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ERGODICITY OF POISSON PRODUCTS AND APPLICATIONS

BY TOM MEYEROVITCH

Ben-Gurion University of the Negev

In this paper we study the Poisson process over a σ -finite measure-space
equipped with a measure preserving transformation or a group of measure
preserving transformations. For a measure-preserving transformation T act-
ing on a σ -finite measure-space X, the Poisson suspension of T is the associ-
ated probability preserving transformation T∗ which acts on realization of the
Poisson process over X. We prove ergodicity of the Poisson-product T × T∗
under the assumption that T is ergodic and conservative. We then show, as-
suming ergodicity of T ×T∗, that it is impossible to deterministically perform
natural equivariant operations: thinning, allocation or matching. In contrast,
there are well-known results in the literature demonstrating the existence of
isometry equivariant thinning, matching and allocation of homogenous Pois-
son processes on Rd . We also prove ergodicity of the “first return of left-most
transformation” associated with a measure preserving transformation on R+,
and discuss ergodicity of the Poisson-product of measure preserving group
actions, and related spectral properties.

1. Introduction. It is straightforward that the distribution of a homogenous
Poisson point process on Rd is preserved by isometries. In the literature, various
translation-equivariant and isometry-equivariant operations on Poisson process
have been considered:

• Poisson thinning: A (deterministic) Poisson-thinning is a rule for selecting a sub-
set of the points in the Poisson process which are equal in distribution to a lower
intensity homogenous Poisson process. Ball [4] demonstrated a deterministic
Poisson-thinning on R which was translation equivariant—that is, if a transla-
tion is applied to the original process, the new points selected are translations of
the original ones by the same vector. This was extended and refined by Holroyd,
Lyons and Soo [11] to show that for any d ≥ 1, there is an isometry-equivariant
Poisson-thinning on Rd .

• Poisson allocation: Given a realization ω of a Poisson process on Rd , a Pois-
son allocation partitions Rd up to measure 0 by assigning to each point in ω

a cell which is a finite-measure subset of Rd . Hoffman, Holroyd and Peres [9]
constructed an isometry-equivariant allocation scheme for any stationary point
process of finite intensity. The above allocation scheme had the characteristic
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property of being “stable.” Subsequent work demonstrated isometry-equivariant
Poisson allocations with other nice properties such as connectedness of the al-
located cells [15] or good stochastic bounds on the diameter of the cells [5].

• Poisson matching: A Poisson matching is a deterministic scheme which finds
a perfect matching of two identically distributed independent Poisson pro-
cesses. Different isometry-equivariant Poisson matching schemes have been
constructed [10, 12].

Consider a transformation of Rd which preserves Lebesgue measure. Does there
exist a Poisson thinning which is equivariant with respect to the given transforma-
tion? What about an equivariant Poisson allocation or matching?

To have a couple of examples in mind, consider the following transformations
TRW, TBoole : R → R of the real line given by

TRW(x) = �x� + (2x mod 1) − 1 + 2 · 1(0,1/2](x mod 1)(1)

and

TBoole(x) = x − 1

x
(2)

TBoole is known as Boole’s transformation. It is a is a classical example of an er-
godic transformation preserving Lebesgue measure. See [3] for a proof of ergodic-
ity and discussions of this transformation. You may notice that TRW is isomorphic
to the shift map on the space of forward trajectories of the simple random walk
on Z.

From our perspective, it is natural (although mathematically equivalent) to con-
sider an abstract standard σ -finite measure space (X, B,μ), instead of Rd with
Lebesgue measure. We consider a Poisson point process on this space, which de-
noted by (X∗, B∗,μ∗). Any measure preserving transformation T :X → X natu-
rally induces a map T∗ :X∗ → X∗ on the Poisson process. This transformation T∗
is the Poisson suspension of T [17].

We prove the following theorem:

THEOREM 1.1. Let T :X → X be any conservative and ergodic measure
preserving transformation of (X, B,μ) with μ(X) = ∞. There does not exist a
T -equivariant Poisson thinning, allocation or matching.

We prove Theorem 1.1 by studying ergodic properties of the map T ×T∗, which
acts on the product space (X × X∗, B × B∗,μ∗ × μ). We refer to this system as
the Poisson-product associated with T . The space X × X∗ can be considered as
a countable set of “indistinguishable” points in X, with a unique “distinguished”
point. The Poisson-product T × T∗ acts on this by applying the same map T to
each point, including the distinguished point.

Our main result about Poisson-products is the following theorem:
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THEOREM 1.2. Let (X, B,μ,T ) be a conservative, measure-preserving
transformation with μ(X) = ∞. Then the Poisson-product T × T∗ is ergodic if
and only if T is ergodic.

Before concluding the introduction and proceeding with the details, we recall a
couple of results regarding nonexistence of certain equivariant operations on Pois-
son processes. Evans proved in [6] that with respect to any noncompact group
of linear transformations there is no invariant Poisson-thinning on Rd . Gurel-
Gurevich and Peled proved the nonexistence of translation equivariant Poisson
thickening on the real line [7], which means that there is no measurable function
on realizations of the a homogenous Poisson process that sends a Poisson process
to a higher intensity homogenous Poisson process.

This paper is organized as follows: In Section 2 we briefly provide some termi-
nology and necessary background. Section 3 contains a short proof of Theorem 1.2
stated above, based on previous work in ergodic theory. In Section 4 we prove any
T -equivariant thinning is trivial, assuming T ×T∗ is ergodic. In Section 5 we show
that under the same assumptions there are no T -equivariant Poisson allocations or
Poisson matchings, using an intermediate result about nonexistence of positive
equivariant maps into L1. Section 6 discusses the “leftmost position transforma-
tion” and contains a proof of ergodicity, yet another application of Theorem 1.2.
Section 7 is a discussion of ergodicity of Poisson products for measure preserving
group actions.

