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RANDOM MATRICES: LAW OF THE DETERMINANT

BY HOI H. NGUYEN AND VAN VU

University of Pennsylvania and Yale University

Let An be an n by n random matrix whose entries are independent real
random variables with mean zero, variance one and with subexponential tail.
We show that the logarithm of |detAn| satisfies a central limit theorem. More
precisely,

sup
x∈R

∣∣∣∣P
(

log(|detAn|) − (1/2) log(n − 1)!√
(1/2) logn

≤ x

)
− P

(
N(0,1) ≤ x

)∣∣∣∣
≤ log−1/3+o(1) n.

1. Introduction. Let An be an n by n random matrix whose entries aij ,1 ≤
i, j ≤ n, are independent real random variables of zero mean and unit variance.
We will refer to the entries aij as the atom variables.

As determinant is one of the most fundamental matrix functions, it is a basic
problem in the theory of random matrices to study the distribution of detAn and
indeed this study has a long and rich history. The earliest paper we find on the
subject is a paper of Szekeres and Turán [21] from 1937, in which they studied an
extremal problem. In the 1950s, there is a series of papers [7, 16, 17, 29] devoted
to the computation of moments of fixed orders of detAn (see also [9]). The explicit
formula for higher moments gets very complicated and is in general not available,
except in the case when the atom variables have some special distribution (see,
e.g., [4]).

One can use the estimate for the moments and Markov inequality to obtain an
upper bound on |detAn|. However, no lower bound was known for a long time.
In particular, Erdős asked whether detAn is nonzero with probability tending to
one. In 1967, Komlós [14, 15] addressed this question, proving that almost surely
|detAn| > 0 for random Bernoulli matrices (where the atom variables are i.i.d.
Bernoulli, taking values ±1 with probability 1/2). His method also works for
much more general models. Following [14], the upper bound on the probability
that detAn = 0 has been improved in [3, 13, 23, 24]. However, these results do not
say much about the value of |detAn| itself.

In a recent paper [23], Tao and the second author proved that for Bernoulli
random matrices, with probability tending to one (as n tends to infinity),

√
n! exp(−c

√
n logn) ≤ |detAn| ≤

√
n!ω(n)(1.1)
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for any function ω(n) tending to infinity with n. This shows that almost surely,
log |detAn| is (1

2 + o(1))n logn, but does not provide any distributional infor-
mation. For related works concerning other models of random matrices, we refer
to [19].

In [11], Goodman considered random Gaussian matrices where the atom vari-
ables are i.i.d. standard Gaussian variables. He noticed that in this case the deter-
minant is a product of independent Chi-square variables. Therefore, its logarithm
is the sum of independent variables and, thus, one expects a central limit theorem
to hold. In fact, using properties of Chi-square distribution, it is not very hard to
prove

log(|detAn|) − (1/2) log(n − 1)!√
(1/2) logn

→ N(0,1).(1.2)

We refer the reader to [18], Section 4, for further discussion on this model.
In [8], Girko stated that (1.2) holds for general random matrices under the addi-

tional assumption that the fourth moment of the atom variables is 3. Twenty years
later, he claimed a much stronger result which replaced the above assumption by
the assumption that the atom variables have bounded (4+δ)th moment [10]. How-
ever, there are points which are not clear in these papers and we have not found any
researcher who can explain the whole proof to us. In our own attempt, we could
not pass the proof of Theorem 2 in [10]. In particular, definition (3.7) of this paper
requires the matrix �

(1
k

)
to be invertible, but this assumption can easily fail.

In this paper, we provide a transparent proof for the central limit theorem of
the log-determinant. The next question to consider, naturally, is the rate of conver-
gence. We are able to obtain a rate which we believe to be near optimal.

We say that a random variable ξ satisfies condition C0 (with positive constants
C1,C2) if

P
(|ξ | ≥ t

) ≤ C1 exp
(−tC2

)
(1.3)

for all t > 0.

THEOREM 1.1 (Main theorem). Assume that all atom variables aij satisfy
condition C0 with some positive constants C1,C2. Then

sup
x∈R

∣∣∣∣P
(

log(|detAn|) − (1/2) log(n − 1)!√
(1/2) logn

≤ x

)
− �(x)

∣∣∣∣ ≤ log−1/3+o(1) n.(1.4)

Here and later, �(x) = P(N(0,1) < x) = 1√
2π

∫ x
−∞ exp(−t2/2) dt . In the re-

maining part of the paper, we will actually prove the following equivalent form:

sup
x∈R

∣∣∣∣P
(

log(detA2
n) − log(n − 1)!√

2 logn
≤ x

)
− �(x)

∣∣∣∣ ≤ log−1/3+o(1) n.(1.5)
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FIG. 1. The plot compares the distributions of (log(detA2) − log(n − 1)!)/√2 logn for random
Bernoulli matrices, random Gaussian matrices and N(0,1). We sampled 1000 matrices of size 1000
by 1000 for each ensemble.

The reader is invited to consult Figure 1 for our simulation. To give some feeling
about (1.5), let us consider the case when aij are i.i.d. standard Gaussian. For
0 ≤ i ≤ n − 1, let Vi be the subspace generated by the first i rows of An. Let
�i+1 denote the distance from ai+1 to Vi , where ai+1 = (ai+1,1, . . . , ai+1,n) is the
(i + 1)th row vector of An. Then, by the “base times height” formula, we have

detA2
n =

n−1∏
i=0

�2
i+1.(1.6)

Therefore,

log detA2
n =

n−1∑
i=0

log�2
i+1.(1.7)

As the aij are i.i.d. standard Gaussian, �2
i+1 are independent Chi-square random

variables of degree n − i. Thus, the right-hand side of (1.7) is a sum of indepen-
dent random variables. Notice that �2

i+1 has mean n − i and variance O(n − i)

and is very strongly concentrated. Thus, with high probability log �2
i+1 is roughly

log((n − i) + O(
√

n − i)) and so it is easy to show that log�2
i+1 has mean close

to log(n − i) and variance O( 1
n−i

). So the variance of
∑n−1

i=0 log�2
i+1 is O(logn).

