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In an optimal nonbipartite match, a single population is divided into
matched pairs to minimize a total distance within matched pairs. Nonbipartite
matching has been used to strengthen instrumental variables in observational
studies of treatment effects, essentially by forming pairs that are similar in
terms of covariates but very different in the strength of encouragement to
accept the treatment. Optimal nonbipartite matching is typically done using
network optimization techniques that can be quick, running in polynomial
time, but these techniques limit the tools available for matching. Instead, we
use integer programming techniques, thereby obtaining a wealth of new tools
not previously available for nonbipartite matching, including fine and near-
fine balance for several nominal variables, forced near balance on means and
optimal subsetting. We illustrate the methods in our on-going study of out-
comes of late-preterm births in California, that is, births of 34 to 36 weeks of
gestation. Would lengthening the time in the hospital for such births reduce
the frequency of rapid readmissions? A straightforward comparison of ba-
bies who stay for a shorter or longer time would be severely biased, because
the principal reason for a long stay is some serious health problem. We need
an instrument, something inconsequential and haphazard that encourages a
shorter or a longer stay in the hospital. It turns out that babies born at cer-
tain times of day tend to stay overnight once with a shorter length of stay,
whereas babies born at other times of day tend to stay overnight twice with
a longer length of stay, and there is nothing particularly special about a baby
who is born at 11:00 pm. Therefore, we use hour-of-birth as an instrument for
a longer hospital stay. Using integer programming, we form 80,600 pairs of
two babies who are similar in terms of observed covariates but very different
in anticipated lengths of stay based on their hours of birth. We ask whether
encouragement to stay an extra day reduces readmissions within two days
of discharge. A sensitivity analysis addresses the possibility that the instru-
ment is not valid as an instrument, that is, not random but rather biased by
an unmeasured covariate associated with the hour of birth. Bias can give the
impression of a treatment effect when there is no effect, but it can also mask
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an actual effect, leaving the impression of no effect, and both possibilities are
examined in analyses for effects and for near equivalence.

1. Introduction: Structure, application, data, outline.

1.1. The effects of changing the norms for treatment. There are settings, com-
mon in medicine, clinical psychology and criminology, in which certain norms
govern the treatment assigned to an individual and yet also a recognition that
unique circumstances may justify a deviation from the norm. In such a context,
we might ask about the effects of changing the norm without changing the latitude
to deviate from the norm when circumstances warrant a deviation. How should one
study a situation such as this?

In the current paper we look at late preterm births of 34 to 36 weeks gestation
in California and ask whether a shift in the norm for length of stay in the hospital
nursery reduces the frequency of rapid readmission. Late preterm babies typically
stay in the nursery for a day or two before being discharged from the hospital.
Should the norm be one day or two days? Perhaps a two-day norm reduces the fre-
quency of rapid readmission, or perhaps one day is sufficient and the second day
is an unnecessary expense. Obviously, a baby with serious health problems will
and should be kept in the hospital as long as is necessary—no one doubts the need
to permit deviations from the norm—and shifting the norm for a comparatively
healthy baby is not intended to alter the special care required by sick babies. We
would like to compare similar babies subject to different norms—one day or two
days—but with the same latitude to ignore the norm in specific cases. A straight-
forward comparison of babies who stay many days versus babies who stay a single
day will inevitably be a comparison of sick and healthy babies and will provide no
useful information about changing the norm for healthy babies. Goyal, Fager and
Lorch (2011) describe changes over time in the norms for discharge of late preterm
babies and suggest that an evaluation of the effects of these changes is needed.

