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We study an economic decision problem where the actors are two firms
and the Antitrust Authority whose main task is to monitor and prevent firms’
potential anti-competitive behaviour and its effect on the market. The An-
titrust Authority’s decision process is modelled using a Bayesian network
where both the relational structure and the parameters of the model are esti-
mated from a data set provided by the Authority itself. A number of economic
variables that influence this decision process are also included in the model.
We analyse how monitoring by the Antitrust Authority affects firms’ strate-
gies about cooperation. Firms’ strategies are modelled as a repeated pris-
oner’s dilemma using object-oriented Bayesian networks. We show how the
integration of firms’ decision process and external market information can be
modelled in this way. Various decision scenarios and strategies are illustrated.

1. Introduction. Firms in many cases have incentives to cooperate (collude)
to increase their profits. The possibility for firms to collude does not depend solely
on their decision but also on external circumstances. First of all, firms need to
comply with antitrust laws. If the Antitrust Authority (AA) finds negative anti-
competitive effects, resulting from firms’ cooperative behaviour, it may intervene
to prevent the firms from merging.

The AAs decision process is modelled here by using a Bayesian network (BN)
or Probabilistic Expert System (PES) [Cowell et al. (1999)] estimated from real
data. A BN is a graphical model that encodes the probabilistic relationships among
the variables of interest allowing for the application of fast general-purpose algo-
rithms to compute inferences.

Often governments may find negative anti-competitive effects resulting from a
merger. As a consequence, the decision by firms to cooperate is actually affected
by the decision process of the AA. The AA may start an investigation either be-
cause two firms make a formal request to merge (explicit collusion) or because the
authority suspects that two firms are implicitly colluding. In what follows the term
merger will be used for both explicit and implicit collusion.

We also study how the AAs monitoring affects firms’ strategies about coopera-
tion. For this purpose, the firms’ set of potential strategies are modelled in turn as
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a repeated prisoner’s dilemma using object-oriented Bayesian networks (OOBNs)
[Bangsø and Wuillemin (2000), Koller and Pfeffer (1997)]. OOBNs are a recent
extension of BNs which allow for a hierarchical definition and construction of
a BN. They provide a compact and intuitive representation of the repeated pris-
oner’s dilemma (PD). Furthermore, thanks to the modularity and flexibility of this
approach, various sources of uncertainty within the game and generalizations of
the repeated prisoner’s dilemma can be analysed. We use the PD as a naive rep-
resentation of firms’ economic interaction, the focus of this paper being that of
analysing the evolution of firms’ behaviour according to various external scenar-
ios. For theoretical aspects on suboptimal strategies in Bayesian games see, for
example, Young and Smith (1992).

We present two different networks: the first models the AAs decision process,
and the second represents the behaviour of the two firms in a duopoly. OOBNs
give the graphical framework to integrate these two networks and to represent their
time evolution. Both the graphical structure and the associated probability tables
of AAs decision process network are estimated from a real data set. As a result,
we obtain the estimated probability that AA intervenes to prevent anticompetitive
behaviour of a merger. For various economic sectors (markets of interest) we study
the sensitivity of cooperative outcomes with respect to factors such as geographical
size, market share, Herfindahl–Hirschman Index (HHI) variation, vertical effects,
the presence of entry barriers and buyer power. The global OOBN model which
integrates the AAs decision process with a duopoly model is used to obtain the
optimal decision in light of a series of interesting scenarios that could occur in
practice.

The outline of the paper is as follows. In Section 2 we briefly describe the
merger control problem. We illustrate the BN for the AAs decision process es-
timated from the data and show its use in various scenarios in Section 3. A brief
introduction to the prisoner’s dilemma is illustrated in Section 4.1 followed by the
Bayesian network representation of the PD in Section 4.2. After introducing the
repeated prisoner’s dilemma in Section 4.3, in Section 4.4 we show how this can
be represented as an OOBN. In Section 5 we show how we integrate the PD net-
work with the AA network obtaining a general purpose global representation of the
problem, and in Section 5.1 we apply this to several decision scenarios. Finally, in
Section 6 we draw conclusions and discuss further developments.

2. The merger control problem. The AA studies the impact of a merger on
the market and its consequences on social welfare. Hence, the AAs decision affects
the dynamics in firms’ economic interaction as well as the corresponding equilib-
rium outcome. When choosing between cooperating or defecting, firms take the
AAs decision process into account, both when they formally request to merge and
in the case of implicit collusion.