To get the precise value
√

2 logn, one needs to carry out some careful (but rather
routine) calculation, which we leave as an exercise.

The reason for which we think that the rate log−1/3+o(1) n might be near opti-
mal is that (as the reader will see though the proofs) 2 logn is only an asymptotic
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value of the variance of log |detAn|. This approximation has an error term of order
at least 	(1) and since

√
2 logn + 	(1) −√

2 logn = 	(log−1/2 n), it seems that
one cannot have rate of convergence better than log−1/2+o(1) n. It is a quite inter-
esting question whether one can obtain a polynomial rate by replacing log(n − 1)!
and 2 logn by other, relatively simple, functions of n.

Our arguments rely on recent developments in random matrix theory and look
quite different from those in Girko’s papers. In particular, we benefit from the ar-
guments developed in [23, 26, 28]. We also use Talagrand’s famous concentration
inequality frequently to obtain most of the large deviation results needed in this
paper.

NOTATION. We say that an event E holds almost surely if P(E) tends to one
as n tends to infinity. For an event A, we use the subscript Px(A) to emphasize that
the probability under consideration is taken according to the random vector x. For
1 ≤ s ≤ n, we denote by es the unit vector (0, . . . ,0,1,0, . . . ,0), where all but the
sth component are zero. All standard asymptotic notation such as O,	,o, . . . etc.
are used under the assumption that n → ∞.

2. Our approach and main lemmas. We first make two extra assumptions
about An. We assume that the entries aij are bounded in absolute value by logβ n

for some constant β > 0 and An has full rank with probability one. We will prove
Theorem 1.1 under these two extra assumptions. In Appendix, we will explain
why we can implement these assumptions without violating the generality of The-
orem 1.1.

THEOREM 2.1 (Main theorem with extra assumptions). Assume that all atom
variables aij satisfy condition C0 and are bounded in absolute value by logβ n for
some constant β . Assume furthermore that An has full rank with probability one.
Then

sup
x∈R

∣∣∣∣P
(

log(|detAn|) − (1/2) log(n − 1)!√
(1/2) logn

≤ x

)
− �(x)

∣∣∣∣ ≤ log−1/3+o(1) n.(2.1)

In the first, and main, step of the proof, we prove the claim of Theorem 2.1
but with the last logα n rows being replaced by Gaussian rows (for some properly
chosen constant α). We remark that the replacement trick was also used in [10],
but for an entirely different reason. Our reason here is that for the last few rows,
Lemma 2.4 is not very effective.

THEOREM 2.2. For any constant β > 1 the following holds for any sufficiently
large constant α > 0. Let An be an n by n matrix whose entries aij ,1 ≤ i ≤ n0,1 ≤
j ≤ n, are independent real random variables of zero mean, unit variance and



150 H. NGUYEN AND V. VU

absolute values at most logβ n. Assume furthermore that An has full rank with
probability one and the components of the last logα n rows of A are independent
standard Gaussian random variables. Then

sup
x∈R

∣∣∣∣P
(

log(detA2
n) − log(n − 1)!√

2 logn
≤ x

)
− �(x)

∣∣∣∣ ≤ log−1/3+o(1) n.(2.2)

In the second (and simpler) step of the proof, we carry out a replacement proce-
dure, replacing the Gaussian rows by the original rows one at a time,j and show that
the replacement does not effect the central limit theorem. This step is motivated by
the Lindeberg replacement method used in [28].

We present the verification of Theorem 2.1 using Theorem 2.2 in Section 8. In
the rest of this section, we focus on the proof of Theorem 2.2.

Notice that in the setting of this theorem, the variables �i are no longer inde-
pendent. However, with some work, we can make the RHS of (1.7) into a sum of
martingale differences plus a negligible error, which lays ground for an applica-
tion of a central limit theorem of martingales. (In [10], Girko also used the CLT
for martingales via the base times height formula, but his analysis looks very dif-
ferent from ours.) We are going to use the following theorem, due to Machkouri
and Ouchti [5].

THEOREM 2.3 (Central limit theorem for martingales, [5], Theorem 1).
There exists an absolute constant L such that the following holds. Assume that
X1, . . . ,Xm are martingale differences with respect to the nested σ -algebras
E0, E1, . . . , Em−1. Let v2

m := ∑m−1
i=0 E(X2

i+1|Ei ), and s2
m := ∑m

i=1 E(X2
i ). Assume

that E(|X3
i+1||Ei ) ≤ γiE(X2

i+1|Ei ) with probability one for all i, where (γi)
m
1 is a

sequence of positive real numbers. Then we have

sup
x∈R

∣∣∣∣P
(∑

0≤i<m Xi+1

sm
< x

)
− �(x)

∣∣∣∣

≤ L

(
max{γ0, . . . , γm−1} logm

min{sm,2m} + E1/3
(∣∣∣∣v

2
m

s2
m

− 1
∣∣∣∣
))

.

To make use of this theorem, we need some preparation. Conditioning on
the first i rows a1, . . . ,ai , we can view �i+1 as the distance from a random
vector to Vi := Span(a1, . . . ,ai ). Since An has full rank with probability one,
dimVi = i with probability one for all i. The following is a direct corollary of [28],
Lemma 43.