2. Preliminaries. In this section we briefly recall some definitions and back-
ground from ergodic theory required for the rest of the paper. We also recall some
properties of the Poisson point process on a σ -finite measure space.

2.1. Ergodicity, conservative transformations and induced transformations.
Throughout this paper (X, B,μ) is a standard σ -finite measure space. We will
mostly be interested in the case where μ(X) = ∞. Also throughout the paper,
T :X → X is a measure preserving transformation, unless explicitly stated other-
wise, where T denotes an action of a group by measure preserving transformations
of (X, B,μ). The collection of measurable sets of positive measure by will be de-
noted by B+ := {B ∈ B :μ(B) > 0}.

Recall that T is ergodic if any set A ∈ B which is T -invariant has either μ(A) =
0 or μ(Ac) = 0. Equivalently, T is ergodic if any measurable function f :X → R
satisfying f ◦ T = f μ-almost everywhere is constant on a set of full measure.

A set W ∈ B is called a wandering set if μ(T −nW ∩ W) = 0 for all n > 0. The
transformation T is called conservative if there are no wandering sets in B+. The
Poincaré recurrence theorem asserts that any T which preserves a finite measure
is conservative.

For a conservative T and A ∈ B+, the first return time function is defined for
x ∈ A by ϕA(x) = min{n ≥ 1 :T n(x) ∈ A}. ϕA is finite μ-a.e; this is a direct con-
sequence of T being conservative.
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The induced transformation on A is defined by TA(x) := T ϕA(x)(x). If T is
conservative and ergodic and A ∈ B+, TA :A → A is a conservative, ergodic trans-
formation of (A, B ∩ A,μ |A).

See [1] for a comprehensive introduction to ergodic theory of infinite measure
preserving transformations.

2.2. Cartesian product transformations. Suppose T is conservative, and
S :Y → Y is a probability preserving transformation of (Y, C, ν), namely ν(Y ) =
1. It follows (as in Proposition 1.2.4 in [1]) that the Cartesian product transforma-
tion T × S :X × Y → X × Y is a conservative, measure-preserving transforation
of the Cartesian product measure-space (X × Y, B ⊗ C,μ × ν).

2.3. L∞-eigenvalues of measure preserving transformations. A function f ∈
L∞(X, B,μ) is an L∞-eigenfunction of T if f �= 0 and Tf = λf for some λ ∈ C.
The corresponding λ is called an L∞-eigenvalue of T . We briefly recall some
well-known results:

If T is ergodic and f is an L∞-eigenfunction, it follows that |f | is constant
almost-everywhere. The L∞-eigenvalues of T are

e(T ) := {
λ ∈ C :∃f ∈ L∞(X, B,μ)f �= 0 and Tf = λf

}
.

If T is conservative, then |λ| = 1 for any eigenvalue λ, for otherwise the set{
x ∈ X :

∣∣f (x)
∣∣ ∈ (|λ|k, |λ|k+1]}

would be a nontrivial wandering set for some k ∈ Z if |λ| > 1. Thus, for any con-
servative transformation T , e(T ) is a subset if the unit sphere

S1 = {
x ∈ C : |x| = 1

}
.

e(T ) is a group with respect to multiplication, and carries a natural Polish topol-
ogy, with respect to which the natural embedding in S1 is continuous.

When T preserves a finite measure, e(T ) is at most countable. For a gen-
eral infinite-measure preserving T , however, e(T ) can be uncountable, and quite
“large,” for instance, the arbitrary Hausdorff dimension α ∈ (0,1). Importantly for
us, however, there are limitations on how “large” e(T ) can be. For instance, e(T )

is a weak Dirichlet set. This means that

lim inf
n→∞

∫ ∣∣1 − χn(s)
∣∣dp(s) = 0

whenever p is a probability measure on S1 with p(e(T )) = 1, and χn(s) :=
exp(2πins). In particular the set e(T ) has measure zero with respect to Haar mea-
sure on S1.

We refer the reader to existing literature for further details [1, 2, 16, 19].
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2.4. The L2-spectrum. Let UT :L2(μ) → L2(μ) denote the unitary operator
defined by UT (f ) := f ◦ T .

The spectral type of a unitary operator U on a Hilbert space H , denoted σU , is
a positive measure on S1 satisfying

(a) 〈
Unf,g

〉 = ∫
S1

χn(s)h(f, g)(s) dσU(s),

where h :H × H → L1(σU) is a sesquilinear map;
(b) σU is minimal with that property, in the sense that it satisfies σU � σ for

any measure σ on S1 satisfying (a).

In (b) above and throughout the paper, we write μ1 � μ2 to indicate that the
measure μ1 is absolutely continuous with respect to μ2. If μ1 � μ2 and μ2 � μ1,
we say they are in the same measure class.

The spectral type σU is defined only up to measure class. Existence of σU is a
formulation of the scalar spectral theorem.

For a measure-preserving transformation T , The spectral type of T σT is the
spectral type of the associated unitary operator UT on L2(μ). For a probability
preserving transformation S, the restricted spectral type is the spectral type the
unitary operator US restricted to L2-functions with integral zero.

Our brief exposition here follows Section 2.5 of [1].

