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ESTIMATING THE HISTORICAL AND FUTURE PROBABILITIES
OF LARGE TERRORIST EVENTS1
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Quantities with right-skewed distributions are ubiquitous in complex so-
cial systems, including political conflict, economics and social networks, and
these systems sometimes produce extremely large events. For instance, the
9/11 terrorist events produced nearly 3000 fatalities, nearly six times more
than the next largest event. But, was this enormous loss of life statistically
unlikely given modern terrorism’s historical record? Accurately estimating
the probability of such an event is complicated by the large fluctuations in the
empirical distribution’s upper tail. We present a generic statistical algorithm
for making such estimates, which combines semi-parametric models of tail
behavior and a nonparametric bootstrap. Applied to a global database of ter-
rorist events, we estimate the worldwide historical probability of observing at
least one 9/11-sized or larger event since 1968 to be 11–35%. These results
are robust to conditioning on global variations in economic development, do-
mestic versus international events, the type of weapon used and a truncated
history that stops at 1998. We then use this procedure to make a data-driven
statistical forecast of at least one similar event over the next decade.

1. Introduction. The September 11th terrorist attacks were the largest such
events in modern history, killing nearly 3000 people [MIPT (2008), START
(2011)]. Given their severity, should these attacks be considered statistically un-
likely or even outliers? What is the likelihood of another September 11th-sized or
larger terrorist event, worldwide, over the next decade?

Accurate answers to such questions would shed new light both on the global
trends and risks of terrorism and on the global social and political processes that
generate these rare events [McMorrow (2009), Sornette (2009), Sornette and Ouil-
lon (2012)], which depends in part on determining whether the same processes
generate both rare, large events and smaller, more common events. Insights would
also provide objective guidance for our long-term expectations in planning, re-
sponse and insurance efforts [de Haan and Ferreira (2006), Reiss and Thomas
(2007)], and for estimating the likelihood of even larger events, including mass-
casualty chemical, biological, radioactive or nuclear (CBRN) events [Cameron
(2000), Drennan (2007)].
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The rarity of events like 9/11 poses two technical problems: (i) we typically
lack quantitative mechanism-based models with demonstrated predictive power
at the global scale (which is particularly problematic for CBRN events) and
(ii) the global historical record contains few large events from which to estimate
mechanism-agnostic statistical models of large events alone. That is, the rarity
of big events implies large fluctuations in the distribution’s upper tail, precisely
where we wish to have the most accuracy. These fluctuations can lead to poor out-
of-sample predictive power in conflict [see Beck, King and Zeng (2000), Bueno de
Mesquita (2003, 2011), King and Zeng (2001), Rustad et al. (2011), Ward, Green-
hill and Bakke (2010)] and can complicate both selecting the correct model of
the tail’s structure and accurately estimating its parameters [Clauset, Shalizi and
Newman (2009)]. Misspecification can lead to severe underestimates of the true
probability of large events, for example, in classical financial risk models [Farmer
and Lillo (2004), Financial Crisis Inquiry Commission (2011)].

Little research on terrorism has focused on directly modeling the number
of deaths (“severity”)2 in individual terrorist events [McMorrow (2009)]. When
deaths are considered, they are typically aggregated and used as a covariate to
understand other aspects of terrorism, for example, trends over time [Enders and
Sandler (2000, 2002)], the when, where, what, how and why of the resort to ter-
rorism [Brown, Dalton and Hoyle (2004), Enders and Sandler (2006), Valenzuela
et al. (2010)], differences between organizations [Asal and Rethemeyer (2008)],
or the incident rates or outcomes of events [Enders and Sandler (2000), Enders,
Sandler and Gaibulloev (2011)]. Such efforts have used time series analysis [En-
ders and Sandler (2000, 2002), Enders, Sandler and Gaibulloev (2011)], qualitative
models or human expertise of specific scenarios, actors, targets or attacks [Wulf,
Haimes and Longstaff (2003)] or quantitative models based on factor analysis [Li
(2005), Pape (2003)], social networks [Desmarais and Cranmer (2011), Sageman
(2004)] or formal adversarial interactions [Enders and Sandler (2006), Kardes and
Hall (2005), Major (1993)]. Most of this work focuses on modeling central tenden-
cies, treats large events like 9/11 as outliers, and says little about their quantitative
probability [Clauset, Young and Gleditsch (2007)] or their long-term hazard.

Here, we describe a statistical algorithm for estimating the probability of large
events in complex social systems in general, and in global terrorism in particu-
lar. Making only broad-scale and long-term probabilistic estimates, our approach
is related to techniques used in seismology, forestry, hydrology and natural dis-
aster insurance to estimate the probabilities of individual rare catastrophic events
[Breiman, Stone and Kooperberg (1990), de Haan and Ferreira (2006), Gumbel
(1941), Gutenberg and Richter (1944), Reed and McKelvey (2002), Reiss and
Thomas (2007)]. Our approach combines maximum-likelihood methods, multi-
ple models of the distribution’s tail and computational techniques to account for

2Other notions of event “size” or severity, which we do not explore here, might be the economic
cost, number injured, political impact, etc. To the extent that such notions may be quantitatively
measured, our algorithm could also be applied to them.
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both parameter and model uncertainty. It provides a quantitative estimate of the
probability, with uncertainty, of a large event. The algorithm also naturally gener-
alizes to include certain event covariates, which can shed additional light on the
probability of large events of different types.

Using this algorithm to analyze a database of 13,274 deadly terrorist events
worldwide from 1968–2007, we estimate the global historical probability of at
least one 9/11-sized or larger terrorist event over this period to be roughly 11–35%.
Furthermore, we find the nontrivial magnitude of this historical probability to be
highly robust, a direct consequence of the highly right-skewed or “heavy-tailed”
structure of event sizes [Clauset, Young and Gleditsch (2007)]. Thus, an event the
size or severity of the September 11th terrorist attacks, compared to the global
historical record, should not be considered a statistical outlier or even statistically
unlikely. Using three potential scenarios for the evolution of global terrorism over
the next decade, we then estimate the worldwide future probability of a similarly
large event as being not significantly different from the historical level. We close
by discussing the implications for forecasting large terrorist events in particular
and for complex social systems in general.

2. Estimating the probability of a large event. The problem of estimating
the probability of some observed large event is a kind of tail-fitting problem, in
which we estimate parameters for a distributional model using only the several
largest observations. This task is distinct from estimating the distribution of max-
ima within a sample [de Haan and Ferreira (2006), Reiss and Thomas (2007)],
and is more closely related to the peaks-over-threshold literature in hydrology,
seismology, forestry, finance and insurance [Adler, Feldman and Tuqqu (1998),
Breiman, Stone and Kooperberg (1990), de Haan and Ferreira (2006), Gumbel
(1941), Gutenberg and Richter (1944), Reed and McKelvey (2002), Reiss and
Thomas (2007), Resnick (2007)]. Here, we aim specifically to deal with several
sources of uncertainty in this task: uncertainty in the location of the tail, uncer-
tainty in the tail’s true structure, and uncertainty in the model parameters.

