
The Annals of Applied Statistics
2013, Vol. 7, No. 2, 1074–1094
DOI: 10.1214/12-AOAS620
© Institute of Mathematical Statistics, 2013

BAYESIAN NONPARAMETRIC HIERARCHICAL MODELING FOR
MULTIPLE MEMBERSHIP DATA IN GROUPED ATTENDANCE

INTERVENTIONS1

BY TERRANCE D. SAVITSKY AND SUSAN M. PADDOCK

RAND Corporation

We develop a dependent Dirichlet process (DDP) model for repeated
measures multiple membership (MM) data. This data structure arises in stud-
ies under which an intervention is delivered to each client through a sequence
of elements which overlap with those of other clients on different occasions.
Our interest concentrates on study designs for which the overlaps of se-
quences occur for clients who receive an intervention in a shared or grouped
fashion whose memberships may change over multiple treatment events. Our
motivating application focuses on evaluation of the effectiveness of a group
therapy intervention with treatment delivered through a sequence of cogni-
tive behavioral therapy session blocks, called modules. An open-enrollment
protocol permits entry of clients at the beginning of any new module in a man-
ner that may produce unique MM sequences across clients. We begin with a
model that composes an addition of client and multiple membership module
random effect terms, which are assumed independent. Our MM DDP model
relaxes the assumption of conditionally independent client and module ran-
dom effects by specifying a collection of random distributions for the client
effect parameters that are indexed by the unique set of module attendances.
We demonstrate how this construction facilitates examining heterogeneity in
the relative effectiveness of group therapy modules over repeated measure-
ment occasions.

1. Introduction. For many applications in which data have a multilevel struc-
ture, observations on a study participant might not be nested within a single higher
level unit. Multiple membership (MM) modeling is used to account for such data
structures which arise in applications such as the estimation of teacher effects from
student test scores, where each student is typically linked to multiple teachers over
one or more grades [Hill and Goldstein (1998)]. MM structures also occur in the
analysis of health care costs when patients are treated by multiple providers [Carey
(2000)] and smoothing disease rates when modeling health outcomes across geo-
graphic areas [Langford et al. (1999)].

In our motivating application, the MM structure arises in a study of the effect
of group cognitive behavioral therapy (CBT) on reducing depressive symptoms
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among clients in residential substance abuse treatment. The Building Recovery by
Improving Goals, Habits, and Thoughts (BRIGHT) study [Watkins et al. (2011)]
was a community-based effectiveness trial of a group cognitive behavioral ther-
apy (CBT) intervention for treating residential substance abuse treatment clients
having depressive symptoms. The BRIGHT study employed a quasi-experimental
design in which cohorts of clients at each of four study sites received either resi-
dential treatment as usual (UC) (n = 159) or residential treatment enhanced with
the BRIGHT intervention (CBT) provided by trained substance abuse treatment
counselors (n = 140). Clients were assigned to receive either CBT or UC accord-
ing to which intervention was offered at their study sites at the time of entry into
residential substance abuse treatment. CBT and UC were offered at each study
site on an alternating basis over time. The clients assigned to the CBT condition
were expected to complete four modules of group CBT, with each module con-
sisting of four thematically-similar sessions offered over a two-week period. This
sequence of modules was then offered on a repeating basis. In all, S = 61 group
CBT modules were offered to the clients assigned to the CBT condition. These 61
modules were divided into G = 4 CBT open-enrollment therapy groups, which
are sequences of sessions that have distinct sets of clients; the number of clients
enrolled in each open-enrollment group was 17, 21, 19, and 83, respectively. En-
rollment into the therapy group occurs on an open basis [Morgan-Lopez and Fals-
Stewart (2006), Paddock et al. (2011)], with clients entering the therapy group at
the start of new modules. The primary study outcome is client depressive sympto-
mology, as measured by the Beck Depression Inventory-II (BDI-II) [Beck, Steer
and Brown (1996)]. The BDI-II score is a sum across 21 four-level items (scored
0–3), with a higher score indicating a greater level of depressive symptoms. The
BDI-II score for client i is measured up to oi times, with oi = 1 for clients with
only a baseline assessment at study entry and up to oi = 3 for clients measured
as well at both 3 and 6 months post-baseline. The MM structure arises here since
client outcomes might be correlated due to common module attendance, and the
BDI-II scores are not uniquely associated with a single module but rather with all
modules attended by a client.

For longitudinal studies in which participants belong to multiple higher-level
units, the standard analytic approach is to include a single set of random effects
terms that are assumed to be constant over time to account for the multiple mem-
bership. However, constraining these random effects to be constant across time
does not allow for changes in correlations among outcomes for clients who attend
modules together; their outcomes might be more strongly correlated immediately
following group therapy versus at baseline or longer term follow-up times. Fur-
ther, including distinct terms in the model to account for multiple membership
and for the correlation of repeated measurements within-client might be too re-
strictive for applications such as group cognitive behavioral therapy (CBT). Not
all clients benefit similarly from group therapy [Smokowski, Rose and Bacallao
(2001)]. For example, group climate and cohesion are associated with improved
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outcomes [Ryum et al. (2009), Crowe and Grenyer (2008)]. Thus, not only might
the effects of modules change over time, but also the effects of modules on partic-
ipant outcome trajectories might vary across study participants.