In our setup, the actors are as follows: the Antitrust Authority and the two merg-
ing firms, termed Firm1 and Firm2 (the duopolists). Figure 1(a) shows a pictorial
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FIG. 1. (a) Pictorial representation of the AA decision process and Firms’ behavior in a Duopoly.
(b) Corresponding representation for a repeated scenario.

representation of the effects of AAs control activity on Firms’ behaviour. The two
rounded rectangles, AA and Duopoly, represent the AAs decision process and the
Firms’ merging strategy, respectively. The AAs decision process is modelled by a
Bayesian network learned from real data (see Sections 3.2 and 3.3). The duopoly is
modelled as a PD using a Bayesian network for decision making (see Section 4).
The two networks are then integrated giving rise to a global model, where both
the AAs decision process and the duopoly are represented by OOBNs. Figure 1(a)
represents a single stage (vertical slice) of the overall model. The merger problem,
as well as AAs activity, evolve in time. Figure 1(b) gives a graphical representation
of the decision process dynamics. Details on these networks are given in Sections
4 and 5.

3. Antitrust Authority’s decision process.

3.1. Current practice. The primary task of the AA is to enforce the antitrust
law which prohibits anticompetitive behaviour, so as to prevent a reduction in
social welfare.2 In particular, the AA is responsible for detecting the follow-
ing: (a) agreements restricting competition; (b) abuses of dominant positions; (c)
merger operations involving the creation or strengthening of dominant positions in
ways that eliminate or substantially reduce competition.

Once the Authority has received a complaint or has collected information on
possible interference with competition, a preliminary examination is carried out
and if there are alleged violations of the Antitrust law, the AA carries out a full
investigation. The law requires that whenever the potentially merging firms ex-
hibit sale revenues in excess of certain predefined thresholds, the merger operation
must be notified to the authority in advance. The thresholds are updated annually
according to the deflator index for gross domestic product.

Decisions on a merger are based on a case by case examination and, to our
knowledge, currently, no specific models are used. The law also does not give
any specific thresholds for relevant variables, such as market share or a market
concentration index.

2For details on the Italian antitrust law and AAs tasks see: http://www.agcm.it/en.

http://www.agcm.it/en
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TABLE 1
Description of the variables in the AA network

Variable States Description

Years {1991–1996, 1997–2000, Reference periods
2001–2003}

ATECO Mining, food & beverage Relevant market
Manufacture, etc. (see Figure 3)

Geo size {Sub-national, national, Size of the relevant market
supra-national}

Buyer power {Yes, No} Presence (Yes) of competitive
pressure on the merging parties

Entry barriers {Yes, No} Presence (Yes) of entry barriers
HHI variations {0, (0,100), [100, 500), Variation in market

[500, 1000), ≥1000 } concentration index
Post market share {<20%, [20%–40%], >40%} Post-merger market share
Vertical effects {Yes, No} Presence (Yes) of vertical

effects
AA intervention {0, 1} No (0)/Yes (1)

3.1.1. The data. The data we use were collected by the Italian Antitrust Au-
thority and concern all the cases examined from 1991 to 2003. This data set con-
sists of 6920 observations. Based on this data set, La Noce et al. (2006) developed
a logit model to analyse the impact of different factors on the Authority decision.
Following La Noce et al. (2006), we consider relevant markets affected by the
merger as elementary units of analysis. These markets are denoted by the ISTAT
(Italian National Institute of Statistics) economic activity code ATECO.

Table 1 describes the variables in the data set that were used to estimate the
AA network. The Herfindahl–Hirschman Index, HHI, is defined as the sum of the
squares of n firms’ market share,

∑n
i αi

2, where αi denotes firm i’s market share
and

∑n
i αi = 100. Increase in the HHI indicates a decrease in competition and an

increase in market power. Vertical effects refer to the anticompetitive effects that a
vertical merger could imply, that is, the possibility to raise entry barriers by input
foreclosure or by customer foreclosure.

The estimation (learning) process of a Bayesian network consists of two phases:
the graphical structure estimation and the conditional probability table estimation.
These will be illustrated in turn.

3.2. Estimation of the network’s graphical structure. The graphical structure
of the AA network representing the AA decision process is obtained by a combi-
nation of subject-matter knowledge, provided by a domain expert, and the infor-
mation in the data.
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FIG. 2. Logical constraints for AA network estimation.

The Necessary Path Condition (NPC) algorithm [Steck (2001)] implemented
in HUGIN is used to estimate the graphical structure of the network. The NPC is
a constraint-based algorithm recursively testing marginal and conditional associa-
tion between categorical variables. The NPC algorithm allows the user to choose
the most suitable among independence equivalent models. The NPC algorithm
takes into account logical constraints, such as presence/absence of a link or as-
signment/ban of a specific direction between variables.

The logical constraints we implemented here are shown in Figure 2. These im-
ply that if there is a relation between two variables in different boxes, it must have
the same direction as that in Figure 2. Furthermore, if two variables belong to the
same box, their association (if it exists) can be in any one of the two possible di-
rections. For example, if node AA Intervention3 is connected with any of the
other variables, the direction has to be from these into AA Intervention node
(AA decision logically depends on the values of the other variables). This means
that arrows from AA Intervention to any other variable are logically prohib-
ited. The reference period (node Years) is not influenced by any of the other
variables in the model.