Our approach is based on three key insights. First, because we are interested
only in rare large events, we need only model the structure of the distribution’s
right or upper tail, which governs their frequency. This replaces the difficult prob-
lem of modeling both the distribution’s body and tail [de Haan and Ferreira (2006),
Reiss and Thomas (2007), Resnick (2007)] with the less difficult problem of iden-
tifying a value xmin above which a model of the tail alone fits well.3 That is, choose
some xmin and a tail model Pr(x|θ, xmin) defined on x ∈ [xmin,∞). We will revisit
the problem of choosing xmin below.

Second, in complex social systems, the correct tail model is typically unknown
and a poor choice may lead to severe misestimates of the true probability of a
large event. We control for this model uncertainty by considering multiple tail

3The notation xmin should not be confused with the first order statistic, x(1) = mini xi .



ESTIMATING THE PROBABILITY OF LARGE TERRORIST EVENTS 1841

models. Given these models and a common choice of xmin, we use a likelihood
ratio test to identify and discard the statistically implausible ones [Clauset, Shalizi
and Newman (2009)]. In principle, the remaining models could be averaged to
produce a single estimate with confidence intervals [Claeskens and Hjort (2008)],
for example, to aid decision makers. We return to this point in more detail below.

Finally, large fluctuations in the distribution’s upper tail occur precisely where
we wish to have the most accuracy, leading to parameter uncertainty. Using a non-
parametric bootstrap [Efron and Tibshirani (1993)] to simulate the generative pro-
cess of event sizes, we incorporate the empirical data’s inherent variability into
the estimated parameters, weight models by their likelihood under the bootstrap
distribution and construct extreme value confidence intervals [Breiman, Stone and
Kooperberg (1990)].

This combination of techniques provides a statistically principled and data-
driven solution for estimating the probability of observing rare events in empir-
ical data with unknown tail structure. If such an event is observed, the algorithm
provides a measure of whether its occurrence was in fact unlikely, given the over-
all structure of the distribution’s tail. For instance, if the estimated probability is
negligible (say, p < 0.01), the event may be judged statistically unlikely. When
several tail models are plausible and agree that the probability is away from p = 0,
the event can be judged to be statistically likely, despite the remaining uncertainty
in the tail’s structure.

2.1. The method. Our goal is to estimate the probability that we would ob-
serve at least � “catastrophic” events of size x or greater in an empirical sample.4

In principle, any size x and any value � may be chosen, but, in practice, we typ-
ically choose x as the largest (and thus rarest) event in the empirical data and set
� = 1. To ensure that our estimate is meaningful from a historical perspective, we
remove the catastrophic event(s) from the empirical sample before applying the
algorithm. Here we describe the method in terms of univariate distributions, but its
generalization to certain covariates is straightforward (see Appendix C.3.3).

Let Pr(x|θ, xmin) denote a particular tail model with parameters θ , let {xi} de-
note the n empirical event sizes (sans the catastrophic events), and let Y = {yj } be
a bootstrap of these data (n samples drawn from {xi} with replacement). To begin,
we assume a fixed xmin, the smallest value for which the tail model holds, and later
describe the generalization to variable xmin.

The fraction of empirical events with values in the tail region is ptail = #{xi ≥
xmin}/n, and in each bootstrap the number is a binomial random variable with

4Consider events to be generated by a kind of marked point process [Last and Brandt (1995)],
where marks indicate either the event’s severity or that it exceeded some threshold x. Although we
assume the number of marks n to be fixed, this could be relaxed to incorporate additional uncertainty
into the algorithm’s output.
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probability ptail:

ntail ∼ Binomial(n,ptail).(2.1)

The maximum likelihood estimate θ̂ is a deterministic function of the portion of Y

above xmin, which we denote θ(Y, xmin).
Given that choice, the probability under the fitted model that not one of n′

tail =
1 + ntail events is at least as big as x is

F
(
x|θ(Y, xmin)

)n′
tail =

(∫ x

xmin

Pr(y|α̂, xmin)dy

)n′
tail

.(2.2)

Thus, 1 − F(x|θ(Y, xmin))
n′

tail is the probability that at least one event is of catas-
trophic size. Because the bootstrap Y is itself a random variable, to derive the
marginal probability of observing at least one catastrophic event, we must inte-
grate the conditional probability over the domain of the bootstrap distribution:

p(ntail, θ) = p(ntail, Y )
(2.3)

=
∫

dy1 · · ·dyntail

(
1 − F

(
x; θ(Y, xmin)

)n′
tail

) ntail∏
i=1

r(yi |ntail).

The trailing product series here is the probability of drawing the specific sequence
of values y1, . . . , yntail from the fixed bootstrap distribution r . Finally, the total
probability p of at least one catastrophic event is given by a binomial sum over
this equation.5

When the correct value xmin is not known, it must be estimated jointly with θ

on each bootstrap. Maximum likelihood cannot be used for this task, because xmin
truncates Y . Several principled methods for automatically choosing xmin exist, for
example, Breiman, Stone and Kooperberg (1990), Clauset, Shalizi and Newman
(2009), Clauset, Young and Gleditsch (2007), Danielsson et al. (2001), Dekkers
and de Haan (1993), Drees and Kaufmann (1998), Hancock and Jones (2004).
So long as the choice of xmin is also a deterministic function of Y , the above
expression still holds. Variation in xmin across the bootstraps, however, leads to
different numbers of observations ntail in the tail region. The binomial probability
ptail is then itself a random variable determined by Y , and ntail is a random variable
drawn from a mixture of these binomial distributions.

Analytically completing the above calculation can be difficult, even for simple
tail models, but it is straightforward to estimate numerically via Monte Carlo:

5We may calculate p in either of two ways: (i) we draw ntail events from a tail model alone, or
(ii) we draw n events from a conditional model, in which the per-event probability is q(x) = Pr(X ≥
x|X ≥ xmin)Pr(X ≥ xmin) = ptail(1 − F(x|θ, xmin)). When the probability of a catastrophic event
is small, these calculations yield equivalent results.
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1. Given n empirical sizes, generate Y by drawing yj , j = 1, . . . , n, uniformly
at random, with replacement, from the observed {xi} (sans the � catastrophic
events).

2. Jointly estimate the tail model’s parameters θ and xmin on Y , and compute
ntail = #{yj ≥ x̂min} (see Appendix A).

3. Set ρ = 1 − F(x; θ̂ )�+ntail , the probability of observing at least � catastrophic
events under this bootstrap model.

Averaging over the bootstraps yields the estimated probability p̂ = 〈ρ〉 of observ-
ing at least � catastrophic-sized events. The convergence of p̂ is guaranteed so
long as the number of bootstraps (step 1) tends to infinity [Efron and Tibshirani
(1993)]. Confidence intervals on p̂ [Breiman, Stone and Kooperberg (1990), Efron
and Tibshirani (1993)] may be constructed from the distribution of the ρ values.
If the tail model’s c.d.f. F(x; θ) in step 3 cannot be computed analytically, it can
often be constructed numerically; failing that, ρ may always be estimated by sam-
pling directly from the fitted model.

2.2. Model comparison and model averaging. In complex social systems, we
typically do not know a priori which particular tail model is correct, and the al-
gorithm described above will give no warning of a bad choice [but see Clauset,
Shalizi and Newman (2009)]. This issue is partly mitigated by estimating xmin,
which allows us to focus our modeling efforts on the upper tail alone. But, without
additional evidence of the model’s statistical plausibility, the estimate p̂ should be
treated as provisional.