The question just raised—the question about changing the norm for treatment
while granting the same latitude for deviations from the norm—is related to the so-
called encouragement design [Holland (1988)]; however, it asks a different ques-
tion than is commonly asked in that design. In a randomized encouragement ex-
periment, some people are picked at random and encouraged to take the treatment,
while the rest are not encouraged; however, there is noncompliance and people of-
ten do not do what they are encouraged to do. Typically, in an encouragement ex-
periment, the goal is to estimate the effect of taking the treatment, not the effect of
being encouraged to take it, and noncompliance is a nuisance whose consequences
are to be removed analytically. In the case of changing norms for treatment, devi-
ations from the norm are not properly called noncompliance, may be entirely ap-
propriate, even necessary, and we may have no interest in estimating what would
happen in a world which forbid deviations. No one wants to discharge a sick baby
who needs services provided by the hospital, whatever norms are adopted for the
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length of stay of comparatively healthy babies. How would outcomes change if the
norms changed with no change in the freedom to deviate from the norm? Notice
that a change in the norm might lead to a change in the way the freedom to deviate
from the norm is employed. Possibly, if the norm shifted from two days to one
day, more babies would deviate from the new one-day norm staying instead the
two days they would have stayed under the old two-day norm.

In the case of norms, we are interested in the effects of changing the encourage-
ment without removing deviations from what is encouraged. In the slightly spe-
cialized technical terminology introduced by Angrist, Imbens and Rubin (1996),
we are interested in the causal effect of encouragement on all babies, not its effect
on compliers, that is, the estimand of the numerator of the Wald estimator, not the
estimand of the Wald estimator itself.

1.2. Is a longer stay in the hospital nursery of benefit to a newborn baby? The
clock, the hour of birth, may alter whether a newborn baby stays in the hospital
nursery for one day or two before discharge to face the world for the first time.
In California, the typical baby born at 3:00 in the afternoon (i.e., at 15:00) is dis-
charged the following day, with a median length of stay of 22 hours, while the
typical baby born three hours later at 6:00 in the evening (i.e., 18:00) is discharged
after two days, with a median length of stay of 43 hours. To the extent that the
hour of birth is itself inconsequential, to the extent that the hour of birth tells you
nothing about the health of the baby, it serves as an instrument, creating variation
in length of stay that will predict subsequent health outcomes only to the extent
that an extra day in the nursery is beneficial or harmful. See Angrist, Imbens and
Rubin (1996) for a general discussion of the use of instrumental variables in causal
inference.

An instrument is needed here because a straightforward comparison of babies
discharged earlier and those discharged much later is likely to be severely biased.
A baby whose discharge is delayed for several days is very likely to have signifi-
cant complications requiring prolonged care or observation, whereas a baby born
at 6:00 in the evening is not an unusual baby. Although biases are always conceiv-
able in observational studies, there is no compelling reason to anticipate severe
biases in a comparison of babies born at 3:00 in the afternoon and others born at
6:00 in evening.

Briefly then, our plan is to form two subsets of babies using just the hour of
birth, those babies born at times that typically yield a one-day stay and those born
at times that typically yield a two-day stay. More precisely, we use hour of birth
to produce pairs of babies with very different anticipated lengths of stay (ALOS)
based on hour of birth, specifically based on the median length of stay for babies
born at that hour. In other words, we wish to focus attention on an innocuous
source of variation in length of stay, the hour of birth. Admittedly, our two groups
do not always stay one or two days, so our groups have heterogeneous lengths of
stay; however, unlike the hour of birth, variations in length of stay that reflect the
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health of the baby are likely to bias comparisons of other outcomes such as 2-day
readmissions, and we do not want to use that portion of the variation in length of
stay in defining our comparison groups. See Malkin, Broder and Keeler (2000) and
Almond and Doyle (2008) for related tactics.

An instrument is weak if it barely affects which treatment a baby receives and
it is strong if it is typically decisive in determining the treatment. Weak instru-
ments present substantial problems in part because they contain little information
[Bound, Jaeger and Baker (1995)] and in part because the information they do
contain is sensitive to tiny unmeasured biases [Small and Rosenbaum (2008)]. Fol-
lowing the theory in Small and Rosenbaum (2008) and extending the technique in
Baiocchi et al. (2010), we strengthen the instrument by not using all of the babies,
forcing the remaining paired babies to be further apart in terms of ALOS. Because
the strength of an instrument affects its design sensitivity, discarding some babies
to increase strength can increase the power of a sensitivity analysis [Small and
Rosenbaum (2008)] despite the contrary intuition that we all have from unbiased
randomized experiments where discarding observations can only reduce power.

