃) ≤ P(λ) + G1V (λ̃) + G2‖fλ̃ − fλ‖2 + β

n
Kρ(λ, δπ) + εV V (λ) + ε

θ
,

where δπ = (δπ1, . . . , δπM)�,

G1 = 2σ 2

β
− ν + εV (1 − θ)

θ
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and

G2 = 2σ 2

β
− (1 − θ)(1 − ν) + εV (1 − θ).

To complete the proof of (4.3), it is sufficient to note that choosing β as in (4.2)
ensures that G1 ≤ 0 and G2 ≤ 0.

Using the convexity inequality t ≤ et − 1 for any t ∈ R, it yields that (A.3) also
holds in expectation. The proof of (4.4) is then concluded in the same way as the
proof of (4.3) by making statements in expectation instead of statements that hold
with high probability.

A.2. Proof of Theorem 4.2. It follows from a Taylor expansion that for any
μ,μ′ ∈ �, we have

Q(μ) = Q
(
μ′) + (

μ − μ′)�∇Q
(
μ′) + (1 − ν)‖fμ − fμ′‖2.(A.6)

Observe also that for any λ ∈ �, we have (both for GMA-0 and GMA-0+)

Q
(
λ(k+1)) ≤

M∑
j=1

λjQ
(
λ(k) + αk+1

(
e(j) − λ(k))).

Expanding each term on the right-hand side using (A.6) with μ = λ(k) +
αk+1(e(j) − λ(k)) and μ′ = λ(k) yields

Q
(
λ(k+1)) ≤ Q

(
λ(k)) + α2

k+1(1 − ν)

M∑
j=1

λj‖fj − fλ(k)‖2

(A.7)
+ αk+1

(
λ − λ(k))�∇Q

(
λ(k)).

Note that
M∑

j=1

λj‖fj − fλ(k)‖2 =
M∑

j=1

λj‖fj − fλ‖2 + ‖fλ(k) − fλ‖2.

Moreover, applying (A.6) with μ = λ and μ′ = λ(k) yields

αk+1
(
λ − λ(k))�∇Q

(
λ(k)) = αk+1

[
Q(λ) − Q

(
λ(k))] − (1 − ν)αk+1‖fλ(k) − fλ‖2.

Plugging the above two displays into (A.7) and using α2
k+1 − αk+1 ≤ 0, we get

Q
(
λ(k+1)) ≤ Q

(
λ(k)) + α2

k+1(1 − ν)

M∑
j=1

λj‖fj − fλ‖2 + αk+1
[
Q(λ) − Q

(
λ(k))].

This can be written as

δk+1 ≤ (1 − αk+1)δk + α2
k+1B,(A.8)
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where

δk = Q
(
λ(k)) − Q(λ), B = (1 − ν)

M∑
j=1

λj‖fj − fλ‖2.

To conclude that

δk ≤ 4B

k + 3
,(A.9)

we proceed by induction on k. It is easy to see from (A.8) with k = 0 and α1 = 1
that δ1 ≤ B .

Now for k ≥ 1, bound (A.8) yields

δk+1 ≤
(

1 − 2

2 + k

)
δk +

(
2

2 + k

)2

B

≤
(

1 − 2

2 + k

)
4B

k + 3
+

(
2

2 + k

)2

B = 4(k2 + 3k + 3)B

(k + 2)2(k + 3)
≤ 4B

k + 4
,

where in the second inequality, we used (A.9). We have proved that for any λ, it
holds

Q
(
λ(k)) ≤ Q(λ) + 4(1 − ν)

k + 3

M∑
j=1

λj‖fj − fλ‖2.

To complete the proof, we check that the assumptions of Theorem 4.1 with
εV = 4(1 − ν)/(k + 3) and ε = 0 are satisfied. Moreover, using expression (4.2),
we get the desired bound on β . To conclude, notice that V (λ) vanishes at the
vertices of the simplex �.