Comparing the results from multiple tail models provides a test of robustness
against model misspecification, for example, agreement across models that p̂ >

0.01 strengthens the conclusion that the event is not statistically unlikely. However,
wide confidence intervals and disagreements on the precise probability of a large
event reflect the inherent difficulty of identifying the correct tail structure.

To select reasonable models to compare, standard model comparison ap-
proaches may be used, for example, a fully Bayesian approach [Kass and
Raftery (1995)], cross-validation [Stone (1974)] or minimum description length
[Grünwald (2007)]. Here, we use a goodness-of-fit test to establish the plausibility
of the power-law distribution [Clauset, Shalizi and Newman (2009)] and Vuong’s
likelihood ratio test [Clauset, Shalizi and Newman (2009), Vuong (1989)] to com-
pare it with alternatives. This approach has the advantage that it can fail to choose
one model over another if the difference in their likelihoods is statistically insignif-
icant, given the data.

In some circumstances, we may wish to average the resulting models to produce
a single estimate with confidence intervals, for example, to aid decision makers.
However, averaging poses special risks and technical problems for estimating the
probability of large events. For instance, traditional approaches to averaging can
obscure the inherent uncertainty in the tail’s structure and can produce spuriously
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precise confidence intervals [Claeskens and Hjort (2008), Hjort and Claeskens
(2003)]; a Bayesian approach would be inconsistent with our existing framework;
and an appropriate frequentist framework is not currently available, although one
may be possible using insights from Cesa-Bianchi, Conconi and Gentile (2004).

Thus, in our application below, we elect not to average and instead we present
results for each model. Even without averaging, however, several valuable insights
may be drawn.

2.3. Tests of the method’s accuracy. To test the accuracy of our estimation
algorithm, we examine its ability to recover the true probability of a rare event
from synthetic data with known structure. To generate these synthetic data, we use
the power-law distribution

Pr(y) ∝ y−α,(2.4)

where α > 1 is the “scaling” parameter and y ≥ xmin > 0. When α < 2, this distri-
bution exhibits infinite variance and produces extreme fluctuations in the upper tail
of finite-size samples. By defining a catastrophic event x to be the largest gener-
ated event within the n synthetic values, we make the test particularly challenging
because the largest value exhibits the greatest fluctuations of all. Detailed results
are given in Appendix B.

We find that despite the large fluctuations generated by the power-law distribu-
tion, the algorithm performs well: the mean absolute error 〈|p̂ − p|〉 is small even
for samples with less than 100 events, and decays like O(n−1/3). A small absolute
deviation, however, may be an enormous relative deviation, for example, if the true
probability tends to zero or one. Our algorithm does not make this type of error:
the mean ratio of the estimated and true probabilities 〈p̂/p〉 remains close to 1 and
thus the estimate is close in relative terms, being only a few percent off for n � 100
events.

3. Historical probability of 9/11. Having described our statistical approach,
we now use it to estimate the historical probability of observing worldwide at least
one 9/11-sized or larger terrorist event.

Global databases of terrorist events show that event severities (number of
deaths) are highly right-skewed or “heavy tailed” [MIPT (2008), START (2011)].
We use the RAND-MIPT database [MIPT (2008)], which contains 13,274 deadly
events worldwide from 1968–2007. The power law is a statistically plausible
model of this distribution’s tail, with α̂ = 2.4 ± 0.1, for x ≥ x̂min = 10 [Clauset,
Shalizi and Newman (2009), Clauset, Young and Gleditsch (2007)]. A goodness-
of-fit test fails to reject this model of tail event severities (p = 0.40 ± 0.03 via
Monte Carlo [Clauset, Shalizi and Newman (2009)]), implying that the deviations
between the power-law model and the empirical data are indistinguishable from
sampling noise.
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This fact gives us license to treat as i.i.d. random variables the severity of these
events. This treatment does force a particular and uncommon theoretical perspec-
tive on terrorism, in which a single global “process” produces events, even if the
actions of individual terrorists or terrorist organizations are primarily driven by lo-
cal events. This perspective has much in common with statistical physics, in which
particular population-level patterns emerge from a sea of individual interactions.
We discuss limitations of this perspective in Section 5.

Past work shows that this apparent power-law pattern in global terrorism is re-
markably robust. Although the estimated value of α varies somewhat with time
[Clauset, Young and Gleditsch (2007)], the power-law pattern itself seems to per-
sist over the 40-year period despite large changes in the international system. It
also appears to be independent of the type of weapon (explosives, firearms, ar-
son, knives, etc.), the emergence and increasing frequency of suicide attacks, the
demise of many terrorist organizations, the economic development of the target
country [Clauset, Young and Gleditsch (2007)] and organizational covariates like
size (number of personnel), age and experience (total number of attacks) [Clauset
and Gleditsch (2009)].

Comparing the power-law tail model against log-normal and stretched exponen-
tial (Weibull) distributions, via a likelihood ratio test, yields log-likelihood ratios
of R = −0.278 (p = 0.78) and 0.772 (p = 0.44), respectively [Clauset, Shalizi
and Newman (2009)]. However, neither of these values is statistically significant,
as indicated by the large p-values for a test against R = 0. Thus, while the power-
law model is plausible, so too are these alternatives. This ambiguity illustrates the
difficulty of correctly identifying the tail’s structure and reinforces the need to use
multiple tail models in estimating the likelihood of a rare event like 9/11. Further-
more, it implies that slight visual deviations in the empirical distribution’s upper
tail (see Figure 1) should not be interpreted as support either for or against any of
these models. In what follows, we consider estimates derived from all three.

To apply our algorithm to this problem, we must make several choices. For con-
sistency with past work on the frequency of severe terrorist events [Clauset, Shalizi
and Newman (2009), Clauset, Young and Gleditsch (2007)], we choose xmin au-
tomatically by minimizing the Kolmogorov–Smirnov goodness-of-fit statistic be-
tween the tail model and the truncated empirical data.6 We use the discrete power-
law distribution as our tail model (which implies xmin is also discrete; see Ap-
pendix A) and compare its estimates to those made using log-normal and stretched
exponential models. To avoid the problem of choosing an appropriate event count
distribution, we keep the number of events n fixed.

6Clauset, Shalizi and Newman (2009) provide a thorough motivation of this strategy. Briefly, the
KS statistic will be large either when xmin is too small (including nonpower-law data in the power-
law fit) or when xmin is too large (when sample size is reduced and legitimately power-law data
thrown out), but will be small between these two cases.
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FIG. 1. Empirical severity distribution with 100 bootstrap power-law models for (a) fixed
xmin = 10 and (b) estimated xmin. Overprinting illustrates the ensemble of estimated models (dashed
lines show 90% CI on α̂) and the inherent uncertainty in the tail structure. Insets show the 90% con-
fidence intervals for the estimated probability of observing at least one 9/11-sized event.

Finally, using the RAND-MIPT event data (other sources [START (2011)] yield
similar results; see Appendix C.2), we define x ≥ 2749 to be a “catastrophic”
event—the reported size of the New York City 9/11 events.7 Removing this event
from the empirical data leaves the largest event as the 14 August 2007 coordinated
truck bombing in Sinjar, Iraq, which produced approximately 500 fatalities. To il-
lustrate the robustness of our results, we consider estimates derived from fixed and
variable xmin and from our three tail models. We also analyze the impact of covari-
ates like domestic versus international, the economic development of the target
country and the type of weapon used.