The matching technique we use is a substantial advance over previous tech-
niques for this problem and more generally for so-called nonbipartite matching
problems. We use general integer programming techniques rather than the subset
of network optimization techniques. As reviewed in Section 3.1, general integer
programming techniques are much more flexible in what they can do, but in a
certain abstract sense they are not as suitable for large problems as are network
optimization techniques. Despite this abstract concern, we did not have difficulty
in California pairing 161,200 babies using integer programming, although the ab-
stract concern may be relevant in other practical contexts.

1.3. Data: Late preterms birth in California, 1993–2005. We used statewide
discharge data on birth hospitalizations in California from 1993 to 2005 obtained
from the California Office of Statewide Health Planning and Development. For
each baby, there is a UB-92 form describing principal diagnoses and medical pro-
cedures. These data were linked to birth certificate data, maternal hospital records
and hospital admissions up to one year after delivery. The data included live-born
newborns delivered vaginally at late preterm (34–36 weeks) gestation who were
discharged home. Using ICD-9-CM codes, we excluded newborns likely to re-
quire neonatal intensive care because of major congenital anomalies, surgeries or
complications such as respiratory distress syndrome or sepsis. The clinical team
excluded newborns with length of stay > 5 days, on the grounds that prolonged
hospitalization likely reflects significant complications and possible neonatal in-
tensive care.

1.4. Outline: A match, a matching algorithm, an analysis. Section 2 describes
the matched comparison while Section 3 discusses the optimization techniques
used to create the matched pairs. The optimization uses integer programming in a
new way on a large scale. An analysis of one key outcome, readmission within two
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days of discharge, is presented in Section 4. The analysis tests null hypotheses of
both difference and near-equivalence and examines their sensitivity to bias from
unmeasured covariates [Rosenbaum and Silber (2009a)]. For instance, the analy-
sis asks whether an apparent absence of effect might be an effect of substantial
magnitude masked by biases from unmeasured covariates.

The manuscript presents an application, from conception through design to
analysis, but the novel methodological aspects are most prominent in the construc-
tion of the matched pairs in Section 3. These novel elements are easier to describe
once the match has been presented in Section 2 and the distinction between net-
work and integer optimization has been reviewed in Section 3.1. The babies did
not arrive as treated or control babies; rather, the algorithm split one population
of babies into pairs so they have very different anticipated lengths of stay based
on the hour of birth; that is, in the technical terminology of optimization theory,
this is a nonbipartite match; for example, see Edmonds (1965), Derigs (1988) and
Korte and Vygen (2008), Section 11. Nonbipartite matching has a variety of uses
in statistics [Lu et al. (2011)], for instance, matching for time-dependent covariates
[Lu (2005), Silber et al. (2009)] and strengthening instrumental variables [Baiocchi
et al. (2010)]. Concisely, if perhaps for the moment obscurely, the novel elements
of the integer programming algorithm in Section 3 include the following: (i) the ex-
tension of fine balance to nonbipartite matching, including fine balance for several
variables at once, something that is not possible with network optimization, (ii) the
extension of optimal subset matching to nonbipartite matching, (iii) the simulta-
neous use of fine balance and optimal subset matching in nonbipartite matching,
(iv) forcing balance on means in nonbipartite matching. For a recent survey of the
literature on matching in observational studies, see Stuart (2010).