We present a dependent Dirichlet process (DDP) model for repeated measures
multiple membership data. Specifically, we propose a set of random distributions
for client random effect parameters that are indexed by therapy group module at-
tendance sequences. Our model allows one to obtain treatment effect estimates
for group therapy versus a comparison condition that account for the correlation of
client outcomes due to the attendance sequences, with the framework embedded in
a hierarchical construction for modeling repeated measures data. One may use our
approach to examine whether there is heterogeneity in the relative effectiveness of
group therapy modules by identifying clusters of clients whose outcome trajecto-
ries vary across modules. Our framework is flexible enough to retain application-
specific modeling choices. For the BRIGHT study, this includes specifying a
proper conditionally autoregressive (CAR) base distribution for the nonparametric
prior on module random effects, which accounts for the open enrollment-induced
client overlap in attendance of modules that are offered at adjacent time points
[Paddock et al. (2011)]. We demonstrate that the DDP model may be recast for
estimation as a DP under our multiple membership linkage of clients to treatment
in a similar fashion as for the analysis of variance (ANOVA) DDP [De Iorio et al.
(2004)].

In Section 2 we introduce an additive model that employs client and MM ran-
dom effects for BRIGHT study modules that was examined for open-enrollment
group therapy data by Paddock and Savitsky (2013), and then build upon that work
by introducing a multivariate generalization to allow for time-varying MM ran-
dom effects. We present the DDP model in Section 3 to generalize the additive
MM model to jointly model dependence owing to repeated measures within clients
and group therapy module participation. Brief mention is made of our computa-
tional approach and software solution for conducting posterior simulations under
the multiple membership models in Section 4, followed by an exploration of the
properties of the models on simulated data in Section 5. Our motivating applica-
tion focuses on the assessment of a group CBT intervention deployed in an open-
enrollment study design for the treatment of depressive symptoms among clients
in residential substance abuse treatment in Section 6. We conclude with discussion
and conclusions in Section 7.

2. Multiple membership additive semi-parametric models. This section
introduces model constructions that include module random effects, which are
mapped to each client according to the modules attended by that client using mul-
tiple membership modeling. These models permit inference about the relative ef-
fectiveness of the CBT intervention while accounting for differences in module
effects as well as the dependence induced among clients based on overlaps in the
sequences of modules attended. A separate client random effects term captures the
within-client dependence among repeated measures.
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2.1. Model construction and definitions. We first begin with the model of
Paddock and Savitsky (2013) for modeling longitudinal post-treatment outcomes
and allowing outcomes for clients who attend the same therapy group to be corre-
lated:

yij = μ + d′
ijβ + z′

ij bi + x′
iγ + εij ,(1)

where yij is the BDI-II depressive symptom score for client i (i = 1, . . . , n) at
repeated measurement event j = (1, . . . , oi). The global intercept is represented
by μ. dij are the fixed effects predictors and their associated effects are β . We pa-
rameterize dij = (Ti, tij , t

2
ij , Titij , Tit

2
ij ) for the BRIGHT study, where Ti specifies

an indicator for the treatment arm assigned to client i [Ti = 1 for clients receiving
cognitive behavioral therapy (CBT), Ti = 0 for those receiving the “usual care”
(UC)] and tij denotes the continuously-valued time at which yij was observed.
The components of dij are chosen to estimate the effects on depressive symptom
scores of CBT assignment, time, and the interaction of CBT assignment and time;
a quadratic specification was chosen based on previous data analysis [Paddock
and Savitsky (2013)]. The random effects predictor, zij , is a q × 1 vector associ-
ated with the q random effects for client i, {bi}. We set zij = (1, tij , t

2
ij ) for the

BRIGHT study, so that the (q = 3) × 1 vector of random effect parameters for
client i, bi , capture client-specific variation in change in BDI-II scores over time.
Our parameterization of fixed and client random effects employs global second or-
der polynomial terms to enforce smoothness and prevent overfitting under a study
design with a relatively small number of measurement waves per client, as is typ-
ical of behavioral intervention studies such as BRIGHT. The second-to-last term
allows for multiple membership modeling since depressive symptom scores ob-
served post-treatment, yij , are not linked to specific therapy group modules, but
rather to all modules attended by client i. This term maps the yij ’s to the vector
of S module random effects, γ , by multiplying γ by an S×1 weight vector, xi , that
is normalized to sum to 1 [Hill and Goldstein (1998)]. In particular, Si equals the
number of modules attended by client i; xis = 1/Si if client i attended module s

and xis = 0 otherwise. Let N = ∑
i oi denote the number of repeated measures

observed for all clients. Observational error is indicated by εij
i.i.d.∼ N (0, τ−1

ε ). We
produce within-sample fitted client growth trajectories in Sections 5 and 6 with
employment of (β, {bi},γ ).