3.1. Uncertainty in the scaling parameter. Let xmin = 10 be fixed. Figure 1(a)
shows 100 of the fitted bootstrap models, illustrating that by accounting for the
uncertainty in α, we obtain an ensemble of tail models and thus an ensemble of
probability estimates for a catastrophic-sized event. The bootstrap parameter dis-
tribution Pr(α̂) has a mean 〈α̂〉 = 2.40, which agrees with the maximum likelihood
value α̂ = 2.4 [Clauset, Shalizi and Newman (2009)].

To estimate the historical probability of 9/11, we use 10,000 bootstraps with
xmin fixed. Letting p denote the overall probability from the algorithm, we find
p̂ = 0.299, with 90% confidence intervals of [0.203,0.405] [Figure 1(a) inset], or
about a 30% chance over the 1968–2007 period.

An event that occurs with probability 0.299 over 40 years is not a certainty.
However, for global terrorism, this value is uncomfortably large and implies that,
given the historical record, the size of 9/11 should not be considered a statistical
fluke or outlier.

7Official sources differ slightly on the number killed in New York City. Repeating our analyses
with other reported values does not significantly change our estimates.



ESTIMATING THE PROBABILITY OF LARGE TERRORIST EVENTS 1847

3.2. Uncertainty in the tail location. A fixed choice of xmin underestimates the
uncertainty in p due to the tail’s unknown structure. Jointly estimating α and xmin
yields similar results, but with some interesting differences. Figure 1(b) shows 100
of the bootstrap models. The distribution of x̂min is concentrated at xmin = 9 or 10
(48% of samples), with an average scaling exponent of 〈α̂〉 = 2.40. However, 15%
of models choose xmin = 4 or 5, and these produce much heavier-tailed models,
with 〈α̂〉 = 2.21.

This bimodal distribution in α̂ is caused by slight curvature in the empirical
mid-to-upper tail, which may arise from aggregating multiple types of local events
into a single global distribution (see Appendix C.3.3). The algorithm, however, ac-
counts for this curvature by automatically estimating a slightly wider ensemble of
models, with correspondingly greater density in the catastrophic range. As a result,
the estimated probability is larger and the confidence intervals wider. Using 10,000
bootstraps, we find p̂ = 0.347, with 90% confidence intervals of [0.182,0.669], or
about a 35% chance over the 1968–2007 period.

3.3. Alternative tail models. Comparing these estimates with those derived
using log-normal and stretched exponential tail models provides a check on their
robustness, especially if the alternative models yield dramatically different esti-
mates.

The mathematical forms of the alternatives are

log-normal Pr(x) ∝ x−1 exp
[−(lnx − μ)2/2σ 2]

,

stretched exp. Pr(x) ∝ xβ−1e−λxβ

,

where we restrict each to a “tail” domain xmin ≤ x < ∞ (see Appendix A). In
the stretched exponential, β < 1 produces a heavy-tailed distribution; in the log-
normal, small values of μ and large values of σ yield heavy tails. Although both
decay asymptotically faster than any power law, for certain parameter choices,
these models can track a power law over finite ranges, which may yield only
marginally lower estimates of large events.8

To simplify the comparison between the tail models, we fix xmin = 10 and use
10,000 bootstraps for each fitted alternative tail model. This yields p̂ = 0.112
(CI: [0.063,0.172]) for the log-normal and p̂ = 0.187 (CI: [0.115,0.272]) for the
stretched exponential, or roughly an 11% and 19% chance, respectively. These val-
ues are slightly lower than the estimates from the power-law model, but they too
are consistently away from p = 0, which reinforces our conclusion that the size of
9/11 should not be considered a statistical outlier.

8The question of power law versus nonpower law [Clauset, Shalizi and Newman (2009)] is not
always academic; for instance, macroeconomic financial models have traditionally and erroneously
assumed nonpower-law tails that assign negligible probability to large events like widespread sub-
prime loan defaults [Financial Crisis Inquiry Commission (2011)].
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FIG. 2. (a) Empirical event severities with 100 bootstrap models for the power-law, log-normal
and stretched exponential tail models, with xmin = 10 fixed. (b) Bootstrap distributions of p̂ for each
model, with overall estimates (Table 1) given by dashed lines.

Figure 2(a) shows the fitted ensembles for all three fixed-xmin tail models, and
Figure 2(b) shows the bootstrap distributions Pr(p̂) for these models, as well as
the one with xmin free. Although the bootstrap distributions for the log-normal and
stretched exponential are shifted to the left relative to the two power-law models,
all distributions overlap and none place significant weight below p = 0.01. The
failure of the alternatives to disagree with the power law can be attributed to their
estimated forms roughly tracking the power law’s over the empirical data’s range,
which leads to similar probabilistic estimates of a catastrophic event.

3.4. Impact of covariates. Not all large terrorist events are of the same type,
and thus our overall estimate is a function of the relative empirical frequency of
different covariates and the structure of their marginal distributions. Here, we apply
our procedure to the distributions associated with a few illustrative categorical
event covariates to shed some additional light on the factors associated with large
events. A generalization to and systematic analysis of arbitrary covariates is left
for future work.

TABLE 1
Estimated per-event and worldwide historical probabilities for at least one catastrophic event over

the period 1968–2007, for four tail models

Est. Pr(x ≥ 2749) Est. prob. p, 90% CI
Tail model Parameters per event, q(x) 1968–2007 (bootstrap)

Power law (1) Pr(α̂), xmin = 10 0.0000270200 0.299 [0.203,0.405]
Power law (2) Pr(α̂, x̂min) 0.0000346345 0.347 [0.182,0.669]
Stretched exp. Pr(β̂, λ̂), xmin = 10 0.0000156780 0.187 [0.115,0.272]
log-normal Pr(μ̂, σ̂ ), xmin = 10 0.0000090127 0.112 [0.063,0.172]
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For instance, international terrorist events, in which the attacker and target are
from different countries, comprise 12% of the RAND-MIPT database and exhibit
a much heavier-tailed distribution, with α̂ = 1.93 ± 0.04 and x̂min = 1 (see Ap-
pendix C.3.1). This heavier tail more than compensates for their scarcity, as we es-
timate p̂ = 0.475 (CI: [0.309,0.610]; Figure 6(a)) for at least one such catastrophic
event from 1968–2007.9 A similar story emerges for events in economically de-
veloped nations, which comprise 5.3% of our data (see Appendix C.3.2). Focusing
on such large events (x ≥ 10), we estimate p̂ = 0.225 (CI: [0.037,0.499], Fig-
ure 6(b)).

Another important event covariate is the type of weapon used. The tails of the
weapon-specific distributions remain well described as power laws, but weapons
like guns, knives and explosives exhibit less heavy tails (fewer large events) than
unconventional weapons [Clauset, Young and Gleditsch (2007)], even as the for-
mer are significantly more common than the latter. The estimation algorithm used
above can be generalized to handle categorical event covariates, and produces both
marginal and total probability estimates (see Appendix C.3.3). Doing so yields
an overall estimate of p̂ = 0.564 (CI: [0.338,0.839]; Figure 7). Examining the
marginal hazard rates, we see that the largest contribution comes from explosives,
followed by fire and firearms.