LEMMA 2.4. For any constant β > 0 there is a constant C3 > 0 depending
on β such that the following holds. Assume that V ⊂ Rn is a subspace of dimen-
sion dim(V ) ≤ n−4. Let a be a random vector whose components are independent
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variables of zero mean and unit variance and absolute values at most logβ n. De-
note by � the distance from a to V . Then we have

E
(
�2) = n − dim(V ) = n − i

and for any t > 0

P
(∣∣� − √

n − dim(V )
∣∣ ≥ t

) = O

(
exp

(
− t2

logC3 n

))
.

Set

n0 := n − logα n,

where α is a sufficiently large constant (which may depend on β). We will use
shorthand ki to denote n − i, the co-dimension of Vi (and the expected value
of �2

i ),

ki := n − i.

We next consider each term of the right-hand side of (1.7) where 0 ≤ i < n0.
Using the Taylor expansion, we write

log
�2

i+1

ki

= log
(

1 + �2
i+1 − ki

ki

)

= �2
i+1 − ki

ki

− 1

2

(
�2

i+1 − ki

ki

)2

+ Ri+1

:= Xi+1 − X2
i+1

2
+ Ri+1,

where

Xi+1 := �2
i+1 − ki

ki

and Ri+1 := log(1 + Xi+1) −
(
Xi+1 − X2

i+1

2

)
.

By applying Lemma 2.4 with t = k
1/8
i ≥ logα/8 n and by choosing α sufficiently

large, we have with probability at least 1 − O(exp(− log2 n)) [the probability here
is with respect to the random (i + 1)th row, fixing the first i rows arbitrarily]

|Xi+1| = O
(
k
−3/8
i

) = O
(
(n − i)−3/8) = o(1).(2.3)

Thus, with probability at least 1 − O(exp(− log2 n))

|Ri+1| = O
(|Xi+1|3) = O

(
(n − i)−9/8)

.

Hence, by a uniform bound, the following holds with probability at least 1 − n ·
O(exp(− log2 n)) = 1 − O(exp(− log2 n/2)):

∑
i<n0

Ri+1 = O

( ∑
i<n0

(n − i)−9/8
)

= o
(
log−2 n

)
,
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again by having α sufficiently large.
We conclude the following:

LEMMA 2.5. With probability at least 1 − O(exp(− log2 n/2))
∑

i<n0
Ri+1√

2 logn
= o

(
log−2 n√

2 logn

)
.

We will need three other lemmas.

LEMMA 2.6 (Main contribution).

sup
x∈R

∣∣∣∣P
(∑

i<n0
Xi+1√

2 logn
≤ x

)
− �(x)

∣∣∣∣ ≤ log−1/3+o(1) n.

LEMMA 2.7 (Quadratic terms).

P
(∣∣∣∣−

∑
i<n0

X2
i+1/2 + logn√

2 logn

∣∣∣∣ ≥ log−1/3+o(1) n

)
≤ log−1/3+o(1) n.

LEMMA 2.8 (Last few rows). For any constant 0 < c < 1/100

P
(∣∣∣∣

∑
n0≤i log(�2

i+1/(n − i))√
2 logn

∣∣∣∣ ≥ log−1/2+c n

)
= o

(
exp

(− logc/2 n
))

.

Theorem 2.2 follows from the above four lemmas and the following trivial fact
(used repeatedly and with proper scaling):

P(A + B ≤ σx) ≤ P
(
A ≤ σ(x − ε)

) + P(B ≤ σε).

The reader is invited to fill in the simple details using the following observation:

log
(
detA2

n

) − log(n − 1)!

=
n−1∑
i=0

log�2
i+1 − log(n − 1)!

=
n−1∑
i=0

log
�2

i+1

ki

+ logn! − log(n − 1)!

= ∑
i<n0

(
Xi+1 − X2

i+1

2
+ Ri+1

)
+ ∑

n0≤i

log
�2

i+1

ki

+ logn

= ∑
i<n0

Xi+1 −
( ∑

i<n0

X2
i+1

2
− logn

)
+ ∑

i<n0

Ri+1 + ∑
n0≤i

log
�2

i+1

ki

.
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We will prove Lemma 2.6 using Theorem 2.3. Lemma 2.7 will be verified by the
moment method and Lemma 2.8 by elementary properties of Chi-square variables.
The key to the proof of Lemmas 2.6 and 2.7 is an estimate on the entries of the
projection matrix onto the space V ⊥

i , presented in Section 4.

3. Proof of Lemmas 2.6 and 2.7: Opening. We recall from the previous sec-

tion that Xi+1 = �2
i+1−ki

ki
. Denote by Pi = (pst (i))s,t the projection matrix onto

the orthogonal complement V ⊥
i . A standard fact in linear algebra is

tr(Pi) = ∑
s

pss(i) = ki and
∑
s,t

pst (i)
2 = ∑

s

pss(i) = ki.(3.1)

We now express Xi+1 using Pi ,

Xi+1 = ‖Piai+1‖2 − ki

ki

=
∑

s,t pst (i)asat − ki

ki

:= ∑
s,t

qst (i)asat − 1,(3.2)

where a1 = ai+1,1, . . . , an = ai+1,n are the coordinates of the vector ai+1 and

qst (i) := pst (i)

ki

.

By (3.1) we have
∑

s qss(i) = 1 and
∑

s,t qst (i)
2 = 1

ki
.

Because Eas = 0 and Ea2
s = 1, and the as are mutually independent, we can

show by using a routine calculation that [see (6.1) from Section 6]

E
(
X2

i+1|Ei

) = 2

ki

− ∑
s

qss(i)
2(

3 − Ea4
s

)
,(3.3)

where Ei is the σ -algebra generated by the first i rows of An.
Define

Yi+1 := −X2
i+1

2
+ 1

ki

− 1

2

∑
s

qss(i)
2(

3 − Ea4
s

)

and

Zi+1 := 1

2

∑
s

qss(i)
2(

3 − Ea4
s

)
.