2.5. Poisson processes and the Poisson suspension. For a standard σ -finite
measure space (X, B,μ), (X∗, B∗,μ∗) denotes the associated Poisson point pro-
cess, which we now describe. X∗ is the space of countable subsets of X. We will
typically denote an element of X∗ by ω, ω1, ω2 and so on. The σ -algebra B∗ is
generated by sets of the form[|ω ∩ B| = n

] := {
ω ∈ X∗ : |ω ∩ B| = n

}
(3)

for n ≥ 0 and B ∈ B.
The probability measure μ∗ is is uniquely defined by requiring that for any

pairwise disjoint A1,A2, . . . ,An ∈ B, if ω ∈ X∗ is sampled according to μ∗, then
|ω ∩Ai | are jointly independent random variables individually distributed Poisson
with expectation μ(Ai)

μ∗(|ω ∩ A| = k
) = e−μ(A) μ(A)k

k! .(4)

The underlaying measure μ∗ is called the intensity of the Poisson process. We
will assume that the measure μ has no atoms, namely μ({x}) = 0 for any x ∈ X.
This is a necessary and sufficient condition to avoid multiplicity of points almost
surely with respect to μ∗.
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A Poisson point process can be defined on very general measure spaces, un-
der milder assumptions than “standard.” Details of the construction and general
properties of Poisson processes can be found, for instance, in [13, 14].

To make various measurability statements in the following sections more trans-
parent, we assume the following technical condition: There is a fixed sequence
{βn}∞n=1 of countable partitions of X into B-measurable sets, such that βn+1 re-
fines βn, with the additional property that the mesh of these partitions goes to 0,
namely,

λ(βn) := sup
{
μ(B) :B ∈ βn

} → 0 as n → ∞.

We assume that B = ∨∞
n=1 σ(βn) is the σ -algebra generated by the union of these

partitions. For instance, if (X, B,μ) is the real line with Lebesgue measure on the
Borel sets, we can take βn to be the partition into half-open intervals with endpoints
on the lattice 1

2n Z.
The σ -algebra B∗ can now be defined by

B∗ =
∞∨

n=1

β∗
n,

where β∗
n is the σ -algebra generated by sets of the form (3) with B ∈ βn and

n ∈ {0,1,2, . . .}. Different sequences βn with the above properties will not change
the completion with respect to μ∗ of the resulting σ -algebra B∗.

The Poisson suspension of a measure preserving map T :X → X, is the natural
map obtained by applying T on X∗. As in [17], we denote it by T∗ :X∗ → X∗.
This transformation is formally defined by

T∗(ω) = {
T (x) :x ∈ ω

}
.

T∗ is a probability-preserving transformation of (X∗, B∗,μ∗).
The following proposition relates the spectral measures of T and T∗ [17]:

PROPOSITION 2.1. If σ is the spectral-type of T , the restricted spectral type
of T∗ is given by

σT∗ = ∑
n≥1

1

n!σ
⊗n.

It is a classical result that a probability-preserving transformation is ergodic if
and only if its restricted spectral type has no atom at λ = 1, and is weakly mixing
if and only if its restricted spectral type has no atoms in S1 (this property is also
equivalent to ergodicity of T × T ). It follows that T∗ is ergodic if and only if T∗
is weakly mixing if and only if there are no T -invariant sets of finite measure in
B+ [17].
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In the following sections we will use the map π :X × X∗ → X∗ given by

π(x,ω) = {x} ∪ ω.(5)

The map π defined by (5) is a measurable map from between the measure spaces
(X×X∗, B ⊗ B∗) and (X∗, B∗). This is can be verified directly using the following
equalities of sets:

π−1[|ω ∩ A| = 0
] = (X \ A) × [|ω ∩ A| = 0

]
and

π−1[|ω ∩ A| = n
] = (

(X \ A) × [|ω ∩ A| = n
]) ∪ (

A × [|ω ∩ A| ∈ {n − 1, n}])
for A ∈ B and n ∈ N.

In fact, π is a ∞-factor map between the measure preserving maps T × T∗
and T∗, in the sense of Chapter 3 of [1]: This means that π ◦ T∗ = (T × T∗) ◦ π

and for A ∈ B∗

(
μ × μ∗) ◦ π−1(A) =

{
0, if μ∗(A) = 0,
∞, otherwise.

3. Ergodicity of Poisson product for conservative transformations. We
now provide a proof of Theorem 1.2. The argument we use is an adaptation of [2].
To prove our result, we invoke the following condition for ergodicity of Cartesian
products, due to M. Keane:

THEOREM (The ergodic multiplier theorem). Let S be a probability preserv-
ing transformation and T a conservative, ergodic, nonsingular transformation.
S × T is ergodic if and only if σS(e(T )) = 0, where:

• σS is the restricted spectral type of S;
• e(T ) is the group of L∞-eigenvalues of T .

A proof of this result is provided, for instance, in Section 2.7 of [1].
By Proposition 2.1, the restricted spectral-type of the Poisson suspension T∗ is

a linear combination of convolution powers of the spectral type of T .
We make use of the following basic lemma about convolution of measures and

equivalence of measure classes. A short proof is provided here for the sake of
completeness:

LEMMA 3.1. Let μ1 and μ2 be Borel probability measures on S1 with the
same null-sets. For any Borel probability measure ν on S1, the measures μ1 ∗ ν

and μ2 ∗ ν have the same null-sets.



3188 T. MEYEROVITCH

PROOF. We will prove that μ1 � μ2 implies that μ1 ∗ ν � μ2 ∗ ν which
suffices by symmetry.

We assume μ1 � μ2, and show that for any ε > 0, there exists δ > 0 so that any
set A ∈ P(S1) with (μ1 ∗ ν)(A) ≥ ε has (μ2 ∗ ν)(A) ≥ δ.

Fix ε > 0 and choose any A ∈ B(S1) with (μ1 ∗ ν)(A) ≥ ε. It follows that

ν

({
x ∈ S1 :μ1(A · x) ≥ ε

2

})
≥ ε

2
.

Since μ1 � μ2, there exists δ′ > 0 so that μ1(B) ≥ ε
2 implies μ2(B) ≥ δ′. Thus,

ν
({

x ∈ S1 :μ2(A · x) ≥ δ′}) ≥ ε

2
.