4. Statistical forecasts. If the social and political processes that generate ter-
rorist events worldwide are roughly stationary, our algorithm can be used to make
principled statistical forecasts about the future probability of a catastrophic event.
Although here we make the strong assumption of stationarity, this assumption
could be relaxed using nonstationary forecasting techniques [Caires and Ferreira
(2005), Clements and Hendry (1999), Shalizi et al. (2011)].

A simple forecast requires estimating the number of events n expected over the
fixed forecasting horizon t . Using the RAND-MIPT data as a starting point, we
calculate the number of annual deadly events worldwide nyear over the past 10
years. Figure 3 shows the empirical trend for deadly terrorist events worldwide
from 1998–2007, illustrating a 20-fold increase in nyear, from a low of 180 in 1999
to a high of 3555 in 2006. Much of the increase is attributable to conflicts in Iraq
and Afghanistan; excluding events from these countries significantly reduces the
increase in nyear, with the maxima now being 857 deadly events in 2002 and 673
in 2006. However, the fraction of events that are severe (x ≥ 10) remains constant,
averaging 〈ptail〉 = 0.082684 (or about 8.3%) in the former case and 0.072601 (or
about 7.3%) in the latter.

An estimated trend over the next decade could be obtained via fitting standard
statistical models to annual data or by soliciting judgements from domain experts

9The implication of a larger p̂ for a covariate distribution, as compared to the full data set, is
a smaller p for the excluded types of events. That is, a larger p for international events implies a
smaller p for domestic events.
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FIG. 3. (Upper) number of deadly (domestic and international) terrorist events worldwide for the
10-year period 1998–2007, and three forecast scenarios. (Lower) fraction of events that are severe,
killing at least 10 individuals and its 10-year average (dashed line).

about specific conflicts. For instance, Iraq and Afghanistan may decrease their pro-
duction rates of new events over the next decade, leading nyear to decrease unless
other conflicts replace their contributions. Rather than make potentially overly spe-
cific predictions, we instead consider three rough scenarios (the future’s trajectory
will presumably lay somewhere between): (i) an optimistic scenario, in which the
average number of terrorist attacks worldwide per year returns to its 1998–2002
level, at about 〈nyear〉 = 400 annual events; (ii) a status quo scenario, where it re-
mains at the 2007 level, at about 2000 annual events; and finally (iii) a pessimistic
scenario, in which it increases to about 10,000 annual events.10

A quantitative statistical forecast is then obtained by applying the estimation
algorithm to the historical data (now including the 9/11 event) and then generating
synthetic data with the estimated number of future events ntail. For each scenario,
we choose ndecade = 10 × nyear and choose ntail via equation (2.1) with ptail =
0.082684 (its historical average). Finally, we fix xmin = 10 to facilitate comparison
with our alternative tail models.

Table 2 summarizes the results, using 100,000 bootstraps for each of the three
tail models in the three forecast scenarios. Under the status quo scenario, all three
models forecast a 19–46% chance of at least one catastrophic event worldwide
in the next decade. In the optimistic scenario, with events worldwide being about
5 times less common, the models forecast a 4–12% chance. These estimates de-
pend strongly on the overall frequency of terrorist events nyear. Thus, the greater
the popularity of terrorism worldwide, that is, the more often terrorist attacks are
launched, the greater the general likelihood that at least one will be catastrophic.

10Modeling these rough event counts via a Poisson process with rate λscenario would refine our
forecasts slightly. More detailed event production models could also be used.
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TABLE 2
Forecast estimates of at least one catastrophic event worldwide over a 10-year period, using three

tail models in each of three forecast scenarios

Pr(x ≥ 2749) forecast, 2012–2021

“Optimistic” “Status quo” “Pessimistic”
Tail model nyear ≈ 400 nyear ≈ 2000 nyear ≈ 10,000

Power law 0.117 0.461 0.944
Stretched exp. 0.072 0.306 0.823
log-normal 0.043 0.193 0.643

Any progress in moving the general frequency of terrorism toward the more op-
timistic scenario is likely to reduce the overall, near-term probability of a catas-
trophic event.

5. Improved estimates. Our analysis places the 1968–2007 worldwide his-
toric probability of a catastrophic event in the 11–35% range (see Table 1) and
none of the alternative or covariate models provide any support for judging the
size of 9/11 as statistically unlikely. The wide confidence interval illustrates the
difficulty of obtaining precise estimates when accounting for model and parameter
uncertainty. That being said, our calculations could be further refined to improve
the overall estimates, incorporate additional sources of uncertainty or address spe-
cific questions, by relaxing portions of our i.i.d. treatment of event severities. We
discuss several such possibilities here, but leave their investigation for the future.

First, our algorithm assumes a stationary event generation process, which is un-
likely to be accurate in the long term. Technology, population, culture and geopol-
itics are believed to exhibit nonstationary dynamics and these likely play some
role in event severities. Thus, techniques for statistical forecasting in nonstation-
ary time series [Caires and Ferreira (2005), Clements and Hendry (1999), Shalizi
et al. (2011)] could be used to identify subtle trends in the relevant covariates to
make more accurate forecasts.

Second, our algorithm is silent regarding efforts to prevent events or mitigate
their severity [Kilcullen (2010)]. However, the historical impact of these processes
is implicitly present in our empirical data because only events that actually oc-
curred were recorded. Thus, our results may be interpreted as probabilities condi-
tioned on historical prevention or mitigation efforts. To the extent that policies have
an impact on incidence and severity, more accurate estimates may be achievable
by incorporating models of policy consequences or interactions between different
actors. Similarly, our algorithm is silent regarding the actors responsible for events,
and incorporating models of organizational capabilities, proclivities, etc. [Asal and
Rethemeyer (2008), Clauset and Gleditsch (2009), Jackson et al. (2005)] may im-
prove the estimates.
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Finally, our approach is nonspatial and says little about where the event might
occur. Incorporating more fine-grained spatial structure, for example, to make
country-level or theatre-level estimates [Zammit-Mangion et al. (2012)] (as is now
being done in seismology [Lee et al. (2011)]), or incorporating tactical informa-
tion, for example, about specific CBRN attacks, may be possible. Such refine-
ments will likely require strong assumptions about many context-specific factors
[Gartzke (1999)], and it remains unclear whether accurate estimates at these scales
can be made. At the worldwide level of our analysis, such contingencies appear
to play a relatively small role in the global pattern, perhaps because local-level
processes are roughly independent. This independence may allow large-scale gen-
eral patterns to emerge from small-scale contingent chaos [Lorenz (1963), Strogatz
(2001)] via a Central Limit Theorem averaging process, just as regularities in birth
rates exist in populations despite high contingency for any particular conception.
How far into this chaos we can venture before losing general predictive power
remains unclear [Rundle et al. (2011), Ward, Greenhill and Bakke (2010)].

6. Discussion. In many complex social systems, although large events have
outsized social significance, their rarity makes them difficult to study. Gaining an
understanding of such systems requires determining if the same or different pro-
cesses control the appearance of small, common events versus large, rare events.
A critical scientific problem is estimating the true but unknown probability of such
large events, and deciding whether they should be classified as statistical outliers.
Accurate estimates can facilitate historical analysis, model development and sta-
tistical forecasts.