The dependence structure—based on the logical constraints given in Figure 2—
learnt from the data is shown in Figure 3. The main dependence relationships esti-
mated from the data are as follows:

(i) The market of interest (ATECO) can depend on Year: an economic sector
could be more relevant and worth investigating during one of the three reference
periods (note that the president of the AA changed in 1997 and from 2001 Italian
currency Lira was replaced by the Euro).

(ii) AA Intervention depends directly on HHI Variation, Vertical
Effects, Post Market Share, Geo Size and Entry Barriers. Further-
more, the relevant market (ATECO) does not affect AAs decision (AA Inter-
vention) directly but only through the relevant features of the market and of
the merging firms (HHI Variation, Vertical Effects, Post Market
Share, Geo Size and Entry Barriers).

These results are consistent with those in Bergman, Jakobsson and Razo (2005)
and La Noce et al. (2006).

3Here we indicate nodes in teletype.
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FIG. 3. AA network showing the dependencies of AA Intervention on the relevant variables
describing the market and the marginal probabilities of the variables.

(iii) The Herfindahl–Hirschman concentration index variation (HHI Varia-
tion) depends on all the variables that logically precede it or are on an equal
footing (as shown in Figure 2), whereas Post Market Share depends only
on Entry Barriers, Geo Size and ATECO. An explanation of this could be
that when a market sector is characterised by entry barriers (because of patents
or increasing returns to scale) we expect that this market may be composed of a
few firms with high market shares, thus influencing Post Market Share and a
relevant HHI Variation.

Many other conditional independencies can be read off the AA network in Fig-
ure 3, but for brevity they will not be presented here.

3.3. Estimation of the probability tables. To complete the construction of our
model, we estimate the conditional probability distributions of the variables from
the data. The EM-algorithm [Dempster, Laird and Rubin (1977)] is used for learn-
ing the probabilities.

The network in Figure 3 exhibits a complex association structure among the
variables. For example, node HHI variation has seven parents. Its conditional
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probability table has 17 × 33 × 23 × 5 = 18,360 entries corresponding to the state
space of its parent variables: ATECO, Post Market Share, Years, Geo Size,
Entry Barriers, Buyer Power, Vertical Effects, as well as HHI
Variation’s state space. Many of these combinations are not represented in the
data set, although they cannot be considered impossible ex ante. In fact, according
to Bergman, Jakobsson and Razo (2005), if a threshold for relevant variables—like
post market share—can be detected in AAs legal practice, this threshold may vary
according to other variables, such as buyer power and entry barriers. Therefore,
no variable level combinations can in principle be ruled out. So, in order to avoid
that certain possible configurations in the conditional probability tables have zero
probability, we set noninformative nonzero prior probabilities.

Figure 3 displays the marginal probabilities4 estimated from our data. Note, for
example, that the probability of an AA intervention is only 0.0189, which could
be due to the fact that in most cases, 74.38%, the post market share is less than
20% and entry barriers and vertical effects are absent (with probability 0.9793
and 0.9268, resp.), HHI index is less than 100 in 87.85% of the cases and only in
15.38% the geographical size is supra-national.

3.4. Using the network. Once the model has been estimated, we can address
a number of questions about the AAs decision process. Various possible scenarios
can be examined by inserting and propagating the appropriate evidence throughout
the network. We illustrate three hypothetical scenarios.

Scenario A. What is the probability of an AA intervention in a merger request
when there are entry barriers in the market? This scenario is represented in Fig-
ure 4(a). The posterior probability of an AA Intervention increases from
0.0189 to 0.5790 when the evidence Entry Barriers = Yes is inserted and
propagated throughout the network.

Scenario B. How would the probability obtained in Scenario A change if the
Herfindahl–Hirschman concentration index variation (HHI variation) is in the
class [100,500)? Note in Figure 4(b) that the probability of AA Intervention
now increases to 0.7741.

The network can be used not only for direct reasoning about the probability of
AA Intervention, but also for reasoning about possible “causes” of a given
AA decision.

Scenario C. A question about competition authorities’ behaviour that has been
rarely addressed in the literature is about the type of mergers that are typically
prohibited [Bergman, Jakobsson and Razo (2005)]. Our network can be used for
this purpose. Suppose that the AA decides to intervene in a firm’s merger request.
What are the most plausible reasons of this decision? Figure 4(c) gives the poste-

4In all figures probabilities are expressed as percentages.
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FIG. 4. Scenarios (a), (b) and (c) giving marginal posterior probabilities for the AA network.

rior probabilities given the evidence that AA Intervention is equal to one. On
comparing Figures 3 and 4(c) we see that:

• The probability of entry barriers increases from 0.0207 to 0.6367;
• The probability of vertical effects increases from 0.0732 to 0.4536. This is an

interesting result, since, although there is common agreement about the rele-
vance of vertical effects for AAs decision on a merger request, it is controversial
whether vertical effects influence the market negatively by foreclosing competi-
tors or positively by reducing transaction costs. Here we find that the presence
of vertical effects is much more probable for those firms where AA decides to
intervene. La Noce et al. (2006) found similar results.

