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ASYMPTOTICS OF COVER TIMES VIA GAUSSIAN FREE FIELDS:
BOUNDED-DEGREE GRAPHS AND GENERAL TREES

BY JIAN DING

Stanford University and University of Chicago

In this paper we show that on bounded degree graphs and general trees,
the cover time of the simple random walk is asymptotically equal to the prod-
uct of the number of edges and the square of the expected supremum of the
Gaussian free field on the graph, assuming that the maximal hitting time is
significantly smaller than the cover time. Previously, this was only proved
for regular trees and the 2D lattice. Furthermore, for general trees, we derive
exponential concentration for the cover time, which implies that the standard
deviation of the cover time is bounded by the geometric mean of the cover
time and the maximal hitting time.

1. Introduction. Consider a random walk on a finite connected graph G =
(V ,E), and let τcov(G) be the stopping time when the random walk has visited
every vertex in the graph for the first time. The following fundamental parameter
is known as the cover time:

tcov(G) = max
v∈V

Evτcov(G).

In addition, let thit(u, v;G) be the expected time it takes the random walk started
at the vertex u to hit the vertex v, and define the maximal hitting time thit(G) =
maxu,v thit(u, v;G). In this paper we investigate the asymptotic value of the cover
time for bounded degree graphs and general trees as |V | → ∞, and strengthen a
connection between the cover time and the Gaussian free field.

Recall that a Gaussian free field (GFF) on the graph G is a centered Gaussian
process {ηv}v∈V with ηv0 = 0 for some fixed v0 ∈ V , and the process is character-
ized by the relation E(ηu − ηv)

2 = Reff(u, v) for all u, v ∈ V , where Reff denotes
the effective resistance on G; see Section 1.2. We are now ready to state our main
results:

THEOREM 1.1. Consider a sequence of graphs Gn = (Vn,En) with maximal
degree bounded by a fixed � > 0 such that thit(Gn) = o(tcov(Gn)) as n → ∞. For
each n, let {ηv}v∈Vn be a Gaussian free field on Gn with ηvn

0
= 0 for a certain
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vn
0 ∈ Vn. Then as n → ∞, we have

tcov(Gn) = (
1 + o(1)

)|En|
(
E sup

v∈Vn

ηv

)2
.(1)

REMARK. Note that the expectation of the supremum for a Gaussian free field
does not depend on the choice of v0, since selecting a different “v0” corresponds
to merely shifting the whole process by an additive mean-zero Gaussian variable.

The asymptotic identity (1) arose in a recent work of Ding, Lee and Peres [17],
where a useful connection between cover times, Gaussian processes and Fernique–
Talagrand majorizing measure theory [26, 41, 42] was discovered. It was shown
that the cover time of any graph G is equivalent to the product of the number
of edges and the square of the expected maximum of the GFF, up to a universal
multiplicative constant. In particular, the upper bound in (1) was established. This
led to a deterministic polynomial-time algorithm to approximate the cover time
up to a constant, which improved upon the O((log logn)2)-approximation for n-
vertex graphs due to Kahn et al. [28], and resolved a question due to Aldous and
Fill [3].

Theorem 1.1 sharpens the above-mentioned universal constant to 1 for bounded
degree graphs, under the assumption that the maximal hitting time is of smaller
order than the cover time. Two nontrivial graphs for which (1) has been verified are
regular trees by Aldous [4] and 2D lattices by Bolthausen, Deuschel and Giacomin
[9] and Dembo et al. [16]. The asymptotic identity (1) suggests a fundamental
connection between cover times and Gaussian free fields. In addition, it may be a
useful step toward approximating the cover time algorithmically up to a factor of
(1 + ε), where ε > 0 is arbitrarily small.

REMARK. After the current work was posted on arXiv, a deterministic PTAS
for Computing the Supremum of Gaussian Processes was found by Meka [38].
Combined with our result, this gives a deterministic PTAS for computing the cover
time on bounded-degree graphs where the maximal hitting times are significantly
smaller than the cover times.

For cover times on trees, we obtain the following exponential concentration.

THEOREM 1.2. Consider a tree T = (V ,E) with root v0 ∈ V . Denote by R

the diameter of T . Let {ηv}v∈V be a Gaussian free field on T with ηv0 = 0. Then
for the random walk started at v0 and any λ ≥ 1,

P

(∣∣∣τcov(T ) − |E|
(
E sup

v
ηv

)2∣∣∣ ≥ λ|E|√RE sup
v

ηv

)
≤ Ce−cλ,

where C,c > 0 are universal constants.
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The following well-known commute time identity [14] gives a useful connec-
tion between random walk and effective resistance distance:

κ(u, v) = 2|E|Reff(u, v),(2)

where κ(u, v) is the commute time between u and v (i.e., the expected time it takes
the random walk to travel from u to v and then return to u), and Reff(u, v) is the
effective resistance between u and v; see Section 1.2 for background on electric
networks. In the particular cases for trees, the commute time identity yields that
thit(T ) ≥ |E|R. Together with the result from [17] that tcov ≥ c|E|E(supv ηv)

2 for
an absolute constant c > 0, we see from Theorem 1.2 that

tcov(T ) = |E|
(
E sup

v
ηv

)2 + O(1)|E|√RE sup
v

ηv

(3)

= |E|
(
E sup

v
ηv

)2 + O(1)
√

tcov(T )thit(T ).

Now the following corollary is obvious from Theorem 1.2 and (3).

COROLLARY 1.3. Consider a sequence of trees Tn = (Vn,En) with root
vn

0 ∈ Vn. For each n, let {ηv}v∈Vn be a Gaussian free field on Tn with ηvn
0

= 0 for
all n ∈ N. Then there exist universal constants c,C > 0 such that for any λ ≥ 0,

P
(∣∣τcov(Tn) − tcov(Tn)

∣∣ ≥ λ
√

tcov(Tn) · thit(Tn)
) ≤ Ce−cλ.

Assume in addition thit(Tn) = o(tcov(Tn)). Then

tcov(Tn) = (
1 + o(1)

) · |En|
(
E sup

v∈Vn

ηv

)2
.

For convenience, we will work exclusively with continuous-time Markov
chains, where the transition rates between nodes are given by the probabilities
pxy from the discrete chain. One way to realize the continuous-time chain is by
making jumps according to the discrete-time chain, where the times spent between
jumps are i.i.d. exponential random variables with mean 1; see [3], Chapter 2, for
background and relevant definitions.

Note that our results automatically extend to discrete time random walk. Let
τ �

cov be the cover time for the discrete time random walk. It is clear that Evτ
�
cov =

Evτcov for all v ∈ V , and therefore Theorem 1.1 extends to discrete case trivially.
Furthermore, the number of steps N(t) performed by a continuous-time random
walk up to time t , has Poisson distribution with mean t . Therefore, N(t) exhibits
a Gaussian-type concentration around t with standard deviation bounded by

√
t .

This implies that the concentration result in Theorem 1.2 holds for discrete-time
case.

We remark that the assumption thit = o(tcov) is very natural. For one thing, with-
out this assumption, the asymptotic identity is not necessarily true. In the case of



ASYMPTOTICS OF COVER TIMES VIA GAUSSIAN FREE FIELDS 467

a line on n vertices, it is clear that tcov = (1 + o(1))5n2/4 since the worst start-
ing point is the middle point of the line; one could see, for example, [19], Exer-
cise 4.7.3, for estimates on expected hitting times of 1D simple random walk, while
E supv ηv = (1 + o(1))

√
2n/π for the GFF {ηv} (this can be deduced by the fact

that supv ηv is asymptotical to the supremum of a Brownian motion, which has the
distribution as the absolute value of a Gaussian variable. One could also see, e.g.,
[19], Example 7.4.3). For another, the asymptotics of the expectation is of most
interest when the cover time is concentrated around the expectation (i.e., τcov/tcov
converges to 1 with probability tending to 1 as |V | → ∞). It turns out the ratio
between the maximal hitting time and cover time governs the concentration prop-
erty of the cover time. If the maximal hitting time and cover time have the same
order, it was shown that τcov is not concentrated by Aldous [5], Proposition 1.
However, τcov does exhibit concentration around its mean under the assumption
thit = o(tcov), due to the following result proved in [5].

THEOREM 1.4 ([5]). Consider a sequence of graphs Gn = (Vn,En) such that
thit(Gn) = o(tcov(Gn)). Then with high probability,

τcov(Gn) = (
1 + o(1)

)
tcov(Gn).

It is interesting to study the concentration of τcov quantitatively. Our Theo-
rem 1.2 follows in this line of research when the underlying graph is a general
tree. In particular, Theorem 1.2 proves that τcov exhibits an exponential concentra-
tion (which was observed for the supremum of a Gaussian process (see, e.g., [31],
Theorem 7.1, Equation (7.4)) and its standard deviation is bounded from above by
the geometric mean of the maximal hitting time and the cover time. This seems to
be the first exponential concentration result of this type to our knowledge.

As mentioned earlier, the upper bound for (1) has been established in [17].