2. The matched comparison: Similar covariates, different anticipated
lengths of stay based on the hour of birth. For each hour of birth, 0 to 23,
we computed the median length of stay in the hospital. For instance, the median
lengths of stay for babies born at midnight, 11 am and 6 pm were, respectively,
37 hours, 26 hours and 43 hours. Call this median length of stay for a given birth
hour the “anticipated length of stay” or ALOS. We formed 80,600 matched pairs of
two similar babies so that one baby in a pair had a much longer anticipated length
of stay than the other—at least 12 hours, and on average about 14 hours. Notice
that these two groups of babies are defined by their individual hours-of-birth, not
their individual lengths of stay. We refer to these paired babies as the “long-hour-
of-birth” baby and the “short-hour-of-birth” baby and abbreviate hour-of-birth as
HOB. For instance, a baby born at 6 pm might be paired with a baby born at 11 am,
where the former would be the long-HOB baby and the latter the short-HOB baby.
The new algorithm we used for this matching is described in detail in Section 3,
but let us first look at the resulting match, then consider its construction.

The two babies in each pair were both born in the same year in the same hospi-
tal, that is, the individual pairs were exactly matched for year and hospital. Table 1
shows the frequencies for the 13 years, and of course these are exactly the same
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TABLE 1
Babies were matched exactly for 13 years of birth
and for 311 hospitals, and this table displays the

counts of babies by year. Similar tables, not
shown, for 311 hospitals and 13 × 311

years-by-hospitals also exhibit perfect balance

Long-HOB Short-HOB

Year of birth, matched exactly

1993 7471 7471
1994 7514 7514
1995 7221 7221
1996 6877 6877
1997 6644 6644
1998 6191 6191
1999 5814 5814
2000 5702 5702
2001 5505 5505
2002 5348 5348
2003 5547 5547
2004 5416 5416
2005 5350 5350

for the short-HOB and long-HOB babies. There is a similar exactly balanced table,
not shown, for the 311 hospitals, and a much larger exactly balanced table, also not
shown, for the interaction of year and hospital with 13 × 311 = 4043 categories.
Table 2 shows that the marginal distributions of seven other nominal variables were
exactly balanced, specifically birth weight < 2500 grams, gestational age, gender,
race, health insurance, parity of the mother, and single or multiple birth. (Because
multiple births were very rare, we make no special allowance for them.) Indeed,
the exact balance seen in Table 2 is found within each hospital, that is, within each
of the 311 categories. Unlike Table 1, Table 2 exhibits fine balance, not exact pair
matching; that is, the marginal distributions seen in Table 2 are exactly the same,
but within a single pair the two babies may differ [Rosenbaum, Ross and Silber
(2007)]. However, we tried to pair individually similar babies whenever possible
[Zubizarreta et al. (2011)]. Balance on several other covariates is displayed in Ta-
ble 3.

Birth weight is the most important prognostic variable that is relevant to all
babies. For this reason, we matched for birth weight in four ways that are de-
scribed in detail in Section 3. Table 2 shows that the marginal distribution of low
birth weight < 2500 grams is exactly balanced; this is a consequence of a fine bal-
ance constraint [specifically (2) in Section 3]. Also, Table 3 shows the mean birth
weights are reasonably close in the long and short HOB groups (3064.96 grams for
long-HOB and 3065.04 grams for short-HOB); this is a consequence of an approx-
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TABLE 2
Balance for covariates that were either exactly matched
or finely balanced. The table counts babies, and the total

count in each subtable is 161,200 babies

Long-HOB Short-HOB

Birth weight < 2500 grams, finely balanced

≥2500 grams 72,500 72,500
<2500 grams 8100 8100

Gestational age, finely balanced

34 weeks 11,133 11,133
35 weeks 22,756 22,756
36 weeks 46,711 46,711

Gender, finely balanced

Male 42,549 42,549
Female 38,051 38,051

Race, finely balanced

Hispanic 40,342 40,342
White 24,067 24,067
Asian 7871 7871
Black 6009 6009
Other 2311 2311