• The probability of post market share less than 20% decreases from 0.7438 to
0.0922, whereas the probability of post market share greater than 40% increases
from 0.0777 to 0.7006.

• The HHI index decreases in the first two classes and increases in the last three
classes.

Note that when evidence is propagated in the network, all marginal probability
tables are updated accordingly.
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4. Duopoly representation.

4.1. The prisoner’s dilemma. The prisoner’s dilemma [Flood (1958)] de-
scribes cooperation by rational agents. The PD is a 2-player symmetric game
where the two players have the same rôle and have the same set of potential strate-
gies termed cooperate C and defect D. The PD is a simultaneous game where the
players choose just once and simultaneously and the unique equilibrium5 is the pair
of strategies (D, D). Players’ payoffs are such that defect is a dominant strategy,
that is, a strategy that is preferred by each player independently of his/her rival.
The problem is that this strategy is inefficient since both players would gain more
if they cooperated and adopted the (C, C) strategy. The source of the dilemma lies
in the fact that each player has an incentive to defect if the rival player cooperates,
so that an agreement to cooperate would not be credible.

Simultaneous games, such as the PD, are commonly represented in either the
normal or the extensive form. In the normal form representation, the PD can be
described by the payoff matrix in Table 2. The two firms, Firm1 and Firm2, have
two available strategies: cooperate C or defect D. The payoffs need to be such that
d > a > b ≥ c and 2a > (c + d) > 2b, so that (C,C) maximises players’ joint
payoff. Given that b < a, the strategy pair (D,D) is strictly worse than (C,C).

In the extensive form the game is represented by a tree. Figure 5(a) shows
the tree representation (equivalent to Table 2) of the simultaneous duopoly game.
Firm1 moves first and chooses either C or D, Firm2 moves second but without
knowing what Firm1 did.

A symmetric duopoly, such as a market with two symmetric profit-maximising
firms in mutual competition, can be modelled as a PD. The duopoly profit is the
gain of each of the sellers in this market.

Suppose the two firms produce identical goods, incurring constant marginal
costs, and they compete setting their prices. Since consumers will buy from the
firm charging the lowest price, firms have an incentive to undercut their price to
conquer the market (noncooperative or defect strategy). At equilibrium firms will

TABLE 2
Payoff matrix for the prisoner’s

dilemma

Firm2
C D

Firm1
C a,a c, d

D d, c b, b

5An equilibrium is a strategy pair such that no player can improve his position by unilaterally
changing his decision. In other words, it is a situation in which all players choose mutual best re-
sponses.
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FIG. 5. (a) Tree representation of the simultaneous duopoly game. (b) Corresponding Bayesian
network representation.

set the competitive price (the market price under perfect competition which is equal
to firm’s marginal cost of production), gaining duopoly profit b = 0. This result is
often called a paradox, since there are just two firms in the market and still the
perfectly competitive strategy yields zero profit. However, if firms decide to coop-
erate and set the monopoly price, they can share positive monopoly profits. The
monopoly profit is always greater than twice the duopoly profit, 2a > 2b.

In most markets, from a consumer’s point of view, goods are not identical. This
gives firms the ability to raise the price above the marginal cost of production with-
out losing their customers to competitors. In a symmetric duopoly with product
differentiation firms produce and sell differentiated goods (imperfect substitutes).
As long as product differentiation is not too large, firms face a PD: if they coop-
erate, they could share monopoly profit, but they have incentive to defect if the
rival cooperates. However, when goods are imperfect substitutes, firms make pos-
itive duopoly profit, b > 0, under the noncooperative strategy pair (D,D). This
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duopoly profit is smaller than half the monopoly profit, b < a, so that the cooper-
ative strategy C is superior for each firm singly.

4.2. The prisoner’s dilemma network. Bayesian networks for decision support
systems can incorporate both decision nodes and utility nodes [Jensen (2001)],
giving rise to an influence diagram (ID) representation. IDs were extended by
Lauritzen and Nilsson (2001) to allow for limited information decision problems
(LIMIDs). A different approach to represent and solve games using graphical mod-
els was initially proposed by Smith (1996) and later by La Mura (2000), Kearns,
Littman and Singh (2001) and Koller and Milch (2003).