PROPOSITION 1.5 ([17]). There exists a universal constant C > 0, such that
for any graph G = (V ,E) with v0 ∈ V , we have

tcov ≤
(

1 + C

√
thit

tcov

)
· |E| ·

(
E sup

v∈V

ηv

)2
,

where {ηv}v∈V is the Gaussian free field on graph G with ηv0 = 0.

The lower bound for the cover time seems to be much more elusive. Indeed,
most of the work in [17] was devoted to prove that the cover time is bounded
from below via the GFF up to a universal constant for any graph. Sharpening such
constant is significantly more challenging, partly because a fundamental ingredient
of [17], known as the majorizing measure theory, loses a multiplicative constant to
begin with. As a preliminary (but important) step to approach the lower bound, we
relax the problem based on Theorem 1.4.
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THEOREM 1.6. Consider a graph G = (V ,E) with maximal degree bounded
by a fixed � > 0. Let {ηv}v∈V be a Gaussian free field on G with ηv0 = 0 for a
certain v0 ∈ V . Fix any 0 < ε ≤ 1/10, and assume that

thit ≤ ε4

104�2(C ∨ 1)2 tcov,(4)

where C is the universal constant in Proposition 1.5. Then there exists δ =
δ(ε,�) > 0 such that

P

(
τcov ≥ (1 − ε)|E|

(
E sup

v
ηv

)2)
≥ δ.(5)

We now deduce the lower bound for (1) from Theorems 1.4 and 1.6. By Theo-
rem 1.4, we have that for any ε > 0

P
(
τcov(Gn) ≤ (1 + ε)tcov(Gn)

) → 1 as n → ∞.

Combined with (5), it follows that for any ε > 0 and sufficiently large n,

(1 + ε)tcov(Gn) ≥ (1 − ε)|En|
(
E sup

v
ηv

)2
,

which proves the lower bound for (1) by sending ε → 0.
Next, we describe the main strategy to prove Theorem 1.6. Our proof employs

the sprinkling method as the roadmap. This type of perturbation method was used
by Ajtai, Komlós and Szemerédi [2] in the study of percolation, and found its
applications later in that area; see, for example, [6, 8]. In the setting of cover time,
our main intuition is the following: if there exists a thin point at time τ(t) [i.e.,
a vertex which was visited by the random walk only for a few number of times up
to time τ(t)], there should be a positive chance that the random walk did not yet
visit the thin point up to time τ((1− ε)t) (the sprinkling), and therefore did not yet
cover the graph. Most of the work is then devoted to show the existence of a thin
point.

1.1. Related work. There is a long history of the study of cover times, in prob-
ability, combinatorics and theoretical computer science. We will review only the
work related to the very precise estimates for cover times (and the related supre-
mum of Gaussian free field). We refer to the books [3, 32] and the survey [33]
for relevant background material. For a more up-to-date account on the history for
cover times, see the introduction in [17] as well as the references therein.

Previous to our work, the only nontrivial examples for which (1) has been veri-
fied are regular trees and the 2D torus. For regular trees, the asymptotics of cover
times was shown in [4], while the supremum of the Gaussian free field was known
as a folklore, and a precise estimate up to an additive constant can be deduced by
adapting Bramson’s methods on the maximal displacement of branching Brownian
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motion [13]. Indeed, an analogue of Bramson’s result for a wide range of branch-
ing random walks was proved by Addario-Berry and Reed [1]. For the 2D lattice,
the asymptotics of the supremum of the Gaussian free field was determined in [9],
and the asymptotics of cover times was established in [16]. We emphasize that in
both cases, the asymptotics of cover times was very tricky, despite the fact that the
supremum of the GFFs had been established.

There are additional high-precision estimates for cover times and Gaussian free
fields on trees and 2D lattice: for regular binary trees Tn of height n, Bramson and
Zeitouni [11] proved that

√
τcov(Tn)/2n is tight after proper centering. For general

trees, Feige and Zeitouni [25] studied the computational perspective and designed
a deterministic polynomial-time algorithm to approximate the cover time up to a
factor of (1 + ε) for any fixed ε > 0. For the 2D lattice, in a recent breakthrough
paper of Bramson and Zeitouni [12], it was shown that the supremum of the Gaus-
sian free field is tight after proper centering, together with an estimate on its ex-
pectation up to an additive constant. It improved upon the tightness result along a
subsequence by Bolthausen, Deuschel and Zeitouni [10] and a super-concentration
result due to Chatterjee [15].

Miller and Peres [39] studied the connection between cover times and the mix-
ing times for the random walks on corresponding lamplighter graphs. In particu-
lar, they designed a procedure which allowed them to compute the cover time up
to 1 + o(1) for a family of graphs that satisfy some “transient” condition. Miller
pointed out that this procedure should also allow one to compute the supremum of
Gaussian free field up to 1 + o(1). However, it seems that their method could not
be extended to the case for general trees—at least not without further substantial
ingredient.

Benjamini, Gurel-Gurevich and Morris showed that for bounded degree graphs
it is exponentially unlikely to cover the graph in linear time [7]. This is a different
type of large-deviation result on the cover time from the one that we prove.

In a work of Ding and Zeitouni [18], the second order term for the cover time
on a binary tree was pinned down, and a discrepancy from the supremum of GFF
was demonstrated in this scale.

1.2. Preliminaries. Electric networks. A network is a finite, undirected graph
G = (V ,E) (possibly with self-loops), together with a set of nonnegative conduc-
tances {cxy :x, y ∈ V } supported exactly on the edges of G, that is, cxy > 0 ⇐⇒
xy ∈ E. The conductances are symmetric so that cxy = cyx for all x, y ∈ V . We
will write cx = ∑

y∈V cxy for the total conductance at vertex x. We will often use
the notation G(V ) for a network on the vertex set V . In this case, the associated
conductances are implicit. In the few cases when there are multiple networks under
consideration simultaneously, we will use the notation c̃xy to refer to the conduc-
tances in G̃, correspondingly. Note that a graph G = (V ,E) can be viewed as a
network G = G(V ) even without specifying the conductances. In that case, each
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edge in the graph is assigned a unit conductance except that each self-loop is as-
signed conductance 2, by convention. In particular, cv = dv , where dv is the degree
of vertex v.

For such a network, we can consider the canonical discrete time random walk
on G, whose transition probabilities are given by pxy = cxy/cx for all x, y ∈ V . It
is easy to see that this defines the transition matrix of a reversible Markov chain
on V , and that every finite-state reversible Markov chain arises in this way; see [3],
Section 3.2. The stationary measure of a vertex is π(x) = cx/

∑
y cy .

Associated to such an electrical network is the classical quantity Reff :V ×V →
[0,∞] which is referred to as the effective resistance between pairs of nodes. Fur-
thermore, the effective resistances form a metric (see, e.g., [29]) which we call
resistance metric. We refer to [32], Chapter 9, and [34], Chapter 2, for a discussion
about the connection between electrical networks and the corresponding random
walk. In particular, a formal definition of effective resistance can be given using
such a connection as

Reff(u, v) = 1

cuP(u → v)
,

where P(u → v) is the probability for a random walk started at u to hit v before
returning to u. In fact the effective resistance can be extended to Reff :V × 2V →
[0,∞] (and indeed even as a function on 2V × 2V ) such that

Reff(u, S) = 1

cuP(u → S)
,

where P(u → S) is the probability for a random walk started at u to hit S before
returning to u.

Gaussian free field. Consider a connected network G(V ). Fix a vertex v0 ∈ V ,
and consider the random process X = {ηu}u∈V , where ηv0 = 0, and X has density
proportional to

exp
(
−1

4

∑
u,v

cuv|ηu − ηv|2
)
.(6)

The process X is called the discrete Gaussian free field (GFF) associated with G.
The following well-known identity relates the GFF to the electric network (see,
e.g., [27], Theorem 9.20):

E(ηu − ηv)
2 = Reff(u, v).(7)

Cover times and local times. For a connected network G(V ), let (Xt) be a
continuous-time random walk on G started at a certain v0 ∈ V . For a vertex v ∈ V

and time t , we define the local time Lv
t by

Lv
t = 1

cv

∫ t

0
1{Xs=v} ds.(8)
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It is obvious that local times are crucial in the study of cover times, since

τcov = inf
{
t > 0 :Lv

t > 0 for all v ∈ V
}
.

To this end, it turns out that it is convenient to decompose the random walk into
excursions at v0 ∈ V . This motivates the following definition of the inverse local
time τ(t):

τ(t) = inf
{
s :Lv0

s > t
}
.(9)

We study the cover time via analyzing the local time process {Lv
τ(t) :v ∈ V }. In this

way, we measure the cover time in terms of τ(t) and note that the random walk is
always at v0 at τ(t).

Dynkin isomorphism theory. The distribution of the local times for a Borel right
process can be fully characterized by a certain associated Gaussian processes; re-
sults of this flavor go by the name of Dynkin isomorphism theory. Several ver-
sions have been developed by Ray [40] and Knight [30], Dynkin [21, 22], Marcus
and Rosen [35, 36], Eisenbaum [23] and Eisenbaum et al. [24]. In what follows,
we present the second Ray–Knight theorem in the special case of a continuous-
time random walk. It first appeared in [24]; see also Theorem 8.2.2 of the book
by Marcus and Rosen [37] (which contains a wealth of information on the con-
nection between local times and Gaussian processes). It is easy to verify that the
continuous-time random walk on a connected graph is indeed a recurrent strongly
symmetric Borel right process; see, for example, [37] for relevant definitions. Fur-
thermore, in the case of random walk, the associated Gaussian process turns out to
be the GFF on the underlying network.