2.2. Distribution of client random effects. Though one may parametrically
model the client random effects, {bi}, we model them nonparametrically using
a Dirichlet process (DP) prior to motivate the subsequent DDP development and
to exploit the DP’s usefulness for flexibly modeling the distribution of the {bi}’s
despite having no more than three repeated measures per client in the BRIGHT
study [Paddock and Savitsky (2013)]. Specify

b1, . . . ,bn|F i.i.d.∼ F,(2)
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F |α,� ∼ DP(α,F0),(3)

where we choose the base distribution, F0 ≡ Nq(0,�−1), a convenient conju-
gate form that spans the support for b and simplifies posterior sampling while
still allowing the data to estimate a general form for F . We further specify
α ∼ Ga(a1 = 1, b1 = 1) to allow the data to estimate the DP concentration param-
eter, reflecting its importance for determining the total number of client clusters
formed. We may equivalently enumerate (2) as a discrete mixture [Sethuraman
(1994)],

F =
∞∑

h=1

phδb∗
h
,(4)

of countably infinite weighted point masses, where “locations” (b∗
1, . . . ,b∗

M) in-
dex the unique values for the {bi}. The discrete construction for F allows for ties
among sampled values for {bi}, so that M ≤ n and index clusters (i.e., clients
sharing locations or having same values of b) with n × 1, s where si = m implies
bi = b∗

m. Then the set, (s, {b∗
m}), provides an equivalent parameterization to {bi},

though the former provides better mixing under posterior sampling [Neal (2000)].

2.3. Distribution of module random effects.

2.3.1. Univariate module effects. Owing to the overlap in client attendance of
modules under open enrollment into group therapy, we specify a conditionally au-
toregressive (CAR) prior for module random effects to allow them to be correlated.
The degree of correlation is determined by the closeness of the modules, which de-
pends on how we define which modules are neighbors. We define modules offered
at adjacent time points within the same open-enrollment group as neighbors given
that clients tend to attend subsequent modules in the BRIGHT study’s residential
treatment setting [Paddock et al. (2011)].

To implement this, we enumerate a two-part form for the covariance matrix
[Besag, York and Mollié (1991)]. First, define an S × S adjacency matrix, �, to
encode dependence among neighboring modules where we set ωss′ = 1 if module s

is a neighbor of or “communicates” with module s′ (denoted with “∼” in s ∼
s′), and 0 otherwise. Construct D = Diag(ωs+), where ωs+ = ∑

j ωsj equals the
number of neighbors of module s. Then compose the covariance matrix, Q− =
(D−�)−, the Moore–Penrose pseudo-inverse, as Q is not of full rank, and specify
the joint distribution of random module effects,

γ |τγ ,� ∼ N
(
0,

[
τγ (D − �)

]−)
,(5)

where scalar precision parameter, τγ , controls the overall strength of variation.
The rank of (D − �) is S − G, where G represents the number of distinct open-
enrollment therapy groups [Hodges, Carlin and Fan (2003)].

We use the following model short-hand label for simulated data and BRIGHT
data analysis:
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• MMCAR: Employ the additive model of equation (1) under the joint prior con-
struction of equation (5) in the fashion of Paddock and Savitsky (2013).

Note that one could use a standard MM model for applications under which ran-
dom effects may be assumed exchangeable.

2.3.2. Multivariate module effects. The univariate module effects may be re-
placed with a multivariate model specification that relaxes the assumption of con-
stant module effects over time specified in equation (5). Restate equation (1),

yij = μ + d′
ijβ + z′

ij bi + (
x′
i�

)
zij + εij ,(6)

where S × q,� = (γ 1, . . . ,γ S)′, for each of the multivariate q × 1, γ s . We again
assume a second order polynomial model, but this time for the module effects,
where each module, s, is parameterized with a (q = 3) × 1 random effects vector
back multiplied by zij = (1, tij , t

2
ij ), which permits the effect of module s under

the BRIGHT study to vary with time, tij . We may most easily make the extension
of the CAR modeling of Besag, York and Mollié (1991) by stacking each of the
q,S × 1 columns from � into qS × 1,G = (γ (1), . . . ,γ (q)) for the S × 1,γ (s).
Then compose the multivariate CAR prior,

G|�,� ∼ N
(
0,

[
(D − �) ⊗ �

]−)
(7)

for the qS ×qS precision matrix, Q = (D−�)⊗�, where � describes the depen-
dence among the q random effects per module and is specified to be identical to
that used for the base distribution associated with the prior (2) imposed on {bi}. In
summary, equation (6) extends equation (1) by permitting MM random (module)
effects to vary over time. Assign the following label for our multivariate construc-
tion:

• MM_MV: Employ the additive model of equation (6) under the joint prior con-
struction of equation (7).

2.4. Prior distributions for other parameters. Scalar precision parameters
(τε, τγ ) are each specified with a Ga(0.1,0.1) prior with mean 1, while the q × q

precision matrix � ∼ W(q + 1, Iq), where the degrees of freedom are set to the
minimum value to encourage updating by the data. Last, (μ,β) each receive non-
informative priors. In instances where our priors specify fixed hyperparameters,
we use values intended to be easily overwhelmed in the presence of data rather
than eliciting them from our data.

