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NONCONCENTRATION OF RETURN TIMES

BY ORI GUREL-GUREVICH AND ASAF NACHMIAS

University of British Columbia

We show that the distribution of the first return time τ to the origin, v,
of a simple random walk on an infinite recurrent graph is heavy tailed and
nonconcentrated. More precisely, if dv is the degree of v, then for any t ≥ 1
we have

Pv(τ ≥ t) ≥ c

dv
√

t

and

Pv(τ = t | τ ≥ t) ≤ C log(dvt)

t

for some universal constants c > 0 and C < ∞. The first bound is attained for
all t when the underlying graph is Z, and as for the second bound, we con-
struct an example of a recurrent graph G for which it is attained for infinitely
many t’s.

Furthermore, we show that in the comb product of that graph G with Z,
two independent random walks collide infinitely many times almost surely.
This answers negatively a question of Krishnapur and Peres [Electron. Com-
mun. Probab. 9 (2004) 72–81] who asked whether every comb product of two
infinite recurrent graphs has the finite collision property.

1. Introduction.

1.1. Return times. In this paper we study the distribution of return times of
a simple random walk Xt on an infinite connected graph G = (V ,E) with finite
degrees. For v ∈ V , the hitting time of v by X, denoted τv , is defined by τv =
min{t ≥ 1 :Xt = v}. When X starts at v (i.e., X0 = v), we call τv the return time
to v. As usual, the law of X when X0 = v is denoted by Pv . Our main result is
that on any graph these times are heavy tailed, with exponent at most 1/2, and
nonconcentrated.

THEOREM 1.1. Let G = (V ,E) be an infinite connected graph with finite
degrees {dv}v∈V . There exists a universal constant c > 0 such that for any t ≥ 1
we have

Pv(τv ≥ t) ≥ c

dv

√
t
.
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THEOREM 1.2. Let G = (V ,E) be an infinite connected graph with finite
degrees {dv}v∈V . There exists a universal constant C < ∞ such that for any t ≥ 1
we have

Pv(τv = t | τv ≥ t) ≤ C log(dvt)

t
.

The proof of Theorem 1.1 uses electrical network and martingale arguments,
and the proof of Theorem 1.2 incorporates spectral decomposition of killed random
walks. These two inequalities are sharp up to multiplicative constants. Indeed, for
Theorem 1.1, it is easy to see that in a copy of N, together with d − 1 new vertices
who are attached only to 0 we have P0(τ0 ≥ t) ≈ c

d
√

t
.

Constructing a graph which saturates the inequality of Theorem 1.2 is harder,
and we perform this in Section 4. The sharpness of Theorem 1.2 is perhaps more
surprising since most natural examples exhibit an upper bound of order 1/t . For
example, in Z it is classical (see [3]) that Pv(τv ≥ t) ≈ t−1/2 and Pv(τv = t) ≈
t−3/2. It is likely that if the distribution of τv is regular varying in some sense it is
possible to prove a 1/t upper bound. Indeed, in the construction in Section 4 the
rate of decay of Pv(τv ≥ t) has extremely different behavior at different scales of t .

It is a well-known fact that Eτv = ∞ for any infinite connected graph. This of
course follows from Theorem 1.1, but a simpler way to see it is to consider the
Green function

g(u) = Ev

τv∑
t=1

1{Xt=u},

that is, the expected number of visits to u before returning to v. It is easy to check
that the vector {g(u)}u∈G is invariant under the random walk operator and that
g(v) = 1. Hence, g(u) = du/dv for all u in the connected component of v. Fur-
thermore, it is clear that

∑
u g(u) = Eτv , and since G is connected and infinite we

deduce that Eτv = ∞.

1.2. The finite collision property. The construction of Section 4 is related to
the finite collision property. Recall that an infinite graph G has the finite collision
property if two simple random walks Xt and Yt collide only finitely many times
almost surely, that is, the set {t :Xt = Yt } is almost surely finite. It is not hard
to see, using reversibility, that any bounded-degree transient graph has the finite
collision property, and it is an easy exercise to check that Z and Z

2 do not have
the finite collision property. In fact, any transitive recurrent graph does not have
the finite collision property (to see this, note that in a transitive graph the number
of collisions has a geometric distribution, hence it is a.s. finite if and only if it has
finite mean, and this mean is finite if and only if the graph is transient).

It is a surprising discovery of Krishnapur and Peres [5] that there exist recurrent
graphs with the finite collision property. In these graphs, both random walks visit
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every vertex infinitely often, but only collide finitely many times. Their construc-
tions involve the comb product of two graphs and is defined as follows. Given two
graphs G, H and a vertex v ∈ H , define Combv(G,H) to be the graph with vertex
set V (G) × V (H) and edge set{{

(x,w), (x, z)
}

: {w,z} ∈ E(H), x ∈ V (G)
} ∪ {{

(x, v), (y, v)
}

: {x, y} ∈ E(G)
}
.

Krishnapur and Peres prove in [5] that Comb0(G,Z) and Comb(0,0)(G,Z
2)

have the finite collision property whenever G is an infinite recurrent graph with
bounded degrees. They asked (see first question of Section 4 of [5]) whether
Combv(G,H) has the finite collision property whenever G and H are infinite
recurrent graphs. Our next result answers their question negatively.

THEOREM 1.3. There exists a bounded-degree, connected, infinite graph H

and a vertex v ∈ H such that Combv(Z,H) does not have the finite collision prop-
erty.

We do not use Theorems 1.1 and 1.2 for the proof of Theorem 1.3; however,
the graph for which Theorem 1.2 is saturated (see Section 4) is the graph H in
the statement of the above theorem. The important property of this graph is that,
roughly, at certain scales it behaves like a finite graph. This property is crucial both
for showing the sharpness of Theorem 1.2 and for the proof of Theorem 1.3.

In fact, general results in this flavor have recently been obtained. Barlow, Peres
and Sousi [1] give a general condition for a graph not to have the finite collision
property. While this condition fails for the graph constructed in the proof of The-
orem 1.3, they use it to show that various natural graphs with fractal geometry do
not have the finite collision property.

1.3. Extensions and questions. Theorems 1.1 and 1.2 can be extended to the
setting of finite graphs. Indeed, the proofs of both theorems can be extended so that
they hold for any finite graph and any t ≤ R2, where R is the effective resistance
diameter of the graph R = maxv,u Reff(v ↔ u). These extensions to the proof are
straightforward. In particular cases it is even possible to prove stronger assertions;
see, for example, Lemma 3.1.

We cannot expect Theorems 1.1 and 1.2 to hold for general hitting times. In-
deed, if u is a vertex such that its removal leaves v in a finite component (these are
sometimes called cutpoints), then the distribution of τu started from v has expo-
nential decay since as much as the distribution of τu started from v is concerned,
the graph is finite. However, perhaps there is hope to prove similar estimates when
u is not such a cutpoint.

