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FACTOR MODELS ON LOCALLY TREE-LIKE GRAPHS

BY AMIR DEMBO1, ANDREA MONTANARI1,2 AND NIKE SUN1,3

Stanford University

We consider homogeneous factor models on uniformly sparse graph se-
quences converging locally to a (unimodular) random tree T , and study the
existence of the free energy density φ, the limit of the log-partition function
divided by the number of vertices n as n tends to infinity. We provide a new
interpolation scheme and use it to prove existence of, and to explicitly com-
pute, the quantity φ subject to uniqueness of a relevant Gibbs measure for the
factor model on T . By way of example we compute φ for the independent
set (or hard-core) model at low fugacity, for the ferromagnetic Ising model at
all parameter values, and for the ferromagnetic Potts model with both weak
enough and strong enough interactions. Even beyond uniqueness regimes our
interpolation provides useful explicit bounds on φ.

In the regimes in which we establish existence of the limit, we show that
it coincides with the Bethe free energy functional evaluated at a suitable fixed
point of the belief propagation (Bethe) recursions on T . In the special case
that T has a Galton–Watson law, this formula coincides with the nonrigorous
“Bethe prediction” obtained by statistical physicists using the “replica” or
“cavity” methods. Thus our work is a rigorous generalization of these heuris-
tic calculations to the broader class of sparse graph sequences converging
locally to trees. We also provide a variational characterization for the Bethe
prediction in this general setting, which is of independent interest.

1. Introduction. Let G = (V ,E) be a finite undirected graph, and X a finite
alphabet of spins. A factor model on G is a probability measure on the space of
(spin) configurations σ ∈ X V of form

ν
β,B
G,ψ(σ ) = 1

ZG,ψ(β,B)

∏
(ij)∈E

ψβ(σi, σj )
∏
i∈V

ψ̄B(σi),(1.1)

where ψ ≡ ψβ is a symmetric function X 2 → R≥0 parametrized by β ∈ R,
ψ̄ ≡ ψ̄B is a positive function X → R≥0 parametrized by B ∈ R and ZG,ψ(β,B)

is the normalizing constant, called the partition function (with its logarithm called
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the free energy). The pair ψ ≡ (ψ, ψ̄) is called a specification for the factor
model (1.1).

In this paper we study the asymptotics of the free energy for sequences of (ran-
dom) graphs Gn = (Vn = [n],En) in the thermodynamic limit n → ∞. More pre-
cisely, with Zn(β,B) ≡ ZGn,ψ(β,B) and En denoting expectation with respect to
the law of Gn, we seek to establish the existence of the free energy density

φ(β,B) ≡ lim
n→∞φn(β,B), where φn(β,B) ≡ 1

n
En

[
logZn(β,B)

]
,(1.2)

and to determine its value. [In the literature, φ(β,B) is also referred to as the “free
entropy density” or “pressure.”]

The primary example we consider is the Potts model for a system of interacting
spins on a graph. Formally, the q-Potts model on G with inverse temperature β and
magnetic field B is the probability measure on X V = [q]V (with [q] ≡ {1, . . . , q})
given by

ν
β,B
G (σ ) = 1

ZG(β,B)
exp

{
β

∑
(ij)∈E

1{σi = σj } + B
∑
i∈V

1{σi = 1}
}
.(1.3)

For β > 0 the system favors monochromatic edges and is said to be ferromag-
netic, while for β < 0 the system favors edge disagreements and is said to be
anti-ferromagnetic; the magnetic field B biases vertices toward the distinguished
spin 1. The q-Potts model generalizes the Ising model which corresponds to the
case q = 2. In analogy with the Potts model, in the general factor model setting we
continue to refer to β as the interaction or temperature parameter and to B as the
magnetic field.

Potts models have been intensively studied in statistical mechanics because of
their key role in the theory of phase transitions [45], critical phenomena [48] and
conformally invariant scaling limits [37]. As demonstrated, for instance, in [34]
for the Ising model, determining the limit (1.2) plays a key role in characterizing
the asymptotic structure of the measures ν

β,B
Gn

in the thermodynamic limit. Potts
models are also of great interest in combinatorics: recall in fact that the partition
function admits a random-cluster representation ([16, 24]; see also Section 4.2),
which at B = 0 reads

ZG(β,0) = ∑
F⊆E

(
eβ − 1

)|F |
qk(F ),

with k(F ) denoting the number of connected components induced by the subset
of edges F ⊆ E; cf. (4.2). Up to a multiplicative constant this coincides with the
Tutte polynomial TG(x, y) of G evaluated at x = 1 + q(eβ − 1)−1, y = eβ ; see,
for example, [42].

Mathematical statistical mechanics has focused so far on specific graph se-
quences Gn, for example, on finite exhaustions of the rectangular grid or other
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regular lattices in d dimensions with d fixed. Under mild conditions on the se-
quence, existence of the free energy density is a consequence of the following
well-known argument (see, e.g., [38], Proposition 2.3.2): each graph Gn can be
decomposed into smaller blocks by deleting a collection of edges whose number
is negligible in comparison with the volume. Consequently the sequence logZGn

is approximately sub-additive in n, implying existence of the limit; see [26].
In this paper we consider sparse graphs with a locally tree-like structure—

formally, graph sequences Gn converging locally weakly to (random) trees; see
Definition 1.1 below; see also [1, 6]. Although the study of statistical mechan-
ics “beyond Z

d” is not directly motivated by physics considerations, physicists
have been interested in models on alternative graph structures for a long time
(an early example being [14]). Moreover, the study of factor models on sparse
graphs has many motivations coming from computer science and statistical infer-
ence; see [9, 33]. Indeed, another example we will consider is the hard-core model
for random independent sets on a graph. In this model the configuration space is
X V = {0,1}V , where 0 means unoccupied, and 1 means occupied, and the only
configurations receiving positive measure are those for which no two neighboring
vertices are occupied, that is, so that the occupied vertices form an independent set
in the graph. Formally, the independent set or hard-core model on G with fugacity
λ > 0 is the probability measure on {0,1}V given by

νλ
G(σ) = 1

ZG(λ)

∏
(ij)∈E

1{σiσj �= 1} ∏
i∈V

λσi ,(1.4)

so that as λ increases the measure becomes more biased toward the larger inde-
pendent sets (and we write B ≡ logλ for the magnetic field). Due to the hard
constraint preventing neighboring 1s, this system always has anti-ferromagnetic
interactions and is of significant interest in computer science. The independent
set decision problem is NP-complete (via the clique decision problem [8, 28]). As
λ increases the measure νλ

G becomes increasingly concentrated on the maximal
independent sets; the optimization problem of finding such sets is NP-hard [30]
and hard to approximate ([49] and references therein). The problem of count-
ing independent sets [i.e., computing ZG(1)] for graphs of maximum degree �

is #P-complete for � ≥ 3 ([22] and references therein). Although there exists a
PTAS (polynomial-time approximation scheme) for ZG(λ) for λ below a certain
“uniqueness threshold” [44], a series of previous works (see [20, 35, 40] and refer-
ences therein) gave strong evidence that computation is hard for any λ above this
threshold. This question was resolved simultaneously in the subsequent works [19,
41], with [41] building on methods from this paper.

Since infinite trees are nonamenable, Gn cannot be decomposed by removing
a vanishing fraction of edges, so the preceding argument no longer applies: in
physics terms, surface effects are nonnegligible even in the thermodynamic limit.
Despite this, statistical physicists expect the free energy density (1.2) to exist on
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a large class of locally tree-like graphs. Even more surprisingly, employing non-
rigorous but mathematically sophisticated heuristics such as the “replica” or “cav-
ity” methods, they derive exact formulas for this limit for a number of statisti-
cal mechanics models on locally tree-like graphs; see, for example, [33] and the
references therein. The primary example considered in these works is the graph
chosen uniformly at random from those with n vertices and m = m(n) edges,
with m/n → γ ∈ R; such graphs converge locally to the Galton–Watson tree with
Pois(2γ ) offspring distribution. The Galton–Watson tree with general offspring
distribution can be obtained as the local weak limit of random graphs with speci-
fied degree profile corresponding to the offspring distribution; the physics heuris-
tics extend to this and even more general settings.

There is no good argument for why the limit (1.2) exists; the heuristic replica or
cavity methods compute this limit starting from the postulate that it exists. A sig-
nificant breakthrough was achieved by the interpolation method first developed by
Guerra and Toninelli [25] for the Sherrington–Kirkpatrick model from spin-glass
theory, and then generalized to a number of statistical physics models on sparse
graphs [17, 18, 36] and related constraint satisfaction problems [5]. This method
establishes super-additivity of logZGn which implies existence of the limit (1.2).
Unfortunately, this approach appears limited to models with repulsive interactions,
that is, in which higher weight is given to configurations in which neighboring ver-
tices take different values. In particular, it does not apply to the ferromagnetic Potts
model. This is especially puzzling because the heuristic physics predictions do not
distinguish between the two cases, and there is no fundamental reason why the
limit should be computable in one case and not in the other. Further, this interpo-
lation method only applies to very restricted classes of graph sequences (typically,
uniformly random given the degree sequence); notably, existence of the limit is
not proved for deterministic graph sequences. Finally, the method gives no way
to actually compute the limit, although interpolation has been used to prove upper
bounds [17, 18, 36].

In this paper we follow a different approach relying only on local weak conver-
gence of the graph sequence (Gn)n≥1 to some limiting (random) tree. The general
idea is that the corresponding factor models (1.1) must converge (passing to a
subsequence as needed), to a Gibbs measure on the limiting tree; the task then
“reduces” to the one of identifying the correct limit. This is still a substantial chal-
lenge because, in general, there is an uncountable number of “candidate” Gibbs
measures for the limit. Nevertheless, this program was carried through in [10] for
Ising models on graphs converging locally to a Galton–Watson tree, under a “uni-
form sparsity” assumption (Definition 1.3), on the degree distribution. (It is further
assumed in [10] that the distribution has finite second moment; this condition was
relaxed in [13], thereby handling the case of power law graphs.) The result of [10,
13] provides also a fairly explicit expression 
(β,B) for the free energy density,
defined solely in terms of the limiting tree. This expression coincides with the so-
called “Bethe prediction” of statistical physics, derived earlier for random graphs
with given degree distribution using the “replica” or “cavity” methods.
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We develop this approach here in more generality. Rather than considering a
specific model such as the Ising, we establish results for general abstract factor
models satisfying mild regularity conditions [see (H1) below], covering in par-
ticular the Potts and independent set models. We also make no distributional as-
sumptions on the graphs Gn or the limiting random tree, other than some integra-
bility conditions [see Definition 1.3 and (H2) below]. In this setting we develop
a general interpolation scheme (Theorem 1.15) which, under appropriate assump-
tions, bounds differences φn(β,B)−φn(β0,B0) in the limit n → ∞ by differences

(β,B) − 
(β0,B0) for 
 a functional defined solely in terms of the limiting
tree; see (1.12). We refer the reader to [2] for a discussion of the computation
of limits of finite large random structures through optimization procedures on the
limiting infinite structure. Although we continue to refer to this 
(β,B) as the
“Bethe prediction,” we remark that it is a considerable generalization of earlier
formulas obtained in the special case of Galton–Watson trees by statistical physics
methods. It is defined as the evaluation of the “Bethe free energy functional” (1.9)
at a specific Gibbs measure on the limiting tree, and corresponds to what physi-
cists call the “replica symmetric solution”: whereas it is expected to hold in the
high-temperature regime (i.e., with small enough interactions), for many factor
models it is incorrect at low temperature. However, we will show that in “unique-
ness regimes,” where the set of Gibbs measures on the limiting tree corresponding
to the factor model specification ψ is a singleton, the upper and lower bounds of
Theorem 1.15 match to completely verify the Bethe prediction (Theorem 1.16).

We then apply our interpolation scheme to compute the free energy density in
specific models. We verify the Bethe prediction for the independent set model with
low fugacity (Theorem 1.12) as a consequence of Theorem 1.16. Further, by using
monotonicity properties to restrict the set of relevant Gibbs measures, we obtain
results for the Potts model going beyond the implications of Theorem 1.16: for
q = 2 (Ising), we verify the Bethe prediction for all β ≥ 0, B ∈ R (Theorem 1.9),
extending the results of [10, 13] to general locally tree-like graph sequences. For
general q , we verify the prediction in regimes of nonnegative (β,B) in which two
specific Gibbs measures on the limiting tree coincide, namely, the Gibbs measures
arising from free and 1 boundary conditions coincide, see Definition 1.8 below.
This condition is satisfied throughout the range {β ≥ 0,B > 0} for q = 2; when
q ≥ 3 there are regimes of nonuniqueness in which it fails, but we will show that
it is satisfied both at β sufficiently small and sufficiently large, that is, at high and
low temperatures.

Theorem 1.15 can give useful bounds even beyond uniqueness regimes. As an
illustration, we study the Potts model in the case that Gn converges locally to the
d-regular tree Td . In Theorem 1.11 we explicitly characterize the nonuniqueness
regime of this model and use Theorem 1.15 to give bounds for φn(β,B) within
this regime. In a subsequent work [11] we prove that in this setting, φ(β,B) ex-
ists and matches the lower bound of Theorem 1.11. We also compute there the
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asymptotic free energy φ(λ) (all λ ≥ 0) for the independent set model on d-
regular bipartite graphs. In contrast, for generic nonbipartite Gn the consensus
in physics is for a full replica symmetry breaking for large enough λ, and conse-
quently there does not exist even a heuristic prediction for the free energy density
in this regime.

As mentioned above, the Bethe prediction 
(β,B) is the evaluation of the
Bethe free energy functional at a specific Gibbs measure on the limiting tree. This
Gibbs measure has a characterization in terms of “messages” hx→y ≡ h(T ,x→y)

defined on the directed edges x → y of each tree T , such that the entire collec-
tion of messages is a fixed point of a certain “belief propagation” or “Bethe re-
cursion” (1.10). Motivated by the finite-graph optimization of [46], we provide a
variational characterization of the Bethe prediction (Theorem 1.18) which is of in-
dependent interest. In particular, this formulation suggests nontrivial connections
with large deviation principles.

1.1. Local weak convergence and the Bethe prediction. We study factor mod-
els on graphs which are “locally tree-like” in a sense which we now formalize,
starting with a few notation and conventions. All graphs are taken to be undirected
and locally finite. In a graph G = (V ,E), let d denote graph distance, and for
v ∈ V write Bt(v) for the sub-graph of G induced by {w ∈ V :d(v,w) ≤ t}. Write
v ∼ w if v,w are neighbors in G, and write ∂v for the set of neighbors of v and
Dv ≡ |∂v|. Let G• denote the space of isomorphism classes of (finite or infinite)
rooted, connected graphs (G,o). A metric on this space is given by defining the
distance between (G1, o1) and (G2, o2) in G• to be 1/(1 + R) where R is the
maximal r ∈ Z≥0 ∪ {∞} such that BR(o1) ∼= BR(o2); with this definition G• is a
complete separable metric space; see, for example, [1]. Let T• ⊂ G• denote the
closed subspace of (rooted) trees T ≡ (T , o), the acyclic elements of G•. We write
T t for Bt(o) in T , and in particular we use T 0 to denote the single-vertex tree. We
now define the precise notion of graph limits considered throughout this paper.

DEFINITION 1.1. Let Gn = (Vn,En) (n ≥ 1) be a sequence of random graphs,
and let In be a vertex chosen uniformly at random from Vn. We say Gn converges
locally (weakly) to the random tree T if for each t ≥ 0, Bt(In) converges in law to
T t in the space G•. We say in this case that the Gn are locally tree-like.

We will make repeated use of the fact that any local weak limit of graph se-
quences satisfies the “unimodularity” or “mass-transport” property whose defini-
tion we recall here; for a detailed account, see [1]. Let G•• denote the space of
isomorphism classes of bi-rooted, connected graphs with a distinguished ordered
pair, denoted (G, i, j) (we do not require i ∼ j ); G•• is metrizable in a similar
manner as G•.
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DEFINITION 1.2. A Borel probability measure μ on G• is said to be unimod-
ular if it obeys the mass-transport principle,

Eμ

[ ∑
x∈V (G)

f (G,o, x)

]
= Eμ

[ ∑
x∈V (G)

f (G,x, o)

]
(1.5)

∀f : G•• → R≥0 Borel.

We say that μ is involution invariant if (1.5) holds when restricted to f supported
only on those (G,x, y) with x ∼ y.

A measure μ on G is involution invariant if and only if it is unimodular ([1],
Proposition 2.2). Unimodularity corresponds to “indistinguishability of the root;”
the concept first appeared in [6] where it was observed that local weak limits of
graph sequences must be unimodular ([6], Section 3.2). The converse of this im-
plication remains a well-known open question; see [1].