The one stage PD being a symmetric game can be represented by the ID net-
work in Figure 5(b). The simultaneity of the game is implemented by representing
Firm1 as a random variable (oval node) and Firm2 as the decision maker (rect-
angular node) having two possible actions: defect D and cooperate C. Firm2’s
decision is influenced by Firm1. Firm1’s associated prior probability distribution
represents Firm2’s subjective opinion about Firm1’s behaviour. Random variable
Firm1 has two states, defect (coded as 0) and cooperate (coded as 1), with uni-
form prior probabilities indicating Firm2’s ignorance about Firm1’s choice. Firm2
could assign different prior probabilities based on his/her prior knowledge about
Firm1’s behaviour. Table 3 shows Firms2’s utility [node Firm2’s utility U2
in Figure 5(b)] based on Firm1 and Firm2’s actions. Thanks to game symmetry,
Table 3 is equivalent to the normal form payoff matrix given in Table 2.

Once the network is compiled, the optimal decision for Firm2 is automatically
computed by maximising expected utility. Since the game is symmetric, Firm2’s
optimal strategy coincides with Firm1’s optimal strategy and this pair of strategies
constitutes a Nash equilibrium. Thus, in the ID representation the choice of Firm2
as decision maker is without loss of generality.

In what follows we always consider Firm2 as the decision maker. The prior
probability distribution on the random variable Firm1 reflects Firm2’s subjective
opinion on the type of rival player he/she is playing against.

4.3. Repeated prisoner’s dilemma. Since firms interact more than once, we
need to consider the repeated version of the PD. In repeated games, players’ actions
are observed at the end of each period and their overall payoff is the sum of the

TABLE 3
Firm2’s utility U2 conditional on Firm1 and Firm2’s actions

Firm1 Defect (0) Cooperate (1)

Firm2 Defect (0) Cooperate (1) Defect (0) Cooperate (1)

U2 b c d a
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payoffs in each stage discounted by a factor δ ∈ [0,1]. Thus, players may condition
their play on the opponents past play. Here we assume that firms never forget
previous moves and other information acquired, in other words, we assume that
firms have perfect recall.

The repeated PD analyzes how threats and promises about future behaviour can
affect and improve current behaviour. When the time horizon is indefinite firms
may decide to adopt a cooperative strategy where the discount factor δ represents
uncertainty about the number of stages faced by firms. This uncertainty is usually
not modelled within the game itself. In Section 5 we illustrate how to incorporate
this uncertainty in the merger control problem.

4.4. OOBN for repeated prisoner’s dilemma. Generalising the tree represen-
tation in Figure 5(a) to repeated games is both computationally and graphically
demanding. The game tree grows exponentially with the number of stages. For
example, Figure 6(a) shows the tree representation of a two-stage PD.

OOBNs are particularly well suited for an application area such as the present
because the similarity between network elements (the stages of the game) can be

FIG. 6. (a) Tree representation of the two-stage duopoly game. (b) Corresponding OOBN repre-
sentation.
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exploited in a modular and flexible construction. Object-oriented Bayesian net-
works have a hierarchical structure where a node itself can represent a (object-
oriented) network containing several instances of other generic classes of net-
works. Instances have interface input and output nodes as well as ordinary nodes.
Instances of a particular class have identical conditional probability tables for non-
input nodes. Instances are connected by arrows from output nodes into input nodes.
These arrows, as well as those from ordinary nodes to input nodes, represent iden-
tity links, whereas arrows between two ordinary nodes or an output node and an
ordinary node represent probabilistic dependence. The graphical simplicity auto-
matically produces computational efficiency. As a result, increasingly complex
networks can be constructed by simply adding new objects which perform dif-
ferent tasks.

Since we assume perfect recall, HUGIN6 version 6.9 software, which automati-
cally implements the fact that at every stage the decision maker recalls all previous
decisions, is used to build the networks. This implies that each decision depends on
the decisions taken in all previous stages, so even though the graphical represen-
tation does not implicitly represent this, in the junction tree construction [Cowell
et al. (1999)] these dependencies are explicitly considered. In what follows we in-
dicate an instance in bold. Figure 6(b) shows the OOBN two-stage repeated game
that corresponds to the tree representation in Figure 6(a). Each rounded rectangle
represents an instance termed Duopoly and models a stage of the repeated game.
In order to specify the links between successive stages (instances), Figure 5(b)
(which represents each Duopoly instance) needs to be generalised as shown in
Figure 7.

FIG. 7. Class network for repeated PD with associated marginal prior probability tables.