To demonstrate that Theorem 1.2 does not hold for hitting times in general,
consider the following example: the graph is simply the natural numbers, with 22n

edges between n and n + 1. If a simple random walk starts at 0, there is a positive
probability it will never take a step backward, that is, Xi = i for all i. This means
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that P0(τn = n | τn ≥ n) does not decay to 0. Of course, this graph has unbounded
degrees, so it remains to see whether a bounded degree example exists. Similar
questions can be also asked about commute times, that is, the first time to hit some
specific vertex and return to the origin. These retain some of the symmetry of
return times, and perhaps Theorems 1.1 and 1.2 can be extended to them.

Finally, is it true that for any t ≥ 1 the graph N minimizes the quantity P0(τ0 ≥
t) of all connected infinite graphs with the origin having degree 1?

1.4. Notation. We say f (r) ≈ g(r) when there exists a constant C such that
C−1f (r) ≤ g(r) ≤ Cf (r). We denote by C and c positive constants where c will
usually denote a “small enough” constant and C a “large enough” constant. The
values of C and c will change occasionally, even within the same formula. We will
not be strict about assigning noninteger values to integer variable, and when doing
so we always assign the floored value.

2. Proof of Theorems 1.1 and 1.2. We begin with a few lemmas. For back-
ground about effective resistance we refer the reader to [6].

LEMMA 2.1. Let G be a finite graph. For any two vertices x, y and any ε > 0
we have

Px

(
τy ≤ ε

(
Reff(x ↔ y)

)2) ≤ ε,

where Reff(x ↔ y) is the effective resistance between x and y, when G is consid-
ered as an electric network with unit resistances.

PROOF. Let f :G → R+ be the potential corresponding to a unit current flow
of the electrical network between x and y. That is, f is the harmonic function on
G \ {x, y} with boundary values f (x) = 0 and f (y) = Reff(x ↔ y) (as G is finite
f is uniquely determined). The associated unit current flow is an antisymmetric
function on directed edges i :E(G) → R such that:

(i)
∑

u∼y i(yu) = 1;
(ii) for any u ∈ G \ {x, y}, we have

∑
v∼u i(uv) = 0;

(iii) for any oriented cycle e1, . . . , em, we have
∑

1≤j≤m i(ej ) = 0.

Since we have unit edge resistances we get that i(uv) = f (u) − f (v) for any
edge uv. We first observe that f is a contraction; that is, for any edge uv we have
|f (u)−f (v)| ≤ 1. Indeed, assume without loss of generality that f (v) < f (u) and
let s > 0 be a number such that f (v) < s ≤ f (u). Consider the cut (S, Sc) defined
by S = {w :f (w) > s}. The sum of the unit current flow i on edges leading from S

to Sc is 1 and each edge receives nonnegative flow, hence f (u)−f (v) = i(uv) ≤ 1
(another way to see this is combining Proposition 2.2 and Exercise 2.31 of [6]). We
deduce that

E
[
f 2(Xt) − f 2(Xt−1) | Xt−1

] = E
[(

f (Xt) − f (Xt−1)
)2 | Xt−1

] ≤ 1,
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when Xt−1 �= y, and hencef 2(Xt∧τy ) − t ∧ τy is a supermartingale. Put T =
εReff(x ↔ y)2. Optional stopping yields that

Ex

[
f 2(XT ∧τy )

] ≤ Ex[T ∧ τy] ≤ T .

If τy < T , then f 2(XT ∧τy ) = Reff(x ↔ y)2. Thus, by Markov’s inequality we get

Px(τy < T ) ≤ T

Reff(x ↔ y)2 ≤ ε,

concluding the proof of the lemma. �

PROOF OF THEOREM 1.1. We prove the assertion with c = 1
4 . For r > 0 we

write B(v, r) for the ball of radius r in G according to the shortest path metric
and write ∂B(v, r) for its boundary, that is, ∂B(v, r) = B(v, r) \ B(v, r − 1). We
consider the effective resistance Reff(v ↔ ∂B(v, r)). Fix t ≥ 1. If for all r > 0 we
have that Reff(v ↔ ∂B(v, r)) ≤ 4

√
t (this can only happen in the transient case),

then

Pv(τv ≥ t) ≥ lim
r→∞ Pv

(
Xt hits ∂B(v, r) before v

) ≥ 1

4dv

√
t
.

Otherwise, let r be the first radius such that Reff(v ↔ ∂B(v, r)) ≥ 4
√

t . As in the
proof of Lemma 2.1 let f be the harmonic function on B(v, r) with f (v) = 0 and
f (∂B(v, r)) = Reff(v ↔ ∂B(v, r)). Let S be the set of vertices S = {u :f (u) ≤
2
√

t}. We saw in the proof of Lemma 2.1 that f is a contraction. Hence, any
vertex x ∈ N(S), where N(S) denotes the neighbors of S which are not in S, has
2
√

t ≤ f (x) ≤ 2
√

t + 1. Let f + and f − be the harmonic functions on S ∪ N(S)

such that f +(v) = f −(v) = 0 and f +(N(S)) = 2
√

t + 1 and f −(N(S)) = 2
√

t .
The maximum principle gives that f −(x) ≤ f (x) ≤ f +(x) for all x ∈ S ∪ N(S),
and hence the total current flow associated with f + (f −) is larger (smaller) than 1.
Therefore,

2
√

t ≤ Reff
(
v ↔ N(S)

) ≤ 2
√

t + 1.

We have that

Pv(τN(S) < τv) = 1

dvReff(v ↔ N(S))
≥ 1

dv(2
√

t + 1)
,(2.1)

where τN(S) = min{t ≥ 1 | Xt ∈ N(S)}. The strong Markov property implies

Pv(τv ≥ t) ≥ Pv(τN(S) < τv) min
u∈N(S)

Pu(τv ≥ t).

To estimate the second probability on the right-hand side we apply Lemma 2.1
with ε = 1/4. We deduce that this probability is at least 3/4. This together with
(2.1) gives that

Pv(τv ≥ t) ≥ 3

4dv(2
√

t + 1)
≥ 1

4dv

√
t
,
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concluding our proof. �

The following is a well-known lemma in the context of return probabilities. We
include its proof here for completeness, and since we were unable to find it in the
literature in the context of first return probabilities.

LEMMA 2.2 (Spectral decomposition). Let G = (V ,E) be an infinite con-
nected graph with finite degrees, and let v ∈ V . Then there exists a finite measure
μ on [−1,1] such that for all t ≥ 2 we have

Pv(τv = t) =
∫ 1

−1
xt−2 dμ.

PROOF. By conditioning on the location of the random walk at time �t/2� and
using the Markov property, we get that

Pv(τv = t) = ∑
u�=v

Pv

(
X�t/2� = u, τv ≥ �t/2�)Pu

(
τv = �t/2�).