THEOREM 1.7 (Generalized second Ray–Knight isomorphism theorem [24]).
Consider a continuous-time random walk on graph G = (V ,E) from v0 ∈ V . Let
τ(t) be defined as in (9). Denote by η = {ηx :x ∈ V } the GFF on G with ηv0 = 0.
Let Pv0 and P

η be the laws of the random walk and the GFF, respectively. Then for
any t > 0 under the measure Pv0 ⊗ P

η,
{
Lx

τ(t) + 1
2η2

x :x ∈ V
} law= {1

2(ηx + √
2t)2 :x ∈ V

}
.(10)

1.3. Outline of the paper. Section 2 is devoted to the study of cover times on
general trees, and contains a coupling between local times and GFFs on trees as a
key ingredient. The coupling relies on the recursive structure of the tree. In Sec-
tion 3, we prove a detection property for GFF on bounded-degree graphs, based
on the structure of a sequential decomposition for Gaussian free field. This prop-
erty then translates to that of local times by Theorem 1.7. In Section 4, we first set
up a framework for the reconstruction of random walk paths from local times and
present a connection between random walks and Eulerian circuits. Using such a
connection, we demonstrate the existence of the thin point. We conclude the paper
by discussions on future directions in Section 5.
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2. Concentration for cover times on general trees. In this section, we estab-
lish a sharp asymptotics for the cover times on trees together with an exponential
concentration around its mean, as incorporated in Theorem 1.2. The key of the
proof is a coupling between local times and GFFs on trees, as explored in Sec-
tion 2.2.

2.1. Concentration for inverse local time. Throughout the paper, we measure
the cover time τcov by the inverse local time τ(t). This is legitimate only if τ(t) is
highly concentrated, which we show in this subsection.

LEMMA 2.1. For a graph G = (V ,E) with v0 ∈ V , denote by R the diameter
of the graph in the resistance metric. Let τ(t) be defined as in (9), for t > 0. Then,
for any λ ≥ 1,

P
(∣∣τ(t) − 2t |E|∣∣ ≥ (

√
λtR + λR)|E|) ≤ 6e−λ/16.

REMARK. In the preceding lemma, G does not have to be a simple graph. In
fact, the result can be extended to a general network.

In order to prove the above lemma, we need to use the following concentration
result on the sum of squares of Gaussian variables.

CLAIM 2.2. Let (X1, . . . ,Xn) be a centered Gaussian vector such that EX2
i ≤

σ 2 for all 1 ≤ i ≤ n. Take ai > 0 and write A = ∑n
i=1 ai . Then for any λ > 0,

P

(
n∑

i=1

aiX
2
i ≥ λAσ 2

)
≤ 2e−λ/4.

PROOF. First consider integers ki , and let k = ∑n
i=1 ki . By a generalized

Hölder inequality,

E

(
n∏

i=1

X
2ki

i

)
≤

n∏
i=1

(
EX2k

i

)ki/k ≤ σ 2k(2k − 1)!!,

where the last transition follows from the fact that EZ2k = (2k−1)!! for a standard
Gaussian variable Z. Therefore, we have

E exp
(

1

4Aσ 2

∑
i

aiX
2
i

)
=

∞∑
k=0

1

k! ·
(

1

4Aσ 2

)k

· E

(∑
i

aiX
2
i

)k

≤
∞∑

k=0

(2k − 1)!!
k!4k

≤
∞∑

k=0

1

2k
≤ 2.

Now an application of Markov’s inequality completes the proof. �
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PROOF OF LEMMA 2.1. Note that Eη2
v ≤ R for all v ∈ V , by (7) and ηv0 = 0.

In view of Theorem 1.7, we see that (denoting by dv the degree of vertex v)

τ(t) = ∑
v∈V

dvL
v
τ(t) � 2|E|t + √

2t
∑
v

dvηv + ∑
v

dvη
2
v/2.

This implies that

P
(
τ(t) − 2|E|t ≥ (

√
λtR + λR)|E|)

≤ P

(√
2t

∑
v

dvηv ≥ √
λtR|E|

)
+ P

(∑
v

dvη
2
v ≥ 2λ|E|R

)

≤ e−λ/16 + 2e−λ/16 ≤ 3e−λ/16,

where the second inequality follows from the fact that
∑

v dvηv is a Gaussian with
variance bounded by 4R|E|2 as well as Claim 2.2. For the lower bound, Theo-
rem 1.7 gives that

τ(t) + ∑
v

dvη
2
v/2 
 2t |E| + √

2t
∑
v

dvηv.

Therefore, we can deduce that

P
(
τ(t) − 2t |E| ≤ −(

√
λtR + λR)|E|)

≤ P

(√
2t

∑
v

dvηv ≤ −√
λtR|E|

)
+ P

(∑
v

dvη
2
v ≥ 2λ|E|R

)

≤ 3e−λ/16,

where we have used the fact that {−ηv} has the same law as {ηv}. �

2.2. Dominating local times by Gaussian free fields. In this subsection, we
establish the following coupling between the (square-root of) local times and GFF.

THEOREM 2.3. Given a tree T = (V ,E) rooted at v0, consider the local time
process {Lv

τ(t)}v∈V and the associated Gaussian free field {ηv}v∈V . For any t > 0,
we have

min
v∈V

√
Lv

τ(t) � 1√
2

max
{
min
v∈V

ηv + √
2t ,0

}
.(11)

The proof of the preceding theorem combines a coupling lemma for random
variables and the recursive structure of local times on trees.

Gaussian, Poisson and exponential: a coupling. The following identity in law
involves Gaussian variables, Poisson variables, as well as exponential variables. It
can be viewed as a preliminary version of the isomorphism theorem. We give a
proof for completeness.
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LEMMA 2.4. Let X be a standard Gaussian variable and Yi be standard expo-
nential variables. Let N be a Poisson random variable with mean � ≥ 0. Suppose
that all the variables are independent. Then

N∑
i=1

Yi + 1

2
X2 law= 1

2
(X + √

2�)2.(12)

PROOF. The proof is done by calculating the Laplace transforms. Fix an arbi-
trary λ > 0. We start with the right-hand side. A straightforward calculation yields
that

Ee−λ(X+√
2�)2/2 = 1√

2π

∫ ∞
−∞

e−x2/2e−λ(x+√
2�)2/2 dx

= e−λ�/(1+λ) 1√
2π

∫ ∞
−∞

e−(1+λ)(x+λ
√

2�/(1+λ))2/2 dx

= (1 + λ)−1/2e−λ�/(1+λ) 1√
2π

∫ ∞
−∞

e−x2/2 dx

= (1 + λ)−1/2e−λ�/(1+λ).

For the special case of � = 0, we get that Ee−λX2/2 = 1/
√

λ + 1. For any θ > 0,
note that

EθN = e−�
∞∑

k=0

(�θ)k

k! = e�(θ−1).

Combined with the fact that Ee−λYi = 1/(1 + λ), it follows that

Ee−λ(
∑N

i=1 Yi+X2/2) = 1√
λ + 1

· e−�λ/(λ+1).

Thus, we have shown that the Laplace transforms of both sides are equal, complet-
ing the proof. �

Based on Lemma 2.4, we can derive the following stochastic domination.

LEMMA 2.5. Let X be a standard Gaussian variable and Yi be i.i.d. standard
exponential variables. Let N be an independent Poisson random variable with
mean � ≥ 0. Then √√√√ N∑

i=1

Yi � 1√
2

max{X + √
2�,0}.
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PROOF. Note that

P

(
N∑

i=1

Yi = 0

)
= P(N = 0) = e−�.

Denoting by f the density function of standard Gaussian variable, we can then
deduce that for any x > 0,

f
(−(

√
2� + x)

) = 1√
2π

e−(
√

2�+x)2/2 ≤ P

(
N∑

i=1

Yi = 0

)
· f (x).

Integrating over both sides, we have

P(X/
√

2 + √
� ≤ −x) ≤ P

(
N∑

i=1

Yi = 0

)
· P(X ≤ −√

2x).

Together with (12), we obtain that

P(X/
√

2 + √
� ≥ x)

= P
(|X/

√
2 + √

�| ≥ x
) − P(X/

√
2 + √

� ≤ −x)
(13)

≥ P

((
N∑

i=1

Yi + X2/2

)1/2

≥ x

)
− P

(
N∑

i=1

Yi = 0

)
· P(X ≤ −√

2x)

≥ P

(√√√√ N∑
i=1

Yi ≥ x

)
.

The desired stochastic domination follows directly from (13). �

Recursive structure of local times on trees. The following recursive construction
of local times makes use of the structure of trees.