It follows that (μ2 ∗ ν)(A) ≥ δ′ · ε
2 , which establishes the claim with δ = δ′ · ε

2 .
�

From this we deduce the following lemma.

LEMMA 3.2. Let T be a conservative, measure-preserving transformation.
For any n ≥ 1, the group e(T ) acts nonsingularly on σ⊗n

T , the nth convolution
power of the restricted spectral type of T .

PROOF. Our claim is that

∀t ∈ e(T ) σ⊗n
T ∼ δt ∗ σ⊗n

T ,(6)

where δt denotes dirac measure at t , and ∼ denotes equivalence of measure classes.
For n = 1, a proof can be found in [2, 8].

Equation (6) follows for n > 1 by induction using Lemma 3.1, with t ∈ e(T ),
σT and δt ∗ σT substituting for μ1 and μ2, respectively, and σ

⊗(n−1)
T substituting

for ν. �

Completing the proof of Theorem 1.2.
By the ergodic multiplier theorem above, proving ergodicity of the Poisson-

product amounts to proving σT∗(e(T )) = 0. Since σT∗ = ∑
n≥1

1
n!σ

⊗n
T , it is suffi-

cient to prove that for all n ≥ 1,

σ⊗n
T

(
e(T )

) = 0.(7)

A proof that σT (e(T )) = 0 is provided in [8]; see also [2]. This is the case n = 1
of equation (7). We also refer to the discussion in Chapter 9 of [16].

For convenience of the reader and in preparation for the discussion in Sec-
tion 7, we briefly recall the arguments leading to this result: Suppose the con-
trary, σT (e(T )) > 0. Since e(T ) acts nonsingularly on σT , it follow that σT |e(T )

is a quasi-invariant measure on e(T ). Thus, e(T ) can be furnished with a
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locally-compact second-countable topology, respecting the Borel structure inher-
ited from S1. Haar measure on e(T ) must be is equivalent to σT |e(T ). With respect
to this topology, we have that e(T ) is a locally compact group, continuously em-
bedded in S1, where the topological embedding is also a group embedding. In this
situation, it follows as in [2] that e(T ) is either discrete or e(T ) = S1. The possi-
bility that e(T ) is discrete is ruled out since this would imply σT has atoms, which
means T has L2(μ) eigenfunctions. This is impossible since T is an ergodic trans-
formation preserving an infinite measure. The alternative is that e(T ) = S1. This
is impossible since e(T ) is weak Dirichlet, thus must be a null set with respect to
Haar measure on S1 [19].

To prove the equality in (7) for n > 1, note that the convolution power of an
atom-free measure is itself atom-free and that by Lemma 3.2 above e(T ) also acts
nonsingularly on σ⊗n

T . The result now follows using the same arguments outlined
above for the case n = 1.

This completes the proof of Theorem 1.2.

4. Nonexistence of equivariant thinning. Here is a formalization of the no-
tion of a (deterministic) thinning. This is a B∗-measurable map  :X∗ → X∗,
satisfying

μ∗([∣∣(ω) ∩ B
∣∣ ≤ |ω ∩ B|]) = 1 ∀B ∈ B.

This essentially means that  is a measurable map on the space X∗ of countable
sets of X, for which almost-surely (ω) ⊂ ω.

A Poisson thinning satisfies the extra condition that μ∗ ◦−1 = (θμ)∗ for some
θ ∈ (0,1). By (θμ)∗ we mean the measure on (X∗, B∗) which corresponds to
a Poisson process with intensity given by θ · μ. In other words, the law of the
countable set (ω) is that of a lower-intensity Poisson process.

Given a measure preserving transformation T :X → X, a thinning  is called
T -equivariant if  ◦ T∗ = T∗ ◦  . A thinning  is trivial if

μ∗([
(ω) = ∅

]) = 1 or μ∗([
(ω) = ω

]) = 1.

PROPOSITION 4.1. Let T be a group-action by measure preserving trans-
formations. If T × T∗ is ergodic, there does not exist a nontrivial T -equivariant
thinning.

PROOF. Suppose by contradiction that  is a nontrivial T -equivariant thin-
ning. Consider the set

A = {
(x,ω) ∈ X × X∗ :x ∈ 

(
ω ∪ {x})}.(8)

Measurability of the set A is verified by the following:

A =
∞⋂

n=1

⋃
B∈βn

(
B × X∗) ∩ (

( ◦ π)−1[|ω ∩ B| > 0
])

mod μ × μ∗,
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where {βn}∞n=1 is a “decreasing net” of countable partitions, as in Section 2.
Since  is T -equivariant, the set A is a T × T∗ invariant set. By ergodicity of

T × T∗, either (μ × μ∗)(A) = 0 or (μ × μ∗)(Ac) = 0.
Intuitively, A is the subset of X × X∗ where applying the thinning  on the

union of the “indistinguishable points” with the “distinguished point” does not
delete the distinguished point. We will complete the proof by showing that this
implies that the thinning  is trivial.

For j ∈ N, define π(j) :

j︷ ︸︸ ︷
X × · · · × X ×X∗ → X∗ by

π(x1, . . . , xj ,ω) =
j⋃

k=1

{xk} ∪ ω.

π(j) is B⊗j ⊗ B∗-measurable. This follows from measurability of the map π

given by (5), which coincides with π(1).
For any B ∈ B with 0 < μ(B) < ∞, and j ∈ N, we consider the following

probability measures:

(i)

μ∗
B,j (·) := μ∗(· | [

(ω ∩ B) = j
])

.

This is a probability measure on (X∗, B∗) corresponding to a Poisson process with
intensity μ, conditioned to have exactly j points in the set B ,

(ii)

μ̂B,j (·) := (μ × μ∗) |B×[(ω∩B)=j ]
μ(B) · μ∗([ω ∩ B] = j)

(·).