The algorithm described here provides a principled and data-driven solution
for this problem that naturally incorporates several sources of uncertainty. Conve-
niently, the method captures the tendency of highly-skewed distributions to pro-
duce large events without reference to particular generative mechanisms or strong
assumptions about the tail’s structure. When properly applied, it provides an ob-
jective estimate of the historical or future probability of a rare event, for example,
an event that has occurred exactly once.

Using this algorithm to test whether the size of the 9/11 terrorist events, which
were nearly six times larger than the next largest event, could be an outlier, we es-
timated the historical probability of observing at least one 9/11-sized event some-
where in the world over the past 40 years to be 11–35%, depending on the partic-
ular choice of tail model used to fit the distribution’s upper tail. These values are
much larger than any reasonable definition of a statistical anomaly and thus the
size of 9/11, which was nearly six times larger than the next largest event, should
not be considered statistically unlikely, given the historical record of events of all
sizes.

This conclusion is highly robust. Conditioning on the relative frequency of im-
portant covariates [Clauset, Young and Gleditsch (2007)], such as the degree of
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economic development in the target country, whether an event is domestic or inter-
national, or the type of weapon used, we recover similar estimates, with additional
nuance. Large events are probabilistically most likely to target economically de-
veloped nations, be international in character and use explosives, arson, firearms
or unconventional weapons. Although chemical and biological events can also be
very large [Cameron (2000)], historically they are rare at all sizes, and this out-
weighs the heaviness of their tail.

Furthermore, using only event data prior to 9/11 (as opposed to using all avail-
able data sans 9/11), we find a similar overall historical hazard rate. This suggests
that the worldwide probability for large events has not changed dramatically over
the past few decades. In considering three simple forecast scenarios for the next 10
years, we find that the probability of another large event is comparable to its histor-
ical level over the past 40 years. This risk seems unlikely to decrease significantly
without a large reduction in the number of deadly terrorist events worldwide.

Of course, all such estimates are only as accurate as their underlying assump-
tions, and our method treats event sizes as i.i.d. random variables drawn from a sta-
tionary distribution. For complex social phenomena in general, it would be foolish
to believe this assumption holds in a very strong sense, for example, at the micro-
level or over extremely long time scales, and deviations will lower the method’s
overall accuracy. For instance, nonstationary processes may lower the global rate
of large events faster than smaller events, leading to overestimates in the true prob-
ability of a large event. However, the i.i.d. assumption appears to be statistically
justified at the global spatial and long-term temporal scales studied here. Identify-
ing the causes of this apparent i.i.d. behavior at the global scale is an interesting
avenue for future work.

The relatively high probability of a 9/11-sized event, both historically and in the
future, suggests that the global political and social processes that generate large ter-
rorist events may not be fundamentally different from those that generate smaller,
more common events. Although the mechanism for event severities remains un-
clear [Clauset, Young and Gleditsch (2010)], the field of possible explanations
should likely be narrowed to those that generate events of all sizes.

Independent of mechanistic questions, the global probability of another large
terrorist event remains uncomfortably high, a fact that can inform our expectations
[as with large natural disasters Gumbel (1941), Gutenberg and Richter (1944),
Reed and McKelvey (2002)] of how many such events will occur over a long time
horizon and how to appropriately anticipate or respond to them. This perspective
is particularly relevant for terrorism, as classical models aimed at predicting event
incidence tend to dramatically underestimate event severity [Clauset, Young and
Gleditsch (2007)].

To conclude, the heavy-tailed patterns observed in the frequency of severe ter-
rorist events suggests that some aspects of this phenomenon, and possibly of other
complex social phenomena, are not nearly as contingent or unpredictable as is of-
ten assumed. That is, there may be global political and social processes that can
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be effectively described without detailed reference to local conflict dynamics or
the strategic trade-offs among costs, benefits and preferences of individual actors.
Investigating these global patterns offers a complementary approach to the tradi-
tional rational-actor framework [Bueno de Mesquita (2003)] and a new way to
understand what regularities exist, why they exist, and their implications for long-
term stability.

APPENDIX A: TAIL MODELS

The functional form and normalization of the tail model should follow the type
of empirical data used. For instance, if the empirical data are real-valued, the
power-law tail model has the form

Pr(y|α,xmin) =
(

α − 1

xmin

)(
y

xmin

)−α

, α > 1, y ≥ xmin > 0.(A.1)

Given a choice of xmin, the maximum likelihood estimator for this model is

α̂ = 1 + n
/ n∑

i=1

ln(xi/xmin).(A.2)

The severity of a terrorist attack, however, is given by an integer. Thus, in our
analysis of terrorist event severities, we use the discrete form of the power-law
distribution

Pr(y|α,xmin) = y−α/ζ(α, xmin), α > 1, y ≥ xmin > 0,(A.3)

where ζ(α̂, xmin) = ∑∞
i=xmin

i−α is the generalized or incomplete zeta function.
The MLE for the discrete power law is less straightforward, being the solution to
the transcendental equation

ζ ′(α̂, xmin)

ζ(α̂, xmin)
= −1

n

n∑
i=1

xi.(A.4)

However, it is straightforward to directly maximize the log-likelihood function for
the discrete power law in order to obtain α̂:

L(α) = −n ln ζ(α, xmin) − α

n∑
i=1

lnxi.(A.5)

Past work shows that the continuous model given by (A.3) provides a reasonably
good approximation to the discrete case when xmin takes moderate values. In our
own experiments with this approximation, we find that when xmin � 10 the dif-
ference in estimated probabilities for observing one or more 9/11-sized events be-
tween using the discrete versus continuous model is at most a few percent.

Estimates of xmin may be obtained using any of several existing automatic meth-
ods [Breiman, Stone and Kooperberg (1990), Danielsson et al. (2001), Dekkers
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and de Haan (1993), Drees and Kaufmann (1998), Hancock and Jones (2004)].
We use the Kolmogorov–Smirnov goodness-of-fit statistic minimization (KS-
minimization) technique [Clauset, Shalizi and Newman (2009), Clauset, Young
and Gleditsch (2007)]. This method falls in the general class of distance mini-
mization techniques for selecting the size of the tail [Reiss and Thomas (2007)],
and was previously used to analyze event severities in global terrorism. The KS
statistic [Press et al. (1992)] is the maximum distance between the CDFs of the
data and the fitted model:

D = max
x≥xmin

∣∣S(x) − P(x)
∣∣,(A.6)

where S(x) is the CDF of the data for the observations with value at least xmin, and
P(x) is the CDF of the maximum-likelihood power-law model for the region x ≥
xmin. Our estimate x̂min is then the value of xmin that minimizes D. In the event of a
tie between several choices for xmin, we choose the smaller value, which improves
the statistical power of subsequent analyses by choosing the larger effective sample
size.

Our alternative tail models are the log-normal and the stretched exponential
distributions, modified to include a truncating parameter xmin. These distributions
are normally defined on continuous variables. The structure of their extreme upper
tails for xmin = 10, however, is close to that of their discrete versions, and the
continuous models are significantly easier to estimate from data. For the results
presented in the main text, we used the continuous approximation of the upper
tails for these models.

APPENDIX B: ESTIMATOR ACCURACY

We quantify the expected accuracy of our estimates under two experimental
regimes in which the true probability of a catastrophic event can be calculated
analytically.

1. Draw n values i.i.d. from a power-law distribution with xmin = 10 and some α;
define x = maxi{xi}, the largest value within that sample. This step ensures
that we treat the synthetic data exactly as we treated our empirical data and
provides a particularly challenging test, as the largest generated value exhibits
the greatest statistical fluctuations.