A.3. Proof of Proposition 4.1. Similarly to the proof of Theorem 4.2, for
both GMA-1 and GMA-1+, we have

Q
(
λ(k+1)) − (1 − ν)α2

k+1‖fJ (k) − fλ(k)‖2

= Q
(
λ(k)) + αk+1

(
e(J (k)) − λ(k))�∇Q

(
λ(k))

≤
M∑

j=1

λj

[
Q

(
λ(k)) + αk+1

(
e(j) − λ(k))�∇Q

(
λ(k))]

= Q
(
λ(k)) + αk+1∇Q

(
λ(k))�(

λ − λ(k))
= Q

(
λ(k)) + αk+1

[
Q(λ) − Q

(
λ(k)) − (1 − ν)‖fλ − fλ(k)‖2]

.

Using ‖fJ (k) − fλ(k)‖2 ≤ 4L2, we obtain

δk+1 ≤ (1 − αk+1)δk + α2
k+1B

′,(A.10)
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where we define

δk = Q
(
λ(k)) − Q(λ), B ′ = 4(1 − ν)L2.

Note that (A.10) also holds for GMA-0 and GMA-0+ due to (A.8). Therefore
similarly to the proof of Theorem 4.2, we can solve the recursion in (A.10) to
obtain

δk ≤ 4B ′

k + 3
= 16(1 − ν)L2

k + 3
.

That is, we have

Q
(
λ(k)) ≤ min

λ∈�
Q(λ) + 16(1 − ν)L2

k + 3
.

We can thus apply Theorem 4.1 with εV = 0, ε = 16(1 − ν)L2/(k + 3), and θ =
(1 − 2ν)/(1 − ν) to complete the proof.

APPENDIX B: DETAILED PERFORMANCE TABLE AND FIGURES

TABLE 2
Regret of different algorithms: oracle model is superior to averaged models

STAR EXP PROJ

0.43 ± 0.41 0.386 ± 0.47 0.407 ± 0.28

k = 1 k = 2 k = 5 k = 20 k = 40

GMA-0
ν = 0.5 0.508 ± 0.76 0.42 ± 0.53 0.358 ± 0.42 0.336 ± 0.38 0.332 ± 0.37
ν = 0.1 0.508 ± 0.76 0.523 ± 0.5 0.424 ± 0.35 0.394 ± 0.3 0.389 ± 0.3
ν = 0 0.508 ± 0.76 0.55 ± 0.48 0.444 ± 0.34 0.411 ± 0.29 0.409 ± 0.28

GMA-0+
ν = 0.5 0.508 ± 0.76 0.366 ± 0.5 0.341 ± 0.4 0.336 ± 0.38 0.336 ± 0.38
ν = 0.1 0.508 ± 0.76 0.387 ± 0.44 0.391 ± 0.33 0.394 ± 0.3 0.394 ± 0.3
ν = 0 0.508 ± 0.76 0.396 ± 0.43 0.403 ± 0.32 0.411 ± 0.29 0.411 ± 0.29

GMA-1
ν = 0.5 0.54 ± 0.79 0.683 ± 0.44 0.391 ± 0.38 0.342 ± 0.36 0.334 ± 0.37
ν = 0.1 0.58 ± 0.83 0.897 ± 0.35 0.49 ± 0.31 0.41 ± 0.29 0.399 ± 0.29
ν = 0 0.609 ± 0.84 0.937 ± 0.32 0.528 ± 0.3 0.428 ± 0.27 0.415 ± 0.28

GMA-1+
ν = 0.5 0.54 ± 0.79 0.381 ± 0.46 0.338 ± 0.38 0.336 ± 0.38 0.336 ± 0.38
ν = 0.1 0.58 ± 0.83 0.459 ± 0.45 0.4 ± 0.31 0.395 ± 0.3 0.395 ± 0.3
ν = 0 0.609 ± 0.84 0.488 ± 0.45 0.418 ± 0.3 0.411 ± 0.29 0.411 ± 0.29
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FIG. 3. Regrets R(fλ(k) ) versus iterations k of different greedy procedures at ν = 0.1 and ν = 0,
under 500 replications.
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