μ̂B,j is a probability measure on X × X∗ given by the product of a random
point in B , distributed according to μ |B and an independent Poisson process with
intensity μ, conditioned to have exactly j points inside the set B ,

(iii)

μ̃B,j (·) :=
j︷ ︸︸ ︷

μ |B ×· · · × μ |B ×(μ |Bc)∗

μ(B)j
(·).

This is the probability on (Xj × X∗, B⊗j ⊗ B∗) which corresponds to j indepen-
dent random points identically distributed according to μ |B and an independent
Poisson process of intensity μ |Bc .

From the properties of the Poisson process, it directly follows that the probabil-
ity measures defined above are related as follows:

μ̂B,j ◦ π−1 = μ̃B,j+1 ◦ π−1
(j) = μ∗

B,j+1(9)
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and

μ̂B,j = μ̃B,j+1 ◦ π−1
[2,j ],(10)

where π[2,j ] :

j︷ ︸︸ ︷
X × · · · × X ×X∗ → X × X∗ is given by

π[2,j ](x1, . . . , xj ,ω) =
(
x1,

j⋃
k=2

{xk} ∪ ω

)
.

In particular, it follows that π(j) is a nonsingular map for all j ≥ 1, in the sense

that the inverse image of a μ∗-null set is always

j︷ ︸︸ ︷
μ × · · ·μ×μ∗-null.

Assuming  is not a trivial thinning implies that there exist B ∈ B with 0 <

μ(B) < ∞ so that

μ∗(
0 <

∣∣(ω) ∩ B
∣∣ < |ω ∩ B|) > 0.

It follows that for some j > 1,

μ∗
B,j

(
0 <

|(ω) ∩ B|
|ω ∩ B| < 1

)
> 0.(11)

Now by (9) and (10), using symmetry of μ̃B,j with respect to the variables
(x1, . . . , xj ), it follows that the probability μ̂B,j (x ∈ (π(x,ω))) is equal to the
expectation of |(ω)∩B|

|ω∩B| under μ∗
B,j . By (11) this expectation must be strictly

positive and smaller than one. This contradicts triviality of the set A: Either
(μ × μ∗)(A) = 0 in which case μ̂B,j (x ∈ (π(x,ω))) = 0 or (μ × μ∗)(Ac) = 0
in which case μ̂B,j (x ∈ (π(x,ω))) = 1. �

5. Nonexistence of equivariant allocation and matching. The aim of this
section is to establish the nonexistence of T -equivariant Poisson allocation and
Poisson matching, under an ergodicity assumption of a certain extension of T .
Combined with Theorem 1.2, this will establish the last part of Theorem 1.1.

We begin with an intermediate result about measure-preserving systems. Con-
sider a measurable function � :X → L1(μ), sending x ∈ X to �x ∈ L1(μ), which
is T -equivariant in the sense that �T x ◦ T = �x . Such a function � can be inter-
preted as a T -equivariant “mass allocation” scheme. For instance, on X = Rd with
Lebesgue measure, �x(y) = 1B1(x)(y) and �x(y) = exp(−‖x − y‖) both define
isometry-equivariant “mass allocations.” The later can be considered a “fractional
allocation,” in the sense that it obtains values in the interval (0,1). Nonexistence
of T -equivariant Poisson allocation and Poisson matching will be a consequence
of the following:

PROPOSITION 5.1. Let T be a measure-preserving group action on (X, B,μ).
If T × T∗ is ergodic, and μ(X) = ∞, any T -equivariant measurable function
� :X → L1(μ) must be equal to 0 μ-a.e.
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PROOF. Suppose � :X → L1(μ) satisfies �T x ◦T = �x . Note that ergodicity
of T implies that ‖�x‖L1(μ) is constant μ-a.e, as this is a T -invariant function.
Consider the function F :X × X∗ → R given by

F(x,ω) = ∑
y∈ω

∣∣�x(y)
∣∣.

We verify that F indeed coincides with a B ⊗ B∗-measurable function on a set of
full μ × μ∗-measure.

Indeed,

�x = ∑
B∈β1

∑
y∈ω∩B

∣∣�x(y)
∣∣,

by Martingale convergence,∑
y∈ω∩B

∣∣�x(y)
∣∣ = lim

n→∞Eμ∗
( ∑

y∈ω∩B

∣∣�x(y)
∣∣ | β∗

n

)
for μ × μ∗-almost-every (x,ω). For B ∈ β1 and n ≥ 1 we have

Eμ∗
( ∑

y∈ω∩B

∣∣�x(y)
∣∣ | β∗

n

)
= ∑

D∈βn∩B

Eμ∗
( ∑

y∈(ω∩D)

∣∣�x(y)
∣∣),

and the right-hand side is clearly B × β∗
n -measurable.

Let

F̃ (x) :=
∫ ∣∣F(x,ω)

∣∣dμ∗(ω) =
∫ ∑

y∈ω

∣∣�x(y)
∣∣dμ∗(ω),

and it follows from the definition of μ∗ that F̃ = ‖�x‖L1(μ). Thus, by ergodicity

of T , F̃ is equal to a nonzero (finite) constant μ-almost everywhere. In particular,
F is finite μ × μ∗-almost everywhere.

Observe that F is T ×T∗-invariant, so by ergodicity of T ×T∗ must be constant
μ × μ∗-a.e. On the other hand, for any ε > 0 and M > 0, we have F(x,ω) > M

whenever (x,ω) ∈ X × X∗ satisfy |ω ∩ {y ∈ X : |�x(y)| > ε}| > M
ε

. From the
definition of the Poisson process, it thus follows that

(
μ × μ∗)([F ≥ M]) ≥ μ

({
x ∈ X :‖�x‖L1(μ) ≥ ε

}) · εM/ε

M! exp
(
−M

ε

)
.