3. Dependent Dirichlet process for multiple membership data. To allow
for greater flexibility in modeling changes in module effects over time as well as
the effects of modules on client depressive symptom trajectories, we now refor-
mulate equation (1) to explicitly index the client random effects by group therapy
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module identifiers, under which each client is assigned a q × (S + 1) matrix of
random effects. This contrasts with the previous specification of sets of q × 1,
{bi}i=1,...,n client random effects and the S × 1 module effects, γ , given in equa-
tion (1). The resulting client-by-module matrix parameterization arises from re-
placing a single random prior distribution for client effects with a collection of
random prior distributions that are indexed by the unique module attendance se-
quences. First, we reformulate equation (1) in a more flexible composition,

yij = μ + d′
ijβ + z′

ij�ixi + εij ,(8)

�1, . . . ,�n|F i.i.d.∼ F,(9)

F |F0 ∼ DP(α,F0),(10)

where we have replaced q ×1,bi and S ×1,γ with the q × (S +1),�i for client i

composed with

�i = [bi ,a1,i , . . . ,aS,i].(11)

The first column of �i employs the analogous bi client random effects from the
additive models. The {as,i}s=1,...,S collect a set of q × 1 module random effect
vectors for client i. We note that every client receives an effect term, as,i , for all
of the S modules, even for modules they have not attended; such is even true for
clients in the UC arm. By contrast, the additive model of equation (1) is only de-
fined at observed sequences of client module attendances, while this formulation
is defined over a broader space of potential module attendance sequences across
clients. We impose a DP prior on the set of client-by-module effects, �i , in order
that we may borrow strength and dimension reduce to discover clusters of clients
expressing differential response sensitivities to treatment exposures. Employment
of a continuous base distribution under the DP prior for the {�i}i=1,...,n allows the
posterior inference on an arbitrary sequence of group therapy module linkages for
each client. Effect values at unobserved modules are drawn from the nondegener-
ate continuous base distribution as updated by the observed module attendances.
The module effect estimates for unobserved attendances for each client are set
equal to the location values associated with the cluster to which the client is as-
signed. The ability to develop a proper posterior distribution for arbitrary module
attendance sequences is referred to by De Iorio et al. (2004) as nondegeneracy.

Each of the q × 1 columns of �i in equation (8) is back multiplied by xi , which
is the MM weight vector we earlier defined, but with a 1 prepended for a random
intercept. More specifically, for xi equal to some value x, we construct the latter
object as x ≡ (1, x1, . . . , xS) for xs ∈ [0,1] to encode the vector sequence for group
therapy module attendance. Under our MM construction, the (S + 1) × 1,x is
composed of values in [0,1] for

∑S
s=1 xs = 1 for clients who attend at least one

module, and
∑S

s=1 xs = 0 for clients who do not.
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We define the q × 1 parameter vector, θx,i ≡ �ix, resulting from composition
of the client-by-module random effects with the module attendance sequence. We
write θx,i and θx,i′ for clients i and i ′ that share the same attendance sequence,
x ∈ X . Construct the subsequence, (xs(1), . . . , xs(K)) for K ≤ S nonzero entries in
x corresponding to modules attended for one or more clients with xi = x. Then
we may provide the more granular construction, θx,i = bi + xs(1)as(1),i + · · · +
xs(K)as(K),i , for client i where we note that only those modules attended by client i

contribute to the likelihood. The multiplication of each as(k) by xs(k) reflects the
MM design with xs(k) ∈ [0,1].

Our formulation in equation (8) may be re-expressed with the q × 1 vector of
client random effects, θx,i , in a similar fashion as the q × 1 bi in equation (1),
but here we index the client random effects by module attendance sequence x. The
prior for θx,i is specified under a collection of random distributions, {Fx}, indexed
by the unique attendance sequences, x ∈ X ,

yij = μ + d′
ijβ + z′

ijθx,i + εij ,(12)

with random effects vector, zij , the same as composed in equation (1). Specify the
prior formulation for θx,i ,

θx,i |Fx
i.i.d.∼ Fx.(13)

We next enumerate a multiple membership dependent Dirichlet process (MM
DDP) set of nonparametric distributions indexed by the module attendance se-
quence, x, in the stick-breaking construction [Sethuraman (1994)],

Fx =
∞∑

h=1

phδθ∗
x,h

,(14)

of weighted point mass locations where the weights are common for all values of
x ∈ X , but the locations are indexed the unique attendance sequences (unlike for
the simpler DP). We note that marginally, for each x, the locations θ∗

x,h are ex-
changeable in h, such that Fx follows a Dirichlet process and we have established
the propriety of the MM DDP. Denote the following short-hand notation for MM
DDP construction,

θx,i |Fx
i.i.d.∼ Fx,(15)

{Fx,x ∈ X } ∼ MM DDP(α,F0),(16)

where we have extended the ANOVA DDP prior of De Iorio et al. (2004) to a
multiple membership framework for the set of effect random distributions, {Fx}.

We achieve equation (8) from equation (12) by extending a property of ANOVA
DDP to the MM DDP that rewrites equation (14) as a DP due to the finite indexing
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space of group therapy modules with

Fx =
∞∑

h=1

phδθ∗
x,h

(17)

=
∞∑

h=1

phδ�∗
hx = δx

∞∑
h=1

phδ�∗
h
,(18)

Fx = δxF.(19)

Then we may rewrite our DDP model formulation of equation (12) to the DP
construction specified in equation (8).

Though we use equations (8)–(10) to estimate the MM DDP, the conceptual
alternative in equations (12)–(14) provides insight into the inferential properties of
the MM DDP. The indexing of distributions, rather than just mean effects, by the
module attendance sequences better spans the space of distributions generating
the client random effects and allows the estimation of client module effects for
modules not attended.

We also gain insight into the manner in which strength is borrowed over the
set of module attendance sequences. The MM DDP formulation employs {Fx}x∈X
indexed by the set of unique module attendance sequences. Few clients, however,
may be expected to exactly overlap or to share the same x. Yet clients will overlap
for a portion of the module attendance sequences such that we have repeated ob-
servations for each module s ∈ (1, . . . , S) for estimation of the dependent {as,i′ }i′
for all i′ :xs,i′ > 0. The partial overlaps among the {x}x∈X induce a dependence
structure among the {Fx} based on the extent of overlaps.