Health insurance, finely balanced

Federal 42,061 42,061
HMO 31,461 31,461
Fee for service 3645 3645
Uninsured 2880 2880
Other 547 547
Missing 6 6

Parity, uniparous versus multiparous, finely balanced

Multiparous 50,145 50,145
Uniparous 30,455 30,455

Multiple birth, finely balanced

Single birth 78,837 78,837
Multiple birth 1763 1763

imate mean constraint [specifically (4) in Section 3]. The algorithm restricted the
number of babies mismatched for low birth weight [using (3) in Section 3] so that
97% of pairs were individually matched for low birth weight; see Table 4. Finally,
an effort was made to pair individual babies with similar birth weights: the median
absolute difference in weight for paired babies was 49 grams, and the upper quar-
tile was 100 grams. The pairing of babies with similar birth weights used a robust
Mahalanobis distance that included birth weight as one of the variables.
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TABLE 3
Instrument imbalance and covariate balance in 80,600 matched pairs

of two babies, one born at a long hour-of-birth (HOB), the other
born at a short hour-of-birth. The matching is intended to construct

pairs in which the anticipated length of stay (LOS) based on the
babies’ hour of birth is quite different, but covariates, such as birth

weight, are similar. Tabulated values are means. Covariates are
binary indicators except as noted

Variable Long-HOB Short-HOB

Instrument

Anticipated LOS (hours) 39.56 25.48

Covariates

Birth weight (grams) 3064.96 3065.04
High school degree 0.60 0.60
Birth injury 0.01 0.01
Oligohydramnios 0.01 0.01
Cord abnormality 0.04 0.03
Disorders of the placenta 0.01 0.01
Eclampsia 0.00 0.00
Chorioamniotis 0.02 0.01
Fever post-partum 0.00 0.00
Gestational diabetes 0.03 0.03
Diabetes mellitus 0.00 0.00
Prom 0.09 0.07

We wanted the long-HOB baby and short-HOB baby to have very different an-
ticipated lengths of stay based on their hours of birth. The matching algorithm be-
gan with all of the babies, splitting them into long and short in an optimal manner
while selecting an optimal subset to discard. Table 3 shows that the average antic-

TABLE 4
Matching for low birth weight < 2500 grams. The marginal

distributions are identical, as required by fine balance, and 97% of
pairs are on the diagonal, exactly matched for birth

weight < 2500 grams. The table counts pairs, not babies

Short-HOB baby

Long-HOB baby ≤2500 grams ≥2500 grams Total

≤2500 grams 6909 1191 8100
≥2500 grams 1191 71,309 72,500

Total 8100 72,500 80,600
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TABLE 5
Actual days in the hospital in matched pairs. The table

counts pairs, not babies

Short-HOB baby

Long-HOB baby ≤1 day 2 days ≥3 days

≤1 day 27,687 8704 1684
2 days 18,746 16,732 2061
≥3 days 2443 1926 477

ipated length of stay was 39.56 hours among long-HOB babies and 25.48 hours
among short-HOB babies.

How does anticipated length of stay based on hour of birth relate to actual length
of stay? Table 5 and Figure 1 provide answers. We defined zero days as less than
12 hours, one day as between 12 and 36 hours, two days as between 36 and 50

FIG. 1. Anticipated and actual length of stay (LOS) in days in 80,600 matched pairs of a long-HOB
baby and a short-HOB baby. The anticipated LOS for baby ij is the median LOS for all babies with
the same hour of birth (HOB) as baby ij . The figure on the left shows that babies in the long-HOB
group were typically anticipated to stay two days (36–60 hours) while babies in the short-HOB group
were anticipated to say one day (12–36 hours). The figure on the right is actual length of stay.
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hours, and so on, in effect rounding to the nearest 24 hour unit. In Figure 1, the
boxplots on the left for anticipated lengths of stay have collapsed into lines because
the medians and quartiles are equal: typically, long-HOB babies were anticipated
to stay two days and short-HOB babies were anticipated to stay one day. On the
right in Figure 1, anticipation often but not always equaled actuality: the median
and one quartile equaled the anticipated stay. Presumably, the decision to keep a
baby in the hospital for four or more days in Figure 1 is not driven by the id-
iosyncrasy of hour of birth, but rather by serious health problems of the newborn.
Table 5 describes the actual length of stay in pairs. Because babies were paired
for important prognostic variables such as birth weight, it is not surprising that the
two babies in pair often stayed the same number of days despite different hours-of-
birth. Nonetheless, in a pair, when one baby stayed two days and the other stayed
one, the odds were 18,746/8704 = 2.2 to 1 that the long-HOB baby was the one
who stayed two days.