DEFINITION 1.3. The graph sequence Gn is uniformly sparse if the DIn are
uniformly integrable, that is, if

lim
L→∞

(
lim sup
n→∞

En

[
DIn1{DIn ≥ L}]) = 0

(where En denotes expectation over the law of Gn and In).

We assume throughout that Gn (n ≥ 1) is a uniformly sparse graph sequence
converging locally weakly to the random tree T of (unimodular) law μ such that
the root degree Do is nonzero with positive μ-probability; this entire setting is
hereafter denoted Gn →lwc μ. In this setting we will describe general conditions
under which the asymptotic free energy φ(β,B) for the factor model (1.1) exists
and agrees with the “Bethe energy prediction,” which we now describe. [If the
sequence of random graphs Gn is such that Gn →lwc μ for almost every realization
of the sequence—as is the case for Erdös–Rényi random graphs or random graphs
with given degree distribution (see, e.g., [9], Propositions 2.5 and 2.6)—then our
results apply instead to the a.s. limit of n−1 logZn(β,B).]

Let �X denote the (|X |− 1)-dimensional simplex of probability measures on
the finite alphabet of spins X . Let T +• denote T• without the single-vertex tree
T 0, and let Te ⊂ G•• be the space of isomorphism classes of trees T ∈ T +• rooted
at a directed edge x → y, written (T , x → y) or simply x → y for short. If T

has law μ for μ a unimodular measure on T•, we let μ↑ and μ↓ denote the laws
of (T , J → o) and (T , o → J ), respectively, for J chosen uniformly at random
from ∂o conditioned on the event {T ∈ T +• }. Involution invariance of μ is then
equivalent to

Eμ↓
[
Dxf (T , x → y)

] = Eμ[∑j∈∂o f (T , o → j)]
μ(Do > 0)

= Eμ[∑j∈∂o f (T , j → o)]
μ(Do > 0)

= Eμ↑
[
Dyf (T , x → y)

]
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(where o corresponds to x on the left-hand side and to y on the right-hand side),
so in particular μ↑ and μ↓ are mutually absolutely continuous.

DEFINITION 1.4. The message space is the space H ≡ Hμ of measurable
functions

h : Te × R
2 → �X ,

(
(T , x → y),β,B

) �→ (
hβ,B

x→y(σ )
)
σ∈X ,

taken up to μ↑-equivalence.

REMARK 1.5. For (T , x → y) ∈ Te let Tx→y denote the component sub-tree
rooted at x which results from deleting edge (x, y) from T . The interpretation of
hx→y is that it is a message from x to y on the tree T , giving the distribution of
σx for the factor model (1.1) on Tx→y . Indeed, although we do not require it in
general, in our concrete examples hx→y depends only on this component sub-tree.

For T ∈ T• and h ∈ H, let


T (β,B,h) ≡ 
vx
T (β,B,h) − 
e

T (β,B,h)
(1.6)

≡ 
vx
T (β,B,h) − 1

2

∑
j∈∂o



(oj)
T (β,B,h),

where “vx” and “e” indicate vertex and edge terms, respectively:


vx
T (β,B,h) ≡ log

{∑
σ

ψ̄(σ )
∏

j∈∂o

(∑
σj

ψ(σ,σj )hj→o(σj )

)}
,(1.7)

the log-partition function of the star graph T 1 with boundary conditions h [see
Figure 1(a)] and


e
T (β,B,h) ≡ 1

2

∑
j∈∂o



(oj)
T (β,B,h)

(1.8)

= 1

2

∑
j∈∂o

log
{∑

σ,σj

ψ(σ,σj )hj→o(σj )ho→j (σ )

}
,

half the log-partition function on Do disjoint edges with boundary conditions h;
see Figure 1(b). (See Definition 1.8 below for a detailed discussion of boundary
conditions.)

We take the usual convention that the empty sum is zero, and the empty product
is one, so 
T = log(

∑
σ ψ̄(σ )) in case T = T 0. Although we suppress it from

the notation, in the above equations ψ and h are taken to be evaluated at (β,B).
The Bethe free energy functional on H for the factor model (1.1) on Gn →lwc μ is
defined by


μ(β,B,h) ≡ Eμ

[

T (β,B,h)

]
,(1.9)

provided the expectation exists; see Lemma 2.2.
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(a) Star graph T 1 (b) Edge graph

FIG. 1. 
vx
T and 2
e

T are log-partition functions of star and edge graphs.

DEFINITION 1.6. The belief propagation or Bethe recursion is the mapping
BP ≡ BPβ,B : H → H,(

BPβ,Bh
)
x→y(σ )

(1.10)

≡ 1

zx→y(β,B)
ψ̄B(σ )

∏
v∈∂x\y

(∑
σv

ψβ(σ,σv)hv→x(σv)

)
,

with zx→y(β,B) normalizing constants. For μ a measure on T• and fixed (β,B),
let H�

μ(β,B) denote the space of measurable functions h : Te → �X , again taken
up to μ↑-equivalence, which are fixed points of the Bethe recursion: that is, satis-
fying

h = BPβ,Bh, μ↑-a.s.(1.11)

The Bethe prediction is that the asymptotic free energy φ(β,B) of (1.2) exists and
equals


Bethe
μ (β,B) ≡ 
μ

(
β,B,h�)(1.12)

for h� a certain element of H�
μ(β,B). We often drop the subscript μ when it is

clear from context.

REMARK 1.7. In the case that the recursion (1.11) has multiple solu-
tions (|H�

μ(β,B)| > 1), the Bethe prediction is defined to be the supremum of

(β,B,h�) over admissible fixed points h�. While in the abstract factor model
setting all fixed points are admissible, in specific models typically there are “natu-
ral” criteria restricting the set of admissible fixed points. We will demonstrate this
in the Ising and Potts models where restrictions are imposed by monotonicity and
symmetry considerations.

The rationale behind the Bethe recursions and Bethe prediction is explained in
detail in [9], Section 3; see also [33]. In brief, solutions to the Bethe recursions
correspond to consistent “boundary laws” for the factor model on tree-like graphs;
for further details, see Remark 1.13 below. When G is a finite tree, and μG is
the law of (G, I) for I a uniform element of V (here μG is a measure on T•, but
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not necessarily unimodular), the Bethe recursions have a unique solution, given by
the so-called “standard message set;” see [9], Remark 3.5. In this setting it holds
exactly (see [9], Proposition 3.7) that

|V |−1 logZG = 
μG
= |V |−1

∑
v∈G


(G,v),

where 
(G,v) is as defined by (1.6) with T = (G,v). The heuristic then is that
for Gn locally like the random tree T ∼ μ, the (normalized) free energy φn is
approximated by 
μ ≡ Eμ[
T ] for n large. We emphasize that no averaging over
the vertices of the tree T takes place in the definition of 
T ; indeed for T ∈ T• the
sub-trees T t typically do not converge locally weakly to T . For example, when T

is the d-regular tree Td , the subtrees T t converge locally weakly to the so-called
d-canopy tree; see, for example, [9], Lemma 2.8. Instead the averaging of 
(G,v)

over the vertices v ∈ G in the evaluation of 
μG
corresponds to the averaging with

respect to the law μ in the evaluation of the Bethe prediction 
μ.
The following is a terminology which we adopt throughout the paper:

DEFINITION 1.8. If G is any graph and U a sub-graph, the external boundary
∂U of U is the set of vertices of G\U adjacent to U . Let U+ denote the sub-graph
of G induced by the vertices in VU ∪ ∂U . For U finite (so U+ is finite, since G is
locally finite), and ν‡ a measure on X ∂U , the factor model on U with ν‡ boundary
conditions is the probability measure on configurations σU ∈ X VU given by

ν
‡
U,G,ψ(σU) ∼=

∫ ∏
(ij)∈EU+

ψ(σi, σj )
∏
i∈U

ψ̄(σi) dν‡(σ ∂U ).(1.13)

(Throughout, ∼= indicates equivalence up to a positive normalizing constant.) The
case in which ν‡ gives probability one to the identically-σ0 spin configuration on
∂U (σ0 ∈ X ) is referred to as σ0 boundary conditions and denoted ν‡ = νσ0 , while
the case in which ν‡ is uniform measure on X ∂U is referred to as free boundary
conditions and denoted ν‡ = νf.

1.2. Application to Ising, Potts and independent set. Before formally stat-
ing our main theorem for general factor models, we mention its consequences
in some models of interest: we verify the Bethe prediction for the ferromagnetic
Ising model at all temperatures, the ferromagnetic Potts model with field B ≥ 0 in
uniqueness regimes, and the independent set model with low fugacity λ.

1.2.1. Ising model. The Ising model is the Potts model (1.3) with q = 2. For
convenience we use the equivalent formulation which takes X = {±1} and defines
the probability measure on X V

ν
β,B
G (σ ) = 1

ZG(β,B)
exp

{
β

∑
(ij)∈E

σiσj + B
∑
i∈V

σi

}
.(1.14)
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For T ∈ T• let h̄
t,+
T ≡ h̄

t,+,β,B
T denote the root marginal for the Ising model of pa-

rameters (β,B) on T t with + boundary conditions (i.e., with σv conditioned to be
+1 for all v at level t + 1), and similarly define h̄f

T corresponding to free bound-

ary conditions. For ‡ ∈ {f,+} let h̄
‡
T ≡ h̄

‡,β,B
T ≡ limt→∞ h̄

t,‡,β,B
T . (Existence of the

limits h̄f
T , h̄+

T for the Ising model is an easy consequence of Griffiths’s inequality;
see Lemma 4.1.) We then define messages h‡ ∈ Hμ by

h‡
x→y = h̄

‡
Tx→y

for Tx→y as defined in Remark 1.5. For Gn →lwc μ, the Bethe free energy pre-
diction for the Ising model with β ≥ 0, B > 0 is φ(β,B) = 
μ(β,B,h+). This
prediction was verified in [10], Theorem 2.4, for uniformly sparse graph sequences
converging locally weakly to Galton–Watson trees subject to the second-moment
condition Eμ[D2

o] < ∞, which was relaxed in [13] to a (1 + ε)-moment condition.
We have the following generalization of this result to an arbitrary limiting law.

THEOREM 1.9. For the Ising model (1.14) on Gn →lwc μ,

φ(β,B) = 
μ

(
β,B,hf) = 
μ

(
β,B,h+)

for β ≥ 0, B > 0. Also φ(β,B) = φ(β,−B) and φ(β,0) = limB→0 φ(β,B).

Note that in the Ising model we are able to characterize the free energy density
for all β ≥ 0. The underlying reason is that for B > 0, all boundary conditions
dominating the free boundary condition give rise to the same Gibbs measure on
the limiting tree, that is, h̄f = h̄+. This phenomenon appears to be in line with
physicists’ intuition that the Ising model always undergoes a second-order phase
transition. The physics argument suggests therefore that the zero-magnetization
phase becomes unstable below the critical temperature. In other words, even with
free boundary conditions, an arbitrarily small external field B > 0 is sufficient to
drive the system into the “plus” phase.

1.2.2. Potts model. Throughout the remainder let (β0,B0) ≤ (β1,B1),
where ≤ means coordinate-wise less than or equal to. An interpolation path is
a piecewise linear path, with each piece parallel to a coordinate axis, increasing
from (β0,B0) to (β1,B1) with respect to the partial order ≤.

We restrict our attention to the Potts model with β,B ≥ 0. In this regime we are
able to use a random-cluster representation to extract important monotonicity prop-
erties. For T ∈ T• and ‡ ∈ {f,1} let h̄

t,‡
T ≡ h̄

t,‡,β,B
T denote the root marginal for the

Potts model on T t with ‡ boundary conditions. Let h̄
‡
T ≡ h̄

‡,β,B
T ≡ limt→∞ h̄

t,‡,β,B
T

(existence of the limits h̄f
T , h̄1

T for the Potts model follows from monotonicity
properties of the random-cluster representation; see Corollary 4.4). We then de-
fine messages h‡ ∈ Hμ by h‡

x→y = h̄
‡
Tx→y

, and let

Rμ ≡ {
(β,B) :hf = h1,μ↑-a.s.

}
.
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We also define

R∞ ≡ ({0} × R≥0
) ∪ (

R≥0 × {∞}) ∪ ({∞} × R>0
)
.

THEOREM 1.10. For the Potts model (1.3) with q > 2 and β,B ≥ 0 on
Gn →lwc μ, the following hold (with 
 ≡ 
μ, R ≡ Rμ):

(a) If there exists an interpolation path contained in R joining (β,B) and R∞,
then

φ(β,B) = 

(
β,B,hf) = 


(
β,B,h1).

(b) If there exists an interpolation path from (β0,B0) to (β1,B1) along which
hf is continuous (in the interpolation parameter), then

lim inf
n→∞

[
φn(β1,B1) − φn(β0,B0)

] ≥ 

(
β1,B1, h

f) − 

(
β0,B0, h

f).
If hf is replaced with h1, then we have instead

lim sup
n→∞

[
φn(β1,B1) − φn(β0,B0)

] ≤ 

(
β1,B1, h

1) − 

(
β0,B0, h

1).
We obtain more explicit results when the limiting tree is the d-regular tree Td .

THEOREM 1.11. For the Potts model (1.3) with q > 2 and β,B ≥ 0 on
Gn →lwc Td , the following hold (with 
 ≡ 
Td

, R ≡ RTd
, and R �= ≡ {β,B ≥

0} \ R):

(a) If d = 2, R �= = ∅. If d > 2 and q = 2, there exists 0 < β− < ∞ such that
R �= = {B = 0, β > β−}. If d > 2 and q > 2, there exists 0 < B+ < ∞ and smooth
curves βf(B) ≤ β+(B) defined on [0,B+] with βf(B+) = β+(B+) such that

R �= = {
B = 0, β ≥ βf(0)

} ∪ {
0 < B < B+, β ∈ [

βf(B),β+(B)
]}

.

(b) For (β,B) /∈ R �=, φ(β,B) = 
(β,B,hf) = 
(β,B,h1). If (β,B) ∈ ∂R �=
with β = βf(B), then φ(β,B) = 
(β,B,hf). If (β,B) ∈ ∂R �= with β ≥ β+(B),
then φ(β,B) = 
(β,B,h1). For (β,B) in the interior R◦�= of R �=,

max
{



(
β,B,h1),
(

β,B,hf)} ≤ lim inf
n→∞ φn(β,B)

≤ lim sup
n→∞

φn(β,B) ≤ min
{

̃f(β,B), 
̃1(β,B)

}
,

where


̃1(β,B) ≡ 

(
βf(B),B,hf) + [



(
β,B,h1) − 


(
βf(B),B,h1)],


̃f(β,B) ≡ 

(
β+(B),B,h1) − [



(
β+(B),B,hf) − 


(
β,B,hf)].
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(a) Ising (b) Potts

FIG. 2. Ising and Potts Bethe recursions.

Figures 2–4 highlight the difficulty in analyzing the Potts model (q > 2) as op-
posed to the Ising model. Figure 2(a) shows the Ising Bethe recursion parametrized
in terms of the log-likelihood ratio r ≡ logh(+) − logh(−). For sufficiently large
β the recursion has three fixed points, but in this case the r = 0 fixed point is un-
stable, and we will see in the proof of Theorem 1.9 that adding a small magnetic
field resolves the nonuniqueness. The remaining plots were computed for the Potts
model with q = 30 and d = 4. Figure 2(b) shows the Potts Bethe recursion at B = 0
restricted to those h which are symmetric among the spins �= 1, and parametrized
by r ≡ logh(1) − logh(2). The fixed point at r = 0 corresponds to hf while the
uppermost fixed point corresponds to h1; Figure 3(a) shows how the fixed points
vary with β . In an intermediate regime of β-values [shaded in Figure 3(a)] both
fixed points are stable, and perturbing by a magnetic field does not resolve the
nonuniqueness: indeed, Figure 3(b) shows that there is a two-dimensional region
R �= of (β,B) values for which hf �= h1, making the exact Bethe prediction in-
accessible via our current interpolation scheme. Figure 4 shows the discrepancy
between the upper and lower bounds of Theorem 1.11(b) inside R �=.

(a) BP fixed points (b) Regime R�= (shaded)

FIG. 3. Potts Bethe fixed points and the intermediate regime R�=.
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FIG. 4. Potts Bethe interpolation: the heavy (light) shaded regions are the asymptotic lower (up-
per) bounds on φn given by Theorem 1.11; the bounds fail to match when (β,B) ∈ R�=. The Bethe

prediction is the upper envelope of the thick lines. In the figure, a shaded region marked “lbd h†”
(resp., “ubd h†”) means an asymptotic bound on φn obtained from interpolation using the asymp-
totic lower (resp., upper) bound on ae

n(β,B) by ae(β,B,h†), in the notation of Theorem 1.15. For
example, the shaded region labeled “ubd h1” is an asymptotic (lower) bound on φn obtained by
interpolating from β = ∞ using the asymptotic upper bound lim supae

n(β,B) ≤ ae(β,B,h)1.