3.1. Base distribution. We structure the base distribution, F0, for our q ×
(S + 1) client-by-module parameters to leverage the adjacency dependence of
the BRIGHT study modules. Compose F0 for draws for the cluster locations,
{�∗

m}m=1,...,M , as the product of multivariate Gaussian distributions for each of
the q × 1, b∗

m and the q × S, A∗
m = [a1,m, . . . ,aS,m] that, together, comprise

�∗
m = [b∗

m,A∗
m] with

b∗
m|� i.i.d.∼ Nq

(
0,�−1)

,(20)

A∗
m|�,�, ρ

i.i.d.∼ 0 + Nq×S

(
�−1,Q−1)

,(21)

where m indexes cluster location. The Nq×S construction in equation (21) employs
a separable (parsimonious) covariance formulation for the distribution on the set
of q × S matrix variate parameters, A∗

m. We have employed the notation of Dawid
(1981) under which the q × q , �, defines the precision matrix for the columns of
{A∗

m} and the S × S, Q, for the rows. The covariance formulation is equivalent
to Cov[vec(A∗

m)] = �−1 ⊗ Q−1. [See Hoff (2011) for an intuitive discussion of
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separable covariance formulations.] Last, the preceding 0 presents the value of the
q ×S mean. Consistent with prior formulations under the additive models, the q ×
q,� ∼ W (q + 1, Iq). We structure the S × S precision matrix, Q, which models
the module-induced adjacency dependence among the q × 1 set, {a∗

m,s}s=1,...,S ,
with a proper CAR formulation as enumerated in Jin, Carlin and Banerjee (2005),
where Q = (D−ρ�) and ρ ∈ (−1,1) ensures Q is of full rank and may be viewed
as a smoothing parameter that measures the strength of the adjacency association.
Matrices (D,�) hold the same definitions as earlier specified in Section 2.3.

Proceeding with the notation of Dawid (1981), we pull together the components
of the base distribution into

F0 = f
(
�∗

m|�,�, ρ
) = 0 + Nq×(S+1)

(
�−1,P−1)

,(22)

where P = diag(1,Q). Let us prepare F0 in the form we will use to conduct poste-
rior simulations by stacking the q rows of �∗

m [each an (S + 1) × 1 vector] to the
q(S + 1) × 1, δ∗

m = (δ′
1,m, . . . , δ′

q,m)′ in

F0 = f
(
δ∗
m|�,�, ρ

) = Nq(S+1)

(
0, [� ⊗ P]−1)

.(23)

Vectorize A∗
m in a similar manner to obtain the qS × 1, a∗

m|�,�, ρ
i.i.d.∼

N (0, [(D − ρ�) ⊗ �]−1), which is similar to (7) but is full rank to permit ef-
ficient joint posterior sampling under high within-cluster dependence among the
qS elements of a∗

m. Our MM DDP formulation specifies the full set of S module
effects for client i set equal to the location values, {a∗

m}, drawn from the CAR
base distribution for cluster m that contains client i for some posterior sampling
iteration.

Due to the BRIGHT study design, there were G = 4 open-enrollment therapy
groups. Each group was composed of modules having at least partial overlap with
another module with respect to the set of clients in attendance, and the sets of
clients in the four groups were different. We thus add more flexibility in (23) by
specializing the CAR prior in P to each open-enrollment therapy group with

P = diag(1,Q1,Q2, . . . ,QG),(24)

where we have defined a set, {Qg}g=1,...,G, of CAR precision matrices com-
posed as Sg × Sg,Qg = (Dg − ρg�g) and recover D = diag(D1, . . . ,DG) and
� = diag(�1, . . . ,�G), reflecting the disjoint, noncommunicating structure we
seek to model. It is noted by Jin, Carlin and Banerjee (2005) that the parameteri-
zation of the global scalar smoothing parameter, ρ, may be overly restrictive, and
they offer more heavily parameterized alternatives to permit the learning to adapt
more locally. Our specification that offers the indexing of ρg by disjoint group
allows smoothing across client-indexed module effects to be local to group. We
may specify other continuous, multivariate distributions in place of the CAR for
each group, including replacing the CAR covariance matrix construction with an
anistropic Gaussian process Savitsky and Vannucci (2010) or with an unspecified
formulation under an inverse Wishart prior.

Assign the following label for the nonparametric construction:
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• DDP: Equations (12)–(14) under the base distribution of equation (23).

4. Computational approach. Convergence of the sampler employed for sim-
ulation and the BRIGHT data analyses was assessed by employing a fixed width
estimator with Monte Carlo standard errors (MCSE) computed using the consis-
tent batch means (CBM) method [Jones et al. (2006)]. Computational software for
the posterior distribution simulations is available in our package for the R statis-
tical software [R Development Core Team (2011)] package called growcurves
[Savitsky and Paddock (2012)]. All of the methods, fit statistics and charts pre-
sented in this paper may be readily reproduced from growcurves. The parame-
ters under DP priors are all sampled in a conjugate fashion by marginalizing over
the random measure, F , to produce the Pólya urn scheme of Blackwell and Mac-
Queen (1973), under which each cluster assignment indicator is sampled from a
mixture of existing clusters and a new cluster. To the extent that a new cluster is
selected, associated parameter locations are generated (and subsequently resam-
pled) from the posterior of the base distribution under a single observation. [See
Paddock and Savitsky (2013) for details.]