Section 3 describes the new techniques used to construct this match and Sec-
tion 4 presents an illustrative analysis of one important outcome, namely, readmis-
sion to the hospital within two days of discharge.

3. Using integer programming to construct the matched comparison.

3.1. Some algorithmic background: Integer versus network optimization. An
integer programming problem is essentially a linear programming problem in
which the solution is restricted to have integer coordinates rather than fractional
or real coordinates. Often, the solution is further restricted to a subset of the in-
tegers, sometimes to 0 or 1. An excellent introduction to integer programming is
provided by Wolsey (1998) and a more detailed account is provided by Schrijver
(1986). Integer programs arise in various problems in operations research because
building 5.5 submarines and 6.5 destroyers is actually less sensible than build-
ing 6 submarines and 6 destroyers or 5 submarines and 7 destroyers or perhaps
8 submarines and 5 destroyers. Integer programming shows up in optimal match-
ing because whole babies are matched to whole babies. Rounding the solution to
a linear program may be substantially inferior to solving an integer program, but
linear programming concepts play an important role in solving integer programs.

An integer program has the form

minimize
a

ηT a subject to Ba ≤ b,a ≥ 0 with a integer,(1)

where B is a given d1 × d2 matrix, η is a given d2-dimensional vector with real
coordinates, b is a given d1-dimensional vector, and one must find the best d2-
dimensional vector a with d2 integer coordinates. The form (1) simplifies the dis-
cussion in the current section but, in general, integer programs may include both
linear inequality constraints (as in Ba ≤ b) and linear equality constraints (say,
Ca = c) and, indeed, with a bit of juggling, either type of constraint may be re-
expressed in terms of the other, so a separate theory for equality constraints is
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not needed. In the current paper and in most matching problems a is further re-
stricted to have binary, 1 or 0, coordinates. The binary program is finite—there
are 2d2 candidate a’s—but for large d2 the number of candidates suffers a com-
binatorial explosion and considering all of them, one by one, is not possible. In
the work here, η and a have double subscripts, η�m and a�m, � < m, where η�m

is a measure of distance on covariates between babies � and m, and a�m = 1 if
babies � and m are paired and a�m = 0 if they are not. For instance, with L babies,
a = (a12, a13, a23, . . . , aL−1,L)T . Then ηT a is the total covariate distance within
matched pairs. The matrix B imposes various desired restrictions on the match,
not least that each baby shows up in at most one pair.

In (1), if you remove the restriction that a is integral, then you have a linear
program. The linear program always has a minimizing value of ηT a that is at
least as small as the integer program, but again that leaves you with the rather
damp prospect of half a submarine. There is a curious but important subset of
problems in which the linear programming solution and the integer programming
solution must be the same, and for these problems, known somewhat inaccurately
as network optimization problems, especially fast algorithms are often available
by adapting linear programming techniques. These problems are called “network
optimization” because the most common versions arise from problems expressed
in terms of the nodes and arcs of graph theory. Somewhat more precisely, there is
an integral optimal solution to a linear programming problem if an integer matrix
B is totally unimodular, that is, if every square submatrix of B has determinant
−1, 0, or 1, a condition that insures via Cramer’s rule for matrix inversion that
linear equations solve with integer solutions. See Wolsey [(1998), Section 3.2]
for a precise statement and proof. In R, Hansen’s (2007) optmatch package, Lu
et al.’s (2011) nbpmatching package and Yang et al.’s (2012) finebalance
package all use network optimization techniques, specifically the techniques of
Bertsekas (1981) and Derigs (1988). The restriction of B to be totally unimodular
is a substantial restriction, and one can do quite a bit more with (1) if B is not so
restricted, a fact we demonstrate in detail in the current paper.