LEMMA 2.6. For a tree T = (V ,E) rooted at v0 ∈ V , consider the local time
process {Lv

τ(t)}v∈V . For an arbitrary v ∈ V \ {v0}, denote by Tv ⊆ T the subtree
rooted at v and by u its parent. We have

(
Lv

τ(t) | Lu
τ(t) = �,

{
Lw

τ(t)

}
w∈T \Tv

) law=
N∑

i=1

Yi,

where N is an independent Poisson variable with mean � and Yi are i.i.d. standard
exponential variables.

PROOF. A random walk on tree T can be decomposed into a random walk
on T \ Tv with excursions on Tv . More precisely, we first take a random walk on



476 J. DING

T \ Tv and then insert i.i.d. excursions {Exi} at Poisson rate 1 for all the time the
random walk spends at u. Thus, the total number of excursions N conditioning on
Lu

τ(t) = � and {Lw
τ(t)}w∈T \Tv is distributed as

(
N | Lu

τ(t) = � and
{
Lw

τ(t)

}
w∈T \Tv

) law= Poi(�),

where Poi(�) denotes a Poisson variable with mean �. Furthermore each excursion
Exi starts traversing from u to v and performs a random walk on Tv ∪ {u} until
going back to u. Note that every time the random walk makes a move from v, the
chance for it to go back to u is 1/dv . Therefore, the time Y ′

i accumulated at v at
each excursion Exi is distributed as

Y ′
i

law=
Ni∑

j=1

Zi,

where Zi are i.i.d. exponential variables with mean 1 and Ni is an independent
geometric variable with mean dv . Thus, Y ′

i ∼ Exp(dv) is an exponential variable
with mean dv , and hence 1

dv
Y ′

i ∼ Exp(1). Altogether, it gives that

(
Lv

τ(t) | Lu
τ(t) = � and

{
Lw

τ(t)

}
w∈T \Tv

) law= 1

dv

N∑
i=1

Y ′
i ,

which has the same distribution as claimed in the statement of the lemma. �

PROOF OF THEOREM 2.3. Note that the GFF {ηv}v∈V on a tree can be con-
structed in the following way. Let {Xe}e∈E be i.i.d. standard Gaussian variable.
Then for v ∈ V ,

ηv = ∑
e

Xe,

where the summation is over the edges in the path from the root v0 to v. Consider
v ∈ V with parent u, and let Tv be the subtree of T rooted at v. We get that

(ηv | ηu = xu, ηw = xw for w ∈ T \ Tv)
law= X + xu,

where X is a standard Gaussian variable. The local time process can be constructed
in the same fashion by recursively exploring the local times at vertices away from
the root. More precisely, we apply Lemma 2.6 and get that

(
Lv

τ(t) | Lu
τ(t) = �u,L

w
τ(t) = �w for w ∈ T \ Tv

) law=
N∑

i=1

Yi,

where N is a Poisson variable with mean �u and Yi are i.i.d. standard exponential

variables. If 0 = √
�u ≤ max(xu+√

2t√
2

,0), we could couple the rest of the process
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in an arbitrary way. Otherwise if 0 <
√

�u ≤ xu+√
2t√

2
, we use the decompositions

of GFF and local time process and apply Lemma 2.5, and obtain that(
Lv

τ(t) | Lu
τ(t) = �u,L

w
τ(t) = �w for w ∈ T \ Tv

)
� ( 1√

2
max{ηv + √

2t ,0} | ηu = xu, ηw = xw for w ∈ T \ Tv

)
.

It is a well-known fact that for random variables Z1 and Z2, we have Z1 � Z2 if
and only if there exists a coupling (Z1,Z2) such that Z1 ≤ Z2. Then it follows
that given {ηu = xu, ηw = xw for w ∈ T \ Tv} and Lu

τ(t) = �u,L
w
τ(t) = �w for w ∈

T \ Tv) with
√

�u ≤ xu+√
2t√

2
, there exists a coupling such that√

Lv
τ(t) ≤ 1√

2
max{ηv + √

2t ,0}.(14)

Applying (14) recursively completes the proof. �

In order to establish the concentration of cover times on general trees, we need
the following classical result on the concentration of Gaussian processes; see, for
example, [31], Theorem 7.1, Equation (7.4).

LEMMA 2.7. Consider a Gaussian process {ηx :x ∈ V }, and define σ =
supx∈V (E(η2

x))
1/2. Then for α > 0,

P

(∣∣∣sup
x∈V

ηx − E sup
x∈V

ηx

∣∣∣ > α
)

≤ 2 exp
(−α2/2σ 2)

.

PROOF OF THEOREM 1.2. We first consider the upper bound on τcov. Let t+ =
(E supv ηv + β

√
R)2/2, for β > 0 to be specified. Note that here R is the diameter

of the tree, and thus also the diameter in the resistance metric. Therefore, we have
E supv ηv ≥ √

R/2π . Observe that on the event {τcov > τ(t+)}, there exists at least
one vertex v ∈ V such that Lv

τ(t+)
= 0. Fix an arbitrary ordering on V , and let

Z be the first vertex such that LZ
τ(t) = 0 if τcov > τ(t+). Since Eη2

v ≤ R for all

v ∈ V , we have P(η2
v ≥ β2R/4) ≤ 2e−β2/8. Since {ηv}v∈V and {Lv

τ(t+)
}v∈V are

two independent processes, we obtain

P

({
τcov > τ

(
t+

)} ∖ {
∃v ∈ V :Lv

τ(t+) + 1

2
η2

v <
β2R

8

})

≤ P

(
η2

Z ≥ β2R

4

∣∣∣ τcov > τ
(
t+

))
(15)

≤ 2e−β2/8.

On the other hand, we deduce from Lemma 2.7 with α = β
√

R/2 that

P

(
1

2
inf
v

(√
2t+ + ηv

)2 ≤ β2R/8
)

≤ P

(
inf
v

(√
2t+ + ηv

) ≤ β
√

R/2
)

≤ 2e−β2/8.
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Applying Theorem 1.7 again and combined with (15), we get that

P
(
τcov > τ

(
t+

)) ≤ 4e−β2/8.

For λ ≥ 4, set β = √
λ/4, and therefore

P

(
τcov − |E|

(
E sup

v
ηv

)2 ≥ λ|E|
(
E sup

v
ηv

√
R + R

))

≤ P
(
τcov ≥ τ

(
t+

)) + P

(
τ
(
t+

) ≥ |E|
(
E sup

v
ηv

)2 + λ|E|
(
E sup

v
ηv

√
R + R

))

≤ 4e−λ/128 + P

(
τ
(
t+

) − 2|E|t+ ≥
√

λ

4
t+R|E| + λ

4
R|E|

)

≤ 4e−λ/128 + 6e−λ/64 ≤ 10e−λ/128,

where we have applied Lemma 2.1.
We next turn to the lower bound on τcov. Let t− = (E supv ηv − β

√
R)2/2. For

λ ≥ 4, set β = √
λ/4. We assume that E supv ηv − β

√
R ≥ 0 (otherwise there is

nothing to prove). Applying Theorem 2.3 together with Lemma 2.7, we obtain that

P
(
τcov ≤ τ

(
t−

)) ≤ P

(
sup
v

ηv ≤ E sup
v

ηv − β
√

R
)

≤ 2e−β2/2.

This gives that

P

(
τcov − |E|

(
E sup

v
ηv

)2 ≤ −λ|E|
(
E sup

v
ηv

√
R + R

))

≤ P
(
τcov ≤ τ

(
t−

)) + P

(
τ
(
t−

) ≤ |E|
(
E sup

v
ηv

)2 − λ|E|
(
E sup

v
ηv

√
R + R

))

≤ 2e−λ/32 + P

(
τ
(
t−

) − 2|E|t− ≤ −
√

λ

4
t−R − λ

4
R|E|

)

≤ 2e−λ/32 + 6e−λ/64 ≤ 8e−λ/64,

where we have again used Lemma 2.1. This completes the proof of Theorem 1.2.
�

3. Detecting Gaussian free field in a tiny window. In this section, we estab-
lish that for a GFF on a bounded-degree graph, there is a nonnegligible chance to
detect a vertex with value in a small window around the median of the supremum
of the Gaussian free field. Crucially, the width of the window is interacting with
the values of the GFF on the neighborhood of detected vertex.
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3.1. A sequential decomposition of Gaussian free field. We will use the fol-
lowing network-reduction lemma, which we believe has been known by the com-
munity for a long time. While we did not manage to trace the original reference,
we note that it has appeared as an exercise [Exercise 2.47(d)] in the book [34]. For
a proof, see, for example, [17], Lemma 2.9.

LEMMA 3.1. For a network G(V ) and a subset Ṽ ⊂ V , there exists a network
G̃(Ṽ ) such that for all u, v ∈ Ṽ , we have

c̃v = cv and RG̃
eff(u, v) = Reff(u, v).

We call G̃(Ṽ ) the reduced network. Furthermore, the projection of the random
walk on G to Ṽ has the same law as the random walk on G̃.

Based on the preceding lemma, we can now easily deduce a sequential decom-
position of GFF, which characterizes an important facet of its special structure
as well as its interplay with electric networks and random walks. The following
lemma is well known (see [20], Theorem 1.2.2, and [27], Theorem 9.20), and we
give a proof for completeness.