2. Draw n − 1 i.i.d. values from a power-law distribution with xmin = 10 and
some α, and then add a single value of size x whose true probability of ap-
pearing under the generative model is p = 0.001, that is, we contaminate the
data set with a genuine outlier.

Figure 4 shows the results of both experiments, where we measure the mean
absolute error (MAE) and the mean ratio between p̂ and the true p. Even for
samples as small as n = 40 observations, the absolute error is fairly small and de-
creases with increasing sample size n. In the first experiment, the error rate decays
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FIG. 4. The mean absolute error 〈|p̂ − p|〉 and mean relative error 〈p̂/p〉 − 1 for (a) n values
drawn i.i.d. from a stationary power-law distribution with xmin = 10 and some α, with the target size
being the single largest value in the draw, and for (b) n − 1 values to which we add a single outlier
(with true p = 0.001). In both experiments, both types of errors are small even for fairly small sample
sizes and decay further as n increases.

like O(n−1/3), approaching 0.01 error rates as n approaches 5000 [Figure 4(a)],
while in the second it decays like O(n−1) up to about n = 4000, above which the
rate of decay attenuates slightly [Figure 4(b)].

Absolute deviations may mask dramatic relative errors, for example, if the true
probability is very close to one or zero (as in our contaminated samples experi-
ment). The mean ratio of p̂ to p would reveal such mistakes. The lower panels in
Figure 4 show that this is not the case: the estimation procedure is close both in ab-
solute and in relative terms. As the sample size increases, the estimated probability
converges on the true probability. For contaminated data sets, the p̂/p can be fairly
large when n is very small, but for sample sizes of a few hundred observations, the
method correctly estimates the relative size of the outlier’s probability.

APPENDIX C: ROBUSTNESS CHECKS

We present three checks of the robustness of our probability estimates: (i) using
simple parametric models without the bootstrap, (ii) using an alternative source of
terrorist event data, and (iii) using event covariates to refine the estimates. In each
case, we find roughly similar-sized estimates.

C.1. Estimates using simple models. A simpler model for estimating the his-
torical probability of a 9/11-sized or larger terrorist event assumes the following:
(i) a stationary generative process for event severities worldwide, (ii) event sizes
are i.i.d. random variables drawn from (iii) a power-law distribution that (iv) spans
the entire range of possible severities (xmin = 1), and (v) has a precisely-known
parameter value α = 2.4.

A version of this model was used in a 2009 Department of Defense-commis-
sioned JASON report on “rare events” [McMorrow (2009)], which estimated the
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historical probability of a catastrophic (9/11-sized or larger) terrorist event as 23%
over 1968–2006. The report used a slightly erroneous estimate of the power law’s
normalizing constant, a slightly different estimate of α and a smaller value of n.
Here, we repeat the JASON analysis, but with more accurate input values.

Let q(x) be the probability of observing a catastrophic event of size x. With
event severities being i.i.d. random variables drawn from a fixed distribution Pr(y),
the generation of catastrophic events can be described by a continuous-time Pois-
son process with rate q(x) [Boas (2005)]. Approximating x as a continuous vari-
able, in a sequence of n such events, the probability p̂ of observing at least one of
catastrophic severity is

p̂ = 1 − [
1 − q(x)

]n
(C.1)

≈ 1 − e−nq(x).

The rate q(x) is simply the value of the complementary CDF at x, and for a
power-law distribution is given by

q(x) =
∫ ∞
x

Pr(y)dy

= (α − 1)xα−1
min

∫ ∞
x

y−α dy(C.2)

=
(

x

xmin

)1−α

for x ≥ xmin. Substituting xmin = 1 and α = 2.4 yields the per-event probability of
a catastrophic event q(2749) = 0.0000153164.

The RAND-MIPT database records n = 13274 deadly events worldwide from
1968–2007; thus, substituting n and q(x) into (C.1) yields a simple estimate of the
probability of observing at least one catastrophic event over the same time period
p̂ = 1 − e−13274q(2749) = 0.184, or about 18%.

However, this calculation underestimates the true probability of a large event
because the empirical distribution decays more slowly than a power law with α =
2.4 at small values of x. Empirically 7.5% of the 13,274 fatal events have at least
10 fatalities, but a simple application of (C.2) using x = 10 shows that our model
predicts that only 4.0% of events should be this severe. Thus, events with x ≥ 10
occur empirically almost twice as often as expected, which leads to a significant
underestimate of p.

By restricting the power-law model to the tail of the distribution, setting xmin =
10 and noting that only n = 994 events had at least this severity over the 40-year
period, we can make a more accurate estimate. Repeating the analysis above, we
find q(2749) = 0.0000288098 and p̂ = 0.318, or about a 32% chance of a catas-
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trophic event,11 a value more in line with the estimates derived using our bootstrap-
based approach in the main text.

C.2. Estimates using the Global Terrorism Database. An alternative source
of global terrorism event data is the Global Terrorism Database [START (2011)],
which contains 98,112 events worldwide from 1970–2007. Of these, 38,318 were
deadly (x > 0). Some events have fractional severities due to having their to-
tal fatality count divided evenly among multiple event records; we recombined
each group of fractional-severity events into a single event, yielding 38,255 deadly
events over 38 years. Analyzing the GTD data thus provides a check on our results
for the RAND-MIPT data.

The largest event in the GTD is 9/11, with severity 2763, and the second largest
is the 13 April 1994 Rwandan massacre of Tutsi refugees, with 1180 reported
fatalities. This event is absent from the RAND-MIPT data; its inclusion in the
GTD highlights this data set’s broader definition of terrorism, which includes a
number of genocidal or criminal events.

The best fitting power-law model obtained using the methodology of Clauset,
Shalizi and Newman (2009) is α̂ = 2.91 ± 0.22 and x̂min = 39. The p < 0.1 for
this model may be attributable to the unusually large number of perfectly round-
number severities in the data set, for example, 10, 20, 100, 200, etc., which indi-
cates rounding effects in the reporting. (These appear in Figure 5 as small discon-

FIG. 5. Empirical distribution of event severities from the GTD [START (2011)] with 100 pow-
er-law models, fitted to bootstraps of the data. Inset shows the estimated distribution of binomial
probabilities Pr(p̂) for one or more catastrophic events.

11To make our reported per-event probabilities q(x) consistent across models, we report them as
q(x) = Pr(X ≥ x|X ≥ xmin)Pr(X ≥ xmin), that is, the probability that a tail event is catastrophic
times the probability that the event is a tail event. These values can be used with (C.1) to make rough
estimates if the corresponding n is the total number of deadly events.
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tinuous drops in the complementary CDF at round-number locations; true power-
law distributed data have no preference for round numbers and thus their presence
is a statistically significant deviation from the power-law form.)

Using the algorithm described in the main text with 10,000 bootstraps, we es-
timate a 38-year probability of at least one catastrophic event as p̂ = 0.534 (with
90% CI [0.115,0.848]) or about a 53% chance. Repeating our analysis using the
two alternative tail models yields only a modest decrease, as with the RAND-MIPT
data.