1.2.3. Independent set model. We consider the independent set model (1.4) in
the regime of low fugacity. For ‡ ∈ {0,1} let h̄

t,‡
T ≡ h̄

t,‡,λ
T denote the root marginal

on T t with ‡ boundary conditions on ∂T t : that is, h̄
t,1
T (resp., h̄

t,0
T ) is calculated

conditional on the event of being fully occupied (unoccupied) at level t + 1 of T .
Let h̄

‡
T ≡ limt→∞ h̄

2t−1,‡
T (existence of the limits h̄0

T , h̄1
T for the independent set

model follows from anti-monotonicity; see Section 2.4). We then define messages
h‡ ∈ Hμ by h‡

x→y = h̄
‡
Tx→y

, and let

λc ≡ λc,μ ≡ inf
{
λ ≥ 0 :μ↑(h0,λ

x→y = h1,λ
x→y

)
< 1

}
denote the uniqueness threshold. For T ∈ T• we write

brT ≡ inf
{
y > 0 : lim inf|�|→∞

∑
v∈�

y−d(o,v) = 0
}

(1.15)

= sup
{
y > 0 : lim inf|�|→∞

∑
v∈�

y−d(o,v) = ∞
}

(where the limit is taken over cutsets � of T with distance |�| from the root
tending to infinity) for the branching number of T ; see [32], Section 2.
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THEOREM 1.12. Consider the independent set model (1.4) on Gn →lwc μ,
and write λc ≡ λc,μ.

(a) If λ < λc and the function λ �→ h0,λ = h1,λ has total variation bounded by
a deterministic constant on [0, logλ], then

φ(λ) = 
μ

(
λ,h0) = 
μ

(
λ,h1),(1.16)

which converges to φ(λc) as λ ↑ λc.
(b) If brTx→y ≤ �−1 μ↑-a.s. for � a deterministic constant, then (1.16) holds

for λ < λc with λ(� − 2) < 1.
(c) If μ = δTd

, then (1.16) holds for λ ≤ λc.

For the d-regular tree Td , the uniqueness threshold λc(d) is (d −1)d−1/(d −2)d

(see [29], Section 2), and [44], Theorem 2.3, shows that Td has the lowest value
of λc among trees with maximum degree at most d . The identity (1.16) has been
proved in the case that the Gn are random d-regular graphs [3, 4]. It is also sug-
gested by Weitz’s PTAS for ZG(λ) on a finite graph G of maximum degree � and
with λ < λc(�) ([44], Corollary 2.8). For μ a unimodular measure on T• giving a
local tree approximation to G (in the sense of Definition 1.1), λc,μ is often an im-
provement over λc(�), making it possible to compute φ(λ) above λc(�) provided
(H3B ) can be verified. In [41] the interpolation scheme of Theorem 1.12 is refined
to give a verification of the Bethe prediction on locally tree-like d-regular bipartite
graphs for all λ > 0; this result is then leveraged to show inapproximability of the
hard-core partition function on d-regular graphs above λc(d).

1.3. Results for general factor models. We now state our results for the factor
model (1.1). With the convention log 0 ≡ −∞, let logψ ≡ ξ and log ψ̄ ≡ ξ̄ , and
impose the following regularity condition:

(H1) The specification is permissive, that is, ψ̄(σ ) > 0 for all σ ∈ X , and there
exists a “permitted state” σ p ∈ X such that minσ ψ(σ,σ p) > 0.

For any σ ∈ X , ξ̄ B(σ ) is continuously differentiable in B . For any σ,σ ′ ∈ X ,
ξβ(σ, σ ′) is either identically −∞ over all β , or finite and continuously differen-
tiable in β .

Recalling Definition 1.4 of the message space H ≡ Hμ, for h ∈ Hμ we can define
h̄ : T• → �X up to μ-equivalence by

h̄T (σ ) ∼= ψ̄(σ )
∏

j∈∂o

(∑
σj

ψ(σ,σj )hj→o(σj )

)
.(1.17)

In particular, if h ∈ H�
μ(β,B) and T ∈ T +• , then comparing (1.17) with (1.10)

gives

h̄T (σ ) ∼= ∑
σj

ψ(σ,σj )ho→j (σ )hj→o(σj )(1.18)
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(a) U = T 2 (b) U = T 1

FIG. 5. A Bethe fixed point defines a consistent family of f.d.d. νh
U,T (Remark 1.13).

independently of the choice of j ∈ ∂o. From now on, for h ∈ Hμ, we will write
h ∈ H� to indicate that hβ,B ∈ H�

μ(β,B) for (β,B) in the range being considered.

REMARK 1.13. The elements of H� are consistent with the recursion struc-
ture of the tree in the following precise sense: for T ∈ T• and U a finite connected
sub-graph of T , consider the factor model νh

U,T on U with boundary conditions
σv ∼ hv→p(v) independently for v ∈ ∂U , where p(v) denotes the (necessarily
unique) neighbor of v inside U . Then the marginal of νh

T t ,T
on T t−1 is exactly

the factor model νBPh
T t−1,T

on T t−1 with boundary conditions σu ∼ (BPh)u→p(u)

independently for u ∈ ∂T t−1, including any u which are leaves of T t . This state-
ment remains valid if ∂T t or even ∂T t−1 is empty, since if ∂T t = ∅ then νh

T t ,T

is simply νT as defined by (1.1). Continuing the recursion up the tree, we see
that h ∈ H� implies that the marginal law of σo will be h̄T as defined by (1.17).
From this it is easy to see that the measures νh

U,T form a consistent family of
finite-dimensional marginals (see Figure 5), so by the Kolmogorov consistency
theorem they uniquely determine a probability measure νT ≡ νh

T belonging to GT ,
the set of Gibbs measures (or Markov random fields) associated to the specifica-
tion ψ ≡ (ψ, ψ̄) on T .4 (In fact this mapping is one-to-one, e.g., by Remark 2.3
below.) Each νT belongs to a special class of measures in GT which are called
Markov chains or splitting Gibbs measures in the literature, and the entire col-
lection (νT )T ∈T• arising from h ∈ H�

μ has a consistency property which leads us
to term them “unimodular Markov chains” or “Bethe Gibbs measures;” see Sec-
tion 2.3.

4Strictly speaking the term “Gibbs measures” refers to the case ψ > 0, but we will follow common
practice and say Gibbs measures also for the general case. For the general theory of Gibbs measures
see, for example, [21].
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In this general setting, the Bethe prediction is the supremum of 
μ(β,B,h)

over H�
μ(β,B); cf. Remark 1.7. (It will be shown in Lemma 2.2 that 
μ is uni-

formly bounded on H�
μ(β,B) subject to Eμ[D2

o] < ∞; if further ψ > 0, then 
μ

is in fact uniformly bounded on H subject only to Eμ[Do] < ∞.) We define the
following integrability condition for unimodular measures μ on T• (not necessarily
arising from a graph sequence):

(H2) The probability measure μ on T• satisfies Eμ[Do] < ∞. If ψ is not ev-
erywhere positive, then furthermore Eμ[ecDo] < ∞ for all c ∈ R.

Note that if Gn →lwc μ and ψ > 0, then (H2) holds trivially by the assump-
tion of uniform sparsity. We will in fact justify our interpolation scheme under
a weaker assumption than (H2); for the exact condition see (H2β ), (H2B ) in Sec-
tion 2.2.

1.3.1. Bethe interpolation. We will deduce the results of Section 1.2 from the
abstract interpolation method given by Theorem 1.15 below, which bounds differ-
ences of φ(β,B) by differences of 
(β,B,h) (h ∈ H�) when the limiting expecta-
tion of a certain edge or vertex functional in the finite graph (capturing resp. ∂βφn

or ∂Bφn) is bounded by the expectation of an analogous functional on the infinite
tree.

To be more precise, recall that In denotes a uniformly random vertex of Vn.
Let 〈·〉β,B

n denote expectation with respect to νGn,ψ , conditioned on Gn. For h ∈
H�

μ(β,B) and T ∈ T•, let [[]]h,β,B
T denote expectation with respect to νh

T (as defined
in Remark 1.13), conditioned on T , and define

ae
n(β,B) ≡ 1

2
En

[ ∑
j∈∂In

〈
∂βξ(σIn, σj )

〉β,B
n

]
,

ae(β,B,h) ≡ 1

2
Eμ

[ ∑
j∈∂o

[[
∂βξ(σo, σj )

]]h,β,B
T

]
,

avx
n (β,B) ≡ En

[〈
∂Bξ̄ (σIn)

〉β,B
n

]
,

avx(β,B,h) ≡ Eμ

[[[
∂Bξ̄ (σo)

]]h,β,B
T

]
.

The left-hand side expressions are the derivatives ∂βφn, ∂Bφn (Lemma 2.1). The
right-hand side expressions are the infinite-tree analogues, which, as we will show
in Proposition 2.4, may be thought of as derivatives in β and B of 
μ.

EXAMPLE 1.14. For example in the Potts model (1.3) we have ∂Bξ̄ (σ ) =
1{σ = 1}, so avx

n (β,B) is the expected density of 1s in the graph while ae
n(β,B) is

1/n times the expected number of edge agreements, both with respect to the Potts
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measure on Gn. The infinite tree analogues of avx
n and ae

n are

avx(β,B,h) = Eμ

[(
eB

∏
j∈∂o

[(
eβ − 1

)
hj→o(1) + 1

])
/(

eB
∏

j∈∂o

[(
eβ − 1

)
hj→o(1) + 1

]
+ ∑

σ �=1

∏
j∈∂o

[(
eβ − 1

)
hj→o(σ ) + 1

])]
,

the νh
T -probability (averaged over T ∼ μ) that the root spin takes value 1 and

ae(β,B,h) = 1

2
Eμ

[ ∑
j∈∂o

∑
σ eβho→j (σ )hj→o(σ )

1 + ∑
σ (eβ − 1)ho→j (σ )hj→o(σ )

]
,

the νh
T -expectation (averaged over T ∼ μ) of half the number of edge agreements

incident to the root.

For interpolation in β on a compact interval [β0, β1] using some particular h ∈
H�, we require the following regularity condition on h:

(H3β ) On [β0, β1], for all σ ∈ X it holds μ↑-a.s. that the function β �→
h

β
x→y(σ ) is continuous with total variation in β bounded by a deterministic con-

stant depending only on β0, β1.

Likewise for interpolation in B on a compact interval [B0,B1] using h ∈ H� we
require

(H3B ) On [B0,B1], for all σ ∈ X it holds μ↑-a.s. that the function B �→
hB

x→y(σ ) is continuous with total variation in B bounded by a deterministic con-
stant depending only on B0,B1.

The condition of boundedness in total variation is implied for example whenever
the functions h are (anti-)monotone in the interpolation parameter.

THEOREM 1.15. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) on Gn →lwc μ

such that (H1) and (H2) are satisfied.

(a) If on [β0, β1] we have h ∈ H� satisfying (H3β ), and

lim sup
n→∞

ae
n(β,B) ≤ ae(β,B,h),(1.19)

then lim supn→∞[φn(β1,B) − φn(β0,B)] ≤ 
(β1,B,h) − 
(β0,B,h).
(b) If on [B0,B1], we have h ∈ H� satisfying (H3B ), and

lim sup
n→∞

avx
n (β,B) ≤ avx(β,B,h),(1.20)

then lim supn→∞[φn(β,B1) − φn(β,B0)] ≤ 
(β,B1, h) − 
(β,B0, h).
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The same results hold if all inequalities are reversed, replacing limit superior with
inferior.

Conditions (1.19), (1.20) (and their reverses) are automatically verified in the
following special case, where we recall that GT denotes the set of Gibbs measures
associated to the specification ψ on T ; cf. Remark 1.13:

THEOREM 1.16. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) on Gn →lwc μ

satisfying (H1) and (H2). We say that uniqueness holds if GT at (β,B) consists of
a single measure νT , μ-a.s. In this case, H�

μ(β,B) is a singleton.

(a) If on [β0, β1] × {B} uniqueness holds and the unique element h ∈ H� satis-
fies (H3β ), then

lim
n→∞

[
φn(β1,B) − φn(β0,B)

] = 
(β1,B,h) − 
(β0,B,h).

(b) If on {β} × [B0,B1] uniqueness holds and the unique element h ∈ H� sat-
isfies (H3B ), then

lim
n→∞

[
φn(β,B1) − φn(β,B0)

] = 
(β,B1, h) − 
(β,B0, h).

Uniqueness for GT corresponds to the vanishing effect of boundary conditions
on ∂T t as t → ∞ ([21], Chapter 7). Dobrushin’s uniqueness theorem (see, e.g.,
[39]) gives a sufficient condition for uniqueness to hold, together with a bound on
the rate of convergence of the root marginal in T t to the limit as t → ∞. Note that
if the convergence rate is uniform in β,B then the continuity required in (H3β )
and (H3B ) immediately follows. We will obtain continuity in uniqueness regimes
via a different route, making use of certain monotonicity properties; see the proof
of Theorem 1.9.

1.3.2. Variational principle. We further develop the theory by providing a
variational principle for the Bethe prediction: we express 
μ(β,B) as an opti-
mum of a function 
μ(β,B,h) defined for h in a larger space Hloc which, unlike
H�

μ(β,B), is independent of β,B . This alternative characterization of 
μ is the
infinite-tree analogue of the finite-graph optimization problem that is considered
in [46]. Recall from Section 1.1 that Te denotes the space of trees rooted at a di-
rected edge.

DEFINITION 1.17. The local polytope Hloc ≡ Hloc,μ is the space of measur-
able functions

h : Te → �X 2, (T , x → y) �→ h(T ,x→y) ≡ hxy,

taken up to μ↑-equivalence, such that:

(i) hxy(σ, σ ′) = hyx(σ
′, σ ) for all σ,σ ′ ∈ X , and
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(ii) for T ∈ T +• , the one-point marginal h̄x(σ ) ≡ h̄(T ,x)(σ ) ≡ ∑
σy

hxy(σ, σy)

is well-defined, that is, does not depend on the choice of y ∈ ∂x.

We also define

Hloc[ψ] ≡ {
h ∈ Hloc :μ↑(supp h ⊆ suppψ) = 1

}
,

H◦
loc[ψ] ≡ {

h ∈ Hloc :μ↑(supp h = suppψ) = 1
}
.

In accordance with (1.17), we set

h̄T (σ ) ∼= ψ̄(σ ) if T = T 0.(1.21)

For fixed (β,B), by symmetry of ψβ and (1.18), the space H�
μ(β,B) has a

natural mapping into Hloc given by

h �→ h, hxy

(
σ,σ ′) ∼= ψ

(
σ,σ ′)hx→y(σ )hy→x

(
σ ′).(1.22)

With ψ permissive this is in fact an embedding; see Remark 2.3. We define the
Bethe free energy functional on Hloc by


μ(h) ≡ Eμ

[〈
ξ̄ (σo)

〉
h̄o

− (Do − 1)H(h̄o)

(1.23)

+ 1

2

∑
j∈∂o

{〈
ξ(σo, σj )

〉
hoj

+ H(hoj )
}]

,

where H(p) denotes the Shannon entropy −∑
k pk logpk for p a probability mea-

sure on a finite space. This is an infinite-tree analogue of the definition of [46],
(37)–(38), for finite graphs. With the usual conventions log 0 ≡ −∞, 0 log 0 ≡ 0
and 0 log(0/0) ≡ 0, 
μ is bounded above on Hloc whenever Eμ[Do] < ∞, and
we show in Lemma 3.1 that for μ unimodular, this 
μ extends the previous defi-
nition (1.9) on H� [under the embedding (1.22)], provided the latter is finite. Fur-
thermore, writing H(q‖p) for the relative entropy

∑
k qk log(qk/pk) between q

and p (well defined for any nonnegative reference measure p), for μ unimodular
we can alternatively express


μ(h) = −Eμ

[
H(h̄o‖ψ̄)

] − 1

2
Eμ

[ ∑
j∈∂o

H(hoj‖ψ)

]
− Eμ

[
DoH(h̄o)

]
(1.24)

= −Eμ

[
H(h̄o‖ψ̄)

] − 1

2
Eμ

[ ∑
j∈∂o

{
H(hoj‖ψ) + H(h̄o) + H(h̄j )

}]

= −Eμ

[
H(h̄o‖ψ̄)

] − 1

2
Eμ

[ ∑
j∈∂o

H(hoj‖h̄o ×ψ h̄j )

]
,(1.25)

where (h̄o ×ψ h̄j )(σo, σj ) ≡ h̄o(σo)ψ(σo, σj )h̄j (σj ), and unimodularity is used in
the second identity.