LEMMA 3.2. Let {ηv}v∈V be a GFF on a graph G = (V ,E) with ηv0 = 0. For
v0 ∈ S ⊂ V and v ∈ V , let τ be the hitting time to S for a simple random walk Xt

on G, and let au = Pv(Xτ = u) for u ∈ S. Then

E
(
ηv | {ηu}u∈S

) = ∑
u∈S

auηu,(16)

Var
(
ηv | {ηu}u∈S

) = Reff(v, S).(17)

PROOF. The lemma trivially holds for v ∈ S. Therefore, we assume in what
follows v /∈ S. By Lemma 3.1 and the fact that the law of the GFF is completely
determined by the resistance metric [see (7)], we see that {ηw}w∈S∪{v} has the same
law as the GFF on the reduced network G̃ = G̃(S ∪ {v}). Now, fix a set of real
numbers {gu}u∈S . By the definition of GFF, we have that the conditional density
of ηv given {ηu = gu}u∈S satisfies

f
(
ηv | {ηu = gu}u∈S

) ∝ exp
(
−1

2

∑
u∈S

c̃uv|ηv − gu|2
)

∝ exp
(
− c̃v − c̃v,v

2

(
ηv − ∑

u∈S

c̃u,v

c̃v − c̃v,v

gu

)2)
,

where c̃v = ∑
u∈S∪{v} c̃u,v . This implies that conditioning on {ηu = gu}u∈S , we

have ηv distributed as a normal variable with mean
∑

u∈S
c̃u,v

c̃v−c̃v,v
gu and variance

1/(c̃v − c̃v,v). Recall that the projection of the random walk on G has the same
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law as the random walk on G̃, and we see that au = c̃u,v/(c̃v − c̃v,v). This veri-
fies equality (16). Furthermore, since the reduced network preserves the resistance
metric on the subset, we have

Reff(v, S) = R̃eff(v, S) = 1/(c̃v − c̃v,v),

completing verification of (17). �

3.2. Detection of Gaussian free field. We single out the following observa-
tion on Gaussian variables that plays a significant role in our detection argument.
Roughly speaking, the next claim captures the typical over-shoot for a Gaussian
variable conditioning on the event that its value exceeds a certain threshold (say, 0).
As an important feature, the over-shoot can be controlled via both the standard de-
viation and the mean.

CLAIM 3.3. Let X ∼ N(−μ,σ 2) be a Gaussian variable with μ ≥ 0. For any
0 ≤ ε ≤ 1, we have

P

(
0 ≤ X ≤ ε

(
σ ∧ σ 2

μ

))
≥ ε

5
· P(X ≥ 0).

PROOF. Denote by f the density of X and consider x ≥ 0. It is straightforward
to check that for any k ∈ N,

f

(
x + kε

(
σ ∧ σ 2

μ

))
= 1√

2πσ
exp

(
− 1

2σ 2

(
μ + x + kε

(
σ ∧ σ 2

μ

))2)

≤ (
e−ε2k2/2 ∨ e−kε)f (x).

It then follows that

P(X ≥ 0) =
∞∑

k=0

P

(
kε

(
σ ∧ σ 2

μ

)
≤ X ≤ (k + 1)ε

(
σ ∧ σ 2

μ

))

≤ P

(
0 ≤ X ≤ ε

(
σ ∧ σ 2

μ

)) ∞∑
k=0

(
e−ε2k2/2 ∨ e−kε)

≤ 5

ε
· P

(
0 ≤ X ≤ ε

(
σ ∧ σ 2

μ

))
. �

The main proposition in this section harnesses the preceding observation as well
as the sequential decomposition of Gaussian free field. In light of Claim 3.3, we
compare the event for detection in a tiny window to the event of exceeding the
median of the supremum of the GFF.
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PROPOSITION 3.4. Given a graph G = (V ,E) with maximal degree bounded
by �, let {ηv}v∈V be the GFF on G with ηv0 = 0 for some v0 ∈ V . For v ∈ V ,
denote by Nv the set of neighbors of v. Then for any 0 ≤ ε ≤ 1 and M > 0,

P

(
∃v ∈ V :M ≤ ηv ≤ M + ε

(
1 ∧ �∑

u∈Nv
|M − ηu|

))
≥ 2ε

10�
P

(
sup
v

ηv ≥ M
)
.

PROOF. Write n = |V |. We first specify an ordering v0, . . . , vn−1 (here v0 is
the same v0 as in the statement of the proposition) on V such that for all 0 < k ≤
n − 1, we have vk ∼ vj for some j < k. Note that such an ordering trivially exists
for any connected graph. For easiness of notation, we write Vk = {v0, . . . , vk}.

Define the event

Ak
�= ⋂

v∈Vk

{ηv < M}.

By a standard decomposition, we have

P

(
sup
v

ηv ≥ M
)

=
n−1∑
k=1

P(Ak−1, ηvk
≥ M)(18)

=
n−1∑
k=1

∫
(−∞,M)k

P(ηvk
≥ M | ηvi

= xi for 0 ≤ i < k)μk−1(dx),

where μk−1 is the joint density for {ηv}v∈Vk−1 . Denote by

� =
{
∃1 ≤ k < n :M ≤ ηvk

≤ M + 2ε

(
1 ∧ �∑

u∈Nvk
|M − ηu|

)}
.

We have a similar decomposition,

P(�) ≥
n−1∑
k=1

∫
(−∞,M)k

P

(
M ≤ ηvk

≤ M + 2ε

(
1 ∧ �∑

u∈Nvk
|M − ηu|

) ∣∣∣
{ηvi

= xi}0≤i<k

)
(19)

× μk−1(dx).

The key to the proof of the proposition lies in a comparison for integrands in
the two decompositions. Take any k and (x0, . . . , xk−1) ∈ (−∞,M)k with x0 = 0.
Write ak,i = Pvk

(τVk−1 = τvi
) for i < k, where τA is the hitting time to A for any

A ⊂ V . By (16),

E(ηvk
− M | ηvi

= xi for 0 ≤ i < k) =
k−1∑
i=0

ak,ixi − M = −
k−1∑
i=0

ak,i |M − xi | ≤ 0.
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By (17), we have

Var(ηvk
| ηvi

= xi for 0 ≤ i < k) = Reff(vk,Vk−1)
�= σ 2

k ∈ [1/�,1].
Applying Claim 3.3 and using the fact that the conditional law of ηv is Gaussian,
we get that

P

(
M ≤ ηvk

≤ M + ε

(
σk ∧ σ 2

k∑
i<k ak,i |M − ηvi

|
) ∣∣∣ ηvi

= xi for 0 ≤ i < k

)
(20)

≥ ε

5
· P(ηvk

≥ M | ηvi
= xi for 0 ≤ i < k).

We next turn to control the GFF over the neighbors of vk . Consider xk such that

M ≤ xk ≤ M + ε

(
σk ∧ σ 2

k∑
i<k ak,i |M − xi |

)
.(21)

Write fw = fw(x0, . . . , xk−1) = E(ηw | {ηvi
= xi}0≤i<k), for w ∈ V . We claim

that

P
(
fu ≤ ηu ≤ M + 1, for all u ∈ Nvk

| {ηvi
= xi}0≤i≤k

) ≥ 10−(�−1).(22)

Note that we do not condition on ηvk
in the definition of fw , but we do condition on

ηvk
in (22). In order to prove (22), it suffices to show that for any fw ≤ xw ≤ M +1

where w ∈ B ⊆ Nvk
, we have

P
(
fu ≤ ηu ≤ M + 1 | {ηvi

= xi}0≤i≤k ∩ {ηw = xw}w∈B

) ≥ 1
10

(23)
for any u ∈ Nvk

\ B.

Write by,z = Py(τVk∪B = τz) for y, z ∈ V . Applying Lemma 3.2 and using the
towering property of conditional expectation, we get that

fu = E
(
ηu | {ηv}v∈Vk−1

) = E
(
E

(
ηu | {ηv}v∈Vk∪B

) | {ηv}v∈Vk−1

)
= ∑

w∈Vk∪B

bu,wE
(
ηw | {ηv}v∈Vk−1

)
(24)

= ∑
w∈Vk−1

bu,wηw + ∑
w∈B∪{vk}\Vk−1

bu,wE
(
ηw | {ηv}v∈Vk−1

)

as well as that

E
(
ηu | {ηv}v∈Vk∪B

) = ∑
w∈Vk∪B

bu,wηw.(25)

Combined with (21), it follows that for any {xw}w∈B , satisfying that fw ≤ xw ≤
M + 1, for all w ∈ B , we have

fu ≤ E
(
ηu | {ηvi

= xi}0≤i≤k ∩ {ηw = xw}w∈B

) ≤ M + 1.
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Now an application of Lemma 3.2 gives that

Var
(
ηu | {ηv}v∈Vk∪B

) = Reff(u,Vk ∪ B) ≤ Reff(u, vk) ≤ 1,

where we used the fact that u ∼ vk . Recalling that fu ≤ M , we can give a formal
proof of (23), and thereby establish (22) by a simple recursion.