Because the right-hand side is strictly positive for any M > 0, whenever ε > 0 is
sufficiently small, it follows that F is not essentially bounded, which contradicts F

being almost-everywhere constant. �

Together with Theorem 1.2, Proposition 5.1, immediately gives the following
corollary, which does not seem to involve Poisson processes at all:
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COROLLARY 5.2. Let T :X → X be a conservative and ergodic measure pre-
serving transformation of (X, B,μ) with μ(X) = ∞. Any measurable function
� :X → L1(μ) satisfying �T x ◦ T = �x must be equal to 0 μ-a.e.

We now turn to define and establish a nonexistence result for equivariant Pois-
son allocations:

By a Poisson allocation rule we mean a B∗ ⊗ B-measurable map ϒ :X ×X∗ →
L1(μ) satisfying the following properties:

(A1) nonnegativity: ϒ(x,ω)(y) ≥ 0;
(A2) partition of unity:

∑
x∈ω(y)ϒ(x,ω) = 1 μ∗-a.e.;

(A3) ϒ(x,ω) ≡ 0 if x /∈ ω.

If x ∈ ω, we think of ϒ(x,ω) as the “the cell allocated to x.” Properties (A1)
and (A2) above guarantee that ϒ essentially takes values in the interval [0,1]. The
three above properties together express the statement that ϒ(·,ω) corresponds to a
partition of X up to a null set between the points in ω, which assigns each x ∈ ω

finite mass. For a “proper” allocation, we would require that �(x,ω) only takes
values in {0,1}, but this extra requirement is not necessary in order to prove our
result.

For it is often useful to consider a wider class of Poisson allocation rules, where
ϒ(x,ω) is undefined for a null set of (x,ω)’s, and ϒ is only measurable with respect
to the μ × μ∗-completion of the σ -algebra B∗ ⊗ B. However, conditions (A2)
and (A3) above apply to μ × μ∗-null sets, so we need to be careful and restate
them as follows:

(A1) nonnegativity: ϒ(x,ω)(y) ≥ 0;
(A2′) partition of unity:

∫
X ϒ(x,ω) dμ(x) = 1 μ∗-a.e.;

(A3′)
∫
A ϒ(x,ω) dμ(x) ≡ 0 μ∗-a.e on {ω ∈ X∗ :ω ∩ A = ∅} whenever A ∈ B.

A poisson allocation ϒ is T -equivariant if ϒ(T x,T∗ω) ◦ T = ϒ(x,ω).

PROPOSITION 5.3. Let T be a group-action by measure preserving transfor-
mations, and denote S := T × T∗. If S × S∗ is ergodic, there does not exist a
T -equivariant Poisson-allocation.

PROOF. Given a Poisson allocation ϒ :X × X∗ → L1(μ), we will define a
T × T∗-equivariant function � :X × X∗ → L1(μ × μ∗), which by ergodicity of
S = T × T∗ will contradict Proposition 5.1. This is given by

�(x,ω)(y,ω2) = ϒ(x,ω∪{x})(y).

It follows directly that

‖�(x,ω)‖L1(μ×μ∗) = ‖ϒ(x,ω∪{x})‖L1(μ),

which is positive and finite μ × μ∗-a.e.
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Measurability of � follows from the measurability assumptions on ϒ and from
measurability of the map (x,ω) → {x} ∪ ω. �

We now consider the existence of equivariant Poisson matching schemes:
Given a pair of independent Poisson processes realizations a (deterministic)

Poisson matching assigns a perfect matching (or bijection) between the points of
the two realizations, almost surely. To formalize this we define a Poisson matching
as a measurable-function  :X∗ × X∗ → (X × X)∗, satisfying the following:

(M1)

μ∗({
ω2 ∈ X∗ :

∣∣(ω1,ω2) ∩ (B1 × B2)
∣∣ ≤ min

{|ω1 ∩ B1|, |ω2 ∩ B2|}}) = 1

for μ∗-a.e ω1 and all B1,B2 ∈ B;
(M2)

μ∗({
ω2 ∈ X∗ :

∣∣(ω1,ω2) ∩ (B1 × X)
∣∣ = |ω1 ∩ B1|}) = 1

for μ∗-a.e ω1 and all B1 ∈ B;
(M3)

μ∗({
ω1 ∈ X∗ :

∣∣(ω1,ω2) ∩ (X × B2)
∣∣ = |ω2 ∩ B2|}) = 1

for μ∗-a.e ω2 and all B2 ∈ B.

PROPOSITION 5.4. Under the assumptions of Proposition 5.3, there does not
exist a nontrivial T -equivariant Poisson matching.

PROOF. Suppose  is a T -equivariant Poisson matching. We will define a
“fractional” T -equivariant Poisson allocation ϒ :X × X∗ → L1(μ), contradicting
Proposition 5.3.

The (implicit) definition of ϒ is given by∫
A

ϒ(x,ω1)(y) dμ(y) = μ∗({
ω2 :

∣∣(ω1,ω2) ∩ ({x} × A
)∣∣ > 0

})
(12)

for all A ∈ B, ω1 ∈ X∗ and x ∈ X.
In other words, if x ∈ ω1, ϒ(x,ω1) is the density with respect to Lebesgue mea-

sure of the conditional distribution of the partner of x under the matching  ,
given ω1. This defines ϒ up to a null set.

It follows from the properties of  that ϒ satisfies the conditions (A1), (A2′)
and (A3′) above.