6www.hugin.com.

http://www.hugin.com
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TABLE 4
Conditional probability table for Firm1∗ given stop? and Firm2

Stop? No (0) Yes (1)

Firm2 Defect (0) Cooperate (1) Defect (0) Cooperate (1)

Defect (0) 1 0 0 0
Cooperate (1) 0 1 0 0
Stop (2) 0 0 1 1

The node Firm1∗ models the behaviour of Firm1 in the next stage. In each
stage the game can either continue or terminate. Firm1 and Firm1∗ now need
to be given three states: defect (0), cooperate (1) and stop (2). Since in a repeated
game every stage depends on the actions taken in the previous stages, Firm1∗ is
logically dependent on Firm2. Uncertainty about the existence of further stages
is modelled by adding a new random node stop?. Node stop? has two states,
{0,1} according to whether the game continues or stops and has a Bernoulli dis-
tribution Bin(1,1 − delta). The parameter node delta is the probability that
the game continues P(stop?= 0). Node delta has a uniform prior distribution
over a plausible set of values.

In the first stage, to ensure that the game starts, Firm1 can only choose between
defect and cooperate. Table 4 gives the conditional probability distribution of
Firm1∗ given stop? and Firm2. It shows that if the game stops (stop?= 1),
Firm1∗ stops with certainty, else Firm1∗ cooperates or defects according to
Firm2’s decision. This implements the tit for tat (TFT) strategy in which Firm1
begins by cooperating and cooperates as long as Firm2 cooperates, and defects
otherwise. Variations on this strategy will be shown in Section 4.4.1.

4.4.1. Other strategies. Experimental results show that people, contrary to
standard prescriptions of game theory, may cooperate more frequently than ex-
pected [Andreoni and Miller (1993)]. An explanation behind this empirical evi-
dence is provided by the theoretical models of Kreps and Wilson (1982) and Kreps
et al. (1982). Figure 7 can be modified to provide a general class network that ex-
plicitly incorporates a set of potential strategies for Firm1 other than TFT. This
network is displayed in Figure 8. The network can, for example, model a repeated
PD with incomplete information, that is, where there is uncertainty about the type
of rival that a firm is going to face. The conditional probability distribution of
Firm1∗ reflects Firm2’s uncertainty about its opponent. If Firm2 believes Firm1 to
be “altruistic”, it can expect Firm1 to cooperate, with probability αD > 0, even if
it defected in the previous stage. On the other hand, if Firm2 believes Firm1 to be
“egoistic”, then it expects Firm1 to cooperate, with probability αC < 1, even if it
cooperated in the previous stage.



728 J. MORTERA, P. VICARD AND C. VERGARI

FIG. 8. Generalised repeated PD network representing various strategies and incomplete informa-
tion.

Additional nodes, Firm1∗|D and Firm1∗|C, having Bernoulli distributions
with parameter nodes alpha_D and alpha_C are added to the network of Fig-
ure 7. Node Firm1∗ takes value 2 if the game stops in the current stage, whereas if
the game continues (stop?= 0), the value of Firm1∗ depends on that of Firm2.
If Firm2 defects (cooperates), Firm1∗ is Firm1∗|D (Firm1∗|C), with al-
pha_D (alpha_C) being the probability that Firm1 will cooperate in the next
stage given that Firm2 defected (cooperated) in the previous stage. The condi-
tional probability distribution of Firm1∗ is thus defined by the logical expres-
sion if (stop== 1,2, if (Firm2== 0,Firm1∗|D,Firm1∗|C)).7 Firm1∗ rep-
resents Firm2’s subjective opinions about Firm1’s behaviour in each single stage
of the repeated game.

This model can also incorporate a large set of strategies, including TFT, and
it can model scenarios where the probability that the game continues depends on
external factors. An illustrative example is given in Section 5.

5. Global network. Thanks to the modularity and flexibility of OOBNs, it is
possible to integrate the AA and the Duopoly networks, giving rise to a unique
overall OOBN representation of the problem [Figure 1(a)]. An expanded repre-
sentation of this model is shown in Figure 9.

The Duopoly network (the bottom network) in Figure 9 is similar to the network
in Figure 8 except that the uncertainty about the next stage stop? is now identi-
fied with AA Intervention in the AA network (the top network in Figure 9)
representing AAs decision process.

7The function if (A,x, y) takes value x if condition A is satisfied, otherwise y.
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FIG. 9. Integrated AA-duopoly merger stage game.

The AA decision process is usually dynamic; it can change over time due to
changes in the antitrust law as well as changes in market conditions. We are thus
interested in the repeated version of the model in Figure 9.

Figure 10 represents the global model (Figure 9) repeated four times for a three-
stage merger game with uncertainty on the number of stages. In general, an OOBN
with n + 1 instances models a game repeated n times with uncertainty about the
successive stage. In this model, the AAs decision process is represented by the
same instance in each period. This is justified by assuming that, even if the AA
decides not to intervene, it continues monitoring firms’ behaviour in successive
stages.