The reason we split −X2
i+1
2 + 1

ki
into the sum of Yi+1 and Zi+1 is that E(Yi+1|Ei) =

0 and its variance can be easily computed.

LEMMA 3.1.

P
(∣∣∣∣

∑
i<n0

Yi+1√
2 logn

∣∣∣∣ ≥ log−1/3+o(1) n

)
≤ log−1/3+o(1) n.
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To complete the proof of Lemma 2.7 from Lemma 3.1, it suffices to show that
the sum of the Zi is negligible,

P
(∑

i<n0
Zi+1√

2 logn
= 	

(
log logn√

2 logn

))
= O

(
n−100)

.(3.4)

Our main technical tool will be the following lemma.

LEMMA 3.2. With probability 1 − O(n−100) we have∑
i<n0

∑
s

qss(i)
2 = O(log logn).

Noticing that Ea4
s is uniformly bounded (by condition C0), it follows that with

probability 1 − O(n−100),∑
i<n0

∑
s

qss(i)
2∣∣3 − Ea4

s

∣∣ = O(log logn),

proving (3.4).

4. Proof of Lemmas 2.6 and 2.7: Mid game. The key idea for proving
Lemma 3.2 is to establish a good upper bound for |qss(i)|. For this, we need some
new tools. Our main ingredient is the following delocalization result, which is a
variant of a result from [26] (see also [6] and [22] for recent surveys), asserting that
with high probability all unit vectors in the orthogonal complement of a random
subspace with high dimension have small infinity norm.

LEMMA 4.1. For any constant β > 0 the following holds for all sufficiently
large constant α > 0. Assume that the components of a1, . . . ,an1 , where n1 :=
n − n log−4α n, are independent random variables of mean zero, variance one and
bounded in absolute value by logβ n. Then with probability 1 − O(n−100), the
following holds for all unit vectors v of the space V ⊥

n1
:

‖v‖∞ = O
(
log−2α n

)
.

PROOF OF LEMMA 3.2 ASSUMING LEMMA 4.1. Write

S = ∑
i≤n1

∑
s

qss(i)
2 + ∑

n1<i<n0

∑
s

qss(i)
2

:= S1 + S2.

Note that as qst (i) = pst (i)/ki ,

∑
s

qss(i)
2 ≤ ∑

s,t

qst (i)
2 = ∑

s,t

pst (i)
2

k2
i

= 1

ki

= 1

(n − i)
.
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Hence,

S1 ≤ ∑
i≤n1

∑
s

qss(i)
2 ≤ ∑

i≤n1

1

(n − i)
= O(log logn).

To bound S2, note that

pss(i) = eT
s Pies = ‖Pies‖2 =∣∣〈es,v〉∣∣2

for some unit vector v ∈ V ⊥
i .

Thus, if i > n1, then V ⊥
i ⊂ V ⊥

n1
and, hence, by Lemma 4.1

pss(i) ≤ ‖v‖2∞ = O
(
log−4α n

)
.(4.1)

It follows that

S2 ≤ ∑
n1<i<n0

max
s

pss(i)
∑
s

pss(i)

(n − i)2

= O
(
log−4α n

) ∑
n1≤i<n0

1

(n − i)
= O

(
log−4α+1 n

)
,

completing the proof of Lemma 3.2. �

We now focus on the infinity norm of v and follow an argument from [26].

PROOF OF LEMMA 4.1. By the union bound, it suffices to show that |v1| =
O(log−2α n) with probability at least 1−O(n−101), where v1 is the first coordinate
of v.

Let B be the matrix formed by the first n1 rows a1, . . . ,an1 of A. Assume that
v ∈ V ⊥

n1
is a unit vector, then

Bv = 0.

Let w be the first column of B , and B ′ be the matrix obtained by deleting w
from B . Clearly,

v1w = −B ′v′,(4.2)

where v′ is the vector obtained from v by deleting v1.
We next invoke the following result, which is a variant of [26], Lemma 4.1.

This lemma was proved using a method of Guionet and Zeitouni [12], based on
Talagrand’s inequality.

LEMMA 4.2 (Concentration of singular values). For any constant β > 0 the
following holds for all sufficiently large constant α > 0. Let An be a random
matrix of size n by n, where the entries aij are independent random variables
of mean zero, variance one and bounded in absolute value by logβ n. Then for
any n/ logα n ≤ k ≤ n/2, there exist 2k singular values of An in the interval
[0, ck/

√
n], for some absolute constant c, with probability at least 1 − O(n−101).
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We can prove Lemma 4.2 by following the arguments in [26], Lemma 4.1, al-
most word by word.

By the interlacing law and Lemma 4.2, we conclude that B ′ has n− n1 singular
values in the interval [0, c(n − n1)/

√
n] with probability 1 − O(n−101).

Let H be the space spanned by the left singular vectors of these singular values,
and let π be the orthogonal projection onto H . By definition, the spectral norm of
πB ′ is bounded, ∥∥πB ′∥∥ ≤ c(n − n1)/

√
n.

Thus, (4.2) implies that

|v1|‖πw‖ ≤ c(n − n1)/
√

n,(4.3)

here we used the fact that w is independent from B ′, and thus from π .
On the other hand, since the dimension of H is n − n1, Lemma 2.4 implies that

‖πw‖ ≥ √
n − n1/2 with probability 1 − 4 exp(−(n − n1)/16) = 1 − O(n−ω(1)).

It thus follows from (4.3) that

|v1| = O
(
log−2α n

)
. �

5. Proof of Lemma 2.6: End game. Recall from (2.3) that conditioned on
any first i rows, |Xi | = O(k

−3/8
i ) with probability 1 − O(exp(− log2 n/2)). So,

by paying an extra term of O(exp(− log2 n/2)) in probability, it suffices to justify
Lemma 2.6 for the sequence X′

i := Xi · I|Xi |=O(k
−3/8
i )

.