A similar manipulation to (24) using the towering property of conditional ex-
pectation yields that

E
(
ηvk

| {ηvi
= xi}0≤i<k

)
= E

(
E

(
ηvk

| {ηvi
= xi}0≤i<k, {ηv}v∈Nvk

) | {ηvi
= xi}0≤i<k

)
= 1

|Nvk
|

∑
w∈Nvk

E
(
ηw | {ηvi

= xi}0≤i<k

) = 1

|Nvk
|

∑
w∈Nvk

fw = ∑
i<k

ak,ixi .

Recalling that fw ≤ M for all w ∈ V , we have∑
i<k

ak,i |M − xi | =
∑
i<k

ak,i(M − xi) = 1

|Nvk
|

∑
w∈Nvk

(M − fw).

Take {xw}w∈Nvk
such that fw ≤ xw ≤ M + 1 for all w ∈ Nvk

. Since fw ≤ M for all
w ∈ Nvk

, we have

1

|Nvk
|

∑
w∈Nvk

|M − xw| ≤ 1 + 1

|Nvk
|

∑
w∈Nvk

(M − fw) = 1 + ∑
i<k

ak,i |M − xi |.

By (21) and the fact that 1 ∧ 1
x

≤ 1 ∧ 2
x+1 for all x > 0, we obtain that

M ≤ xk ≤ M + 2ε

(
1 ∧ |Nvk

|∑
w∈Nvk

|M − xw|
)

≤ M + 2ε

(
1 ∧ �∑

w∈Nvk
|M − xw|

)
.

Combined with (20) and (22), it follows that for any (x0, . . . , xk−1) ∈ (−∞,M)k ,

P

(
M ≤ ηvk

≤ M + 2ε

(
1 ∧ �∑

u∈Nvk
|M − ηu|

) ∣∣∣ {ηvi
= xi}0≤i<k

)

≥ ε

5
· 10−(�−1) · P(ηvk

≥ M | ηvi
= xi for 0 ≤ i < k).

Combined with (18) and (19), it follows that

P(�) ≥ ε

5
· 10−(�−1) · P

(
sup
v

ηv ≥ M
)
,

completing the proof. �

In the particular case that M is the median of supv ηv , the preceding proposition
gives that

P

(
∃v ∈ V :M ≤ ηv ≤ M + ε

(
1 ∧ �∑

u∈Nv
|M − ηu|

))
≥ ε

10�
.(26)
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We remark that both (16) and (17) in the sequential decomposition of GFF are
of crucial importance to our proof: (16) ensures that the conditional mean of any
variable that is being revealed, is less than the target value M as long as none of
the previous values exceeds M ; (17) guarantees that we can reveal the GFF in a
way such that the conditional standard deviation of each variable is bounded by 1.

4. Reconstructing random walks from local times. In this section, we study
the reconstruction of random walks from local times. Roughly speaking, condition-
ing on the local times, the embedded discrete-time random walk should be biased
to those paths that are more likely to fulfill the desired local times. The goal is to
understand such bias implied in the local times.

In Section 4.1, we set up the general framework for the study of the conditioned
measure of embedded walks given local times and demonstrate a connection to
enumeration of Eulerian circuits. In Section 4.2, we focus on the number of visits
to a certain vertex, and give an upper bound assuming a small local time at this
vertex as well as its neighbors. Section 4.3 contains a sprinkling argument which,
together with results obtained in Section 3, proves the Theorem 1.6.

4.1. Random walks, local times and Eulerian circuits. Let G = G(V ) be a
network with conductance cu,v on edge (u, v). Let Xt be a continuous-time ran-
dom walk on G associated with {cu,v}. Define a sequence of stopping times τk in
the following way:

τ0 = 0, τk = inf{t > τk−1 :Xt �= Xτk−1} for k ≥ 1.

Define K = max{k : τk ≤ τ(t)}. We consider the embedded discrete-time random
walk (Sk), which is defined to be Sk = Xτk

for k = 0,1, . . . ,K . Note that S0 =
SK = v0. Let P be the path of random walk (Sk) up to time K , and let � be the
space of paths which start and end at v0 and visit every vertex in the graph. For
P ∈ � and u �= v, define ku,v = ku,v(P ) to be the number of times that path P

traverses the directed edge 〈u, v〉, and define kv = kv(P ) = ∑
u∼v ku,v(P ) to be

the number of times that path P visits v.
The central task of this section is to reconstruct path P generated by random

walk (Sk) conditioning on the event that

� = {
Lv

τ(t) = �v : for v ∈ V \ {v0}}.(27)

For convenience of notation, we write t = �v0 .

LEMMA 4.1. Write čv = cv − cv,v for all v ∈ V . We have that

μ(P = P,�) = e−čv0 t t
kv0

kv0 !
· ∏
u�=v

c
ku,v
u,v · ∏

v �=v0

�kv−1
v e−čv�v

(kv − 1)! .

Here μ(P = P,�) = P(P = P)μ(� | P = P) with μ(� | P = P) being the con-
ditional density of the local times with respect to the Lebesgue measure, given that
P = P .
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PROOF. It is clear that conditioning on {P = P }, we have that for all v �= v0,

(
Lv

τ(t) | P = P
) law= 1

cv

kv∑
i=1

Yv,i,

where {Yv,i}v∈V,i∈N is a collection of independent exponential variables with
EYv,i = cv

čv
. Therefore, we have for all v �= v0,

(
Lv

τ(t) | P = P
) law= 1

čv

kv∑
i=1

Zv,i,

where {Zv,i}v∈V,i∈N is a collection of i.i.d. standard exponential variables. This
implies that

μ(� | P = P) = μ
(
Lv

τ(t) = �v , for v ∈ V \ {v0} | P = P
)

(28)
= ∏

v �=v0

(
čvg(kv, čv�v)

)
,

where g(k, x) = xk−1e−x

(k−1)! is the density at x of a Gamma variable with parameter
(k,1), and the factor čv before g(·, ·) comes from change of variables. In addition,
by definition of continuous-time random walks, we see that the number of excur-
sions Kv0 at v0 accumulated up to τ(t) is distributed as a Poisson variable with
mean čv0 t , and it is independent of the realization of the excursions. Therefore,

P(P = P) = P(Kv0 = kv0) · ∏
u�=v

p
ku,v
u,v = e−čv0 t (čv0 t)

kv0

kv0 !
· ∏
u�=v

p
ku,v
u,v ,(29)

where
∏

u�=v p
ku,v
u,v counts the probability for the embedded random walk to follow

path P . Combining (28) and (29), we conclude that

μ(P = P,�) = e−čv0 t t
kv0

kv0 !
· ∏
u�=v

c
ku,v
u,v · ∏

v �=v0

�kv−1
v e−čv�v

(kv − 1)! ,

completing the proof. �

In light of Lemma 4.1, we could write

μ(P = P,�) =
(

e−čv0 t
∏

u�=v0

e−čv�v

�v

)
· ∏
u�=v

c
ku,v
u,v · tkv0

kv0 !
· ∏
v �=v0

�kv
v

(kv − 1)! .

Since the prefactor in the parentheses above is common for every path P (assuming
� is fixed), the following corollary is now immediate.
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COROLLARY 4.2. For real numbers �v ≥ 0 for v ∈ V , let � be defined as
in (27). Write t = �v0 . For any P ∈ �, write

WP = ∏
u�=v

c
ku,v
u,v

tkv0

kv0 !
∏

v �=v0

�kv
v

(kv − 1)! .(30)

Then, for all P ∈ �,

P(P = P | �) = WP

Z
,

where Z is a normalizing constant depending on �.

The next fact follows immediately from Corollary 4.2 and reversibility of ran-
dom walks.

CLAIM 4.3. Let P ∈ � be a random walk path, and suppose P consists of
three parts, P1,C,P2, in an order where C is a cycle and P1,P2 are paths. Let

←−
C

be the reversed cycle of C, and let P̃ be a path consisting of P1,
←−
C ,P2, in order.

Then WP = W
P̃

.

We now explore a connection between random walk paths and Eulerian graphs.
Given a collection {ju,v :u, v ∈ V }, we let G = G(V ) be a multiple directed graph
where the multiplicity of directed edge 〈u, v〉 is ju,v . We say G is Eulerian if there
is a Eulerian circuit for the graph G , that is, a circuit which traverses every directed
edge in the graph exactly once. A classical argument says that a directed graph G is
Eulerian if and only if it is connected, and the in-degree is equal to the out-degree
for every vertex in G . Clearly, if ju,v = ku,v(P ) for a certain P ∈ �, the associated
graph G is Eulerian. Denote by ec(G) the number of Eulerian circuits for graph G
(where the circuits that are identical up to cyclic translations are counted only
once). For v ∈ G , let ecv(G) be the number of Eulerian circuits started at v (where
we do distinguish circuits obtained from cyclic translations). Note that ecv(G) =
degv · ec(G), where degv is the in-degree (equivalently, out-degree) of vertex v.

CLAIM 4.4. Let G be a multiple directed graph associated with {ju,v}u,v∈V

such that jv,v = 0 for all v ∈ V , and suppose that G is Eulerian. Define

�(G) = �
({ju,v}u,v∈V

) = {
P ∈ � :ku,v(P ) = ju,v, for u, v ∈ V

}
.