This extended definition of 
μ provides the following variational principle for
the Bethe free energy:
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THEOREM 1.18. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) satisfying (H1),
and let μ be a unimodular measure on T• with Eμ[Do] < ∞.

(a) 
̃μ(β,B) ≡ suph∈Hloc

μ(β,B,h) is continuous in (β,B).

(b) Any local maximizer of 
μ(β,B) belongs to H◦
loc[ψ]. Any stationary point

of 
μ(β,B) belonging to H◦
loc[ψ] is the image under (1.22) of an element of

H�
μ(β,B). In particular, if 
μ attains its supremum on Hloc, then


̃μ(β,B) = max
h∈H�

μ(β,B)

μ(β,B,h) ≡ 
Bethe

μ (β,B),

so that the Bethe free energy is also continuous in (β,B).

Although we do not pursue this point, we mention that even in specific mod-
els where the abstract definition of 
Bethe is supplanted by 
(β,B,h) for some
“naturally” distinguished h, an adaptation of Theorem 1.18 [involving a restricted
subspace of Hloc which is independent of (β,B)], may be relevant.

REMARK 1.19. In case Gn →lwc Td the d-regular tree, Hloc is parametrized
by a single measure hxy on X 2 whose one-point marginals are required to agree,
and the formula (1.25) simplifies to

−
μ(h) = H(h̄0‖ψ̄) + d

2
H(h01‖h̄0 ×ψ h̄1).(1.26)

For σ ∈ X Vn let Lvx
n ≡ n−1 ∑

i∈Vn
δσi

and Le
n ≡ (2|En|)−1 ∑

(ij)∈En
[δ(σi,σj ) +

δ(σj ,σi)] denote the induced empirical and pair empirical measures, respectively.
If Gn is d-regular, then the one-point marginals of Le

n coincide with Lvx
n , and

φn = log |X | + 1

n
En

[
log Eūn exp

{
n〈ξ̄ 〉Lvx

n
+ nd

2
〈ξ〉Le

n

}]
,

where the law of σ is the uniform measure ūn on X [n] and Eūn denotes expecta-
tion with respect to ūn (with Gn fixed).

If (Gn) is an independent sequence of uniformly random d-regular graphs and
σn ∼ ūn, one might guess that for a.e. (Gn) the induced sequence Le

n satisfies a
large deviation principle (LDP) with good rate function

I (h01) = H(h̄0‖ū) + d

2
H(h01‖h̄0 × h̄1),(1.27)

where ū ≡ ū1. If this were the case, it would be an immediate consequence
of Varadhan’s lemma (see [12], Section 4.3.1) that φn → 
̃μ(β,B) (as defined
in Theorem 1.18) for any factor model satisfying (H1). However, for many of
these models the Bethe prediction is known to fail at low temperature for d ≥ 3.
So, while Theorem 1.18 suggests a potential connection to large deviations the-
ory, such a connection would be highly nontrivial and applicable only in certain
regimes of (β,B).
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One special case in which everything trivializes is the (rooted) infinite line
T2, the local weak limit of the simple path Gn on n vertices. In this case ūn

may be viewed as the law of a stationary reversible Markov chain on X with
transitions q(σ,σ ′) = ū(σ ′) and reversing measure ū, and it is well-known (see,
e.g., [12], Theorem 3.1.13) that the associated pair empirical measure Le

n satis-
fies an LDP with good rate function I (h01) = H(h01(σ, σ ′)‖h̄0(σ )q(σ, σ ′)) which
matches (1.27). The implication of Varadhan’s lemma is also easy to see: a factor
model on the simple path Gn with general positive specification ψ corresponds in
the limit n → ∞ to a reversible Markov chain with transition kernel p and positive
reversing measure π given by

p
(
σ,σ ′) = 1

ρ
ψ̃

(
σ,σ ′)m(σ ′)

m(σ)
, π(σ ) = m(σ)2,

where ρ and m are the Perron–Frobenius eigenvalue and eigenvector of the
symmetric positive |X |-dimensional matrix with entries ψ̃(σ, σ ′) ≡ ψ(σ,σ ′) ×
ψ̄(σ )1/2ψ̄(σ ′)1/2. The Bethe free energy functional (1.26) is then maximized
at h01(σ, σ ′) = ψ̃(σ, σ ′)m(σ)m(σ ′)/ρ, where it takes the value 
μ(h) = logρ

which coincides with φ by the Perron–Frobenius theorem; see, for example, [12],
Theorem 3.1.1.

Outline of the paper.

• In Section 2 we prove the abstract interpolation results. Section 2.1 presents
some preliminary lemmas which will be useful in our proofs. Our main result for
abstract factor models, Theorem 1.15, is proved in Section 2.2. Section 2.3 con-
tains the specialization of this theorem to the uniqueness case (Theorem 1.16)
and also contains discussion on unimodular Markov chains (or Bethe Gibbs
measures). Section 2.4 shows how to deduce our result for independent set (The-
orem 1.12) from Theorem 1.15.

• In Section 3 we prove the variational characterization Theorem 1.18 for the
Bethe free energy prediction, establishing in particular the correspondence be-
tween interior stationary points h ∈ H◦

loc[ψ] of 
μ and fixed points h ∈ H� of
the Bethe recursion. We further provide in Proposition 3.4 a simple criterion for
such stationary points to be local maximizers.

• Section 4 contains applications of our abstract results to the Ising and Potts
models. In Section 4.1 we prove Theorem 1.9, generalizing the results of [10,
13]. In Section 4.2 we prove Theorem 1.10 by appealing to a random-cluster
representation. Finally, Section 4.3 analyzes the d-regular case and proves The-
orem 1.11.
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2. Bethe interpolation for general factor models.

2.1. Preliminaries. We begin with some straightforward observations on the
boundedness of the free energy φn and the Bethe free energy 
μ as defined on H,
and we prove that the mapping (1.22) of H� into Hloc is in fact an embedding for
permissive specifications.

LEMMA 2.1. For the factor model (1.1) satisfying (H1) on Gn →lwc μ, the
functions φn(β,B) are uniformly bounded and equicontinuous on compact regions
of (β,B), with

∂βφn(β,B) = 1

n
En

[
∂β logZn(β,B)

]
,

(2.1)

∂Bφn(β,B) = 1

n
En

[
∂B logZn(β,B)

]
.

Further,

1

n
∂β logZn(β,B) = 1

2

∑
j∈∂In

〈
∂βξ(σIn, σj )

〉β,B
n ,

1

n
∂B logZn(β,B) = 〈

∂Bξ̄ (σIn)
〉β,B
n ,

with the convention ∂βξ(σ, σ ′) ≡ 0 in case ξ(σ, σ ′) ≡ −∞.

PROOF. The expressions for n−1∂β logZn(β,B) and n−1∂B logZn(β,B) are
obtained by a straightforward computation. Now note that if Gn →lwc μ, then the
uniform sparsity assumption gives

1

n
En

[|En|] = 1

2
En[DIn] → 1

2
Eμ[Do] < ∞.(2.2)

Let (β,B) vary within a given compact region. By (H1) we have ξ, ξ̄ ≤ ξmax as
well as ξ(σ p, ·), ξ̄ ≥ ξmin. Therefore,(

1 + |En|/n
)
ξmin ≤ n−1 logZn(β,B) ≤ log |X | + (

1 + |En|/n
)
ξmax

so φn = n−1
En[logZn(β,B)] is uniformly bounded by uniform sparsity. The ex-

change of differentiation and integration in (2.1) is justified by Vitali’s convergence
theorem, in view of the boundedness of ∂βξ , ∂Bξ̄ and the uniform integrability of
|En|/n. It follows furthermore that ∂βφn(β,B) and ∂Bφn(β,B) are bounded uni-
formly in n, from which equicontinuity follows. �

LEMMA 2.2. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) satisfying (H1),
and let μ be a unimodular measure on T•. For any compact region of (β,B) there
exists a deterministic constant C < ∞ such that:
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(a) |
T (β,B,h)| ≤ C(D2
o + 1) for any h ∈ H�, and

(b) if further ψ > 0, then |
T (β,B,h)| ≤ C(Do + 1) for any h ∈ H.

Hence, on any compact region of (β,B), 
μ is uniformly bounded on H�
μ provided

Eμ[D2
o] < ∞, and if ψ > 0, uniformly bounded on Hμ subject only to Eμ[Do] <

∞.

PROOF. Let ξmin, ξmax be as in the proof of Lemma 2.1. Then, for any h ∈ H,

log |X | + (Do + 1)ξmax ≥ 
vx
T (h) ≥ (Do + 1)ξmin.

If ψ > 0, then we also have

Doξmax ≥ 2
e
T (h) ≥ Doξmin,

so |
T (β,B,h)| ≤ C(Do + 1) on H, which proves (b). For general permissive ψ ,
the preceding lower bound on 
e

T (h) may fail, but (1.11) implies that for h ∈ H�,

logho→j

(
σ p) ≥ Do(ξmin − ξmax) − log |X | ∀j ∈ ∂o.(2.3)

Therefore,

Doξmax ≥ 2
e
T (h) ≥ ∑

j∈∂o

(
ξmin + logho→j

(
σ p))

≥ Do

(
ξmin − log |X |) + D2

o(ξmin − ξmax),

which proves (a). �

REMARK 2.3. It is now easy to see that the mapping (1.22) of H�
μ(β,B) into

Hloc is injective: if h,h′ ∈ H give rise to the same h, then

hx→y(σ )hy→x

(
σ p) = zx,yh

′
x→y(σ )h′

y→x

(
σ p) ∀σ ∈ X

for zx,y a positive scaling factor. If h,h′ ∈ H�
μ(β,B), then (2.3) implies that μ↑-

a.s. both hy→x and h′
y→x give positive measure to σ p. Therefore, μ↑-a.s. the |X |-

dimensional vectors hx→y and h′
x→y are equivalent up to scaling, and since both

are probability measures on X , we must have h = h′ μ↑-a.s. as claimed.

2.2. Bethe interpolation. We now prove Theorem 1.15(a). The result is for
fixed B , so we suppress it from the notation. The proof of Theorem 1.15(b) is very
similar and will be given in brief at the end of this section.

Our interpolation procedure relies on the proposition below which expresses

μ as the integral of its partial derivative with respect to β only, ignoring the de-
pendence on β through the function h. Recall that although it is suppressed from
the notation, ψ and h depend on β , and are taken to be evaluated at β in expres-
sions such as 
T (β,B). We will prove our result under the following integrability
condition, which by (2.3) is a relaxation of (H2):
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(H2β ) The probability measure μ on T• satisfies Eμ[Do] < ∞. If ψ is not
everywhere positive, then furthermore,

Eμ

[ ∑
j∈∂o

sup
β∈[β0,β1]

1

h
β
j→o(σ

p)

]
< ∞.

We define the analogous condition (H2B ) on an interval [B0,B1].

PROPOSITION 2.4. Let ψ ≡ (ψ, ψ̄) be a specification satisfying (H1), and
μ a unimodular measure on T•. If on [β0, β1] we have h ∈ H� satisfying (H2β )
and (H3β ), then


(β1, h) − 
(β0, h) =
∫ β1

β0

ae(β,h) dβ.

PROOF. For fixed T ∈ T• we shall regard 
T simply as a function of a vector
(β,hx→y)x→y∈T 1 in (1 + 2|X |Do)-dimensional euclidean space (with h depend-
ing on β). We begin by computing the partial derivatives of this function with
respect to β and h. We abbreviate ĥ

β
o→j (σ ) ≡ (BPβh)o→j (σ ) for the belief prop-

agation mapping of (1.10), which for fixed T and each j ∈ ∂o is a well-defined
function on the same euclidean space as 
T . Making use of (H1) we find

∂
vx
T

∂β
(β,h) = ∑

j∈∂o

∑
σ,σj

∂βξ(σ, σj )ψ(σ,σj )hj→o(σj )ĥ
β
o→j (σ )∑

σ,σj
ψ(σ,σj )hj→o(σj )ĥ

β
o→j (σ )

,(2.4)

∂

(oj)
T

∂β
(β,h) =

∑
σ,σj

∂βξ(σ, σj )ψ(σ,σj )hj→o(σj )ho→j (σ )∑
σ,σj

ψ(σ,σj )hj→o(σj )ho→j (σ )
.(2.5)

If h ∈ H�, then ĥβ = h, therefore (recalling the notation [[]]h,β
T from Section 1.3.1)

we re-express the above as

∂
vx
T

∂β
(β,h) = ∑

j∈∂o

[[
∂βξ(σo, σj )

]]h,β
T ,

∂

(oj)
T

∂β
(β,h) = [[

∂βξ(σo, σj )
]]h,β

T ,

and combining gives

∂
T

∂β
(β,h) = 1

2

∑
j∈∂o

[[
∂βξ(σo, σj )

]]h,β
T ≡ ae

T (β,h).(2.6)

Likewise we compute that for T ∈ T +• ,

∂
vx
T (β,h)

∂ho→j (σ )
= 0,
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∂
vx
T (β,h)

∂hj→o(σj )
= ĝβ

σj
(j → o;h) ≡

∑
σ ψ(σ,σj )ĥ

β
o→j (σ )∑

σ ′,σ ′
j
ψ(σ ′, σ ′

j )hj→o(σ
′
j )ĥ

β
o→j (σ

′)
,

∂
e
T (β,h)

∂hj→o(σj )
= 1

2
gβ

σj
(j → o;h),

∂
e
T (β,h)

∂ho→j (σ )
= 1

2
gβ

σ (o → j ;h),

where g
β
σ is the same as ĝ

β
σ but with h in place of ĥ. Note that for permissive ψ

and any σ ∈ X ,

ĝβ
σ (x → y;h) ≤

∑
σ ′ ψ(σ ′, σ )ĥ

β
y→x(σ

′)∑
σ ′ ψ(σ ′, σ p)hx→y(σ p)ĥ

β
y→x(σ ′)

≤ ψ
β
max

ψ
β
minhx→y(σ p)

.(2.7)

If further ψ > 0 everywhere, then ĝ
β
σ (x → y;h) ≤ ψ

β
max/ψ

β
min is uniformly

bounded on [β0, β1].
Consider now a small sub-interval [β,β + δ] of [β0, β1]. Writing �β,δh ≡

hβ+δ − hβ and applying the mean value theorem to the differentiable function
t �→ 
T (β + tδ, h + t�β,δh) for t ∈ [0,1] gives


T (β + δ, h) − 
T (β,h)
(2.8)

= ∂
T

∂β

(
β + tδ, hβ + t�β,δh

)
δ + �T (β, δ) + ET (β, δ)

for some t ≡ tβ,δ ∈ [0,1], where

�T (β, δ) ≡ ∑
σ

∑
j∈∂o

{
∂
T

∂hj→o(σ )
(β,h)�β,δhj→o(σ )

+ ∂
T

∂ho→j (σ )
(β,h)�β,δho→j (σ )

}
,

ET (β, δ) ≡ ∑
σ

∑
x→y

∗{ ∂
T

∂hx→y(σ )

(
β + tδ, hβ + t�β,δh

)
− ∂
T

∂hx→y(σ )
(β,h)

}
�β,δhx→y(σ ),

and
∑∗

x→y indicates the sum over the 2Do directed edges x → y within T 1.
Setting δ ≡ δm ≡ (β1 − β0)/m, we now sum 
(β + δm,h) − 
(β,h) over β ∈

�m ≡ {β0 + kδm : 0 ≤ k < m} and analyze separately the contribution of each term
on the right-hand side of (2.8):

(a) First we show that Eμ[�T (β, δ)] = 0 for any [β,β + δ] ⊆ [β0, β1]. Indeed,
since h ∈ H� we have ĥβ = hβ and ĝβ = gβ . Therefore,

�T (β, δ) = 1

2

∑
σ

∑
j∈∂o

{
gβ

σ (j → o;h)�β,δhj→o(σ )−gβ
σ (o → j ;h)�β,δho→j (σ )

}
.
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The result then follows from unimodularity of μ, subject to μ-integrability of∑
σ

∑
j∈∂o

∣∣gβ
σ (j → o;h)�β,δhj→o(σ )

∣∣.
Clearly |�β,δhx→y(σ )| ≤ 2 so integrability certainly holds when ψ > 0, since

Eμ[Do] < ∞ and g
β
σ is deterministically uniformly bounded on [β0, β1] as noted

above. More generally, for permissive ψ the required μ-integrability follows
from (2.7) and (H2β ).

(b) The total contribution of the first term on the right-hand side of (2.8) is

Am ≡ δEμ

[ ∑
β∈�m

∂
T

∂β

(
β + tβ,δδ, h

β + tβ,δ�β,δh
)]

.

Observe that Am = ∫
Ym d(λ × μ) where λ is Lebesgue measure on [β0, β1] and

Ym

(
β ′, T

) ≡ ∑
β∈�m

1
{
β ≤ β ′ < β + δ

}∂
T

∂β

(
β + tβ,δδ, h

β + tβ,δ�β,δh
)
.