On the other hand, the sequence X′
i+1 is not a martingale difference sequence,

so we slightly modify X′
i+1 to X′′

i+1 := X′
i+1 − E(X′

i+1|Ei ) and prove the claim
for the sequence X′

i+1, here we recall that Ei is the σ -algebra generated by the first
i rows of An. In order to show that this modification has no effect whatsoever, we
first demonstrate that E(X′

i+1|Ei ) is extremely small.
Recall from (3.2) that Xi+1 = ∑

s,t qst (i)asat − 1. By the Cauchy–Schwarz in-
equality and the assumption that as are bounded in absolute value by logO(1) n, we
have with probability one

|Xi+1|2 ≤
(

1 + ∑
s,t

qst (i)
2
)(

1 + ∑
s,t

a2
s a

2
t

)
= (1 + 1/ki)

(
1 + ∑

s,t

a2
s a

2
t

)

(5.1)

≤ 2
(

1 + ∑
s,t

a2
s a

2
t

)
≤ n2 logO(1) n.

Thus, with probability one∣∣E(
X′

i+1|Ei

)∣∣ = ∣∣E(
X′

i+1|Ei

) − E(Xi+1|Ei )
∣∣ ≤ exp

(−(1
2 − o(1)

)
log2 n

)
.(5.2)

To justify Lemma 2.6 for the sequence X′′
i+1, we apply Theorem 2.3.

The key point here is that thanks to the indicator function in the definition of
X′

i+1 and the fact that the difference between X′′
i+1 and X′

i+1 is negligible, X′′
i+1
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is bounded by O(k
−3/8
i ) with probability one, so the conditions E(|X′′

i+1|3|Ei ) ≤
γiE(X′′

i+1
2|Ei ) in Theorem 2.3 are satisfied with

γi = O
(
k
−3/8
i

) = O
(
log−3α/8 n

)
.

We need to estimate sn0, vn0 with respect to the sequence X′′
i+1. However, thanks

to the observations above, Xi+1 and X′′
i+1 are very close, and so it suffices to

compute these values with respect to the sequence Xi+1.
Recall from (3.3) that

E
(
X2

i+1|Ei

) = 2

ki

− ∑
s

qss(i)
2(

3 − Ea4
s

)
.

Also, recall from Section 4 that with probability 1 − O(n−100),∑
i<n0

∑
s

qss(i)
2(

3 − Ea4
s

) = O(log logn).

This bound, together with (3.3) and (5.1), imply that with probability one

E
( ∑

i<n0

X2
i+1|Ei

)
= ∑

i<n0

2

ki

+ O(log logn) = 2 logn + O(log logn),

which in turn implies that v2
n0

= 2 logn + O(log logn) with probability 1 −
O(n−100).

Using (5.1) again, because n−100n2 logO(1) n = o(1), we deduce that

s2
n0

= 2 logn + O(log logn).(5.3)

With another application of (5.1), we obtain

E
∣∣∣∣
v2
n0

s2
n0

− 1
∣∣∣∣ ≤ O

(
log logn

logn

)
+ n−100n2 logO(1) n.

It follows that

E1/3
∣∣∣∣
v2
n0

s2
n0

− 1
∣∣∣∣ ≤ log−1/3+o(1) n.

By the conclusion of Theorem 2.3 and setting α sufficiently large, we conclude

sup
x∈R

∣∣∣∣P
(∑

i<n0
X′′

i+1

sn0

< x

)
− �(x)

∣∣∣∣

≤ L

(
log−3α/8 n × logn0

sn0

+ E1/3
(∣∣∣∣

v2
n0

s2
n0

− 1
∣∣∣∣
))

≤ log−1/3+o(1) n,

completing the proof of Lemma 2.6.
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6. Proof of Lemma 2.7: End game. Our goal is to justify Lemma 3.1, which
together with (3.4) verify Lemma 2.7.

We will show that the variance Var(
∑

i<n0
Yi+1) is small and then use Cheby-

shev’s inequality. The proof is based on a series of routine, but somewhat tedious
calculations. We first show that the expectations of the Yi+1’s are zero, and so
are the covariances E(Yi+1Yj+1) by an elementary manipulation. The variances
Var(Yi+1) will be bounded from above by the Cauchy–Schwarz inequality.

We start with the formula X2
i+1 = (

∑
s,t qst (i)asat )

2 − 2
∑

s,t qst (i)asat + 1.
Observe that(∑

s,t

qst (i)asat

)2

=
(∑

s

qss(i)a
2
s + ∑

s �=t

qst (i)asat

)2

=
(∑

s

qss(i)as
2
)2

+
(∑

s �=t

qst (i)asat

)2

+ 2
(∑

s

qss(i)a
2
s

)(∑
s �=t

qst (i)asat

)
.

Expanding each term, using the fact that
∑

s qss(i) = 1 and
∑

s,t qst (i)
2 = 1

ki
,

we have(∑
s

qss(i)as
2
)2

=
(∑

s

qss(i)

)2

− ∑
s

qss(i)
2(

1 − a4
s

) + 2
∑
s �=t

qss(i)qtt (i)
(
a2
s a

2
t − 1

)

= 1 − ∑
s

qss(i)
2(

1 − a4
s

) + 2
∑
s �=t

qss(i)qtt (i)
(
a2
s a

2
t − 1

)

and (∑
s �=t

qst (i)asat

)2

= 2
∑
s �=t

qst (i)
2 + 2

∑
s �=t

qst (i)
2(

a2
s a

2
t − 1

)

+ 2
∑

s1 �=t1,s2 �=t2
{s1,t1}�={s2,t2}

qs1t1(i)qs2t2(i)as1at1as2at2

= 2

ki

− 2
∑
s

qss(i)
2 + 2

∑
s �=t

qst (i)
2(

a2
s a

2
t − 1

)

+ 2
∑

s1 �=t1,s2 �=t2
{s1,t1}�={s2,t2}

qs1t1(i)qs2t2(i)as1at1as2at2)
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as well as

2
(∑

s

qss(i)a
2
s

)(∑
s �=t

qst (i)asat

)

= 2
(∑

s

qss(i)
(
a2
s − 1

))(∑
s �=t

qst (i)asat

)
+ 2

∑
s �=t

qst (i)asat .