Observe that by the reversibility property of the simple random walk, we have

Pv

(
X�t/2� = u, τv ≥ �t/2�) = du

dv

Pu

(
τv = �t/2�)

and hence

Pv(τv = t) = 1

dv

∑
u�=v

duPu

(
τv = �t/2�)Pu

(
τv = �t/2�).(2.2)

Consider the Hilbert space �2(G) of functions from V \ {v} to R equipped with
the inner product

〈f,g〉 = ∑
u�=v

duf (u)g(u)

and the corresponding norm. Let Q be the random walk operator killed upon hit-
ting v. That is,

Qf (u) = 1

du

∑
w∼u,w �=v

f (w).

One can easily check that Qt f (u) = Eu(f (Xt)1{τv>t}). Define the function
h(w) = Pw(τv = 1) [i.e., h(w) = 1/dw if w ∼ v and h(w) = 0 otherwise]. We
have that

Qt−1h(u) = Pu(τv = t).

Hence, we can rewrite equation (2.2) as

Pv(τv = t) = 1

dv

〈
Q�t/2�−1h,Q�t/2�−1h

〉
.



854 O. GUREL-GUREVICH AND A. NACHMIAS

A simple calculation shows that

〈Qf,g〉 = ∑
u�=v

∑
w∼u,w �=v

f (w)g(u) = 〈f,Qg〉,

that is, Q is self-adjoint with respect to the inner product of �2(G). Hence, we may
apply the spectral theorem (see [7] or [4]) and conclude that there exists a measure
ν on a space � and some λ ∈ L2(ν) such that Q is isometrically equivalent to
multiplication by λ,

Pv(τv = t) = 1

dv

〈
Q�t/2�−1h,Q�t/2�−1h

〉 = 1

dv

∫
�

λt−2(ω)ĥ2(ω)dν(ω),

where ĥ is the image of h under the isometry. Since Q is self-adjoint and sub-
stochastic, λ takes only real values in [−1,1] (up to ν null sets). If we define μ to
be the pull-back measure

μ(A) = 1

dv

∫
λ−1(A)

ĥ2(ω)dν(ω)

for any Borel set A ⊂ [−1,1], then we get that

Pv(τv = t) =
∫ 1

−1
xt−2 dμ,

which completes the proof. �

PROOF OF THEOREM 1.2. We prove the assertion with C = 50. We assume
that t −1 ≥ 48 log(48dv). Otherwise we have that t ≤ 50 log(50dv) and then either
50t−1 log(dvt) ≥ 1 or dv = 1 and t = 1, and the assertion is trivial in both cases.
Lemma 2.2 gives that Pv(τv = t) = ∫

[−1,1] xt−2 dμ for some finite measure μ.
Write A ⊂ [−1,1] for the set

A =
{
x : |x| ≥ 1 − 4 logdvt

t

}
.

Assume first that t is even. In this case we may bound

Pv(τv ≥ t) ≥ ∑
j≥0

Pv(τ = t + 2j) =
∫
[−1,1]

xt−2

1 − x2 dμ ≥
∫
A

xt−2

1 − x2 dμ.(2.3)

Thus

Pv(τv = t)

Pv(τv ≥ t)
≤

∫
Ac xt−2 dμ

Pv(τv ≥ t)
+

∫
A xt−2 dμ∫

A(xt−2/(1 − x2)) dμ
.(2.4)

If x /∈ A, then xt−2 ≤ (1 − 4 log(dvt)
t

)t−2 ≤ e−2 log(dvt) = (dvt)
−2 since t ≥ 4. We

also have μ([−1,1]) ≤ 1 by putting t = 2 in Lemma 2.2. Hence, by Theorem 1.1
(recall that we proved it with c = 1

4 ), we get that∫
Ac xt−2 dμ

Pv(τv ≥ t)
≤ 4

t
.
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If x ∈ A, then x2 ≥ 1 − 8t−1 logdvt , and hence∫
A xt−2 dμ∫

A(xt−2/(1 − x2)) dμ
≤ 8 logdvt

t
.

We put these two in (2.4) and get that Pv(τv = t | τv ≥ t) ≤ 12 logdvt
t

when t is
even. When t > 1 is odd (when t = 1 the assertion is trivial), we first bound

Pv(τv = t) =
∫
[−1,1]

xt−2 dμ ≤
∫
[−1,1]

xt−3 dμ = Pv(τv = t − 1).

By the assertion for even t’s we get that

Pv(τv = t − 1) ≤ 12 log(dv(t − 1))

t − 1
Pv(τv ≥ t − 1).

Also, Pv(τv ≥ t) = Pv(τv ≥ t − 1) − Pv(τv = t − 1) so

Pv(τv ≥ t) ≥
(

1 − 12 log(dv(t − 1))

t − 1

)
Pv(τv ≥ t − 1).

Hence

Pv(τv = t)

Pv(τv ≥ t)
≤

(
1 − 12 log(dv(t − 1))

t − 1

)−1 Pv(τv = t − 1)

Pv(τv ≥ t − 1)
,

whenever 12 log(dv(t − 1))/(t − 1) < 1. Furthermore, whenever t − 1 ≥ 48 ×
log(48dv) we have that 12 log(dv(t − 1))/(t − 1) < 1/2 [since for any ε ∈ (0, e−1)

and x ≥ ε−1 log ε−1 we have x−1 logx ≤ 2ε], so

Pv(τv = t)

Pv(τv ≥ t)
≤ 24 logdv(t − 1)

t − 1
≤ 50 logdvt

t
,

completing our proof. �

3. Preliminaries on expanders. Recall that a family {Gn} of d-regular
graphs on n vertices is called an expander family if there is some constant ρ < 1
such that the second largest eigenvalue in absolute value of the transition matrix
λ2(n) satisfies |λ2(n)| ≤ ρ for all n. The quantity 1 − ρ > 0 is called the absolute
spectral gap of the sequence {Gn}. Note that in particular this implies that Gn is
not bipartite, and the simple random walk on it is not periodic. It is a classical fact
(see Theorem 6.9 in [6]) that if {Xt } is a simple random walk on Gn, then for any
v ∈ Gn and any integer t we have∣∣∣∣P(Xt = v) − 1

n

∣∣∣∣ ≤ e−(1−ρ)t .(3.1)

Another useful fact (see [2]) is that if we put unit resistance on each edge of the
expander, then there exists a constant C = C(ρ) < ∞ such that for any u, v ∈ Gn

the effective resistance satisfies

Reff(u ↔ v) ≤ C.(3.2)
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In the following four lemmas we study the simple random walk on the graph
G obtained by taking a d-regular expander and an arbitrary vertex v and adding a
new vertex v′ together with the edge {v′, v}. We consider d as fixed and |G| = n

tending to infinity (in all our applications taking d = 3 suffices). All the constants
in the following lemmas depend on ρ but not on n.