For (λ × μ)-a.e. (β ′, T ), this sum has at most one nonzero term, in which the ar-
gument of ∂β
T converges by (H3β ) to (β ′, hβ ′

) as m → ∞. From (H1), (1.10)
and the computation of ∂β
T in (2.4)–(2.5), we see that ∂β
T (β,h) is continuous
in (β,h). Therefore, Ym(β ′, T ) → ae

T (β ′, h), (λ × μ)-a.e. Furthermore, (H1) im-
plies that |∂βξ | ≤ C uniformly on [β0, β1] for some deterministic constant C, so
|Ym| ≤ 2CDo for all m, (λ × μ)-a.e. see (2.4) and (2.5). Dominated convergence
then gives

lim
m→∞Am =

∫
ae
T

(
β ′, h

)
d(λ × μ) =

∫ β1

β0

ae(β ′, h
)
dβ ′.

(c) The contribution of the final term in (2.8) is Eμ[ET,m] where

ET,m ≡ ∑
β∈�m

ET (β, δ),

and we conclude the proof by showing that limm→∞ Eμ[ET,m] = 0.
Indeed, it is not hard to see that limm→∞ ET,m = 0 μ-a.s.: by the uniform bound

on total variation assumed in (H3β ), there exists deterministic C such that

|ET,m| ≤ C
∑
x→y

∗
max

σ
sup

β∈[β0,β1]
sup

t∈[0,1]

∣∣∣∣ ∂
T

∂hx→y(σ )

(
β + tδm,hβ + t�β,δmh

)
− ∂
T

∂hx→y(σ )
(β,h)

∣∣∣∣
μ-a.s., uniformly in m. It also follows from (H3β ) that μ-a.e. hβ is uniformly con-
tinuous on [β0, β1]. Using (H1), the partials ∂h
T computed above are uniformly
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continuous in (β,h) for β ∈ [β0, β1] and h
β
j→o(σ

p) uniformly bounded away from
zero. By (2.3) there exists deterministic c such that

inf
β∈[β0,β1]

h
β
j→o

(
σ p) ≥ e−c(Dj+1) ∀j ∈ ∂o,μ-a.s.

Combining these observations gives limm→∞ ET,m = 0 μ-a.s.
To take the limit in μ-expectation, we argue similarly as in part (a): by (2.7)

and (H1) there exists deterministic C′ such that∣∣∣∣ ∂
T

∂hx→y(σ )

(
β + tδ, hβ + t�β,δh

)∣∣∣∣ ≤ C′

h
β
x→y(σ p) + t�β,δhx→y(σ p)

≤ sup
β ′∈[β0,β1]

C′

h
β ′
x→y(σ p)

for all β ∈ [β0, β1 − δ], x → y ∈ T 1, σ ∈ X and t ∈ [0,1], hence

|ET,m| ≤ CC′ ∑
x→y

∗
sup

β∈[β0,β1]
1

h
β
x→y(σ p)

.

This is integrable by (H2β ) and unimodularity of μ, so dominated convergence
implies that limm→∞ Eμ[ET,m] = 0 as claimed.

Combining (a)–(c) gives the result of the proposition. �

PROOF OF THEOREM 1.15(A). Recalling Lemma 2.1,

lim sup
n→∞

[
φn(β1) − φn(β0)

] = lim sup
n→∞

∫ β1

β0

ae
n(β,B)dβ

≤
∫ β1

β0

lim sup
n→∞

ae
n(β,B)dβ ≤

∫ β1

β0

ae(β,h) dβ,

where the first inequality follows by (the reversed) Fatou’s lemma and the second
one by the hypothesis (1.19). By Proposition 2.4 the right-most expression equals
to 
(β1, h) − 
(β0, h), so the theorem is proved. �

The justification for interpolation in B is entirely similar:

PROOF OF THEOREM 1.15(B). Now β is fixed, so we suppress it from the
notation. For h ∈ H and T ∈ T +• , then

∂
T (B,h)

∂B
= ∂
vx

T (B,h)

∂B
=

∑
σ,σj

∂Bξ̄ (σ )ψ(σ,σj )hj→o(σj )ĥo→j (σ )∑
σ,σj

ψ(σ,σj )hj→o(σj )ĥo→j (σ )

∀j ∈ ∂o,
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while if T = T 0, then ∂B
T = ∑
σ ∂Bξ̄ (σ )ψ̄(σ )/

∑
σ ψ̄(σ ). If h ∈ H�, then ĥB =

hB , so

Eμ

[
∂B
T (B,h)

] = Eμ

[[[
∂Bξ̄ (σo)

]]h,B
T

] ≡ avx(B,h).

The result now follows by adapting the proofs of Proposition 2.4 and Theo-
rem 1.15(a). �

2.3. Discussion and first consequences. We now prove Theorem 1.16 by con-
sidering an extended notion of local weak convergence. As discussed in [1], a
graph G = (V ,E) together with a spin configuration σ ∈ X V on the graph can
be regarded as a graph with marks in X . Let GX• and GX•• denote the spaces of
marked isomorphism classes of connected, rooted and bi-rooted graphs, respec-
tively, with marks in X . These spaces are metrizable by the obvious generaliza-
tions of the metrics on G•, G•• defined in Section 2.1, giving rise to the notion
of local weak convergence for pairs (Gn,σn) of graphs with spin configurations.
Definition 1.2 generalizes naturally to this setting, and we show next that if σn is
a random configuration on Gn with law νGn,ψ [as defined in (1.1)], then a local
weak limit of (Gn,σn), if it exists, must be unimodular.

LEMMA 2.5. If Gn →lwc μ and σn ∼ νGn,ψ , then the laws of (Gn,σn) have
subsequential local weak limits belonging to the space U of unimodular measures
on GX• .

PROOF. For each fixed t , the laws of Bt(In) are weakly convergent, hence by
Prohorov’s theorem form a uniformly tight sequence. Consequently, for each ε > 0
there exists Kε ⊆ G• compact with supn Pn(Bt (In) /∈ Kε) ≤ ε. Further, Kε may be
taken to contain only graphs of depth at most t , whereby the minimal distance
between any two graphs in Kε is uniformly bounded below [by 1/(1 + t)], hence
the compactness of Kε implies that it must be a finite set. The collection of all
marked graphs in GX• whose underlying graph is in Kε must therefore be finite,
hence compact as well. Thus, by yet another application of Prohorov’s theorem, the
joint laws of (Bt (In), σBt (In)) are uniformly tight in GX• and consequently have
subsequential weak limits. By extracting successive subsequences for increasing t

and taking the diagonal subsequence, it follows that the sequence (Gn,σn) admits
subsequential local weak limits μ̂ ∈ U . �

For μ̂ ∈ U , the marginal μ of μ̂ is a unimodular measure on G•. If it is sup-
ported on a single tree T as in the d-regular case, then clearly μ̂ may be represented
as δT × ν where ν ∈ GT , the space of Gibbs measures on T corresponding to spec-
ification ψ . To make such a statement in the general setting, note that there is a
continuous mapping π from G• to the space N• of graphs on Z≥0 rooted at 0, tak-
ing an isomorphism class to its canonical representative ([1], page 1461). Thus μ̂
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may be regarded as a measure on the product space N• ×X Z≥0 , and consequently
μ̂ has a representation as the measure μ ⊗ ν on pairs (T , σ ) where T has law μ

and σ given T has law νT ∈ GT . In particular, if |GT | = 1 μ-a.s., then μ ⊗ ν is
uniquely determined.

Let μ be a unimodular measure on T•. It was noted in Remark 1.13 that there
is a mapping from H�

μ(β,B) to collections (νT ∈ GT )T ∈T• . For such ν, μ ⊗ ν

belongs to U : if f is a nonnegative Borel function on GX•• , it follows from the
Te-measurability of elements of Hloc that

Eμ⊗ν

[ ∑
j∈∂o

f
(
(T , σ ), o, j

)] = Eμ

[ ∑
j∈∂o

f̄ (T , o, j)

]
,

where f̄ is a nonnegative Borel function on G••. The unimodularity of the under-
lying measure μ then gives

Eμ⊗ν

[ ∑
j∈∂o

f
(
(T , σ ), o, j

)] = Eμ⊗ν

[ ∑
j∈∂o

f
(
(T , σ ), j, o

)]
,

and therefore μ ⊗ ν ∈ U .

REMARK 2.6. An element ν ∈ GT is called a Markov chain (or splitting Gibbs
measure) if for any finite connected sub-graph U ⊆ T , the marginal of ν on U is
a Markov random field [47]; see also [21], Chapter 12, and [43]. A collection
�T ≡ (λ

j
i )(ij)∈ET

of probability measures on X is called an entrance law (or
boundary law) for the specification ψ ≡ (ψ, ψ̄) on T if it satisfies the consistency
requirement ([47], (3.4))

λ
j
i (σi) = ∏

k∈∂i\j

(∑
σk

φik(σi, σk)λ
i
k(σk)

)
,

where φij (σi, σj ) ≡ ψ̄(σ )1/Diψ(σ,σ ′)ψ̄(σ ′)1/Dj , the pairwise interaction poten-
tial corresponding to ψ . It is shown in [47], Theorem 3.2, that there is a one-to-one
correspondence between Markov chains ν and entrance laws �T , given by

ν(σU) ∼= ∏
(ij)∈EU

φij (σi, σj )
∏

i∈∂U

(∑
σi

φip(i)(σi, σp(i))λ
p(i)
i (σi)

)
for U any finite connected sub-graph of T , with p(i) denoting the unique neigh-
bor of i inside U for i ∈ ∂U . In particular, we see that the Gibbs measure
νT arising from h ∈ H�

μ(β,B) is precisely the Markov chain with entrance law
λi

j (σ ) ∼= hj→i(σ )ψ̄(σ )−1/Dj . Extremal elements of GT are Markov chains ([47],
Theorem 2.1), but the converse is false; for example, the free-boundary Ising
Gibbs measure is nonextremal at low temperature; see [15, 27]. The measures
μ ⊗ ν arising from elements of H�

μ(β,B) might naturally be termed “unimodular
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Markov chains” or “Bethe Gibbs measures,” in the sense that the entrance laws
for the entire collection (νT )T ∈T• are specified by a single measurable function
h : Te → �X which is a Bethe fixed point. In the case μ = δTd

these correspond
precisely to the completely homogeneous Markov chains studied in [47], Section 4.

PROOF OF THEOREM 1.16. Suppose uniqueness holds at (β,B), that is, GT =
{νT } μ-a.s. Then H�

μ(β,B) has size at most one by Remark 2.3. For μ-a.e. T , the
measure νT is extremal, and so specifies a Markov chain on T with entrance law
�T ; see Remark 2.6. If we define hx→y(σ ) ≡ h(T ,x→y)(σ ) ∼= λ

y
x(σ )ψ̄(σ )1/Dx ,

then h ∈ H�
μ(β,B), which proves that H�

μ(β,B) is a singleton.
Now consider interpolation in β or B . All the conditions of Theorem 1.15 are

satisfied by assumption except (1.19) and (1.20). If uniqueness holds at (β,B),
it follows from the preceding discussion that there is a unique μ ⊗ ν ∈ U corre-
sponding to the specification (ψβ, ψ̄B). Any local weak limit of (Gn,σn) must be
such a measure, so (Gn,σn) →lwc μ⊗ν; likewise, any element of H�

μ(β,B) gives
rise to μ ⊗ ν. Therefore,

lim
n→∞ae

n(β,B) = 1

2
Eμ⊗ν

[ ∑
j∈∂o

∂βξ(σo, σj )

]
= ae(β,B,h),

where the limit in expectation is justified by the boundedness of ∂βξ on compacts
and uniform sparsity (as in the proof of Lemma 2.1). This verifies (1.19), and the
verification of (1.20) is entirely similar. The result therefore follows from Theo-
rem 1.15. �

REMARK 2.7. If uniqueness of Gibbs measures does not hold, one may con-
sider extremal decomposition of the subsequential local weak limits μ̂ of (Gn,σn),
either in the spaces GT (possibly losing unimodularity in the decomposition), or
in the space U . Extremal decomposition in U is discussed in [1], Section 4, but
it is unclear whether extremal elements would be unimodular Markov chains in
the sense described here. A decomposition of μ̂ = μ ⊗ ν into unimodular Markov
chains μ⊗ ν′ would obviously yield a substantial generalization of Theorem 1.16.

2.4. Application to independent set. We now prove Theorem 1.12, our result
for the independent set model (1.4), by verifying the conditions of Theorem 1.16
for the interpolation parameter B ≡ logλ. In this setting a convenient parametriza-
tion for the messages h ∈ H is u ≡ h(0), so that the BP mapping (1.10) becomes(

BPλu
)
x→y = 1

1 + λ
∏

v∈∂x\y uv→x

.(2.9)

A single BP iteration is anti-monotone in the messages uv→x , so a double iteration
is monotone. Since the root marginal for an independent set model in T 2t−1 is ob-
tained by an even number of BP iterations starting from level 2t (see Remark 1.13),
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it is monotone in the boundary conditions. Recalling from Section 1.2.3 the defi-
nition of h̄

t,‡
T ≡ h̄

t,‡,λ
T for ‡ ∈ {0,1} and writing ū

t,‡
T ≡ h̄

t,‡
T (0), the above implies

that for 1 ≤ s ≤ t ,

ū
2s−1,0
T ≥ ū

2t−1,0
T ≥ ū

2t−1,1
T ≥ ū

2s−1,1
T ≥ ū

1,1
T = 1

1 + λ
.

Thus the t → ∞ limits h̄0
T , h̄1

T are well-defined with h̄0
T (1) ≥ h̄1

T (1) ≥ 1/(1 + λ),
and using these we define messages h‡ ∈ H, h‡

x→y = h̄
‡
Tx→y

. The next lemma gives

the boundary values for the interpolation.

LEMMA 2.8. For the independent set model on Gn →lwc μ,

lim
λ↓0

lim sup
n→∞

∣∣φn(λ)
∣∣ = 0 = lim

λ↓0



(
λ,h‡), ‡ ∈ {0,1}.

PROOF. The left limit follows from the trivial bounds 1 ≤ Zn ≤ (1 + λ)n.
Next, for any h ∈ H,


vx
T (λ,h) = log

{
1 + λ

∏
j∈∂o

hj→o(0)

}
,

so 
vx
T (λ,h) → 0 both μ-a.s. and in μ-expectation as λ ↓ 0, by bounded con-

vergence. The same holds for 
e
T (λ,h‡), ‡ ∈ {0,1}, using the bound h‡

x→y(0) ≥
1/(1 + λ). �

PROOF OF THEOREM 1.12. The independent set model (1.4) is of form (1.1)
with X = {0,1}, ψ(σ,σ ′) = 1{σσ ′ �= 1}, and ψ̄(σ ) = λσ ≡ eBσ , so (H1) is
clearly satisfied with σ p = 0 the permitted state. By definition of λc, if λ < λc,
then h0 = h1 ≡ h in H, and it then follows from the recursive structure of the tree
that h ∈ H�

μ(λ). Since h‡
x→y(0) ≥ 1/(1 + λ) as noted above, (H2B ) is satisfied on

any compact interval of λ.
For T ∈ T•, as noted above the root occupation probability on T s for s ≥ 2t − 1

with any boundary conditions is sandwiched between h̄
2t−1,0
T (1) and h̄

2t−1,1
T (1),

with the former increasing to h̄0
T (1) and the latter decreasing to h̄1

T (1). Since the
h̄

t,‡
T are clearly continuous in λ, it follows that h̄0

T (1) and h̄1
T (1) are, respectively,

lower and upper semi-continuous in λ, so if they coincide, then their common
value h̄T (1) is continuous in λ. Applying this with T = Tx→y gives the μ↑-a.s.
continuity of h‡

x→y on (0, λc).

For T ∈ T•, h̄
‡
T for ‡ ∈ {0,1} is a function of (h

1−‡
j→o)j∈∂o, so for λ < λc we

have that h̄0
T = h̄1

T , μ-a.s. It then follows from the preceding observations and
Remark 1.13 that the boundary effect vanishes and |GT | = 1 μ-a.s. Thus, we are
in the setting of Theorem 1.16(b), and it remains only to complete the verification
of (H3B ), that is, the boundedness in total variation of the messages hx→y :
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(a) No verification is needed since boundedness in total variation is simply as-
sumed.

(b) For T ∈ T•, ū
t,‡
T ≡ h̄

t,‡
T (0) satisfies

log ū
2t+1,‡
T = − log

(
1 + λ

∏
j∈∂o

1

1 + λ
∏

k∈∂j\o ū
2t−1,‡
Tk→j

)
.