It follows that

−2Yi+1 = X2
i+1 − 2

ki

+ ∑
s

qss(i)
2(

3 − Ea4
s

)

=
(∑

s,t

qst (i)asat − 1
)2

− 2

ki

+ ∑
s

qss(i)
2(

3 − Ea4
s

)

=
(∑

s,t

qst (i)asat

)2

− 1 − 2
∑
s

qss(i)
(
a2
s − 1

) − 2
∑
s �=t

qst (i)asat − 2

ki

+ ∑
s

qss(i)
2(

3 − Ea4
s

)
(6.1)

= −2
∑
s

qss(i)
(
a2
s − 1

) + ∑
s

qss(i)
2(

a4
s − Ea4

s

)

+ 2
∑
s �=t

qss(i)qtt (i)
(
a2
s a

2
t − 1

) + 2
∑
s �=t

qst (i)
2(

a2
s a

2
t − 1

)

+ 2
∑

s1 �=t1,s2 �=t2
{s1,t1}�={s2,t2}

qs1t1(i)qs2t2(i)as1at1as2at2

+ 2
(∑

s

qss(i)
(
a2
s − 1

))(∑
s �=t

qst (i)asat

)
.

As Eas = 0,Ea2
s = 1, and the as ’s are mutually independent with each other

and with every row of index at most i [and in particular with qst (i)’s], every term
in the last formula is zero, and so we infer that E(Yi+1) = 0 and E(Yi+1|Ei ) = 0,
confirming (3.3). With the same reasoning, we can also infer that the covariance
E(Yi+1Yj+1) = 0 for all j < i.

It is thus enough to work with the diagonal terms Var(Yi+1). We have

Var(Yi+1) = E
[
−∑

s

qss(i)
(
a2
s − 1

) + 1

2

∑
s

qss(i)
2(

a4
s − Ea4

s

)

+ ∑
s �=t

qss(i)qtt (i)
(
a2
s a

2
t − 1

) + ∑
s �=t

qst (i)
2(

a2
s a

2
t − 1

)
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+ ∑
s1 �=t1,s2 �=t2

{s1,t1}�={s2,t2}

qs1t1(i)qs2t2(i)as1at1as2at2

+
(∑

s

qss(i)
(
a2
s − 1

))(∑
s �=t

qst (i)asat

)]2

.

After a series of cancellations, and because of condition C0, we have

Var(Yi+1) ≤ O

(
E

[∑
s

qss(i)
2 + ∑

s

qss(i)
4 + ∑

s �=t1,s �=t2

qss(i)
2qt1t1(i)qt2t2(i)

+ ∑
s �=t1,s �=t2

qst1(i)
2qst2(i)

2

+ ∑
s1 �=t1,s2 �=t2

∣∣qs1t1(i)qs1t2(i)qs2t1(i)qs2t2(i)
∣∣

+ ∑
s,t

qss(i)qtt (i)qst (i)
2

+ ∑
s

qss(i)
3 + ∑

s,t

qss(i)
2qtt (i) + ∑

s,t

qss(i)qst (i)
2

+ ∑
s,t

∣∣qss(i)qtt (i)qst (i)
∣∣

+ ∑
s,t

qss(i)
3qtt (i) + ∑

s �=t

qss(i)
2qst (i)

2

+ ∑
s,t

∣∣qss(i)
2qtt (i)qst (i)

∣∣

+ ∑
s,t

qss(i)qtt (i)qst (i)
2 + ∑

s �=t

∣∣qss(i)
2qtt (i)qst (i)

∣∣

+ ∑
s,t

∣∣qst (i)
3qss(i)

∣∣

+ ∑
s �=t1,s �=t2,t1 �=t2

∣∣qss(i)qst1(i)qst2(i)qt1t2(i)
∣∣])

,

where the first two rows consist of the squares of the terms appearing in Yi+1 (after
deleting several sums of zero expected value), and each of the following rows was
obtained by expanding the product of each term with the rest in the order of their
appearance.

Because
∑

s,t qst (i)
2 = 1

ki
, one has maxs,t |qst (i)| ≤ 1√

ki
for all s, t . Recall fur-

thermore that
∑

s qss(i) = 1 and 0 ≤ qss(i) for all s. We next estimate the terms
under consideration one by one as follows.
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First, the sums
∑

s q3
ss(i),

∑
s qss(i)

4,
∑

s,t qss(i)qst (i)
2,

∑
s,t qss(i)

2qst (i)
2,∑

s,t qss(i)qtt (i)qst (i)
2, and

∑
s,t |qst (i)

3qss(i)| can be bounded by

maxs,t |qst (i)|∑s,t q
2
st (i), and so by k

−3/2
i .

Second, by applying the Cauchy–Schwarz inequality if needed, one can bound
the sums

∑
s,t1,t2

qst1(i)
2qst2(i)

2,
∑

s1,t1,s2,t2
|qs1t1(i)qs1t2(i)qs2t1(i)qs2t2(i)|, and∑

s,t1,t2
|qss(i)qst1(i)qst2(i)qt1t2(i)| by 2(

∑
s,t q

2
st (i))

2, and so by 2k−2
i .