Thus, ϒ is indeed a Poisson allocation. Because  is a T -equivariant matching,
it follows directly that ϒ is a T -equivariant allocation. �

To complete the proof of the last part of Theorem 1.1, we note that if T is a
conservative and ergodic measure-preserving transformation, S = T × T∗ is also
conservative and ergodic by Theorem 1.2, and so S × S∗ is also ergodic, again by
Theorem 1.2.
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6. The leftmost position transformation. In this section X = R+ is the set
of positive real numbers, B is the Borel σ -algebra on X and μ is Lebesgue mea-
sure on the positive real numbers. T :X → X is an arbitrary conservative, ergodic,
Lebesgue-measure-preserving map of the positive real numbers.

In order to have a concrete example for such transformation T in hand, the
reader can consider the unsigned version of Boole’s transformation, given by
T (x) = |x − 1

x
|. We define the following function:

t1 :X∗ → X by t1(ω) = infω.(13)

The map t1 is well defined on a set of full μ∗-measure, namely whenever ω �= ∅.
Note that t1(ω) is the leftmost point of ω whenever ω is a discrete countable subset
of R+. The map t1 is B∗-measurable since

t−1
1 (a, b) = {

ω ∈ X∗ :ω ∩ (0, a] = ∅ and ω ∩ (a, b) �= ∅
}
.

From this, it also follows directly that

μ∗ ◦ t−1
1 (a, b) = e−μ(0,a)(1 − e−μ(a,b)) = e−a − e−b.

In particular it follows that μ∗ ◦ t−1 � μ.
Define the leftmost return time κ :X∗ → N ∪ {+∞} by

κ(ω) = inf
{
k ≥ 1 : t1

(
T k∗ (ω)

) = T k(t1(ω)
)}

.(14)

μ∗-almost surely, κ(ω) is the smallest positive number of iterations of T∗ which
must be applied to ω in order for the leftmost point to return to the leftmost loca-
tion. A priori, κT is could be infinite. Nevertheless, we will soon show that when T

is conservative and measure preserving, κ is finite μ∗-almost surely. Finally, the
leftmost position transformation associated with T , T κ∗ :ω → ω, is defined by

T κ∗ (ω) := T κ(ω)∗ (ω).

This is the map of X∗ obtained by reapplying T∗ till once again there are no
points to the left of the point which was originally leftmost.

The reminder of this section relates the leftmost transformation associated
with T with the Poisson-product T × T∗.

Let

X0 = {
(x,ω) ∈ X × X∗ :ω ∩ (0, x] = ∅

}
.(15)

The set X0 is simply the subset of X × X∗ in which the “distinguished point”
is strictly to the left of any “undistinguished point.” The formula below verifies
measurability of X0:

X0 = ⋂
n∈N

⋃
q∈Q

((
q − 1

n
,q + 1

n

)
×

{
ω ∈ X∗ :ω ∩

(
0, q + 2

n

)
= ∅

})
mod μ ×μ∗.
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PROPOSITION 6.1. Let T : R+ → R+ be conservative and Lebesgue-measure-
preserving. Then the leftmost position transformation associated with T is well
defined and is isomorphic to the induced map of the Poisson product on the set X0
defined by equation (15),(

X∗, B∗,μ∗, T κ∗
) ∼= (

X0, B0,μ0, (T × T∗)X0

)
,

where μ0 = (μ × μ∗) |X0 is the restriction of the measure product μ × μ∗ to the
set X0, and B0 = (B ⊗ B∗) ∩ X0 is the restriction of the σ -algebra on the product
space to subset of X0.

In particular, μ0(X0) = 1, so (X0, B0,μ0) is a probability space.

PROOF. Consider the map π0 :X0 → X∗ which is the restriction to X0 of the
map π(x,ω) = {x} ∪ ω described in Section 2.5 above.

For a nonempty, discrete ω ∈ X∗ we have

π−1
0 (ω) = (

t1(ω),ω \ t1(ω)
)
.

Thus π0 is invertible on a set of full μ∗-measure in X∗.
As T is conservative and T∗ is a probability preserving transformation, the Pois-

son product T ×T∗ is also conservative. We will show below that μ×μ∗(X0) > 0.
Therefore, the return time ϕX0 is finite almost everywhere on X0.

Since κ ◦ π0 = π0 ◦ ϕX0 , it follows that κ is finite μ∗-a.e.
We also have

π0
(
T nx,T n∗ ω

) = T n∗
(
π0(x,ω)

)
whenever (x,ω) and (T nx,T n∗ ω) are in X0. Thus,

π0 ◦ (T × T∗)X0 = T κ∗ ◦ π0.

It remains to check that π−1
0 μ∗ = μ0. It is sufficient to verify that μ∗(A) =

μ0(π
−1
0 (A)) for sets A ∈ B∗ of the form

A =
N⋂

k=1

[|ω ∩ Ak| = nk

]
,

where Ai = (ai−1, ai], 0 = a0 < a1 < a2 < · · · < aN and nk ≥ 0 for k = 1, . . .N .
Given the definition of μ∗, this amounts to an exercise in elementary calculus.

By definition of μ∗,

μ∗(A) =
N∏

k=1

μ(Ak)
nk

nk! exp
(−μ(Ak)

)
,

which simplifies to

μ∗(A) = exp(−aN)

N∏
k=1

(ak − ak−1)
nk

nk! .(16)
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Assuming the nk’s are not all zero, let k the smallest index for which nk > 0.
We have

π−1
0 (A) = ⋂

j �=k

(
X × [|ω ∩ Aj | = nj

])
∩ ⋃

x∈Ak

{x} × ([∣∣ω ∩ [ak−1, x)
∣∣ = 0

] ∩ [∣∣ω ∩ [x, ak)
∣∣ = nk − 1

])
.

Thus

μ0
(
�−1(A)

) = T0

∫
Ak

exp
(−(x − ak−1)

)
exp

(−(ak − x)
)(ak − x)nk−1

(nk − 1)! dx,

where

T0 = ∏
j �=k

(aj − aj−1)
nj

nj ! exp(aj − aj−1).