Differentiating with respect to λ, we find that r
t,‡
T ≡ (1 + λ)∂λ log ū

t,‡
T satisfies

∣∣r2t+1,‡
T

∣∣ ≤ 1 + λ

1 + λ
Do +

(
λ

1 + λ

)2 ∑
j∈∂o

∑
k∈∂j\o

∣∣r2t−1,‡∣∣
Tk→j

.(2.10)

Since ū
1,1
T = 1/(1 + λ) for any T ∈ T•, we find that

sup
t≥0

∣∣r2t−1,1
T

∣∣ ≤ 1 + ∑
�≥1

(
λ

1 + λ

)�∣∣∂T �−1∣∣.
If λ1/(1 + λ1) < 1/brT , then this is finite and uniformly bounded on [λ0, λ1]
(see (1.15) or [32], Section 2), and consequently ū1

T ≡ limt→∞ ū
2t−1,1
T has de-

terministically bounded total variation on [λ0, λ1]. If λ1 < λc,μ, then h2t−1,1
x→y →

hx→y on [λ0, λ1], so if brTx→y ≤ �−1 μ↑-a.s. and λ1/(1+λ1) < 1/(�−1) [i.e.,
λ1(� − 2) < 1], then h has deterministically bounded total variation on [λ0, λ1].

(c) Since the limiting measure is supported on Td , only h ≡ h(Td ,x→y) is of
relevance, and (2.9) reduces to BPλu = (1+λud−1)−1. For λ ≤ λc = λc(d) there is
a unique fixed point (see [29], Section 2), which is then easily seen to be monotone
in λ.

Thus (H3B ) is verified in parts (a)–(c). Also, φ(λc) = limλ↑λc φ(λ) as an im-
mediate consequence of Lemma 2.1. The rest of the theorem follows by applying
Theorem 1.16 and then taking B0 = logλ0 → −∞, relying on the boundary value
given by Lemma 2.8. �

3. Bethe prediction as optimization over local polytope. Throughout this
section we assume that ψ ≡ (ψ, ψ̄) satisfying (H1) specifies a factor model (1.1),
and that μ is a unimodular measure on T• with Eμ[Do] < ∞. We study the
Bethe prediction as the optimization of the Bethe free energy functional 
μ on
Hloc as defined by (1.23). We first verify that this agrees with the previous def-
inition (1.9) of 
μ on H�

μ(β,B), which we always regard as being embedded
into Hloc via (1.22). Recall from Definition 1.17 that for h ∈ Hloc, the one-point
marginals of hxy are denoted h̄x and h̄y , and are measurable functions T• → �X .

LEMMA 3.1. The functional 
μ on Hloc given by (1.25) agrees with the pre-
vious definition (1.9) on H�

μ(β,B), subject to finiteness of Eμ[
e
T ].
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PROOF. If h corresponds to h ∈ H�
μ(β,B), then (1.22) and (1.11) imply that

hxy

(
σ,σ ′) exp

{



(xy)
T (h)

} = ψ
(
σ,σ ′)hx→y(σ )hy→x

(
σ ′),

h̄o(σ ) exp
{

vx

T (h)
} = ψ̄(σ )

∏
j∈∂o

(∑
σj

ψ(σ,σj )hj→o(σj )

)
.

Letting 
(i)(h) (1 ≤ i ≤ 3) denote the three terms on the right-hand side of (1.24),
it follows from the above that


(1)(h) = Eμ

[

vx

T (h)
] − Eμ

[ ∑
j∈∂o

∑
σ

h̄o(σ ) log
(∑

σj

ψ(σ,σj )hj→o(σj )

)]
,


(2)(h) = Eμ

[

e

T (h)
] − 1

2
Eμ

[ ∑
j∈∂o

∑
σ,σj

hoj (σ, σj ) log
(
ho→j (σ )hj→o(σj )

)]

= Eμ

[

e

T (h)
] − Eμ

[ ∑
j∈∂o

∑
σ

h̄o(σ ) logho→j (σ )

]
,


(3)(h) = Eμ

[ ∑
j∈∂o

∑
σ

h̄o(σ ) log
(∑

σj

ψ(σ,σj )ho→j (σ )hj→o(σj )

)]
− 2Eμ

[

e

T (h)
]
,

where unimodularity was used in the simplification of 
(2). Adding these three
identities gives 
μ(h) = Eμ[
vx

T (h) − 
e
T (h)], as claimed. �

As mentioned in Section 1.3.2, our definition 
μ of the Bethe free energy func-
tional on Hloc is an infinite-tree analogue of the definition of [46] for finite graphs.
It is proved in [46], Proposition 6, that when ψ > 0, all local maxima of the Bethe
free energy lie in the interior of the local polytope. We now prove an analogous
result for infinite unimodular trees, assuming only permissivity of ψ .

PROPOSITION 3.2. For permissive ψ , if h is a local maximizer of 
μ over
Hloc, then h ∈ H◦

loc[ψ].
PROOF. Assume without loss that h ∈ Hloc[ψ], since otherwise clearly


μ(h) = −∞. If u ∈ Hloc[ψ], then it follows by convexity of Hloc that hη ≡
h + η(u − h) ≡ h + ηδ belongs to Hloc[ψ] for any η ∈ (0,1]. Letting

Rη(δ) ≡ 2

η

[

μ

(
hη) − 
μ(h)

]
, R̂η(δ) ≡ Rη(δ)

| logη| ,
our claim will follow upon showing that if h /∈ H◦

loc[ψ], then there exists such u
for which

lim
η↓0

R̂η(δ) = R̂0(δ) > 0.
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To this end, note that by an easy computation [H(hη) − H(h)]/η = −〈log hη〉δ −
〈f η(δ/h)〉h, where f η(r) ≡ η−1 log(1 + ηr) and (δ/h)(σ, σ ′) is defined to be
δ(σ, σ ′)/h(σ, σ ′) if h(σ, σ ′) > 0, zero otherwise; note that u = h + δ ≥ 0 implies
δ/h ≥ −1. Thus from (1.23) we obtain Rη(δ) = R

η
1 (δ) + R

η
2 (δ) where

R
η
1 (δ) ≡ Eμ

[
2〈ξ̄ 〉δ̄o

+ 2(Do − 1)
〈
f η(δ̄o/h̄o)

〉
h̄o

+ ∑
j∈∂o

(〈ξ〉δoj
− 〈

f η(δoj /hoj )
〉
hoj

)]
,(3.1)

R
η
2 (δ) ≡ Eμ

[
2(Do − 1)

〈
log h̄η

o

〉
δ̄o

− ∑
j∈∂o

〈
log hη

oj

〉
δoj

]
.

Since for r ≥ −1 and η ∈ (0,1), we have η−1 log(1 − η) ≤ f η(r) ≤ r , it follows
from dominated convergence (and the boundedness of ξ on supp δ) that R

η
1 (δ)

converges to a finite limit as η ↓ 0, and so converges to zero upon rescaling by
| logη|. Again by dominated convergence, R

η
2 (δ)/| logη| converges as η ↓ 0 to

R̂0(δ) = Eμ

[
(2 − 2Do)ūo

({
σ : h̄o(σ ) = 0

})
(3.2)

+ ∑
j∈∂o

uoj

({
σ,σ ′ : hoj

(
σ,σ ′) = 0

})]
.

Let Ao ≡ A(T,o) ≡ {σ ∈ X : h̄o(σ ) = 0}. Since hxy(σ, σ ′) = 0 whenever either
σ ∈ Ax or σ ′ ∈ Ay , we have by unimodularity of μ that

R̂0(δ) ≥ Eμ

[
(2 − 2Do)ūo(Ao) + ∑

j∈∂o

{
ūo(Ao) + ūj (Aj ) − uoj (Ao × Aj)

}]

= Eμ

[
2ūo(Ao) − ∑

j∈∂o

uoj (Ao × Aj)

]
= Eμ

[ ∑
j∈∂o

R̂o→j

]
,

where R̂o→j ≡ 1{Do > 0}[D−1
o ūo(Ao)+D−1

j ūj (Aj )−uoj (Ao ×Aj)] [by (1.21),
necessarily Ao = ∅ when Do = 0].

Noting that Ac
o �= ∅, consider the measurable function ū : T +• → �X defined

(up to μ-equivalence) by

ūo(σ ) ≡ ū(T ,o)(σ )
(3.3)

≡
⎧⎪⎨⎪⎩

1
{
σ = σ p}, Ac

o = {
σ p},

1

2

(
1
{
σ = σ p} + 1{σ ∈ Ac

o \ {σ p}}
|Ac

o \ {σ p}|
)
, else.

Among those u ∈ Hloc with support contained in {(σ, σ ′) :σ p ∈ {σ,σ ′}}, there is a
unique one with marginals (3.3). On the event {Do > 0}, we have the following:
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– If σ p ∈ Ao ∩ Aj , then

uoj

(
σ,σ ′) = 1

2

(
1
{
σ = σ p}1{σ ′ ∈ Ac

j \ {σ p}}
|Ac

j \ {σ p}| + 1
{
σ ′ = σ p}1{σ ∈ Ac

o \ {σ p}}
|Ac

o \ {σ p}|
)
,

so R̂o→j = (2Do)
−1 + (2Dj)

−1.
– If σ p ∈ Ao ∩ Ac

j , then ūo(Ao) ≥ 1/2 while ūj (Aj ) = 0 = uoj (Ao × Aj), so

R̂o→j ≥ (2Do)
−1. Symmetrically if σ p ∈ Ac

o ∩ Aj , then R̂o→j ≥ (2Dj)
−1.

– If σ p /∈ Ao ∪ Aj , then R̂o→j = 0.

Thus R̂0(δ) ≥ 0, with strict inequality unless σ p /∈ Ao ∪ Aj μ↑-a.s., in which case
we take Ao,Aj in place of Ac

o,A
c
j in (3.3). Then

R̂o→j = (2Do)
−11{Ao �= ∅} + (2Dj)

−11{Aj �= ∅},
so R̂0(δ) > 0 unless μ(Ao = ∅) = 1. But in this case taking u ∈ Hloc identically
equal to the uniform measure on suppψ gives

R̂0(δ) = 1

| suppψ |Eμ

[ ∑
j∈∂o

∣∣(suppψ) \ (supp hoj )
∣∣].

If h /∈ H◦
loc[ψ], then this is positive, completing the proof of our claim. �

Our main result in this section is the following infinite-tree analogue of [46],
Theorem 2, characterizing the interior stationary points of 
μ as fixed points of
the Bethe recursion.

PROPOSITION 3.3. For ψ permissive, any stationary point of 
μ inside
H◦

loc[ψ] belongs to H�.

PROOF. Let H±
loc[ψ] denote the space of measurable functions δ : Te →

R
X 2

(defined up to μ↑-equivalence) such that supp δxy ⊆ suppψ , δxy(σ, σ ′) =
δyx(σ

′, σ ), the one-point marginals δ̄x(σ ) ≡ ∑
σ ′ δxy(σ, σ ′) do not depend on the

choice of y ∈ ∂x, and
∑

σ δ̄(σ ) = ∑
σ,σ ′ δ(σ, σ ′) ≡ 0.

Step 1. We first show that if h ∈ H◦
loc[ψ] is a stationary point of 
μ, then there

exists λ : Te → R
X measurable such that

hxy

(
σ,σ ′) = ψ

(
σ,σ ′) exp

{
λx→y(σ ) + λy→x

(
σ ′)}, μ↑-a.s.(3.4)

Since h ∈ H◦
loc[ψ], if δ ∈ H±

loc[ψ] with |δ| ≤ h μ↑-a.s., then hη ≡ h + ηδ belongs
to Hloc[ψ] for all |η| ≤ 1. Taking η → 0 in (3.1) gives (by stationarity of 
μ at h)

0 = R0(δ) = Eμ

[
2
〈
κ̄ ′
o

〉
δ̄o

+ ∑
j∈∂o

〈
κ ′〉

δ

]
,

where κ̄ ′
x ≡ ξ̄ + (Dx − 1) log h̄x , κ ′

xy ≡ (ξ − log hxy)1suppψ .
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Consider now δ with one-point marginals δ̄ ≡ 0, so that the value of κ̄ ′ becomes
irrelevant: in this case the value of R0(δ) is unchanged upon replacing κ ′ by

κxy

(
σ,σ ′) ≡ 1suppψ

(
σ,σ ′)[κ ′

xy

(
σ,σ ′) + λx→y(σ ) + λy→x

(
σ ′)].

We claim it is possible to choose λ such that κ has one-point marginals κ̄ ≡ 0,
μ↑-a.s. This amounts to solving the linear system(

ax→y

ay→x

)
=

(
I Q

Q I

)(
λx→y

λy→x

)
≡ Q

(
λx→y

λy→x

)
,(3.5)

where, writing r(σ ) ≡ |{σ ′ :ψ(σ,σ ′) > 0}|,

ax→y(σ ) ≡ −
∑

σ ′ κ ′
xy(σ, σ ′)

r(σ )
, Q

(
σ,σ ′) ≡ 1suppψ(σ,σ ′)

r(σ )
.

For ψ permissive, the Markov kernel Q is irreducible and aperiodic, with station-
ary distribution r ≡ (r(σ ))σ (by symmetry of ψ). By the Perron–Frobenius the-
orem, Q,Q2 both have unique left eigenvector r corresponding to eigenvalue 1.
Therefore dim ker(I −Q2) = 1, from which it is easy to see that ker Qt = (im Q)⊥
is the linear span of (r,−r). Since the assumed symmetry properties of ψ and h
imply that〈

(r,−r), (ax→y, ay→x)
〉 = ∑

σ,σ ′

(−κ ′
xy

(
σ,σ ′) + κ ′

yx

(
σ,σ ′)) = 0, μ↑-a.s.,

there is a unique solution (λx→y, λy→x) to the system (3.5) giving the required
solution to (3.4).

For this choice of κ , δ = cκ belongs to H±
loc[ψ] for any measurable c : Te →

R>0 with cxy = cyx . We can choose c small enough so that |δ| < |h| on suppψ

μ↑-a.s. With this choice, 0 = R0(δ) becomes the μ-expectation of a (weighted)
sum of squares, so κ ≡ 0, and rearranging gives (3.4).

Step 2. Returning now to general δ ∈ H±
loc[ψ] with |δ| ≤ h μ↑-a.s., we obtain

from (3.4) the simplification

0 = R0(δ) = Eμ

[
2
〈
κ̄ ′
o

〉
δ̄o

− ∑
j∈∂o

(〈λo→j 〉δ̄o
+ 〈λj→o〉δ̄j

)]
(3.6)

= 2Eμ

[〈
κ̄ ′
o − ∑

j∈∂o

λo→j

〉
δ̄o

]
,

using unimodularity of μ for the last identity. We claim that

δ̄′
x(σ ) ≡ κ̄ ′

x(σ ) − ∑
y∈∂x

λx→y(σ ) − 1

|X |
∑
σ ′

(
κ̄ ′
x

(
σ ′) − ∑

y∈∂x

λx→y

(
σ ′))

(3.7)
= 0, μ↑-a.s.
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Indeed, for any δ̄′ : T• → R
X measurable with

∑
σ δ̄′

o(σ ) ≡ 0 μ-a.s.,

δ′
xy

(
σ,σ ′) ≡ δ̄′

x(σ )1
{
σ ′ = σ p} + δ̄′

y

(
σ ′)1{σ = σ p}

defines an element of H±
loc[ψ]. By considering (3.6) with δ = cδ′ where cxy = cyx

is small enough so that |cδ′| < |h|, we obtain the claim (3.7).
Step 3. Rearranging (3.7) we find that h satisfies μ↑-a.s.

hoj

(
σ,σ ′) = ψ

(
σ,σ ′) exp

{
λo→j (σ ) + λj→o

(
σ ′)},(3.8)

h̄o(σ ) ∼= exp
{∑

j∈∂o λo→j (σ ) − ξ̄ (σ )

Do − 1

}
.(3.9)

If we then re-parametrize

λo→j ≡ ξ̄ + ∑
k∈∂o\j

log m̂k→o, μ↑-a.s.(3.10)

(well defined, for each T and σ ∈ X , by invertibility of the Do-dimensional matrix
11t − I ), then formula (3.9) for h̄o becomes

h̄o(σ ) ∼= ψ̄(σ )
∏

k∈∂o

m̂k→o(σ ), μ↑-a.s.

On the other hand, h̄o is the first marginal of hoj , and setting the above equal to
the sum of (3.8) over σ ′ gives [making use of (3.10)]

m̂j→o(σ ) ∼= ∑
σ ′

ψ
(
σ,σ ′)eλj→o(σ

′), μ↑-a.s.