We bound the remaining terms as follows:

• ∑
s,t1,t2

qss(i)
2qt1t1(i)qt2t2(i) = (

∑
s qss(i)

2)(
∑

t qtt (i))
2 = ∑

s qss(i)
2.

• ∑
s,t qss(i)

2qtt (i) + ∑
s,t qss(i)

3qtt (i) ≤ 2(
∑

s qss(i)
2)(

∑
t qtt (i)) =

2
∑

s qss(i)
2.

• ∑
s,t |qss(i)qtt (i)qst (i)| ≤ ∑

s,t qss(i)(qtt (i)
2 + qst (i)

2) ≤ ∑
t qtt (i)

2 +
maxs qss(i)

∑
s,t qst (i)

2 ≤ ∑
t qtt (i)

2 + k
−3/2
i .

• ∑
s,t |qss(i)

2qtt (i)qst (i)| ≤ sups,t |qst (i)|∑s,t qss(i)
2qtt (i) ≤ ∑

s qss(i)
2/

√
ki .

Putting all bounds together, we have

Var
( ∑

i<n0

Yi+1

)
= ∑

i<n0

Var(Yi+1) = O

(
E

( ∑
i<n0

∑
s

qss(i)
2 + ∑

i<n0

k
−3/2
i

))

(6.2)
= O(log logn),

where we applied Lemma 3.2 in the last estimate.
To complete the proof, we note from the estimate of s2

n0
of Section 5 and from

Lemma 3.2 that |∑i<n0
EYi+1| = O(log logn). Thus, by Chebyshev’s inequality

P
(∣∣∣∣

∑
i<n0

Yi+1√
2 logn

∣∣∣∣ ≥ log−1/3+o(1) n

)
= log−1/3+o(1) n.

7. Proof of Lemma 2.8. We recall that, with i ≥ n0, �2
i+1 is a Chi-square

random variable of degree n − i. Let us first consider the lower tail; it suffices to
show

P
( ∑

n0≤i

log(�2
i+1/(n − i))√
2 logn

< − log−1/2+c n

)
= o

(
exp

(− logc/2 n
))

(7.1)

for any constant 0 < c < 1/100.
By properties of the normal distribution, it is easy to show that �2

n and �2
n−1

are at least exp(−
√

2
4 logc n) with probability 1−exp(−	(logc n)), so we can omit

these terms from the sum. It now suffices to show that

P
( ∑

n0≤i≤n−3

log(�2
i+1/(n − i))√
2 logn

< −1

2
log−1/2+c n

)

(7.2)
= o

(
exp

(− logc/2 n
))
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for any small constant 0 < c < 1/100.
Flipping the inequality inside the probability (by changing the sign of the RHS

and swapping the denominators and numerators in the logarithms of the LHS) and
using the Laplace transform trick (based on the fact that the �2

i are independent),
we see that the probability in question is at most

E
∏n−3

i=n0
(n − i)/�2

i+1

exp((1/
√

2) logc n)
=

∏n−3
i=n0

E(n − i)/�2
i+1

exp((1/
√

2) logc n)
.

Recall that �2
i+1 is a Chi-square random variable with degree of freedom

n − i, so E 1
�2

i+1
= 1

n−i−2 . Therefore, the numerator in the previous formula is

(n−n0)(n−n0−1)
2 ≤ log2α n.

Because

log2α n

exp((1/
√

2) logc n)
= o

(
exp

(− logc/2 n
))

,

the desired bound follows.
The proof for the upper tail is similar (in fact simpler as we do not need to treat

the first two terms separately) and we omit the details.

8. Deduction of Theorem 2.1 from Theorem 2.2. Our plan is to replace one
by one the last n − n0 Gaussian rows of An by vectors of components having zero
mean, unit variance and satisfying condition C0. Our key tool here is the classical
Berry–Eseen inequality. In order to apply this lemma, we will make a crucial use
of Lemma 4.1.

LEMMA 8.1 ([2], Berry–Esseen inequality). Assume that v = (v1, . . . , vn) is
a unit vector. Assume that b1, . . . , bn are independent random variables of mean
zero, variance one and satisfying condition C0. Then we have

sup
x

∣∣P(v1b1 + · · · + vnbn ≤ x) − �(x)
∣∣ ≤ c‖v‖∞,

where c is an absolute constant depending on the parameters appearing in (1.3).

We remark that in the original setting of Berry and Esseen, it suffices to assume
the finite third moment.

In application, v plays the role of the normal vector of the hyperplane spanned
by the remaining n − 1 rows of A, and �n = |v1b1 + · · · + vnbn|, where
(b1, . . . , bn) = b is the vector to be replaced.

For the deduction, it is enough to show the following.

LEMMA 8.2. Let An be a random matrix with atom variables satisfying con-
dition C0 and nonsingular with probability one. Assume furthermore that An has
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at least one and at most logα n Gaussian rows. Let Bn be the random matrix ob-
tained from An by replacing a Gaussian row vector a of An by a random vec-
tor b = (b1, . . . , bn) whose coordinates are independent atom variables satisfying
condition C0 such that the resulting matrix is nonsingular with probability one.
Then

sup
x

∣∣∣∣PBn

(
log(detB2

n) − log(n − 1)!√
2 logn

≤ x

)

− PAn

(
log(detAn

2) − log(n − 1)!√
2 logn

≤ x

)∣∣∣∣(8.1)

≤ O
(
log−2α n

)
.

Clearly, Theorem 1.1 follows from Theorem 2.2 by applying Lemma 8.2 logα n

times.

PROOF OF LEMMA 8.2. Without loss of generality, we can assume that Bn is
obtained from An by replacing the last row an. As An is nonsingular, dim(Vn−1) =
n − 1.

By Lemma 4.1, by paying an extra term of O(n−100) in probability (which will
be absorbed by the eventual bound log−2α n), we may also assume that the normal
vector v of Vn−1 satisfies

‖v‖∞ = O
(
log−2α n

)
.