LEMMA 3.1. There exists a constant δ = δ(ρ) > 0 such that for any u �= v′

Pu(τv′ ≥ δn) ≥ δ

and

Pu(τv′ ≤ n) ≥ δ.

PROOF. We begin by proving a lower bound on P(τv′ ≥ δn). Since the walker
must visit v in order to visit v′, it suffices to prove the assertion for u = v. Since G

has bounded degree, there exists a vertex y ∈ G with graph distance from v at least
c logn. By (3.2) the effective resistance between v and y is bounded by a constant
and hence with at least constant positive probability Xt hits y before v. We deduce
that for some constant c > 0 we have

P(τv′ ≥ c logn) ≥ c.(3.3)

Furthermore, by (3.1) and the union bound we have that

P
(∃t ∈ [c logn, δn] with Xt = v

) ≤ δ + e−(1−ρ)c logn

1 − e−(1−ρ)
,

where ρ < 1 is the uniform bound on the second eigenvalue. This together with
(3.3) shows that P(τv′ ≥ δn) ≥ δ for some constant δ > 0.

To prove a lower bound on P(τv′ ≤ n) we employ a second moment calculation.
Write Y for the number of visits to v′ before time n. It is clear by (3.1) that P(Xt =
v′) ≥ 1

2n
for any t ≥ C logn so EY ≥ c for some c > 0. On the other hand, if

t2 > t1 and Xt1 = v′, then by (3.1) the probability of having Xt2 = v′ is at most
n−1 + e−c(t2−t1) for some c > 0. This gives that EY 2 ≤ C, and we get that Y > 0
with some fixed probability by the inequality

P(X > 0) ≥ (EX)2

EX2 ,

valid for any nonnegative random variable X. This completes the proof. �

LEMMA 3.2. There exist constants C = C(ρ) > 0 and c = c(ρ) > 0 such that
for any vertex u �= v′ there exists a set of vertices Su such that |Su| = n − o(n) and
for any w ∈ Su and any C logn ≤ t ≤ n

Pu(Xt = w,τv′ ≥ t) ≥ c

n
.
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PROOF. For any two vertices u,w and any C logn ≤ t ≤ n, we have that
Pu(Xt = w) ≤ 2/n by (3.1) and Pu(τv′ ≥ t) ≥ Pu(τv′ ≥ n) ≥ δ�δ−1� > 0 by iter-
ating Lemma 3.1. Hence

Pu(Xt = w | τv′ ≥ t) ≤ C

n
(3.4)

for some C = C(ρ) > 0. Furthermore, Pπ(τv′ ≤ C logn) = O(n−1 logn), where
π is the stationary distribution. This is because the expected number of visits to v′
by time C logn is O(n−1 logn). Define

S = {
u : Pu(τv′ ≤ C logn) ≤ Cn−1 log2 n

}
,

and we deduce that |S| ≥ n(1 − log−1 n). We combine this with (3.4) to get that

Pu(Xt ∈ S | τv′ ≥ t) ≥ 1 − C

logn
.(3.5)

By the definition of S and (3.1), for any u ∈ S and any w, we have

Pu(XC logn = w | τv′ ≥ C logn) ≤ 1 + o(1)

n
.

Thus, by the Markov property, for any u and w,

Pu(Xt+C logn = w | Xt ∈ S, τv′ ≥ t + C logn) ≤ 1 + o(1)

n

and therefore there exists a set Su such that |Su| = n − o(n) such that for every
w ∈ Su, we have

Pu(Xt+C logn = w | Xt ∈ S, τv′ ≥ t + C logn) ≥ 1

n

(
1 − o(1)

)
.

This together with (3.5) shows that for any w ∈ Su and 2C logn ≤ t ≤ n, we have

Pu(Xt = w,τv′ > t) ≥ c

n
,(3.6)

completing our proof. �

LEMMA 3.3. There exist constants C = C(ρ) > 0 and c = c(ρ) > 0, such that
for every C logn ≤ t ≤ n and any u �= v′, we have

Pu(τv′ = t) ≥ c

n
.

PROOF. Reversibility of the simple random walk implies that

Pu(τv′ = t) ≥ 1

d + 1

∑
w �=v′

Pu

(
X�t/2� = w,τv′ ≥ �t/2�)

× Pv′
(
X�t/2� = w,τv′ ≥ �t/2�),
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since the maximum degree in G is d +1. The assertion now follows from plugging
in Lemma 3.2 and summing. �

Our last lemma about expanders concerns two independent simple random
walks Xt and Yt . We denote by Pu1,u2 for the probability distribution generated
when X0 = u1 and Y0 = u2. We denote τX

u for the hitting time of Xt of u and
similarly for Y .

LEMMA 3.4. There exists a constant c = c(ρ) > 0 such that for any u1 �= v′
and u2 �= v′,

Pu1,u2

(∃t ≤ n ∧ τX
v′ ∧ τY

v′ such that Xt = Yt

) ≥ c.

In other words, the probability that Xt and Yt collide before time n and before
either of them hits v′ is uniformly positive.

PROOF. For any C logn ≤ t ≤ n, by Lemma 3.2 there exists a constant c > 0
and a set S of size |S| = n − o(n) such that for any w ∈ S,

Pu1

(
Xt = w,τX

v′ ≥ t
) ≥ c

n
, Pu2

(
Yt = w,τY

v′ ≥ t
) ≥ c

n
.

Hence ∑
w∈G

Pu1

(
Xt = w,τX

v′ ≥ t
)
Pu2

(
Yt = w,τY

v′ ≥ t
) ≥ c

n
.

Let N = |{t ≤ n ∧ τX
v′ ∧ τY

v′ :Xt = Yt }|; then by the previous inequality and the
independence of Xt and Yt we learn that EN ≥ c. To bound the second moment of
N by (3.1) we have Pv(Xt = u) ≤ n−1 + e−ct , for some c > 0. We deduce by the
Markov property that for any t2 > t1, we have that

Pu1,u2(Xt1 = Yt1 and Xt2 = Yt2) ≤ (
n−1 + e−c(t2−t1)

)
Pu1,u2(Xt1 = Yt1).

Similar considerations give that Pu1,u2(Xt1 = Yt1) ≤ n−1 + e−ct1 , and so we have
that

EN2 ≤
n∑

t1=1

n∑
t2=t1

Pu1,u2(Xt1 = Yt1 and Xt2 = Yt2) ≤ C

for some constant C > 0 and the assertion of the lemma follows. �

4. Sharpness. In this section we show that the estimate of Theorem 1.2 is
sharp up to the multiplicative constant C. In order to elucidate the ideas of the
construction we begin with a simple construction showing the sharpness of The-
orem 1.2 for a single t . We then construct a more elaborate graph for which the
theorem is sharp for an infinite sequence of t’s. This graph will be useful later in
Section 5—it will be the base of the comb for the construction of Theorem 1.3.
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4.1. A simple construction. Given an integer t we construct the graph Gt as
follows. Let {Ei}i≥1 be a sequence of disjoint 3-regular expanders with spectral
gap 1 − ρ > 0 and |Ei | = 4i. Let δ = δ(ρ) > 0 be the constant from Lemma 3.1,
and take

n = 3 log(1/δ)t

δ log t
.