Thus, if we define m : Te → �X , mx→y(σ ) ∼= eλx→y(σ ), then (3.10) can be written
in terms of m as

mo→j (σ ) ∼= ψ̄(σ )
∏

k∈∂o\j

(∑
σk

ψ(σ,σk)mj→o(σk)

)
, μ↑-a.s.,

that is, m ∈ H�. Then (3.8) is precisely the statement that m maps to h via (1.22),
which completes the proof. �

PROOF OF THEOREM 1.18. By (H1) the set Hfin
loc of h ∈ Hloc for which


(β,B,h) > −∞ is nonempty and does not depend on (β,B), so without loss
we will restrict to h ∈ Hfin

loc.
Again by (H1), the functions (β,B) �→ 
μ(β,B,h) indexed by h ∈ Hfin

loc are
uniformly equicontinuous on compact regions of (β,B): for any ε > 0 there ex-
ists δ > 0 sufficiently small so that if (β,B) and (β ′,B ′) are within distance δ,
then |
μ(β,B,h) − 
μ(β ′,B ′,h)| < ε for all h ∈ Hfin

loc. Let h ∈ Hfin
loc such that


μ(β,B,h) ≥ 
̃μ(β,B) − ε. Then


̃μ

(
β ′,B ′) ≥ 
μ

(
β ′,B ′,h

) ≥ 
̃μ(β,B) − 2ε
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for all (β ′,B ′) within distance δ of (β,B). Reversing the roles of (β,B) and
(β ′,B ′) completes the proof of part (a). The statement of part (b) is a summary
of the results of Lemma 3.1, Propositions 3.2 and 3.3. �

We supplement Proposition 3.3 by computing the second derivatives ∂2
η
μ(h +

ηδ) at interior stationary points h, giving a criterion to verify that such points are
local maximizers.

PROPOSITION 3.4. For permissive ψ , let h ∈ H◦
loc[ψ] be a stationary point

of 
μ, and let δ ∈ H±
loc[ψ] with |δ| ≤ |h|. Then h is a local maximizer of 
 on the

one-dimensional space Hloc ∩ {h + ηδ :η ∈ R} if and only if

4∂2
η
μ(h + ηδ)|η=0 = Eμ

[
2(Do − 1)

〈
(δ̄o/h̄o)

2〉
h̄o

− ∑
j∈∂o

〈
(δoj /hoj )

2〉
hoj

]
(3.11)

≤ 0,

or equivalently

Eμ

[〈
(δ̄o/h̄o)

2〉
h̄o

]
(3.12)

≥ 1

2
Eμ

[ ∑
j∈∂o

(〈
(δ̄o/h̄o)

2〉
h̄o

+ 〈
(δ̄h/h̄h)

2〉
h̄h

− 〈
(δoj /hoj )

2〉
hoj

)]
.

It is a strict local maximizer if (3.11) and (3.12) hold with strict inequality.

PROOF. For h ∈ H◦
loc[ψ] and δ ∈ H±

loc[ψ] with |δ| ≤ |h|, arguing as in the
proof of Proposition 3.3 gives

2∂η
μ(h + ηδ)|η=0

= lim
η→0

Rη(δ) = R0(δ)

≡ Eμ

[
2〈ξ̄ 〉δ̄o

+ 2(Do − 1)〈log h̄o〉δ̄o
+ ∑

j∈∂o

(〈ξ〉δoj
− 〈log hoj 〉δoj

)]
.

If h is further a stationary point of 
μ, then, for η < 1,

T η(δ) ≡ 2

η
Rη(δ) = 2

η

[
Rη(δ) − R0(δ)

]
= 2Eμ

[
2(Do − 1)

〈
f η(δ̄o/h̄o)

〉
δ̄o

− ∑
j∈∂o

〈
f η(δoj /hoj )

〉
δoj

+ 2(Do − 1)
〈
gη(δ̄o/h̄o)

〉
h̄o

− ∑
j∈∂o

〈
gη(δoj /hoj )

〉
hoj

]
,
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where gη(r) ≡ [f η(r) − r]/η, with limη→0 gη(r) = −r2/2. Since |δ/h| ≤ 1, it
follows by dominated convergence that

4∂2
η
μ(h + ηδ)|η=0 = lim

η→0
T η(δ) = T 0(δ)

≡ Eμ

[
2(Do − 1)

〈
(δ̄o/h̄o)

2〉
h̄o

− ∑
j∈∂o

〈
(δoj /hoj )

2〉
hoj

]
.

The stationary point h is a local maximizer on Hloc ∩ {h + ηδ :η ∈ R} if and only
if ∂2

η
μ(h + ηδ)|η=0 ≤ 0, which gives (3.11). Condition (3.12) is equivalent by an
application of unimodularity. �

4. Application to Ising and Potts models. In this section we apply Theo-
rem 1.15 to prove our results for the ferromagnetic Ising and Potts models, Theo-
rems 1.9–1.11. Although both models have regimes of multiple fixed points, mono-
tonicity arguments allow us to restrict the space of fixed points. In the Ising model
we can restrict to a unique fixed point and give a complete verification of the
Bethe free energy prediction; in the Potts model with q > 2 there remain regimes
of nonuniqueness where we can only provide bounds.

4.1. Ising model. We first prove Theorem 1.9. Recall definition (1.14) for the
Ising measure ν

β,B
G for a finite graph G = (V ,E), and more generally (from Def-

inition 1.8) the Ising measures ν
f,β,B
U,G and ν

+,β,B
U,G for a finite sub-graph U of a

(possibly infinite) graph G with free and + boundary conditions. We will make
use of the following direct consequence of the classical Griffiths’s inequality; see,
for example, [31], Theorem IV.1.21.

LEMMA 4.1. For the Ising model with parameters β,B ≥ 0 on U a finite
sub-graph of a graph G with boundary conditions ‡ ∈ {f,+}, the magnetization
〈σv〉‡,β,B

U,G at vertex v ∈ U is nonnegative, nondecreasing in β,B , nondecreasing in
U for ‡ = f and nonincreasing in U for ‡ = +.

Recall from Section 1.2.1 the definitions of h̄
t,‡
T for ‡ ∈ {f,+}; the measure

h̄
t,‡
T is parametrized by the corresponding magnetization m̄

t,‡
T ≡ h̄

t,‡
T (+)− h̄

t,‡
T (−).

By Lemma 4.1, m̄
t,f
T is nondecreasing in t while m̄

t,+
T is nonincreasing, so there

exist well-defined limits m̄
‡
T (β,B) ≡ limt→∞ m̄

t,‡
T (β,B). The following result

from [13], an extension of [10], Lemma 4.3, shows that these limits agree on any
T ∈ T•.

LEMMA 4.2 ([13], Lemma 3.1). For the Ising model (1.14) on an infinite
tree T with β,B > 0, there exists a constant C ≡ C(β,B) such that

m̄
t,+
T − m̄

t,f
T ≤ C/t ∀t ≥ 1.
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By this result we can define h ∈ H by hx→y = h̄f
Tx→y

= h̄+
Tx→y

, and we now

proceed to verify the Bethe prediction φ(β,B) = 
μ(β,B,h).

PROOF OF THEOREM 1.9. The Ising model (1.14) is of form (1.1) with X =
{±1}, ξ(σ, σ ′) = βσσ ′ and ξ̄ (σ ) = Bσ , so (H1) and (H2) are clearly satisfied (with
no additional moment conditions on Do, since ψ > 0). It follows directly from the
recursive structure of the tree that h ∈ H�. It will be shown in Lemma 4.5 that for
β ≥ 0 fixed,

lim
B→∞ lim sup

n→∞
∣∣φn(β,B) − 
μ(β,B,h)

∣∣ = 0,

so to prove the theorem we will interpolate from (β,B) to (β,B1), then take B1 →
∞.

It follows from Lemmas 4.1 and 4.2 that for T ∈ T•, m̄f
T (β,B) = m̄+

T (β,B) ≡
mT (β,B) is the increasing limit of m̄

t,f
T (β,B) and the decreasing limit of

m̄
t,+
T (β,B). The m̄t,‡(β,B) are continuous and nondecreasing in β,B , so m in-

herits these properties by the same argument as in the proof of Theorem 1.12, and
so (since it takes values in [−1,1]) is of uniformly bounded total variation. This
verifies both (H3β ) and (H3B ) (though we will use only the latter).

We conclude by showing [cf. (1.20)] that

lim
n→∞En

[〈
∂ξ̄ (σIn)

〉β,B
n

] = avx(β,B) ≡ Eμ

[[[
∂Bξ̄ (σo)

]]h,β,B
T

]
.

Here ∂Bξ̄ (σ ) = σ , and it follows from Lemma 4.1, our assumption of Gn →lwc μ

and Fatou’s lemma that

Eμ

[[[σo]]h
f,β,B

T

] ≤ lim inf
t→∞ Eμ

[〈σo〉f,β,B

T t ,T

] ≤ lim inf
n→∞ En

[〈σIn〉β,B
n

]
≤ lim sup

n→∞
En

[〈σIn〉β,B
n

] ≤ lim sup
t→∞

Eμ

[〈σo〉+,β,B

T t ,T

]
≤ Eμ

[[[σo]]h
+,β,B

T

]
.

The left-most and right-most expressions coincide by Lemma 4.2 so equality holds
throughout.

By Theorem 1.15(b), φ(β,B) = 
(β,B,h+) = 
(β,B,hf) for β ≥ 0, B > 0.
Since φn is symmetric in B and continuous at B = 0 (uniformly in n), we have
φ(β,B) = φ(β,−B) and φ(β,0) = limB→0 φ(β,B). �

4.2. Potts model. We now apply Theorem 1.15 to deduce our result (Theo-
rem 1.10) for the Potts model (1.3) with β,B ≥ 0. From now on we let X ≡ [q]
with q ≥ 2. It will be convenient to generalize (1.3) to the inhomogeneous Potts
model

ν
β,B

G (σ ) ∼= exp
{ ∑

(ij)∈E

βij · 1{σi = σj } + ∑
i∈V

Bi · 1{σi = 1}
}
, σ ∈ X V .
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We now introduce the coupling of the Potts model with a random-cluster model
which we use to obtain monotonicity properties. The following representation is
as in [23]; see also [7]. If G = (V ,E) is a finite graph, let G� be the graph formed
by adding an edge from every v ∈ V to a “ghost vertex” v�, that is, G� = (V �,E�)

where V � = V ∪ {v�} and E� = E ∪ {(v, v�) :v ∈ V }. Writing σ for elements of
X V �

and η for elements of {0,1}E�
(bond configurations), consider the probability

measure on pairs (σ , η) defined by

�
β,B

G (σ , η)
(4.1) ∼= 1{σv� = 1} ∏

ηij=1

{(
eβij ·1{σi=σj } − 1

)} ∏
ηi=1

{(
eBi ·1{σi=σv� } − 1

)}
.

The marginal on σV is the inhomogeneous Potts measure ν
β,B

G , while the marginal
on η is the (inhomogeneous) random-cluster measure

π
β,B

G (η) ∼= ∏
e∈E�

pηe
e (1 − pe)

1−ηe
∏
C∈η

�(C),(4.2)

where pij ≡ 1 − e−βij for (i, j) ∈ E and piv� ≡ 1 − e−Bi for i ∈ V , and the last
product is taken over connected components C of η, with �(C) = q unless v� ∈ C

in which case �(C) = 1. Given a configuration η, a realization of the conditional

law �
β,B
G (σ = ·|η) is obtained by choosing a constant spin on each connected

component C of η independently and uniformly over [q], except for C containing
v� which is given spin 1.

For a detailed account the random-cluster model, see [24]; we will use only the
following basic properties:

PROPOSITION 4.3. The random-cluster measure π
β,B

G is FKG. It is also in-
creasing, in the sense of stochastic domination, in (β,B).

PROOF. The FKG property follows by a straightforward modification of the
proof of [7], Theorem III.1(i). Monotonicity in (β,B) follows by modifying the
proof of [24], Theorem 3.21. �

Recalling Definition 1.8, for U , a finite sub-graph of a graph G and ‡ ∈ {f}∪ [q]
(with f = free), let ν

‡,β,B
U,G denote the Potts model on U with ‡ boundary conditions.

COROLLARY 4.4. For the Potts model with parameters β,B ≥ 0 on U a finite
sub-graph of a graph G with boundary conditions ‡ ∈ {f,1}, and for any vertices
v,w ∈ U , the quantities

ν
‡,β,B
U,G (σv = 1), ν

‡,β,B
U,G (σv = σw)

are nondecreasing in β and B , nonincreasing in U for ‡ = 1 and nondecreasing
in U for ‡ = f.



4204 A. DEMBO, A. MONTANARI AND N. SUN

PROOF. Note that ν
f,β,B
U,G is the marginal on σU of the measure �

β,B

G with

Bi = B ∀i ∈ V, βe = β · 1{e ∈ EU }.

Similarly, ν
1,β,B
U,G is the marginal on σU of the measure �

β ′,B ′
G with

β ′
e = β ∀e ∈ E, B ′

i = B · 1{i ∈ VU } + ∞ · 1{i /∈ VU }.
Clearly, (β,B) is nondecreasing in U while (β ′,B ′) is nonincreasing, and both
are nondecreasing in β,B . The result therefore follows from Proposition 4.3 by

showing that for any (β,B), the conditional probabilities �
β,B

G (σv = 1|η) and

�
β,B

G (σv = σw|η) are monotone functions of η. Indeed, letting � ≡ �
β,B

G and
writing v � w to indicate that v,w belong to the same connected component
of η, we have

�(σv = 1|η) = 1
{
v � v�} + 1 − 1{v � v�}

q
,

�(σv = σv|η) = 1{v � w} + 1 − 1{v � w}
q

.

These are increasing functions of η so the proof is complete. �

Under the measures with ‡ ∈ {f,1}, any one-vertex marginal must be uniform
on the spins �= 1, and so is characterized by the probability given to spin 1. In par-
ticular, recall from Section 1.2.2 the definitions of h̄

t,‡
T for ‡ ∈ {f,1}; existence of

the t → ∞ limits h̄
‡
T is now justified by Corollary 4.4, so we can define h‡ ∈ H by

h‡
x→y = h̄

‡
Tx→y

. The following lemma gives the boundary values for the interpola-

tion in (β,B) using h‡:

LEMMA 4.5. For the Potts model on Gn →lwc μ, let


̃μ(β,B) ≡ B + βEμ[Do]/2 + Eμ

[
ϕ̄
(|T |)],

ϕ̄(n) ≡ ϕ̄B(n) ≡ n−1 log
(
1 + (q − 1)e−Bn).

(a) For all B ∈ R and any h ∈ H, φ(0,B) = log(eB + q − 1) = 
μ(0,B,h).
(b) For β ≥ 0 and h ∈ H�,

lim
B→∞ lim sup

n→∞
∣∣φn(β,B) − 
̃μ(β,B)

∣∣ = 0 = lim
B→∞ z

∣∣
μ(β,B,h) − 
̃μ(β,B)
∣∣.

(c) For B ≥ 0, limβ→∞ lim supn→∞ |φn(β,B) − 
̃μ(β,B)| = 0.
(d) For B > 0 and ‡ ∈ {f,1}, limβ→∞ |
μ(β,B,h‡) − 
̃μ(β,B)| = 0.
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PROOF. (a) At β = 0, ψ ≡ 1 so the spins are independent. Thus, for all n ≥ 1,
h ∈ H and T ∈ T•,

φn(0,B) = log
(
eB + q − 1

) = 
vx
T (0,B,h) = 
T (0,B,h),

since 

(oj)
T ≡ 0 for all j ∈ ∂o.

(b) The value of Zn(β,B) is bounded below by considering only the ground
state σ ≡ 1, and bounded above by decomposing X V according to the subset of k

vertices where the spin is not 1. For β ≥ 0 this gives

1 ≤ Zn(β,B)e−Bn−β|En| ≤
n∑

k=0

(
n

k

)
(q − 1)ke−Bk = (

1 + (q − 1)e−B)n
,

so if we define φ̄n(β,B) ≡ φn(β,B) − B − βEn[|En|]/n, then
limB→∞ lim supn→∞ |φ̄n(β,B)| = 0. Recalling (2.2), this proves the left identity
in (b).

We next define


̄vx
T ≡ 
vx

T − B − βDo, 
̄e
T ≡ 
e

T − βDo/2, 
̄T ≡ 
̄vx
T − 
̄e

T ,


̄μ ≡ Eμ
̄T ,

so that to prove the right identity in (b) it suffices to show limB→∞ 
̄μ(β,B,h) =
0 for any h ∈ H�. Indeed, (1.11) gives that μ-a.s., limB→∞ h

β,B
o→j (σ ) = 1{σ = 1}

for all j ∈ ∂o, hence also limB→∞ h
β,B
j→o(σ ) = 1{σ = 1} for all j ∈ ∂o by equiva-

lence of μ↑ and μ↓. Thus

lim
B→∞ 
̄vx

T (β,B,h) = 0 = lim
B→∞ 
̄e

T (β,B,h), μ-a.s.