5.1. Firms’ strategy. We now study the sensitivity of cooperative behaviour
with respect to two sets of utilities and all the factors that might directly or indi-
rectly influence the AAs decision. We consider both the TFT strategy and a more
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FIG. 10. OOBN representing a three-stage repeated merger game with uncertainty about the num-
ber of stages.

general strategy. The TFT strategy can be implemented using the global network
by setting Firm1∗ = 1 in stage Duopoly_1 and Firm1∗|C= 1, Firm1∗|D= 0
in all other stages.

5.1.1. TFT strategy: Perfect substitutability. Table 5 shows an example of
Firm2’s utility for a market with perfect substitutable goods. Figures 11, 12 and
13 show the marginal probabilities for a selection of random variables and the
expected utilities for the decision nodes in the first stage AA_1 and Duopoly_1.

When no evidence about the variables in the market is inserted in the network
(Figure 11) Firm2’s optimal decision is to cooperate (1), having expected utility
equal to 443.40 (while defect has expected utility equal to 385.47). This could be
in part due to the small probability of an AA intervention, 0.0189.

Figure 12 shows the case where there are entry barriers in the market of interest
(Entry Barriers= Yes) and the merger causes the HHI variation to be in the

TABLE 5
Firm2’s utility U2 for a market with perfect substitutability

Firm1 Defect (0) Cooperate (1)

Firm2 Defect (0) Cooperate (1) Defect (0) Cooperate (1)

U2 0 −10 150 100
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FIG. 11. Marginal probabilities and optimal decision in the first stage AA_1 and Duopoly_1, under
perfect substitutability, when Firm1 plays TFT.

last class (HHI Variation>= 1000). The resulting probability of AA interven-
tion shoots up to 0.9435 and Firm2’s optimal decision is to defect with expected
utility of 394.72, against 350.93 for cooperating. This strategy still remains opti-
mal (although with a smaller gap between the expected utilities) when based only
on the presence of entry barriers.

Figure 13 shows the case where, as before, there are entry barriers, the HHI
variation is ≥1000, and customers exert competitive pressure on the merging par-
ties (Buyer Power = Yes). The probability of AA intervention decreases from
0.9435 to 0.2915 and Firm2’s optimal decision is to cooperate, having expected
utility of 416.14. It is interesting to note that buyer power is able to counterbalance
the effect of both entry barriers and a large HHI variation.

5.1.2. TFT strategy: Imperfect substitutability. We now use Firm2’s utility for
a market with imperfect substitutable goods given in Table 6.
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FIG. 12. Marginal probabilities and optimal decision in the first stage AA_1 and Duopoly_1,
under perfect substitutability, when Firm1 plays TFT, Entry Barriers = Yes and HHI
Variation>= 1000.

Figure 14 shows results when evidence about the market is not available.
Firm2’s optimal decision is to cooperate (1), having expected utility equal to
601.33 (while defect has expected utility equal to 513.21). Again, this is most
plausibly due to the small probability of an AA intervention.

When Entry Barriers= Yes and HHI Variation>= 1000, Firm2’s ex-
pected utility to cooperate or to defect is almost equal, although the probability of
AA intervention is close to 1 (Figure 15).

Furthermore, in contrast to perfect substitutability, accounting for the presence
of entry barriers alone is not sufficient to modify the optimal decision from coop-
erate to defect. The main reason being that when the firms’ products are imperfect
substitutes, the set of utilities reflects the fact that the defect strategy does not cor-
respond to such a strong punishment, so that a firm can continue to cooperate even
if there is high risk that the game might stop.
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FIG. 13. Marginal probabilities and optimal decision in the first stage AA_1 and Duopoly_1,
under perfect substitutability, when Firm1 plays TFT, Entry Barriers = Yes, HHI
Variation>= 1000 and Buyer Power= Yes.

5.1.3. Incomplete information. Assume that Firm2 has incomplete informa-
tion about the type of rival it is going to face. This is a reasonable scenario, as
firms are likely to be uncertain about their rivals’ costs and benefits from coopera-
tion.

TABLE 6
Firm2’s utility U2 for a market with imperfect substitutability

Firm1 Defect Cooperate

Firm2 Defect Cooperate Defect Cooperate

U2 100 50 160 150
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FIG. 14. Marginal probabilities and optimal decision in the first stage AA_1 and Duopoly_1, under
imperfect substitutability, when Firm1 plays TFT.

Table 7 shows Firm2’s expected utility in case of perfect substitutability
(based on Firm2’s utility given in Table 5) for different probability values of
αC and αD (nodes alpha_C and alpha_D in Figure 9). Three types of
information about the relevant market are considered: no evidence, evidence
E1 = {Post Market Share ≥ 40%, Entry Barriers = Yes and Buyer
Power = Yes} and evidence E2 = {Entry Barriers = Yes and HHI Vari-
ation ∈ [500–1000]}. The optimal decision yielding the highest expected utility
for each scenario is italicised.