The graph Gt is constructed by taking N = {0,1, . . .} with edges between consec-
utive numbers, and attaching to 0, by an edge, the graph En (the degree of 0 is
thus 2).

THEOREM 4.1. There exists a constant c = c(ρ) > 0 such that the simple
random walk on Gt satisfies

P0(τ0 = t | τ0 ≥ t) ≥ c log t

t
.(4.1)

PROOF. We abbreviate τ for τ0 and write {Xt } for the simple random walk on
Gt starting at 0. Write A for the event that X1 = 1, so P(A) = 1/2. It is a well-
known fact (see [3]) that the probability that a random walk on N does not return
to the origin in t steps decays like t−1/2, that is, P(τ ≥ t | A) ≈ t−1/2. By iterating
Lemma 3.1 using the Markov property we get that P(τ ≥ t | Ac) ≥ δt/δn ≥ t−1/2

by the definition of n, so

P(τ ≥ t) ≈ P
(
τ ≥ t | Ac).

Now, we condition on the first t − δn steps walk and apply Lemma 3.3 together
with the Markov property to get that

P
(
τ = t | Ac) ≥ c

n
P

(
τ ≥ t − δn | Ac),

hence

P
(
τ = t | Ac) ≥ c

n
P

(
τ ≥ t | Ac) ≥ c log t

t
P(τ ≥ t),

completing our proof. �

4.2. The full construction. We now construct a graph saturating inequality
(4.1) for infinitely many t’s. This graph will also be used in the next section as
the base graph (a tooth) of the comb exhibiting almost sure infinitely many colli-
sions. Let {Ei}i≥1 be a sequence of disjoint 3-regular expanders with spectral gap
1 − ρ > 0 and of sizes |Ei | = ni . Let {hi, ni}i≥0 be two increasing sequences of
positive integers with h1 ≥ 2C where C = C(ρ) is the constant from (3.2) and
such that

hi � ni−1h
2
i−1 and ni = h15

i ,(4.2)
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where ai � bi means bi/ai → 0 as i → ∞. For each i let vi ∈ Ei be an arbitrary
vertex. The graph G = G({hi, ni}) consists of N = {0,1, . . .} with edges between
consecutive numbers, and we attach the expander Ei by adding an edge between
vi and hi ∈ N.

All the constants in this section will depend on ρ but not on i or {hi, ni}. The
following is the main result of this section.

THEOREM 4.2. Consider the graph G({hi, ni}) for {hi, ni} satisfying (4.2).
There exists a constant c = c(ρ) > 0 such that for ti = chini logni we have

P0(τ0 = ti | τ0 ≥ ti) ≥ c log ti

ti
.

The rough idea of the proof goes as follows (for brevity we omit the i subscript).
The event τ0 ≥ t occurs mainly when the walk hits h before 0 (which happens with
probability h−1) and then stays around h and E for about t steps without returning
to 0 [which happens with probability (1 − h−1)t/n ≈ n−c, since there are roughly
t/n visits to h and each time the probability of returning to 0 before h is h−1]. So
this event happens with probability about h−1n−c.

Now we need to give a lower bound for P(τ0 = t). Again, the probability that
the walk hits h before 0 is h−1. Assume that happened, and consider the excursion
from 0 to 0. We can partition it into 3 parts: until we hit h, between the first and
last visits to h and after the last visit to h and until we hit 0 again. Call the lengths
of these 3 parts s1, s2 and s3, respectively, and notice that they are independent.
With high probability s1 and s3 are roughly h2 � t . Conditioning on the values
of s1 and s3, we want a lower bound for the probability that s2 = t − s1 − s3. The
probability that the walk will stay around h (and E) for about t steps is again n−c

and the probability it will be at h precisely at time t − s1 − s3 is of order n−1 (since
it is roughly mixed in E). Finally, the probability that this is the last visit to h is
(3h)−1. Put together, we get a lower bound for P(τ0 = t) of order h−2n−1−c, so
the ratio is h−1n−1 ≈ t−1 log t , as required.

We begin with some preparatory lemmas and observations leading to the proof
of this theorem. In all of the statements below we are considering a simple random
walk on G({hi, ni}) for {hi, ni} satisfying (4.2). For a vertex v of G({hi, ni}) we
write h(v) for its height, that is, if v ∈ Ei , then h(v) = hi and if v ∈ N, then
h(v) = v.

LEMMA 4.3. We have:

(1) For any h > 0, we have P0(τh < τ0) = h−1.
(2) For any i and v such that 0 ≤ h(v) < hi , we have Ev(τhi

∧ τ0) ≤ 2h2
i .

PROOF. Part (1) is immediate since the effective resistance between vertices
0 and h is precisely h. Part (2) follows immediately by the commute time identity;
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see [6]. Indeed, the effective resistance between v and {0, hi} is at most hi/2 + C

[where C is the constant from (3.2)], and the number of edges in the subgraph
between 0 and hi [i.e., the subgraph spanned on all vertices v having 0 ≤ h(v) < hi

together with hi] is at most

hi +
i−1∑
j=1

nj ≤ 2hi

by condition (4.2). We conclude the proof since hi ≥ 2C by our definition. �

LEMMA 4.4. There exists a constant c = c(ρ) > 0 such that for any i ≥ 1 and
k ≥ 1, we have

P0(τ0 ≥ cknihi) ≥ ck

hi

and

P0(τ0 ≥ cknihi | τhi
< τ0) ≥ ck.

PROOF. Starting from hi , the probability of visiting 0 before returning to hi

is (3hi)
−1 by Lemma 4.3, hence the probability of having khi visits to hi before

hitting 0 has probability (1 − (3hi)
−1)khi . By Lemma 3.1, with probability at least

δ/3 the random walk starting at hi spends at least δni steps in the expander Ei ,
where δ > 0 is the constant from Lemma 3.1 (hi has degree 3). Given the number
K of visits to hi before returning to 0, the time spent away from 0 is distributed
as the sum of K i.i.d. random variables each being at least δni with probability at
least δ/3. We deduce that there exists some constant c > 0 such that for any k ≥ 1,
we have

P0(τ0 ≥ τhi
+ cknihi | τhi

< τ0) ≥ ck.

By Lemma 4.3 the event τhi
< τ0 occurs with probability h−1

i , completing the
proof. �

For the next step we define τ
(m)
0 to be the mth return time to 0. That is, τ

(1)
0 = τ0

and for m > 1

τ
(m)
0 = min

{
t > τ

(m−1)
0 :Xt = 0

}
.

It will also be convenient to define τ
(0)
0 = 0.