Then |�(G)| = ecv0(G) · (∏u,v ju,v!)−1.

PROOF. Consider the multiple directed graph G . We see that each Eulerian
circuit started at v0 on G induces a legitimate path P ∈ �, and a path P ∈ �

corresponds to a number of Eulerian circuits. Since the multiple edges in G are
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not distinguishable in the path, the mapping from Eulerian circuits to �(G) has
multiplicity

∏
u,v∈V ju,v!. This completes the proof. �

We have the following classic result on the enumeration of Eulerian circuits for
directed Eulerian graphs, known as BEST theorem that was originally proved by
Aardenne-Ehrenfest and de Bruijn [44] as a variation of an earlier result of Smith
and Tutte [43].

THEOREM 4.5 ([43, 44]). Let G = (V ,E) be a multiple directed Eulerian
graph. Then for any w ∈ V

ec(G) = arw(G)
∏
v∈V

(degv − 1)!,

where arw(G) is the number of arborescences, which are directed trees such that
there exists a unique path towards the vertex w for every v ∈ V and v �= w.

REMARK. It is implied from the preceding theorem that for Eulerian graphs,

arw(G) = arv(G) for all w,v ∈ G.(31)

The next corollary is an immediate consequence of Corollary 4.2, Claim 4.4 and
Theorem 4.5.

COROLLARY 4.6. Let G be a Eulerian graph associated with {ju,v}u,v∈V .
Then

P
(

P ∈ �(G) | �) = arv0(G)

Z

∏
u�=v

(
√

�u�vcu,v)
ju,v

ju,v! ,(32)

where Z is a normalizing constant.

The next claim on the enumeration of arborescences will be useful.

CLAIM 4.7. Let G and G′ be two directed Eulerian graphs over vertex set
V � v0. Denote by ju,v and j ′

u,v the multiplicity of edge 〈u, v〉 in graph G and G′,
respectively. Suppose that j ′

u,v ≥ 1 for all u, v ∈ V if and only if ju,v ≥ 1. Assume
also that ju,v ≥ j ′

u,v for all u, v ∈ V . Then

arv0(G′)
arv0(G)

≥ ∏
u�=v:ju,v≥1

j ′
u,v

ju,v

.

PROOF. Consider an arborescence T for the complete directed graph on vertex
set V . Denote by AT and A′

T the set of arboresences that correspond to T in
G and G′, respectively. By correspondence, we mean that they are the same if
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we identify all the multiple edges. That is, we say T corresponds to T ′ if and
only if for every edge e ∈ T , there exists an edge e′ ∈ T ′ where e and e′ share
the same starting and ending points. Since j ′

u,v ≥ 1 whenever ju,v ≥ 1 by our
assumption, we see that |A′

T | ≥ 1 as long as |AT | ≥ 1. Furthermore, it is clear
that the cardinality of AT (A′

T ) is determined by the multiplicity of the edges that
appear in T . More precisely,

|AT | = ∏
〈u,v〉∈T

ju,v,

and a similar equality holds for A′
T . Therefore, for every T , we have

|A′
T |

|AT | ≥ ∏
u�=v

j ′
u,v

ju,v

.

Summing over arborescence T , we can then deduce the claim. �

4.2. Thin points of random walks. In this subsection, we study the probability
distribution on � conditioning on �. For v ∈ V , we call v an m-thin point of
random walk path P ∈ � if kv(P ) ≤ m. We wish to lower bound the probability
that the random walk path has v as an m-thin point for suitable m ∈ N, conditioned
on the local times.

We first demonstrate that the number of traverses over edge 〈u, v〉 cannot be too
different from the number of traverses over edge 〈v,u〉. Note that we use 〈u, v〉 to
denote directed edges.

LEMMA 4.8. Let ν be the probability measure conditioning on the event �.
For all u �= v and k ≥ 184, we have

ν
(
ku,v(P ) + kv,u(P ) = k,

∣∣ku,v(P ) − kv,u(P )
∣∣ ≥ k/3

)
≤ 1

2ν
(
ku,v(P ) + kv,u(P ) = k

)
.

PROOF. Fix arbitrary u �= v and k ≥ 184. Consider P ∈ � with ku,v(P ) +
kv,u(P ) = k. We can decompose P into a sequence of (P1,C1, . . . ,C�,P2) for
a certain � = �(P ) ∈ N, where Ci is a cycle containing either one edge 〈u, v〉 or
one edge 〈v,u〉 or one pair of them, and P1,P2 are paths such that (P1,P2) forms
a cycle containing at most one traverse between u and v (note that a cycle in this
paper is simply a path such that the starting and ending points are the same, with no
self-avoiding constraints posed). Indeed, we select the following specified manner
for the decomposition: along path P , let P1 be the segment of P from v0 to the
first encounter of a vertex w ∈ {u, v}; we then continue searching along path P and
let C1 be the segment of P until for the first time the random walk goes back to w

after experiencing a traverse between u and v (hence C1 is a cycle); we repeat this
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procedure to obtain Ci until no such cycles exist. The last segment of path leading
back to v0 is then defined to be P2. Note that (k − 1)/2 ≤ � ≤ k.

For 1 ≤ i ≤ �, assume that Ci contains cycles Ci,1, . . . ,Ci,�i
in this order where

Ci,j = w,x
(i,j)
1 , . . . , x

(i,j)
ri,j+1 = w and x

(i,j)
m �= w for all 1 ≤ m ≤ ri,j . Define the

reverse of Ci to be the cycle consisting of
←−
C i,1, . . . ,

←−
C i,�i

in this order where←−
C i,j = w,x

(i,j)
ri,j , . . . , x

(i,j)
1 ,w. Let �′ ≤ � be the number of cycles in {C1, . . . ,C�}

such that the reverse is different from the original one, and we assume that these
cycles are C′

1, . . . ,C
′
�′ . We write P ′ ∼ P if P ′ ∈ � can be obtained from P by

reversing a subset of the cycles {C′
1, . . . ,C

′
�′ }, as in the statement of Claim 4.3. It is

clear that ∼ is an equivalent relation on � and hence generates a partition. Denote
by �P = {P ′ ∈ � :P ′ ∼ P }. We see that |�P | = 2�′

, and kv,u(P
′) + ku,v(P

′) = k

for P ′ ∈ �P . By Claim 4.3, we have

ν(P ) = ν
(
P ′) for all P ′ ∼ P.

Let χi = 1〈u,v〉∈C′
i

and χ ′
i = 1〈v,u〉∈C′

i
. Denote by Di ∈ {−1,1} the direction of

cycle C′
i (we use the convention that all Di = 1 for P ). A simple application of

Chernoff bound gives that∣∣∣∣
{
(D1, . . . ,D�′) ∈ {−1,1}�′

:
∣∣∣∣∑

i

(
χi − χ ′

i

)
Di

∣∣∣∣ ≥ k

4

}∣∣∣∣ ≤ 2�′−1.

This implies that

ν
({

P ′ ∈ �P :
∣∣ku,v

(
P ′) − kv,u

(
P ′)∣∣ ≥ k/3

}) ≤ ν(�P )/2.

The proof is completed by summing over all classes �P for ku,v(P )+kv,u(P ) = k.
�

We next turn to analyze the number of traverses between vertices u and v.

LEMMA 4.9. Fix u �= v and suppose that �u�vc
2
u,v ≤ 1/16. Then for any

k ≥ 184, we have

ν
(
ku,v(P ) + kv,u(P ) = k + 1

) ≤ ν
(
ku,v(P ) + kv,u(P ) = k − 1

)
/2.

PROOF. By Lemma 4.8, we have that

ν
(
ku,v(P ) + kv,u(P ) = k + 1,

∣∣ku,v(P ) − kv,u(P )
∣∣ ≥ (k + 1)/3

)
(33)

≤ ν
(
ku,v(P ) + kv,u(P ) = k + 1

)
/2.

Therefore, it suffices to bound the measure for the set

�k+1
�= {

P ∈ � :ku,v(P ) + kv,u(P ) = k + 1,
∣∣ku,v(P ) − kv,u(P )

∣∣ ≤ (k + 1)/3
}
.

For P ∈ �, denote by GP the directed Eulerian graph generated by P [i.e., the
multiplicity of edge 〈x, y〉 in G is kx,y(P ) for x, y ∈ V ]. For P,P ′ ∈ �, we say
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P ∼G P ′ if GP = GP ′ . Clearly, ∼G is an equivalent relation and hence generates a
partition over �k+1. Now take P ∈ �k+1 and denote by G the generated Eulerian
graph. We next study the equivalent class of P .

By definition of �k+1 and the fact that k ≥ 12, we see that ku,v(P ), kv,u(P ) ≥ 2.
Hence, we can obtain an Eulerian graph G′ from G by reducing the multiplicity of
both 〈u, v〉 and 〈v,u〉 by 1. By Claim 4.7, we get that arv0(G) ≤ 4 arv0(G′). Now
applying Corollary 4.6 and using our assumption on �u�v , we get that ν(�(G)) ≤
ν(�(G′))/4. Summing over all G generated by paths in �k+1, we get that

ν(�k+1) ≤ ν
(
ku,v(P ) + kv,u(P ) = k − 1

)
/4.