The second last row of Table 7 gives the results when inserting a uniform like-
lihood function for αC > 0.5 and αD < 0.5. In this case, Firm2’s optimal decision
is to cooperate under no evidence and E1. Whereas, for E2, when the probability
of AA intervention is close to one, E[u(D)|E2] > E[u(C)|E2], so Firm2’s optimal
decision is to defect. These results coincide with those obtained using the TFT
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FIG. 15. Marginal probabilities and optimal decision in the first stage AA_1 and Duopoly_1,
under imperfect substitutability, when Firm1 plays TFT, Entry Barriers = Yes and HHI
Variation>= 1000.

strategy shown in the last row of Table 7. Recall that the TFT strategy corresponds
to setting αC = 1 and αD = 0 in all Duopoly instances.

Now, suppose Firm2 believes that its rival cooperates—with probability αC =
0.8—if Firm2 cooperates; and cooperates—with probability αD = 0.25—even if
Firm2 defects. This is implemented in the network inserting and propagating ev-
idence alpha_C = 0.8 and alpha_D = 0.25 in each Duopoly instance. As we
can see in Table 7, Firm2’s expected utility to cooperate, E[u(C)] = 316, is greater
than to defect, E[u(D)] = 286. Introducing evidence E1 in AA_1, the two deci-
sions become almost utility equivalent. Whereas, under the TFT strategy, E1 yields
an optimal decision to cooperate E[u(C)|E1] = 394, whereas E[u(D)|E1] = 390.

Recall that when information about the relevant market is not taken into ac-
count, the probability of AA intervention is 0.0189. If the probability that Firm1
cooperates when Firm2 defects is very small (αD = 0.1), then its optimal decision
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TABLE 7
Firm2’s expected utility for different values of αC and αD , without evidence, with evidence E1 and

E2, for likelihood evidence and for the TFT strategy

Without evidence With evidence E1 With evidence E2

αC αD E[u(D)] E[u(C)] E[u(D)|E1] E[u(C)|E1] E[u(D)|E2] E[u(C)|E2]
1 0.25 337 388 329 339 322 298
0.8 0.25 286 316 278 277 271 245
0.6 0.25 238 250 228 219 220 193
0.4 0.25 203 193 190 170 180 152

1 0.2 332 388 326 339 321 298
0.8 0.2 281 316 275 277 270 245
0.6 0.2 231 247 225 217 219 193
0.4 0.2 192 188 183 167 177 149

1 0.1 321 388 321 339 320 298
0.8 0.1 270 316 270 277 269 245
0.6 0.1 219 243 219 215 218 193
0.4 0.1 172 179 171 159 170 143

Likelihood 280 313 273 275 268 243
TFT 385 443 390 394 395 353

is to cooperate, even for small values of αC . On the other hand, when αD ≥ 0.2,
defecting is Firm2’s best choice for αC = 0.4, yielding a different behaviour from
that obtained using the TFT strategy. However, using evidence E1, when the prob-
ability of AA intervention is 0.514, E[u(D)|E1] > E[u(C)|E1] even when Firm1
is slightly altruistic, αD ≤ 0.2 and αC ≤ 0.6. Furthermore, if αD = 0.25, then
E[u(D)|E1] > E[u(C)|E1] also for αC ≤ 0.8. If the TFT strategy is adopted,
Firm2 optimally cooperates both under no evidence and E1, whereas for E2 the
associated probability of AA intervention is very large, so that Firm2’s optimal
decision is to defect for all values of αC and αD considered here.

While the examples shown here are merely illustrative, the number of questions
and different strategies that can be analysed is clearly huge and increases with the
number of stages considered.

6. Conclusion. When the antitrust authority starts an investigation, the two
potentially merging firms are likely to represent a relevant share of the market,
hence, they might affect the price of the goods traded. In contrast, the decisions
of other firms inside the market, but outside the merged entity, can be assumed to
be irrelevant. In circumstances such as these, a PD duopoly model is a reasonable
representation.

From an economic perspective, the methodology we present can be seen as a
useful decision support system. It models and integrates the different uncertainty
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sources deriving from a rival competitor and from the economic environment. Fur-
thermore, the model can be updated as we consider new cases, changes in mar-
ket conditions or new antitrust regulations. The emphasis in this paper is to show
the potentiality of OOBNs in the analysis of duopoly markets with external un-
certainty. For the sake of simplicity, the duopoly is represented by a rather naive
game theoretic model; in future studies we wish to implement a more complex
interaction model between firms.

As is standard in industrial organization, the firm is seen as a single decision
making unit; generalisations of our OOBN to model firms’ internal organization
could also be considered. Indeed, a firm’s top and middle management may have
different objectives from its owner. An appropriate BN could be built to model
these interrelationships and incorporate them into a more general OOBN model.
This would yield a more complete and realistic picture of firms’ cooperative be-
haviour. We hope to develop this and other aspects in the future.
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