Next, observe that

log(detA2) − log(n − 1)!√
2 logn

=
∑n−2

i=0 log(�2
i+1/(n − i)) + logn√

2 logn
+ log�2

n√
2 logn

and

log(detB2) − log(n − 1)!√
2 logn

=
∑n−2

i=0 log(�2
i+1/(n − i)) + logn√

2 logn
+ log�′

n
2

√
2 logn

,

where �n and �′
n are the distance from an and bn to Vn−1, respectively.

By Lemma 8.1, it is yielded that

sup
x

∣∣Pan

(
�2

n ≤ x
) − Pbn

(
�′

n
2 ≤ x

)∣∣ ≤ c‖v‖∞ = O
(
log−2α n

)
.

Hence,

sup
x

∣∣∣∣Pan

(
log(detA2) − log(n − 1)!√

2 logn
≤ x

)

− Pbn

(
log(detB2) − log(n − 1)!√

2 logn
≤ x

)∣∣∣∣
= O

(
log−2α n

)
,
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completing the proof of Lemma 8.2. �

APPENDIX: SIMPLIFYING THE MODEL: DEDUCING THEOREM 1.1
FROM THEOREM 2.1

In this section we show that the two extra assumptions that |aij | ≤ logβ n and An

has full rank with probability one do not violate the generality of Theorem 1.1.
To start with, we need a very weak lower bound on |detAn|.
LEMMA A.1. There is a constant C such that

P
(|detAn| ≤ n−Cn) ≤ n−1.

PROOF. It follows from [25], Theorem 2.1, that there is a constant C such that
P(σn(An) ≤ n−C) ≤ n−1. Since |detAn| is the product of its singular values, the
bound follows. �

REMARK A.2. The above bound is extremely weak. By modifying the proof
in [23], one can actually prove the Tao–Vu lower bound (1.1) for random matrices
satisfying C0. Also, sharper bounds on the least singular value are obtained in
[20, 27]. However, for the arguments in this section, we only need the bound on
Lemma A.1.

Let us start with the assumption |aij | ≤ logβ n. We can achieve this assumption
using the standard truncation method (see [1] or [28]). In what follows, we sketch
the idea.

Notice that by condition C0, we have, with probability at least 1 − exp×
(− log10 n), that all entries of An have absolute value at most logβ n, for some
constant β > 0 which may depend on the constants in C0.

We replace the variable aij by the variable a′
ij := aij I|aij |≤logβ n, for all 1 ≤

i, j ≤ n and let A′
n be the random matrix formed by a′

ij . Since with probability at

least 1 − exp(− log10 n), An = A′
n, it is easy to show that if A′

n satisfies the claim
of Theorem 1.1, then so does An.

While the entries of A′
n are bounded by logβ n, there is still one problem we

need to address, namely, that the new variables a′
ij do not have mean 0 and variance

one. We can achieve this by a simple normalization trick. First observe that by
property C0, taking β sufficiently large, it is easy to show that μij = Ea′

ij has

absolute value at most n−ω(1) and |1 − σij | ≤ n−ω(1), where σij is the standard
deviation of a′

ij . Now define

a′′
ij := a′

ij − μij

and

a′′′
ij = a′′

ij

σij

.
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Note that a′′′
ij now does have mean zero and variance one. Let A′′

n and A′′′
n be the

corresponding matrices of a′′
ij and a′′′

ij , respectively.
By the Brun–Minkowski inequality we have

∣∣det
(
A′

n

)∣∣ ≤ (∣∣detA′′
n

∣∣1/n + |detNn|1/n)n
,

where Nn is the matrix formed by μij .
Since |μij | = n−ω(1), by Hadamard’s bound |detNn|1/n ≤ n−ω(1). On the other

hand, we have by Lemma A.1 that P(|detA′′
n|1/n ≥ n−C) ≥ 1−n−1. It thus follows

that

P
(∣∣detA′

n

∣∣ ≤ (
1 + o(1)

)∣∣detA′′
n

∣∣) ≥ 1 − n−1.

We can prove a matching lower bound by the same argument. From here, we con-
clude that if |detA′′

n| satisfies the conclusion of Theorem 1.1, then so does |detA′
n|.

To pass from det(A′′
n) to det(A′′′

n ), we apply the Brunn–Minkowski inequality
again,

∣∣det
(
A′′′

n

)∣∣ ≤ (∣∣detA′′
n

∣∣1/n + ∣∣detN ′
n

∣∣1/n)n
,

where N ′
n is the matrix form by a′′

ij (1 − σ−1
ij ). Noting that |1 − σ−1

ij | ≤ n−ω(1) and

|a′′
ij | = logO(1) n, we infer that |det(A′′

n)| and |det(A′′′
n )| are comparable with high

probability

P
(∣∣detA′′

n

∣∣ = (
1 + o(1)

)∣∣detA′′′
n

∣∣) ≥ 1 − n−1.

Now we address the assumption that An has full rank with probability one.
Notice that this is usually not true when the aij have discrete distribution (such as
Bernoulli). However, we find the following simple trick that makes the assumption
valid for our study.

Instead of the entry aij , consider a′
ij := (1 − ε2)1/2aij + εξ0 where ξ0 is uni-

form on the interval [−1,1] and ε is very small, say, n−1000n. It is clear that the
matrix A′

n formed by the a′
ij has full rank with probability one. On the other hand,

it is easy to show that by the Brunn–Minkowski inequality and Hadamard’s bound

|detAn| = (∣∣detA′
n

∣∣1/n ± O
(
n−500))n

.

Furthermore, by Lemma A.1, |detAn| ≥ n−Cn with probability 1 − n−1, and so
we can conclude as in the previous argument.
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