LEMMA 4.5. There exist constants C = C(ρ) > 0 and c = c(ρ) > 0 such that
for any i ≥ 1 and any k ≥ 1 we have

P0
(
τ

(Ckhi)
0 < khini

) ≤ Ce−ck.
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PROOF. Since

τ
(Ckhi)
0 =

Ckhi∑
m=1

(
τ

(m)
0 − τ

(m−1)
0

)
,

we learn that τ
(Ckhi)
0 is a sum of Ckhi i.i.d. random variables distributed as τ0.

By Lemma 4.4, the probability of each of these variables to be at least nihi is at
least ch−1

i for some small c > 0. Large deviation for binomial random variable
immediately gives that for large enough C > 0 we have

P

(
Ckhi∑
m=1

(
τ

(m)
0 − τ

(m−1)
0

) ≤ khini

)
≤ Ce−c1k

for some constant c1 > 0. �

The following lemma shows that the random walk on G spends most of its time
inside the appropriate expander.

LEMMA 4.6. There exists a constant C = C(ρ) > 0 such that for any integer
t satisfying hini ≤ t ≤ h2

i ni for some i ≥ 1 we have

P0(Xt ∈ Ei) ≥ 1 − Ch−2
i .

PROOF. For convenience we write h for hi , n for ni . Let t0 = t − 2h12 and
define iteratively tk+1 to be

tk+1 = min{� > tk :X� = h}
for any integer k ≥ 0. For each k ≥ 1, the walk between times tk and tk+1 does an
excursion, starting and ending at h. Call such an excursion good if tk+1 − tk > 2h12

and Xtk+1 ∈ Ei , short if tk+1 − tk < h11 and bad if it is neither good nor short. Let
Kgood be the index of the first good excursion and Kbad be the index of the first
bad excursion and define the following events:

A0 = {
t1 > t − h12 ∩ Xt /∈ Ei

}
,

A1 = {Kgood ≥ h},
A2 = {Kbad ≤ h}.

We claim that if neither of these event occur, then Xt ∈ Ei . Indeed, if A0 did not
occur then either Xt ∈ Ei or t1 ≤ t −h12. In the latter case, since both A1 and A2 do
not occur, the first Kgood − 1 < h excursions are short and are followed by a good
excursion. The total length of these short excursions is no more than h12; hence
tKgood < t and the length of the good excursion is at least 2h12 so tKgood+1 > t . By
definition, at all times in (tk, tk+1) of a good excursion the walker is located in Ei ,
hence Xt ∈ Ei .
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We now bound the probabilities of the three events, starting with A1. For any
excursion, the probability that Xtk+1 ∈ Ei is 1

3 . By Lemma 3.1 we have that

P0
(
tk+1 − tk ≥ 2h12 | Xtk+1 ∈ Ei

) ≥ c

for some constant c = c(ρ) > 0. Hence, the probability that an excursion is good is
at least c/3. Since the excursions are independent, the probability of A1 is bounded
by (1 − c/3)h = o(h−2).

We now bound P(A2). An excursion is bad only if it is either longer than h11

and Xtk+1 /∈ Ei , or its length is in [h11,2h12] and Xtk+1 ∈ Ei . If Xtk+1 = h + 1,
then it is standard that the probability that the walk does not return to h in h11 steps
is of order h−11/2. If Xtk+1 = h − 1, then the probability that the walk does not

return to h in h11 steps is bounded by e−ch9
for some constant c > 0. Indeed, there

are less than 2h edges below h and the resistance from any vertex below h is at
most h. The commute time identity now implies that from any vertex below h the
probability of hitting h within 4h2 steps is at least 1/2, and the e−ch9

bound follows
by iterating this. Finally, if Xtk+1 ∈ Ei , then (3.1) implies that the the probability
of tk+1 − tk ∈ [h11,2h12] is O(h12n−1) which is O(h−3) by (4.2). We get that the
probability that an excursion is bad is O(h−3), hence the probability that one of
the first h excursions is bad is O(h−2).

We are left to bound P(A0). If Xt0+1 ∈ Ei , then for A0 to occur we must have
that t1 − t0 ∈ [h12,2h12]. As before, (3.1) implies that the probability of t1 − t0 ∈
[h12,2h12] is O(h−3). If Xt0+1 is below h, then the probability of not hitting h in

the next h12 steps is bounded by e−ch10
, by the same argument as above, using the

commute time identity.
Finally, we need to bound the probability that A0 occurs, and Xt0+1 is above h.

Let N0 be the number of visits to 0 by time t . By Lemma 4.5 (with k = h) there
are constants C,c > 0 such that

P
(
N0 ≥ Ch2) ≤ Ce−ch.

In each such excursion from 0 to 0 the probability of reaching h5 is h−5 by
Lemma 4.3. Hence, the probability that the walk reaches height h5 before time
t is at most C(h−3 + e−ch). Now, from any vertex between h and h5, the expected
time to hit either h or h5 is at most h10. Therefore, the probability that the walk
does not hit h or h5 in h12 steps is at most e−ch2

, for some constant c > 0. Put
together, the probability that Xt0+1 is above h, but t1 > t0 + h12 is bounded by
Ch−3. �

PROOF OF THEOREM 4.2. Fix i and abbreviate t = ti , h = hi and n = ni . We
have that

P0(τ0 ≥ t) = P0(τ0 ≥ t and τ0 < τh) + h−1P0(τ0 ≥ t | τh < τ0).
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The first term is negligible since starting from any vertex v between 0 and h, we
have Pv(τ0 ∧ τh ≥ 2h2) ≤ 1

2 by Lemma 4.3, and hence, by the Markov property,

P0(τ0 ∧τh ≥ t) ≤ e−ct/h2
. Theorem 1.1 gives that P0(τ0 ≥ t) ≥ 4−1t−1/2 and since

t ≥ h3, we conclude that

P0(τ0 ≥ t) = (
1 + o(1)

)
h−1P0(τ0 ≥ t | τh < τ0).(4.3)

Assuming the event τh < τ0 occurred, let T0 = τh and for j ≥ 1 define

Tj = min{t > Tj−1 :Xt = h},
to be the time of the j th visit to h. Also, let J = max{j :Tj < τ0} be the index
of the last visit to h before returning to 0. We define a sequence of random bits
{bj }j≥0 in the following way. We set bj = 1 if Xt = 0 for some Tj < t < Tj+1 and
bj = 0 otherwise. Conditioned on the history of the walk until Tj the probability
of bj = 1 is exactly (3h)−1, since the walk needs to take a step to h − 1 and then
the probability of hitting 0 before h is h−1, by Lemma 4.3. Hence, the distribution
of J is geometric with parameter (3h)−1.

Observe that the distribution of the walk between TJ and τ0 is that of a simple
random walk started at h and conditioned to hit 0 before returning to h and is
independent of the walk until time TJ . In particular, TJ is independent of τ0 − TJ .
We may now bound P0(τ0 = t) from below by

P0(τ0 = t) ≥ h−1P0
(
TJ = t − (τ0 − TJ ) | τh < τ0

)
.