Figure 5 shows the empirical fatality distribution along with 100 fitted power-
law models, illustrating the heavy-tailed structure of the GTD severity data. No-
tably, the maximum likelihood estimate for α is larger here (indicating a less heavy
tail) than for the RAND-MIPT data. However, the marginal distribution Pr(α̂) is
bimodal, with one mode centered on α = 2.93 and a second larger mode centered
at roughly α = 2.4, in agreement with the RAND-MIPT data. Furthermore, the
failure of the GTD-estimated p̂ to be dramatically lower than the one estimated
using RAND-MIPT data supports our conclusion that the size of 9/11 was not
statistically unlikely.

C.3. Impact of event covariates.

C.3.1. International versus domestic, and events prior to 1998. Events in the
RAND-MIPT database with dates before 1 January 1998 are mainly international
events, that is, the attacker’s country of origin differed from the target’s country.
Subsequent to this date, both domestic and international events are included but
their domestic versus international character is not indicated. Analyzing events
that occurred before this breakpoint thus provides a natural robustness check for
our overall estimate: (i) we can characterize the effect that domestic versus in-
ternational events have on the overall estimate and (ii) we can test whether the
probability estimates have changed significantly in the past decade.

The pre-1998 events comprise 12% of the RAND-MIPT database and exhibit
a more heavy-tailed distribution (α̂ = 1.92 ± 0.04 and xmin = 1). Using 10,000
bootstraps, we estimate p̂ = 0.475 (90% CI: [0.309,0.610]) for at least one catas-
trophic international event over the target period. Figure 6(a) shows the empirical
distribution for international events and the ensemble of fitted models, illustrating
good visual agreement with the empirical distribution.

The estimate for international-only data (p̂ = 0.475) is larger than the estimate
derived using the full data set (p̂ = 0.347), although these values may not be as dif-
ferent as they seem, due to their overlapping confidence intervals. Fundamentally,
the larger estimate is caused by the heavier-tailed distribution of the international-
only data. Because the full data set includes these international events, this result
indicates that domestic events tend to exhibit a lighter tail, and thus generate large
terrorist events with smaller probability. As a general guideline, subsets of the full
data set should be analyzed with caution, as their selection is necessarily condi-
tioned. The full data set provides the best estimate of large events of all types.
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FIG. 6. Empirical distributions, with 100 power-law bootstrap models, for (a) international events
(events from 1968–1997 in the RAND-MIPT database) and (b) events within the OECD nations;
dashed lines show the 90% CI on α̂. Insets show the estimated distribution Pr(p̂) with 90% confidence
intervals (shaded area) and overall estimate (dashed line).

C.3.2. Economic development. A similar story emerges for deadly events in
economically developed nations, defined here as the member countries of the Or-
ganisation for Economic Co-operation and Development (OECD), as of the end of
the period covered by the RAND-MIPT data, which are 5.3% of all deadly events.
The empirical distribution [Figure 6(b)] of event severities shows unusual struc-
ture, with the upper tail (x ≥ 10 fatalities) decaying more slowly than the lower
tail. To handle this oddity, we conduct two tests.

First, we consider the entire OECD data set, estimating both α and xmin. Using
10,000 bootstraps yields p̂ = 0.028 (with 90% CI [0.010,0.053]) or roughly a
3% chance over the 40-year period, which is slightly above our p = 0.01 cutoff
for a statistically unlikely event. Figure 6(b) shows the resulting ensemble of fitted
models, illustrating that the algorithm is placing very little weight on the upper tail.
Second, we apply the algorithm with a fixed xmin = 10 in order to focus explicitly
on the distribution’s upper tail. In this case, 10,000 bootstraps yield p̂ = 0.225,
with 90% CI as [0.037,0.499].

C.3.3. Type of weapon. Finally, we consider the impact of the attack’s weapon
type, and we generalize the estimation algorithm to the multi-covariate case.
Events are classified as (i) chemical or biological, (ii) explosives (includes re-
motely detonated devices), (iii) fire, arson and firebombs, (iv) firearms, (v) knives
and other sharp objects, and (vi) other, unknown or unconventional. Given the em-
pirically observed distributions over these covariates, we would like to know the
probability of observing at least one catastrophic-sized event from any weapon
type.

This requires generalizing our Monte Carlo algorithm: let (x, c)i denote the
severity x and categorical covariate c for the ith event. Thus, denote the empirical
data by X = {(x, c)i}.
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1. Generate Y by drawing (y, c)j , j = 1, . . . , n, uniformly at random, with re-
placement, from the original data {(x, c)i} (sans the � catastrophic events).

2. For each covariate type c in Y , jointly estimate x̂
(c)
min and the tail-model param-

eters θ(c), and compute n
(c)
tail = #{yj ≥ x̂

(c)
min}.

3. For each covariate type c in Y , generate a synthetic data set by drawing n
(c)
tail

random deviates from the fitted tail model with parameters θ̂ (c).
4. If any of the covariate sequences of synthetic events includes at least � events

of size x or greater, set ρ = 1; otherwise, set it to zero.

In applying this algorithm to our data, we choose � = 1 and x = 2749, as with our
other analyses. In step 2, we again use the KS-minimization technique of Clauset,
Shalizi and Newman (2009) to choose xmin and estimate θ for a power-law tail
model via maximum likelihood. Finally, as with the univariate version of the al-
gorithm, bootstrap confidence intervals may be obtained [Efron and Tibshirani
(1993)], both for the general hazard and the covariate-specific hazard, by repeat-
ing steps 3 and 4 many times for each bootstrap and tracking the distribution of
binomial probabilities.

Using 10,000 bootstraps and drawing 1000 synthetic data sets from each boot-
strap, we estimate p̂ = 0.564, with 90% confidence intervals of [x, y]. Again, this
value is well above the cutoff for a 9/11-sized attack being statistically unlikely.
Figure 7(a)–(f) shows the ensembles for each weapon-specific severity distribu-
tion. As a side effect of this calculation, we may also calculate the probability
that a catastrophic event will be generated by a particular type of weapon. The
following table gives these marginal probability estimates, which are greatest for
explosives, fire, firearms and unconventional weapon types.

It is emphasized that these are historical estimates, based on the relative fre-
quencies of weapon covariates in the historical RAND-MIPT data. If the future
exhibits similar relative frequencies and total number of attacks, then they may
also be interpreted as future hazards, but we urge strong caution in making these
assumptions.

Weapon type Historical p̂ 90% CI

Chem. or bio. 0.023 [0.000, 0.085]
Explosives 0.374 [0.167, 0.766]
Fire 0.137 [0.012, 0.339]
Firearms 0.118 [0.015, 0.320]
Knives 0.009 [0.001, 0.021]
Other or unknown 0.055 [0.000, 0.236]

Any 0.564 [0.338, 0.839]

(The sum of marginal probabilities exceeds that of the “any” column because in
some trials, catastrophic events are generated in multiple categories.)
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FIG. 7. Empirical distribution, with 100 power-law bootstrap models, for events using (a) chemical
or biological, (b) explosives (includes remote detonation), (c) fire, arson and firebombs, (d) firearms,
(e) knives or sharp objects, and (f) other, unknown or unconventional weapons. Insets: marginal
distributions of estimated hazard rates Pr(p̂), with the region of 90% confidence shaded and the
mean value indicated by the dashed line.
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Implementations of our numerical methods are available online at http://www.
santafe.edu/~aaronc/rareevents/.
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