It is easily verified that

−βDo ≤ 
̄vx
T (β,B,h) ≤ logq, −βDo/2 ≤ 
̄e

T (β,B,h) ≤ 0,(4.3)

so 
̄μ(β,B,h) → 0 by dominated convergence.
(c) Suppose first that Gn is connected. Then Zn(β,B) is bounded below by con-

sidering only the q constant-spin configurations, and bounded above by decompos-
ing X V according to the subset of � edges across which the spins disagree. Since
Gn is connected, removing � edges leaves at most �+ 1 connected components, of
sizes k0, . . . , k� summing to n. Therefore, with ϕ(n) ≡ ϕB(n) ≡ nϕ̄B(n), we have

eϕ(n) ≤ Zn(β,B)e−Bn−β|En| ≤
|En|∑
�=0

( |En|
�

)
e−β� max

k0,...,k�

{
exp

{
�∑

r=0

ϕ(kr)

}}
,

where the maximum is taken over k0, . . . , k� ∈ Z≥0 summing to n. By convexity
of ϕ this maximum is achieved with kr = n for some r , so

ϕ(n) ≤ nφ̄n(β,B) ≤ ϕ(n) + En

[
log

{|En|∑
�=0

( |En|
�

)
e−β�q�

}]
(4.4)

= ϕ(n) + En

[|En|] log
(
1 + qe−β).
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If Gn has connected components Cj = (V j ,Ej ), j ≥ 1, with |V j | = nj , then
clearly Zn(β,B) = ∏

j ZCj (β,B), so

0 ≤ φ̄n(β,B) − 1

n
En

[∑
j

ϕ
(
nj )] ≤ 1

n
En

[|En|] log
(
1 + qe−β).(4.5)

With j (i) denoting the index of the connected component of Gn containing ver-
tex i, we have n−1

En[∑j ϕ(nj )] = En[ϕ̄(nj (In))]. Then, since ϕ̄′(n) ≤ 0,

En

[
ϕ̄
(∣∣Bt(In)

∣∣) · 1
{
Bt(In) = Cj(In)}] ≤ En

[
ϕ̄
(
nj(In))] ≤ En

[
ϕ̄
(∣∣Bt(In)

∣∣)].
Since Gn →lwc μ, letting n → ∞ followed by t → ∞ in the above inequalities
gives En[ϕ̄(nj (In))] → Eμ[ϕ̄(|T |)], and so (c) follows from (4.5) by taking first
n → ∞ and then β → ∞.

(d) Clearly hf
T = h1

T for any finite T ∈ T• (as ∂T t = ∅ for large enough t). In
the β → ∞ limit only the constant-spin configurations contribute, so

lim
β→∞h

‡,β,B
T (σ ) = e−ϕ(|T |)−B|T |(1−1{σ=1}), ‡ ∈ {f,1}.(4.6)

For T infinite, recall from Corollary 4.4 that hf
T t (1) ≤ hf

T (1) ≤ h1
T (1), so if B > 0,

then

1 = lim
t→∞ lim

β→∞ht,f,β,B(1) ≤ lim
β→∞hf,β,B(1) ≤ lim

β→∞h1,β,B(1),

so that (4.6) again holds for T infinite. We then compute

lim
β→∞ 
̄vx

T

(
β,B,h‡) = − ∑

j∈∂o

ϕ
(|Tj→o|

) + ϕ
(|T |),

lim
β→∞ 
̄e

T

(
β,B,h‡) = −1

2

∑
j∈∂o

ϕ
(|Tj→o|

) − 1

2

∑
j∈∂o

ϕ
(|To→j |

) + Do

2
ϕ
(|T |),

μ-a.s., where the first identity uses |T | = 1 + ∑
j∈∂o |Tj→o| and the second uses

|T | = |To→j | + |Tj→o|. Convergence also holds in μ-expectation, using the upper
bounds in (4.3) together with


̄vx
T

(
β,B,h‡) ≥ ∑

j∈∂o

logh
f,β,B
j→o (1),


̄e
T

(
β,B,h‡) ≥ 1

2

∑
j∈∂o

logh
f,β,B
j→o (1) + 1

2

∑
j∈∂o

logh
f,β,B
o→j (1),

and the fact that h
f,β,B
x→y (1) ≥ 1/q for β,B ≥ 0 (by Corollary 4.4). Thus, using

unimodularity of μ, we have

lim
β→∞ 
̄μ

(
β,B,h‡) = Eμ

[
(1 − Do/2)ϕ

(|T |)],
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and we conclude by showing that this coincides with Eμ[ϕ̄(|T |)]. The case |T | =
∞ is trivial; otherwise, another application of unimodularity gives

1

2
Eμ

[
Doϕ

(|T |)] = 1

2
Eμ

[
Do

∑
x∈T

ϕ̄
(|T |)] = 1

2
Eμ

[∑
x∈T

Dxϕ̄
(|T |)]

= Eμ

[
ϕ̄
(|T |)|ET |] = Eμ

[
ϕ
(|T |)] − Eμ

[
ϕ̄
(|T |)].

Therefore, limβ→∞ 
̄μ(β,B,h) = Eμ[ϕ̄(|T |)] which concludes the proof. �

PROOF OF THEOREM 1.10. The Potts model (1.3) is of form (1.1) with X =
[q], ξ(σ, σ ′) = β · 1{σ = σ ′}, and ξ̄ (σ ) = B · 1{σ = 1}, so (H1) and (H2) are
clearly satisfied. It follows from the recursive structure of the tree that h‡ ∈ H� for
‡ ∈ {f,1}. For part (a), along any interpolation path contained in Rμ, both (H3β )
and (H3B ) are satisfied by Corollary 4.4 and the same argument used in the proof
of Theorem 1.12. For part (b), (H3β ) and (H3B ) are satisfied by the additional
hypothesis of continuity.

The inequalities in part (b) then follow from Theorem 1.15 once we verify
[cf. (1.19), (1.20)]

avx(β,B,hf) ≤ lim inf
n→∞ avx

n (β,B) ≤ lim sup
n→∞

avx
n (β,B) ≤ avx(β,B,h1),

ae(β,B,hf) ≤ lim inf
n→∞ ae

n(β,B) ≤ lim sup
n→∞

ae
n(β,B) ≤ ae(β,B,h1),

where avx
n (β,B) = En[〈1{σIn = 1}〉β,B

n ] and ae
n(β,B) = 1

2En[∑j∈∂In
〈1{σIn =

σj }〉β,B
n ]. Indeed, by Vitali’s convergence theorem, the assumption Gn →lwc μ and

Corollary 4.4 [with U = Bt(In) ⊆ Gn], we have

ae(β,B,hf) = lim inf
t→∞

1

2
Eμ

[ ∑
j∈∂o

〈
1{σo = σj }〉f,β,B

T t ,T

]
≤ lim inf

n→∞ ae
n(β,B),

and the other inequalities are proved similarly. Together these inequalities imply
that

lim
n→∞

[
φn

(
β ′,B ′) − φn(β,B)

] = 

(
β ′,B ′, h‡) − 


(
β,B,h‡)

for any (β,B) and (β ′,B ′) joined by an interpolation path contained in Rμ. The
result of part (a) then follows by letting (β ′,B ′) approach R∞ and applying
Lemma 4.5. �

4.3. Potts model with d-regular limiting tree. In this section we prove Theo-
rem 1.11, which amounts to determining the shape of R �= and establishing conti-
nuity of hf and h1 in certain regimes.
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Since the limiting measure is supported on Td , only h ≡ h(Td ,x→y) is of rele-
vance. Further, h‡ is symmetric among the spins �= 1 for ‡ ∈ {f,1}, so determina-
tion of h‡ reduces to solving a univariate recursion for h‡(1),

h �→ eB [eβh + (1 − h)]d−1

eB[eβh + (1 − h)]d−1 + (q − 1)[h + ((1 − h)/(q − 1))(eβ + q − 2)]d−1 .

Our result follows from analysis of the fixed points of this mapping; similar com-
putations have appeared, for example, in [43, 47] so some overlap among the anal-
yses may occur.

A convenient parametrization is given by the log likelihood ratio r ≡ logh −
log[(1 − h)/(q − 1)], in terms of which the recursion becomes

r �→ f (r) ≡ f (r;β,B) = B + (d − 1) log
(

eβ+r + q − 1

er + eβ + q − 2

)
.

With f (t) the t-fold iteration of f , let r f denote the increasing limit of f (t)(0)

and r1 the decreasing limit of f (t)(∞), as t → ∞. The region R �= corresponds to
those β,B ≥ 0 for which r f �= r1.

LEMMA 4.6. There exists β− > 0 such that for β ≤ β− the map f has exactly
one fixed point for any B ∈ R. For β > β− there exist real-valued B−(β) < B+(β)

(smooth in β) such that f has one, two or three fixed points depending on whether
B is in [B−,B+]c, {B−,B+} or (B−,B+). The curves extend continuously to
B−(β−) = B+(β−).

PROOF. We have

f ′(r) = (d − 1)er(eβ − 1)(q + eβ − 1)

(q + er + eβ − 2)(q + er+β − 1)
(4.7)

so f is increasing in r with f ′(r) → 0 as r → ±∞. Since f (r;β,B) = f (β; r,B),
it easily follows from (4.7) that ∂βf (r) has the same sign as r while ∂β[f ′(r)] > 0.
Further

f ′′(r) = −(d − 1)er+β(eβ − 1)(q + eβ − 1)(e2r − α)

(q + er + eβ − 2)2(q + er+β − 1)2 ,

α ≡ (q − 1)
(
1 + (q − 2)e−β),

with α > 0 since q > 1. Notice that f ′′(r) > 0 for r sufficiently negative and
f ′′(r) < 0 for r sufficiently positive, with a single sign change occurring at
(logα)/2 which is zero for q = 2 and strictly positive for q > 2. This proves
that f has between one and three fixed points. When B = 0, one fixed point is
always given by r f(β,0) = 0. Further f (r;0,0) ≡ 0, so (by monotonicity of f ′
in β) there exists ∞ ≥ β− ≥ 0 such that f ′ ≤ 1 everywhere for β ≤ β−, and f ′
exceeds 1 somewhere for β > β−.
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Solving the equation f ′(r) = 1 in terms of t ≡ er yields solutions

t±(β) = −γ ±
√

γ 2 − α, γ ≡ eβ + q − 2 − d

2

(
1 − e−β)(eβ + q − 1

)
.

Since α > 0, t±(β) are not positive if γ > −√
α, equal to

√
α > 0 if γ = −√

α,
and positive but not equal if γ < −√

α. If d ≥ 2, it is easy to check that both α

and γ decrease smoothly in β , starting at γ |β=0 = q − 1 and α|β=0 = (q − 1)2, so
there is a unique value β = β− > 0 at which γ = −√

α: if d = 2, then β− = ∞,
and if d > 2, then β− is the logarithm of the unique finite positive root b− of

(d − 2)2b2 + (d − 2)2(q − 2)b − d2(q − 1) = 0.(4.8)

Hence, the equation f ′(r) = 1 has no solutions for β < β−, and it has solutions
ρ±(β) ≡ log t±(β) for β ≥ β−, with ρ−(β−) = ρ+(β−) and ρ−(β) < ρ+(β) for
β > β−. The values of B−(β), B+(β) are then given explicitly by

B±(β) = ρ∓(β) − f
(
ρ∓(β);β,0

)
,(4.9)

which clearly meet at β = β− and are smooth for β > β−. �

Considering hereafter only d > 2 (so that β− < ∞), suppose β > β−, so that the
functions ρ± are defined. Since ∂β[f ′(r)] > 0, ρ− and ρ+ must be, respectively,
decreasing and increasing in β . Further, since f has a unique inflection point at
(logα)/2, we must have ρ−(β) ≤ (logα)/2 ≤ ρ+(β), with strict inequalities un-
less ρ−(β) = ρ+(β). For q = 2 (Ising), this implies ρ− ≤ 0 ≤ ρ+ from which it
is easy to see that whenever B > 0 we have r f(β,B) = r1(β,B), which is then
continuous in (β,B) by the same argument as in the proof of Theorem 1.12. When
B = 0, r f(β,0) is zero for all β , while r1(β,B) is zero for β ≤ β− and strictly
positive for β > β−.

For q > 2 (Potts), this implies that ρ+(β,B) > 0 while ρ−(β,B) ≥ 0 if and
only if f ′(0;β,B) ≤ 1. From the calculations above, f ′(0) is zero at β = 0 and
increases in β . We therefore define

βf ≡ inf
{
β ≥ 0 :f (r;β,0) = r for some r > 0

}
,

β+ ≡ inf
{
β ≥ 0 :ρ−(β) ≤ 0

} = inf
{
β ≥ 0 :f ′(0;β,0) ≥ 1

}
(4.10)

= log
(

1 + q

d − 2

)
[where the formula for β+ comes from (4.7)]. Clearly β− ≤ βf ≤ β+, and in fact
these inequalities are strict: at βf, f ′ must exceed one between zero and the positive
fixed point, so β− < βf.5 Likewise, if f ′(0) ≥ 1 at β = βf, the concavity of f (r)

at r = 0 would imply the existence of a positive fixed point at some β below βf

5Note that r1(βf,0) > 0, that is, the 1-biased fixed point “arises discontinuously.”
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which is a contradiction, so βf < β+. We refer again to Figure 2 which shows
the maps f (r;β,B) for the Ising and Potts models at several values of β while
holding B = 0. Figure 3(b) shows the regime of (β,B) values delineated by the
curves B±(β).

PROOF OF THEOREM 1.11. (a) We found above that R �= = ∅ for d = 2 and
R �= = (β−,∞) for q = 2, so suppose d, q > 2. If B > 0, r f = r1 holds for all β ≥ 0
with β /∈ (β−, β+). For β ∈ (β−, β+) there is a closed interval [B−(β)∨0,B+(β)]
of B values for which r f < r1: this interval is strictly positive for β < βf and
includes zero for β ≥ βf. If B = 0, r f = r1 for 0 ≤ β < βf and r f < r1 for β ≥ βf.
Recalling (4.9),

∂βB±(β) = ∂β

[
ρ∓(β) − f

(
ρ∓(β)

)] = [
1 − f ′(ρ∓(β)

)]
∂βρ∓(β) − (∂βf )

(
ρ∓(β)

)
= −(∂βf )

(
ρ∓(β)

)
.

This has the same sign as −ρ∓(β), which are both negative for 0 ≤ β < β+, so the
curves B±(β) are decreasing. Inverting them gives the curves βf(B),β+(B) which
delineate the region R �= as described in the theorem statement, with βf(0) = βf and
β+(0) = β+.

(b) Away from the boundary of R �=, hf and h1 correspond to isolated zeros of
a smooth function, and so are continuous by the implicit function theorem. From
part (a), any point of R is connected to R∞ by an interpolation path contained in
R, so applying Theorem 1.10(a) verifies the Bethe prediction for (β,B) /∈ R �=.

Since changing B only translates f (r;β,B), it is not difficult to see that when
β ∈ (β−, β+), the function hf(β,B) is continuous in B for B ∈ [0,B+(β)] while
h1(β,B) is continuous for B ∈ [B−(β) ∨ 0,∞). It follows by Lemma 2.1 that for
(β,B) ∈ ∂R �= with β = βf(B), φ(β,B) = 
(β,B,hf), while for (β,B) ∈ ∂R �=
with β ≥ β+(B), φ(β,B) = 
(β,B,h1).

Recall our convention that β0 ≤ β1,B0 ≤ B1: by Theorem 1.10(b) we may in-
terpolate in B from (β,B0) ∈ R◦�= to (β,B1) ∈ R using the message h1, yielding

lim infn→∞ φn(β,B) ≥ 
(β,B,h1) for (β,B) ∈ R◦�=. Likewise, we may interpo-

late in B from (β,B0) ∈ R to (β,B1) ∈ R �= using hf (and once inside R �= we may
also interpolate in β using hf), which gives lim infn→∞ φn(β,B) ≥ 
(β,B,hf)

for (β,B) ∈ R◦�=.

Next, since hf(β,B) and h1(β,B) are lower and upper semi-continuous, re-
spectively, in β , and both are nondecreasing in β , for 0 < B < B+ we have
that hf(β,B) ↑ hf(β+(B),B) as β ↑ β+(B) and h1(β,B) ↓ h1(βf(B),B) as
β ↓ βf(B). Again by Theorem 1.10(b), we may interpolate in β from (β0,B) =
(βf(B),B) ∈ ∂R �= to (β1,B) ∈ R◦�= using h1, and from (β0,B) ∈ R◦�= to (β1,B) =
(β+(B),B) ∈ ∂R �= using hf, giving

lim sup
n→∞

φn(β,B) ≤ min
{

̃f(β,B), 
̃1(β,B)

}
, (β,B) ∈ R◦�=,

which completes the proof. �
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