Since TJ is independent of τ0 −TJ we may condition on the event τ0 −TJ = t − s

and get that

P0
(
TJ = t − (τ0 − TJ ) | τh < τ0

)
(4.4)

= ∑
s

P(τ0 − TJ = t − s | τh < τ0)P(TJ = s | τh < τ0).

When starting a simple random walk at h−1, the expected hitting time of h or 0 is
at most 2h2 and the probability of hitting 0 before h is h−1 by Lemma 4.3. Thus,
E[τ0 − TJ | τh < τ0] ≤ 2h3 hence

P0
(
τ0 − TJ > 4h3 | τh < τ0

) ≤ 1
2 .

Therefore, it is enough to show that for any s satisfying t − 4h3 ≤ s ≤ t , we have

P0(TJ = s | τh < τ0) ≥ c

hn
P0(τ0 ≥ t | τh < τ0),(4.5)

since then by (4.3) and (4.4) we get that

P0(τ0 = t) ≥ c

hn
P0(τ0 ≥ t) = 

(
log t

t

)
P0(τ0 ≥ t).

To show (4.5) we take some small δ and bound

P0(TJ = s | τh < τ0) ≥ P0(TJ = s,Xs−δn ∈ Ei, τ0 ≥ s | τh < τ0).
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By the Markov property the last probability is at least

Ph(τ0 < τh) min
u∈Ei

Pu(τh = δn)P0(Xs−δn ∈ Ei, τ0 ≥ s − δn | τh < τ0).(4.6)

Lemmas 3.3 and 4.3 give that the product of the first two probabilities is at least
c(hn)−1. By Lemmas 4.6 and 4.3 we have that

P0(Xs−δn /∈ Ei | τh < τ0) ≤ Ch−1,

and since s = (1 + o(1))chn logn, Lemma 4.4 with k = c logn gives that

P0(τ0 ≥ s − δn | τh < τ0) ≥ δc logn ≥ h−0.5

as long as c > 0 is chosen to be small enough. Since μ(A ∩ B) ≥ μ(B) − μ(Ac)

for any probability measure μ and events A,B we get that

P0(Xs−δn ∈ Ei, τ0 ≥ s − δn | τh < τ0) ≥ (
1 − o(1)

)
P0(τ0 ≥ s − δn | τh < τ0)

≥ (
1 − o(1)

)
P0(τ0 ≥ t | τh < τ0),

which together with (4.6) shows (4.5) and the proof is complete. �

5. Combs. Recall the definition of the comb product of two graphs and of
the finite collision property in Section 1.2. In this section we prove that the graph
G = G({hi, ni}), for {hi, ni} satisfying (4.2), is such that Comb0(Z,G) does not
have the finite collision property. We begin with a sketch to illustrate the idea of
the proof.

In the rest of this section we sometimes write h,n for hi, ni , respectively. Our
goal is to get the two walkers inside the same expander Ei since then they collide
with positive probability by Lemma 3.4. Starting from the base of the comb, the
probability of reaching height h before returning to the base is (3h)−1. If this
happens, the random walk has positive probability of being “swallowed” in the
expander Ei and staying in it for n steps. At each visit to the tip of the expander,
that is, the vertex h, the probability of getting back to the base of the comb before
returning to h is (3h)−1. The other expanders, above and below Ei , are either too
small or too far away to matter. We deduce that by time hn the typical behavior of
the walker is to walk about h steps on the base of the comb, then rise to height h,
have about h excursions of length n inside the expander and finally return to the
base of the comb.

Thus, after h2n steps, each random walker has performed about h2 steps on the
base of the comb (this is a simple random walk on Z) and in about h of them it
performs excursions of length hn in which it spends most of the time in the ex-
pander Ei . The base points on Z of these h long excursions are roughly h uniform
points in {−h, . . . , h}, so the probability that in at least one of them the two walkers
are over the same base point is uniformly positive. We conclude that by time h2n

the two walkers have positive probability of colliding. This occurs in all scales,
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that is, for all i ≥ 0. Each scale has almost no influence on what occurs in the next
scale; hence we get the required result.

We now make this heuristic precise. Given a simple random walk Xt on
Comb(Z,G) we write X

(1)
t and X

(2)
t for its first and second coordinates, respec-

tively. Note that X
(1)
t is a time change of a simple random walk on Z, and X

(2)
t

is distributed precisely as simple random walk on G({hi, ni}) equipped with extra
two loops at 0. One can easily check that the estimates of Section 4 are valid for this
graph as well. Put T0 = 0 and Ti = Ti−1 + nih

2
i . For any i ≥ 1 and k = 1, . . . , hi

define the events

Ik = {
X

(1)
Ti−1+khini

= Y
(1)
Ti−1+khini

and X
(2)
Ti−1+khini

∈ Ei and Y
(2)
Ti−1+khini

∈ Ei

}
.

The following lemma is the key step for proving Theorem 1.3. We remark that
all constants in this section depend on ρ from the definition of G in the previous
section.

LEMMA 5.1. There exists a constant c = c(ρ) > 0 such that for all i ≥ 1 we
have

P

(
hi⋃

k=1

Ik

∣∣∣ XTi−1, YTi−1

)
≥ c.

PROOF OF THEOREM 1.3. Write Ai for the event that Xt and Yt collide in the
time interval [Ti−1, Ti]. Lemma 5.1 together with Lemma 3.4 shows that

P(Ai | XTi−1, YTi−1) ≥ c

for some constant c > 0. We deduce that Ai occurs infinitely many times with
probability 1, completing the proof. �

We will prove Lemma 5.1 using a second moment argument; however, we re-
quire two additional preparatory lemmas about the random walk on a single copy
of G({hi, ni}), the tooth of the comb.

LEMMA 5.2. Consider the simple random walk on G. There exist constants
C = C(ρ) > 0 and c = c(ρ) > 0 such that for any i and any vertex v satisfying
0 ≤ h(v) ≤ h4

i , we have

Ev

[
e
cn−1

i (τ0∧τhi
∧τ

h4
i
)] ≤ C.

PROOF. For any vertex v of G with height between 0 and h4 we have that
Ev(τ0 ∧ τh ∧ τh4) ≤ Cn. To see this observe that there are three cases: if v is
in the expander Eh the expected hitting time of h is O(n) by the commute time
identity and (3.2). If h(v) > h, then the expected time to hit either h or h4 is, by the



NONCONCENTRATION OF RETURN TIMES 867

commute time identity, at most h8, which is o(n) [there are no expanders between
h and h4 by (4.2)]. Similarly, if h(v) < h, then the expected time to hit either 0 or
h is o(n). Hence for any such v we have

Pv(τ0 ∧ τh ∧ τh4 ≥ 2Cn) ≤ 1
2 ,

hence

Pv(τ0 ∧ τh ∧ τh4 ≥ Bn) ≤ e−cB,

and the (ii) follows by integration. �

LEMMA 5.3. Consider the simple random walk on G. There exist constants
C = C(ρ) > 0 and c = c(ρ) > 0 such that for any i and any B > 0,

P0(τ0 ∧ τh4
i
≥ Bnihi) ≤ 2e−cB

hi

,

hence

E0e
c(nihi)

−1(τ0∧τ
h4
i
) ≤ 1 + C

hi

.