We employ the cross-validatory, log pseudo marginal likelihood (LPML) leave-
one-out fit statistic as described in Congdon (2005) under importance resampling
of the posterior distributions over model parameters to estimate f (yi |y−i ,Mr),
where Mr indexes our models where the leave-one-out property induces a penalty
for model complexity and helps to assess the possibility for overfitting. We also
include the DIC3 criterion of Celeux et al. (2006) that composes the marginal
(predictive) density f̂ (y) to estimate f (y|θ) for composition of pD which is more
appropriate for the (DP or DDP) mixture formulations that characterize all of our
models. The nonpenalized mean deviance, D̄, is also utilized.

5. Simulation study.

5.1. Data generation. We generate data sets for simulation modeling
from (12) by allocating the first 132 clients to the CBT and a remaining 168 to
a nongroup therapy usual care (UC) condition. We employ 24 modules for our
simulation. Each CBT client attends 4 modules and each module on average holds
22 clients. The module attendance sequences, {xi}, used to select columns of the
client-indexed matrix effects, {�i}, are next generated in an open-enrollment man-
ner by randomly selecting the starting module for each CBT client in the block of
4 modules to which they are assigned. We set xi = [1,0, . . . ,0] for all UC clients
(who, by design, do not attend group therapy modules) as our hold-out or com-
parator module attendance sequence for identification. Such a design instantiates
partial overlaps among the module attendance sequences for clients. The minimum
and maximum numbers of clients linked to modules were restricted to 11 and 26,
respectively, to conform to practical limitations on the underlying structure for
group therapy modules. We simulate up to three repeated measures per client.
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We simulate 4 clusters of clients, where each cluster generates a (q = 3)×((S =
24) + 1) set of effect locations, �∗

m, shared by all clients assigned to them. The
q = 3 rows of �∗

m capture up to second order (intercept, linear, and quadratic)
polynomial effects for each module. The effects are generated in a vectorized fash-
ion from a multivariate Gaussian with the covariance formulation as outlined for
the DDP base distribution enumerated in Section 3.1. The module effects are gen-
erated from a multivariate proper CAR prior under the assumption of adjacency
for successive modules with smoothing parameter ρ = 0.7. A covariance matrix
allowing for q = 3 polynomial orders of module random effects is defined with

�−1 =
⎡
⎣

50 −12 0.5
−12 16 −1.2
0.5 −1.2 0.12

⎤
⎦ ,

where the diagonals encode the variance of the first through third polynomial or-
ders, respectively, for each of (S = 24)×1 multivariate cluster effect locations. We
formulate �−1 such that the first and second orders and the second and third orders
express negative correlations; for example, if the slope for the effect trajectory of
a given module expresses a negative trajectory, then the quadratic term is positive
and will tend to decelerate or bend the curve back up. Once the effects are gener-
ated, clients are randomly assigned to one of the 4 clusters with equal probability.
Each cluster will hold both UC and CBT clients, though the module attendance
sequence for the UC clients is set to 0’s such that their assigned module effects do
not contribute to the generation of the response values. The model intercept, μ, is
set to 35 and fixed effect coefficients are set to β = (−3,0.25,0,−2.5,0.25) for
dij = (tij , t

2
ij , Ti, Titij , Tit

2
ij ), respectively, for each client, i, where Ti is an indica-

tor for the treatment arm assigned to client i (Ti = 1 for CBT, Ti = 0 for UC) and
tij denotes the j = 1, . . . ,3 continuously-valued time at which yij was observed,
taking on value 0,3, or 6 months. The q × (S + 1) resultant set of random effects
for client i,�i , are multiplied with the (S + 1) × 1 MM link vector, xi , to produce
q × 1, θx,i matched to zij = (1, tij , t

2
ij ) for client-specific polynomial variation

from the mean time trend (which is captured in β). The model noise precision is
set to τε = 0.1.

5.2. Data modeling. Figure 1 presents in-sample predicted growth curves for
randomly selected clients within each treatment arm along with actual client data
values. Client growth curves under the DDP model express more adaptiveness to
the data, both for U -shaped curves as expressed by client 6 and bell-shaped curves
estimated for client 58.

Posterior mean values for the 3 polynomial effect terms assigned to each module
are composed into module effect trajectories through time in Figure 2 comparing
MM_MV and DDP models for each of the 4 clusters (columns) and for 4 randomly
selected modules. The posterior mean module effect trajectories estimated under
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FIG. 1. Posterior mean client growth curves under semi-parametric (MMCAR, MM_MV) and non-
parametric (DDP) MM models under simulated data. Simulated data shown by circles.

the DDP model track closer to the true trajectory shapes than do the nonclient
adaptive curves for MM_MV.

We compose a small Monte Carlo simulation with 10 iterations, where each
generates a data set with the above noted specifications. Estimation is performed
under our models for each generated data set and the posterior draws for the fixed
effects are concatenated across iterations to examine performance of the 3 com-
parator formulations under repeated sampling. Figure 3 reveals the posterior dis-
tribution over the 95% credible intervals under each model estimated using the
predictive margins technique; see Lane and Nelder (1982). We note that the DDP
formulation expresses the least uncertainty around the true values (represented by
a dashed line at each of the 3 measurement months).