Integrating this rational function of a single variable, we see that the last expres-
sion is equal to the expression on right-hand side of (16).

In particular, it follows that μ0(X0) = 1.
It remains to check the case that nk = 0 for all k = 1, . . . ,N : In this case then

A = [ω ∩ (0, aN ] = 0] and

π−1
0 (A) = {

(x,ω) ∈ X0 :x > an

}
.

Thus

μ0
(
π−1

0 (A)
) =

∫
[aN ,∞)

e−μ[x,∞) dμ(x) = exp(−aN),

which is equal to μ∗(A). �

COROLLARY 6.2. Let T : R+ → R+ be a conservative and ergodic Lebesgue-
measure-preserving transformation. Then the leftmost position transformation
T κ∗ : (R+)∗ → (R+) is an ergodic probability preserving transformation.

PROOF. Let T be as above. By Proposition 6.1, T κ∗ is isomorphic to the map
obtained by inducing the Poisson product T × T∗ onto the set X0. It is well known
that inducing a conservative and ergodic transformation on a set of positive mea-
sure results in an ergodic transformation. By Theorem 1.2, T × T∗ is indeed er-
godic. �

It would be interesting to establish other ergodic properties of T κ . For example,
what conditions on T are required for T κ∗ to be weakly mixing?
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7. Poisson-products and measure-preserving group actions. The purpose
of this section is to discuss counterparts of our pervious results on ergodicity of
Poisson products, and various equivariant operations in the context of a group of
measure preserving transformations. Some motivating examples for this are groups
of Rn-isometries, which naturally act on Rn preserving Lebesgue measure.

Briefly recall the basic setup: We fix a topological group G and a σ -finite mea-
sure space (X, B,μ). A measure-preserving G-action T on the σ -finite measure
space (X, B,μ) is a representation g �→ Tg ∈ Aut(X, B,μ) of G into the measure
preserving automorphisms of (X, B,μ).

A G-action T is ergodic if for some A ∈ B, μ(TgA \ A) = 0 for all g ∈ G then
either μ(A) = 0 or μ(X \ A) = 0.

Any measure preserving G-action T induces an action T∗ on the Poisson pro-
cess by probability preserving transformations [18]. The Poisson-product G-action
T × T∗ is thus defined the same way as in the case of a single transformation.

The proofs of Propositions 4.1, 5.1, 5.3 and 5.4 above are still valid in this
generality.

Let us recall the definition of a conservative G-action: Say W ∈ B is a wander-
ing set with resect to the action T of a locally-compact group G if μ(T (g,W) ∩
W) = 0 for all g in the complement of some compact K ⊂ G. Call a G-action
conservative if there are no nontrivial wandering sets.

If in the statement of Theorem 1.2 we let T be a conservative ergodic G-action
for a group other than Z, ergodicity of T × T∗ may fail. This can happen even for
conservative and ergodic Z2-actions, as we demonstrate in the example below:

Let a, b ∈ R \ {0} with a
b

/∈ Q.Define a Z2-action T on R by

T(m,n)(x) = x + am + bn for (m,n) ∈ Z2.

It is a simple exercise to show that the Z2-action above is both conservative and
ergodic. Nevertheless, it is easy to see that T × T∗ is not ergodic, for instance, by
noting that {

(x,ω) ∈ R × R∗ : (x + 1, x − 1) ∩ ω = ∅
}

is a nontrivial T × T∗-invariant set. Since this action T consists of translations, as
noted in the Introduction, there do exist T -equivariant Poisson allocations, Poisson
matchings and Poisson thinning.

Although the example above demonstrates Theorem 1.2 does not generalize, for
abelian group actions most components of the proof given in Section 3 remain in-
tact. Our next goal is to explain this, and point out where the proof of Theorem 1.2
breaks down for the example above:

Let G be a locally compact abelian group, and let Ĝ denote its dual. Gen-
eralizing the discussion in Section 2, the L∞-spectra of a G-action T , denoted
Sp(T ), is the set of homomorphisms χ : G → C∗ such that f (Tgx) = χ(g)f (x)

for some nonzero f ∈ L∞(X,μ). In case G = Z, the spectra is simply the group
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L∞-eigenvalues. As in the case G = Z discussed earlier, the L∞-spectra is a weak-
Dirichlet set in Ĝ [19].

The L2-spectral type of T is an equivalence class of Borel measures σT on Ĝ
for any nonzero f ∈ L2(μ) σf � σT , where the measure σf is given by

σ̂f (g) =
∫

f
(
Tg(x)

)
f (x)dμ(x).

The spectral type of σT is the minimal equivalence class of measures on Ĝ with
respect to which all the σf ’s are absolutely continuous.

With these definitions, Keane’s ergodic multiplier theorem above generalizes as
follows: The product of an ergodic measure preserving G-action T and a proba-
bility preserving G-action S is ergodic if and only if Sp(T ) is null with respect to
the restricted spectral type of σT . The discussion in the end of Section 3 following
[2, 19] still shows that in this case Sp(T ) must be a locally compact group con-
tinuously which embeds continuously in Ĝ. However, when G �= Z, this does not
imply that Sp(T ) is either discrete or equal to Ĝ.

Getting back to the example of the Z2-action T above, we note that for any
τ ∈ R, the function fτ ∈ L∞(R) defined by

fτ (x) = exp(iτx),

is an L∞ eigenfunction of T , since it satisfies

fτ

(
T(m,n)(x)

) = exp
(
iτ (x + am + bn)

) = χ(ta,tb)(m,n) exp(iτx),

where χ(a,b)(m,n) = exp(iam + bn). The map t → χ(ta,tb) is a continuous group
embedding of R in Sp(T ) � Ẑ2.
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