PROOF. Let Nh denote the number of visits to h before time τ0 ∧ τh4 . We have
that

P0(Nh ≥ k) ≤ 1

h

(
1 − 1

3h

)k−1

≤ e−(k−1)/3h

h
,

since reaching to h before 0 has probability h−1, and given that at each visit to h,
the probability of visiting 0 before returning to h is precisely (3h)−1. By this bound
it suffices to prove that

P0(τ0 ∧ τh4 ≥ Bnh and Nh ≤ cBh) ≤ e−cB

h
(5.1)

for some small c > 0. Let γm for m = 1, . . . , cBh be i.i.d. random variables dis-
tributed as the stopping time τ0 ∧ τh ∧ τh4 for the random walk starting at h.
Then the probability on the left-hand side of (5.1) is at most the probability that∑cBh

m=1 γm ≥ Bnh. By Lemma 5.2 we have that there exists some c2 > 0 such that

E0e
c2n

−1γm ≤ C. Hence, by independence and Markov’s inequality we get that

P

(
cBh∑
m=1

γm ≥ Bnh

)
≤ CcBh

ec2Bh
,

which is of order e−cBh if c = c(c2,C) > 0 is chosen small enough compared
with c2. This proves (a stronger assertion than) (5.1) and concludes the proof. �
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Consider now the random walk Xt on Comb(Z,G). Write X
(2)
t for the second

coordinate of Xt and for any i let �i(t) denote the random variable

�i(t) = ∣∣{j ∈ [Ti−1, Ti−1 + t] :X(2)
j−1 = X

(2)
j = 0

}∣∣.
In other words, �i(t) counts the number of times j ∈ [Ti−1, Ti−1 + t] in which Xj

walked on the Z base of the comb.

LEMMA 5.4. Consider the simple random walk on Comb(Z,G). There ex-
ist constants C = C(ρ) > 0 and c = c(ρ) > 0 such that for any i and any
k = 1, . . . , hi we have

P
(
�i(khini) ≥ Ckhi

) ≤ Ce−ck

and

P
(
�i(khini) ≤ C−1khi

) ≤ 1

h2
i

+ Ce−ck.

PROOF. Part (i) of the lemma is equivalent to Lemma 4.5. For m ≥ 1 write tm
for the time in which Xt takes the mth step on Z. That is, t0 = 0 and for m ≥ 1 we
have

tm = min
{
j > tm−1 :X(2)

j−1 = X
(2)
j = 0

}
.

To prove the second assertion of the lemma, note that the event �i(khn) ≤ C−1kh

is equivalent to

C−1kh∑
m=1

(tm − tm−1) ≥ khn.(5.2)

For each m, let Am be the event that Xt visited the vertex h4 on one of the comb’s
teeth between times tm−1 and tm, and write Ām for the complement of Am. By
Lemma 4.3 we have that P(Am) = h−4/3. Thus, the probability that Am occurs for
some m = 1, . . . ,C−1kh is at most h−2 since k ≤ h. We get that

P

(
C−1kh∑
m=1

(tm − tm−1) ≥ khn

)
≤ 1

h2 + P

(
C−1kh∑
m=1

(tm − tm−1)1Ām
≥ khn

)
.

To bound the last term of this inequality, observe that

(tm − tm−1)1Ām

(d)≤ τ0 ∧ τh4,

where τ0 and τh4 are the corresponding hitting times on G. By Lemma 5.3 there
exists some C2 > 0 such that

Ee
c(nh)−1(tm−tm−1)1Ām ≤ 1 + C2

h
,
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and by independence and Markov’s inequality we deduce that

P

(
C−1kh∑
m=1

(tm − tm−1)1Īm
≥ khn

)
≤ (1 + C2/h)C

−1kh

eck
,

which is at most Ce−ck if C = C(c,C2) > 0 is chosen large enough. This com-
pletes the proof. �

LEMMA 5.5. There exist constants C = C(ρ) > 0 and c = c(ρ) > 0 such that
for any i and any k = 1, . . . , hi

c√
khi

≤ P(Ik | XTi−1, YTi−1) ≤ C√
khi

.

PROOF. Lemma 5.4 implies that for some positive constants C,c we have

P
(
C−1kh ≤ �(khn) ≤ Ckh | XTi−1, YTi−1

) ≥ 1 − Ce−ch − Ch−2.

So with this probability, this holds for both walks Xt and Yt . Clearly X
(1)
Ti−1

and Y
(1)
Ti−1

are of distance at most Ti−1 away from the origin of Comb(Z,G),

and Ti−1 � √
h by (4.2). Thus, the local CLT for the simple random walk on

Z implies that the probability that at time Ti−1 + khn the two walkers are in
the same copy of G is at least c(kh)−1/2 and at most C(kh)−1/2. This shows
P(Ik | XTi−1, YTi−1) ≤ C(kh)−1/2. Furthermore, by Lemma 4.6 the probability that
at that time the walks are not inside the expander Eh is at most Ch−2. The lower
bound P(Ik | XTi−1, YTi−1) ≥ c(kh)−1/2 follows. �

LEMMA 5.6. There exists a constant C = C(ρ) > 0 such that for any i and
any k1 < k2 in {1, . . . , hi}, we have

P(Ik1Ik2 | XTi−1, YTi−1) ≤ C

hi

√
k1(k2 − k1)

.

PROOF. As in the proof of Lemma 5.5, with probability at least 1 − O(h−2),
we have that �(k1hn) = (k1h) and �(k2hn) = (k2h). Also as before, since
Ti−1 � √

h the local CLT for the simple random walk on Z implies that the prob-
ability that both at times Ti−1 + k1hn and Ti−1 + k2hn the two walkers are in the
same copy of G is O(h−1(k1(k2 − k1))

−1/2). Lemma 4.6 shows that the probabil-
ity that in each of these occurrences the walkers are not in the respective expanders
Eh is O(h−2), and the lemma follows. �

PROOF OF LEMMA 5.1. Lemma 5.5 gives that

h∑
k=1

P(Ik | XTi−1, YTi−1) ≥ c,



870 O. GUREL-GUREVICH AND A. NACHMIAS

and Lemma 5.6 yields that

h∑
k1=1

h∑
k2=1

P(Ik1Ik2 | XTi−1, YTi−1) ≤ C.

The lemma follows by the inequality P(X > 0) ≥ (EX)2/EX2 valid for any non-
negative random variable X. �
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