5.2.1. Model fit statistics. Model fit statistics, D̄, −LPML, and DIC3, are pre-
sented in Table 1. One observes lower (better) values across all 3 statistics for the
DDP than the other two comparator models, while MM_MV, employing multivari-
ate module effects, outperforms MMCAR parameterized with univariate module



BAYESIAN NONPARAMETRIC MODELING 1087

FIG. 2. Posterior mean client module effect trajectories from simulated data for four clusters of
clients, where the columns index clusters and the rows represent randomly selected modules. The
curves are dimensioned in response units and represent the contribution of the modules to the re-
sponse.

effects. In particular, the leave-one-out LPML statistic strongly prefers the DDP
model. While the DDP is parameterized with client-by-module random effects,
the effective parameterization is reduced under the clustering of clients. Neverthe-
less, the DDP would generally be expected to express a higher number of effective
parameters than the two additive models, though the LPML performances do not
indicate overfitting. The polynomial construction for zij enforces smoothness in
the estimated fit as demonstrated in the client growth curves from Figure 1, which
also serves to mitigate the possibility for overfitting. We performed additional sim-
ulations to explore scenarios 48 and 66 modules that, on average, have 11 and 8
clients per module, respectively, with the same number of clients. The relative
model differences persist under −LPML. The −LPML difference between DDP
and MM_MV is 158 under S = 24 modules and 149 under 48 modules and 251
under 66 modules.
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FIG. 3. Predictive margins for the treatment effect of CBT versus usual care at 0 (left panel),
3 (middle panel), and 6 (right panel) months for MMCAR, MM_MV, and DDP formulations under
a Monte Carlo simulation from a data-generating model where effects are indexed by cluster of
clients and modules. Segments reflect the 95% credible intervals and boxes represent the interquartile
range of the marginal posterior distribution. The dashed lines in each time period indicate the true
treatment effects over the simulated data sets.

TABLE 1
Simulation Study Model Fit Comparisons: D̄, −LPML, and DIC3 scores for model alternatives.

Lower values imply better performance

Model D̄ −LPML DIC3

MMCAR 5073 2691 5208
MM_MV 4905 2592 5034
DDP 4607 2434 4715
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6. Application to group therapy data. We now return to the BRIGHT study
for comparison of fit among our 3 model formulations. We further focus on in-
ference under the MM DDP construction and examine heterogeneity with re-
spect to module type in BDI-II trajectories across disjoint clusters of clients. We
recall our parameterization of fixed effects for the BRIGHT study data, dij =
(Ti, tij , t

2
ij , Titij , Tit

2
ij ), where Ti is an indicator for the treatment arm assigned

to client i (Ti = 1 for CBT, Ti = 0 for UC) and tij denotes the continuously-
valued time at which depressive symptom score, yij , was observed. As before, set
zij = (1, tij , t

2
ij ).

We simplify and focus inference by composing posterior distributions for mod-
ule effects up to clusters of clients. The client clustering is obtained from among
posterior samples of client partitions using the least squares algorithm of Dahl,
Day and Tsai (2008). The shapes, magnitudes, and differences across the clusters
express the range we see among clients so that we do not lose generality with a
focus at the cluster, rather than client, level. The most populated 6 clusters are em-
ployed and contain (88,51,24,23,20,19) clients, respectively, that together hold
225 out of 299 total BRIGHT study clients. Roughly half of the clients in the 6
clusters are UC clients who do not attend any group therapy modules. UC clients
with mean client random effects, bi , similar to those of a subset of CBT clients
are expected to co-cluster in posterior sampling such that the module effect values
for all clients in the cluster are assigned the module effect location values for that
cluster. This is an intuitive result where UC clients who express similar idiosyn-
cratic characteristics to co-clustered CBT clients would be expected to similarly
respond to CBT treatment were it offered to them.

Figure 4 renders module effect trajectories of the BDI-II depressive symptom
scores for randomly selected modules. Results are summarized by averaging tra-
jectories into client clusters, with the largest six clusters shown across the columns,
denoted by cluster_1, . . . , cluster_6. Each client cluster’s trajectories are presented
for each of the 4 open-enrollment CBT therapy groups along the rows within clus-
ters, which are denoted by cbt_1, . . . , cbt_4 in the figure. Large differences are
observed in shape and magnitude among modules, particularly for client cluster 1,
whose trajectories for each of the four open-enrollment groups are provided in the
leftmost column of plot cells of Figure 4. The range of the curves expresses clini-
cally meaningful differences of 4–6 (BDI-II) points [Furukawa (2010)]. Scanning
the columns from left to right reveals a marked attenuation in cluster responsive-
ness to the CBT intervention. Member clients of clusters 4–6 express much less
depressive symptom sensitivity to participation in the modules and, therefore, one
notes much less differentiation in effect values among the modules for these clus-
ters.