Combined with (33), the required inequality follows. �

We then arrive at the following consequence.

PROPOSITION 4.10. Consider a network G = G(V ) with v0 ∈ V a fixed v ∈
V . Let Nv = {u �= v : cu,v > 0}. Suppose that {�w}w∈V are positive numbers such
that �u�vc

2
u,v ≤ 1/16 for all u ∈ Nv (otherwise we already have a unvisited vertex).

Define � = {Lw
τ(t) = �w for all w ∈ V }. Denoting by P a random path for the

embedded walk up to time τ(t), we have

P
(
kv(P) ≤ 1118|Nv| | �) ≥ 1/2.

PROOF. An application of Lemma 4.9 yields that E(ku,v(P) | �) ≤ 559 for all
u ∈ Nv , and thereby E(kv(P) | �) ≤ 559|Nv|. The proof is completed by a simple
application of Markov inequality. �

REMARK. The bounded-degree assumption was made in order for the preced-
ing proposition to be useful—the bound that was proved on the number of visits to
v grows linearly with the degree of v, and thus stopped being useful if the degree
of v is unbounded in the sequence of graphs. We were hoping that a more care-
ful reconstruction argument could yield an upper bound that is independent of the
degree, but it seems that this could not be achieved by the current method which
considers the number of traverses from all the neighboring edges separately.

4.3. A sprinkling argument. In this subsection, we establish Theorem 1.6
based on results developed in previous sections. We first demonstrate the ex-
istence of thin points for random walks with nonnegligible probability. For a
continuous-time random walk (Xs), we denote by Kv(s) the number of visits to
vertex v ∈ V up to time s, for the corresponding embedded discrete-time ran-
dom walk. That is to say, Kv(s) is the maximal number k such that there exists
s0 < s1 < s2 < · · · < s2k ≤ s with Xsi = v for even i and Xsi �= v for odd i.
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PROPOSITION 4.11. For a graph G = G(V,E) with maximal degree bounded
by �, let {ηv}v∈V be a GFF on G with ηv0 = 0 for a certain v0 ∈ V . Denote by M

the median of supv ηv , and write t = M2/2. Let τ(t) be defined as in (9). Then

Pv0

(∃v ∈ V :Kv

(
τ(t)

) ≤ 1118�
) ≥ 1

8� · 10�
.

PROOF. Applying (26) with ε = 1
4�

, we obtain that

P

(
∃v ∈ V :M ≤ ηv ≤ M + 1

4�

(
1 ∧ �∑

u∈Nv
|M − ηu|

))
≥ 1

4� · 10�
.

In particular, this implies that with probability at least 1
4�·10� , there exists v ∈ V

such that

|ηv − M| · |ηu − M| ≤ 1/4 for all u ∈ Nv.

In view of Theorem 1.7, we see that{
Lv

τ(t) :v ∈ V
} � {

(ηv − √
2t)2 :v ∈ V

}
.

Altogether, we obtain that with probability at least 1
4�·10� , there exists v ∈ V such

that

Lv
τ(t)L

u
τ(t) ≤ 1/16 for all u ∈ Nv.

Combined with Proposition 4.10, the desired lower bound on the probability fol-
lows. �

At this point, we employ a sprinkling argument to complete the proof. The basic
intuition is that there should be a nonnegligible chance that the random walk fails
to cover the graph at time τ((1 − ε)t), given that the random walk barely covers
the graph at time τ(t).

PROOF OF THEOREM 1.6. Let t = M2/2. Denote by F the event {∃v ∈
V :Kv(τ(t)) ≤ 1118�}. Proposition 4.11 asserts that Pv0(F ) ≥ 1/(8� · 10�). We
next condition on the event F .

Let C = {C1, . . . ,CN } be the (multiple) set of excursions at the origin v0, where
N is the number of total excursions occurring at v0 up to time τ(t). We emphasize
that we define C to be the set of excursions, without distinguishing the orderings
among the excursions. In particular, Ci is not necessarily the ith excursion that
occurs in the random walk. Furthermore, the ordering of the occurrences of these
excursions forms a uniformly random permutation. Denote by 0 ≤ Ti ≤ t the local
time at v0 when the excursion Ci occurs. A crucial observation is that, conditioning
on C as well as event F , the random times Ti are i.i.d. uniformly distributed over
[0, t], since {Ti} arises from a Poisson point process on [0, t].
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Recall the definition of F , we can now select a vertex v ∈ V such that there are
at most 1118� excursions that ever visited v. Let I = {1 ≤ i ≤ N :v ∈ Ci}. It is
now clear that

P
(∀i ∈ I :Ti ≥ (1 − ε)t | F, C

) = ε|I | ≥ ε1118�.

This implies that

P
(
τcov ≥ τ

(
(1 − ε)t

) | F ) ≥ ε1118�.

Combined with the lower bound on P(F ), it follows that

P
(
τcov ≥ τ

(
(1 − ε)t

)) ≥ ε1118�

8� · 10�
.(34)

Now by Proposition 1.5 and assumption (4) as well as the commute time identity
(2), we see that

R

(E supv ηv)2 ≤ 2thit

tcov
· (1 + C

√
thit/tcov) ≤ 4ε4

104�2 ,

where R is the diameter in resistance metric. Note that by Lemma 2.7, we have
M ≥ (1 − ε/4)E supv ηv . Thus

2(1 − 2ε)t |E| = (1 − 2ε)|E|M2 ≥ (1 − 3ε)|E|
(
E sup

v
ηv

)2
.

Therefore, {
τ
(
(1 − ε)t

) ≤ (1 − 3ε)|E|
(
E sup

v
ηv

)2}
⊆ {

τ
(
(1 − ε)t

) − 2(1 − ε)t |E| ≤ −2εt |E|}.
Applying Lemma 2.1, aiming at a concentration of τ((1 − ε)t) with a choice of
λ = 2εt/(

√
tR + R) ≥ 10�/ε2 (where λ is a parameter in the statement of the

Lemma 2.1), we obtain that for ε ≤ 10−4 (note that � ≥ 2)

P

(
τ
(
(1 − ε)t

) ≤ (1 − 3ε)|E|
(
E sup

v
ηv

)2)
≤ 6e−λ/16 ≤ ε1118�

32� · 10�
.

Combined with (34), the conclusion of the theorem follows with a choice of δ =
(ε/3)1118�

32�·10� . �

5. Discussions and future directions. Our work (obviously) reinforces a
number of questions on cover times posed in [17], including the asymptotics and
exponential concentration for cover times on general graphs. In what follows, we
discuss additional three questions motivated by the current work.

Deterministic approximation scheme for Gaussian free field. The resolution
of deterministic polynomial-time O(1)-approximation for cover times on general
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graphs [17], naturally raises the question of designing a deterministic polynomial-
time approximation scheme (DPTAS). That is, a deterministic algorithm which
takes ε > 0 as a parameter and approximates the cover time up to a factor of 1 + ε

in polynomial-time (where the power of the polynomial depends on ε). This ques-
tion was solved for general trees [25] using dynamic programming. Our work con-
firms that cover times can be recovered from GFF with a precision up to 1 + o(1)

for general trees and bounded degree graphs, assuming thit = o(tcov). Therefore, a
DPTAS for the supremum of GFF will immediately give a DPTAS for cover times
on bounded degree graphs, and plausibly would be a very useful step toward the
resolution of the question for general graphs.

QUESTION 5.1. Is there a deterministic polynomial time (1 + ε) approxima-
tion algorithm for the supremum of GFF on general graphs?

REMARK. The question has been solved recently for general Gaussian process
by Meka [38].

Revisiting the isomorphism theorem. The isomorphism theorem was proved by
demonstrating an equality of Laplace transforms for both sides, and very little
intuition was provided. An insightful proof for (10) would be very interesting.
Alternatively, we feel that a proof for the stochastic domination (11) for general
graphs (if it is true) will also shed a good light on understanding the connections
between local times and GFFs. Plausibly, proving an identity in law is feasible by
showing an equality for Laplace transforms even without a deep understanding of
the processes, while establishing a stochastic domination seems to require a much
deeper insight on the intrinsic structure of the processes.

QUESTION 5.2. Does (11) hold for general graphs?

The preceding question, if it is true, will not only shed a good light on the
isomorphism theorem, but also immediately give the sharp asymptotics as well as
an exponential concentration for cover times.

A random Eulerian graph model. We note that (32) actually yields a random
Eulerian graph model: given a set of vertices V and nonnegative weights wu,v ,
take random multiple directed graph such that the multiplicity of edge 〈u, v〉 is an
independent Poisson variable with mean wu,v , and then re-weighted by a factor of
the number of arborescences contained in the graph (we restricted our space on
Eulerian graphs). More precisely,

P(G) ∝ ar(G)
∏
u�=v

w
ju,v
u,v

ju,v! ,
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where ju,v denotes the multiplicity of edge 〈u, v〉 in G . This random Eulerian
model does not seem to be bizarre in the first place. Also, we believe that an un-
derstanding of this model, in particular on the behavior of the degrees, could be a
useful step for the asymptotics of cover times.
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