Figure 5 provides additional insight from the DDP model for examining the
variation in module effects across clusters of clients and how those effects vary
over time. The figure shows module effect trajectories disaggregated into the q = 3
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FIG. 4. Posterior mean client module effect trajectories of BDI-II depressive symptom scores under
the DDP model. Results are summarized by averaging trajectories into client clusters. Each plot cell
is indexed by client cluster within each of 4 disjoint CBT groups, (cbt−1, . . . , cbt−4). The rows of
plot cells are indexed by CBT group and the columns by cluster. The largest 6 clusters of clients
are represented (in order of number of clients contained in each). Each plot contains module effect
trajectories for randomly selected modules within each of the four CBT groups.

posterior mean polynomial effects from which they are each rendered across the
6 clusters of clients. The 3 polynomial effect values are presented for all mod-
ules, organized in the same cbt group-within-cluster format utilized in Figure 4.
These polynomial parameters imply a module effect trajectory with the order 1
effect providing the intercept, the order 2 effect the slope and order 3 a nonlinear
quadratic term. The resulting effects trajectory for a module would be U -shaped
if the order 3 term is positive. As we noted in Figure 4, there is notable variation
in the effect of modules on depressive symptoms across client clusters within each
of the four CBT therapy groups as we scan from left to right, particularly for cbt
groups 1–3; for example, the first two clusters of each CBT therapy group, shown
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FIG. 5. Posterior mean client module intercept (order 1), linear (order 2), and quadratic (order 3)
effects for each module within the 4 disjoint CBT groups of modules averaged to cluster for BRIGHT
case study under the DDP model. The rows of plot cells are indexed by CBT group and the columns
by cluster.

in the first two columns of Figure 5, show clinically meaningful variation in client
outcomes.

Model fit statistics, presented in Table 2, reveal an improved fit for the DDP in
comparison to the other two models, however, unlike for the simulation results, the
MMCAR produces a better fit for the BRIGHT data than does MM_MV. These
results indicate the importance of differences across clients in responsiveness to
modules. Within-sample predicted growth curves (not shown) demonstrate a sim-
ilar improvement as observed in Figure 1 in shape and orientation adaptability for
the DDP as compared to the other models to express better fit performance.

We explore sensitivity of the clustering of clients to our prior specification for
the DP concentration parameter, α, employed in (10) for the MM DDP model by
varying the shape and rate hyperparameters, (a1, b1), employed in the prior, α ∼
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TABLE 2
BRIGHT Study Model Fit Comparisons: D̄, −LPML, and DIC3 scores for model alternatives.

Lower values imply better performance

Model D̄ −LPML DIC3

MMCAR 5505 2980 5679
MM_MV 5547 2994 5716
DDP 5079 2929 5302

Ga(a1, b1). We vary both hyperparameters in combinations within a range of 1–4
for each, producing a prior number of clusters from a minimum of 3 to a maximum
of 18. While our group therapy data application results show small differences
in the posterior numbers of clusters formed, the allocation of clients to the most
populous clusters is essentially unchanged, as is our inference on client-module
effects. Distributions for underlying parameters are also essentially unchanged.

7. Discussion. Our MM DDP approach extends the ANOVA DDP construc-
tion of De Iorio et al. (2004) to a multiple membership framework. The MM DDP
provides wide support on the space of distributions indexed by the set of distinct
multiple membership sequences through the borrowing of strength in overlaps
among expressed sequences. The formulation allows one to examine whether ele-
ment (e.g., module) effects vary across different client trajectories and vice versa,
allowing for one to learn about differing response sensitivities among clients to
treatment elements, even for unobserved combinations of clients and treatment
elements. We compose a model base distribution to retain straight-forward and ef-
ficient posterior sampling properties of the DP while allowing flexibility for Gaus-
sian covariance specifications to parsimoniously parameterize dependence among
module effects; in particular, we illustrate adjacency-based formulations for the co-
variance matrix of the Gaussian base measure in a fashion that renders flexibility
while retaining conjugacy.

Other alternatives to our MM DDP may be considered, such as the hierarchi-
cal DP (HDP) [Teh et al. (2006)] or the nested DP (NDP) [Rodríguez, Dunson
and Gelfand (2008)], which both target a grouped data structure with nested ob-
servations. These approaches, however, do not anticipate a multiple membership
construction where subgroups of clients share connections to the same modules
as does the MM DDP, which indexes the collection of random measures, {Fx},
by multiple membership (attendance) sequence. While one may ignore the multi-
ple membership composition and employ either of the HDP and NDP, they both
perform posterior simulations in a nested, two-step, fashion (for a two-level hierar-
chical formulation), while we see how the MM DDP reduces to a DP that permits
a simpler computational approach. Last, neither the HDP or NDP allow inference
on unobserved module attendance sequences as does the MM DDP.
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The usefulness of our approach may be limited for data with decreasing over-
laps among the treatment element (e.g., client module attendance) sequences, {xi},
as this would restrict the ability for the data to borrow strength in the estimation
of the collection of random distributions, {Fx}. In one direction where clients per-
fectly overlap into disjoint groupings of client-modules for CBT studies, the MM
DDP reduces to the ANOVA DDP. In the other direction, however, where clients
express progressively less overlaps in modules attended, estimability may be com-
promised. In practice, resource limitations in the total number of modules offered
for typical open-enrollment group therapy studies tend to produce a sufficient level
of overlaps of clients on each module for estimation.

Software implementing the MM DDP is available for the R statistical software
[R Development Core Team (2011)] in a package called growcurves [Savitsky
and Paddock (2012)]. All of the methods, fit statistics, and charts presented in this
paper may be reproduced from growcurves.
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