In abstract theory, solving large integer programs can be very difficult. In par-
ticular, the general problem (1) is NP-complete [Schrijver (1986), Section 18.1];
however, specific forms of (1) are polynomially bounded [e.g., Schrijver (1986),
Section 18.6]. In practice, there has been a great deal of progress in solving quite
large integer programs either exactly or approximately. We use IBMs ILOG pro-
gram CPLEX to solve (1), and it is much faster than other programs we have tried.
IBM makes CPLEX available to academics for free. Corrada Bravo (2005) created
a package Rcplex that facilitates access to CPLEX inside R and we have used
Rcplex on Apple and linux machines. In statistical matching, a common tactic is
to match exactly for a few key covariates [Rosenbaum (2010), Section 9.3]—we
did this for year and hospital—thereby breaking one large matching problem into
several smaller ones, each of which can be solved quickly.
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3.2. Nonbipartite matching using integer programming. Generally, we wanted
to match babies who were similar in terms of covariates but very different in terms
of anticipated length of stay based on hour of birth. We matched exactly for hos-
pital and year of birth, meaning that the two babies in a pair were born in the
same year at the same hospital. Hospitals vary in discharge and readmission prac-
tices, so it was important to compare two babies in the same hospital. There have
been substantial changes in discharge and readmission practices over the years, as
well as advances in medical technique, so matching for year was also important.
Exact matching can be implemented by simply dividing the population into mu-
tually exclusive and exhaustive subpopulations, and performing a separate match
for each subpopulation. Each subpopulaton consisted of a single hospital over an
interval of years. The rest of the discussion describes the match within one such
subpopulation, here a subpopulation defined by hospital and year of birth.

There are L babies in the subpopulation, � = 1, . . . ,L, and a variable a�m, 1 ≤
� < m ≤ L, with a�m = 1 if babies � and m are paired and a�m = 0 otherwise. So
a = (a12, . . . , aL−1,L)T has dimension

(L
2

)
and B has

(L
2

)
columns. The first con-

straint is that a�m ∈ {0,1} for all �, m, so the problem is not just an integer program
but a binary program. Now each baby � appears in at most one matched pair, and
to enforce this, we impose L linear inequalities,

∑�−1
m=1 am� +∑L

m=�+1 a�m ≤ 1, for
� = 1, . . . ,L, which are coded as the first L rows of B, where b1 = 1, . . . , bL = 1.

In statistics, matching is almost invariably “without replacement,” meaning that
no baby appears in more than one pair. The constraint

∑�−1
m=1 am� +∑L

m=�+1 a�m ≤
1 ensures matching is “without replacement.” Because outcome data are never
used in constructing a match, when matching is without replacement, if the L ba-
bies were independent prior to matching, then the pair outcomes are conditionally
independent in distinct pairs given the variables used to construct the match, for
instance, covariates and hour of birth. In contrast, in matching “with replacement,”
babies would be used repeatedly in different pairs, creating dependence. The analy-
sis in Section 4 uses existing techniques that are appropriate for conditionally inde-
pendent pairs, but these existing techniques are inapplicable when matching “with
replacement.” Indeed, even in the absence of bias from unmeasured covariates,
Abadie and Imbens (2008) argue that straightforward applications of the bootstrap
are inapplicable when matching “with replacement,” and that the specialized tech-
niques of Abadie and Imbens (2006) or Politis and Romano (1994) are required to
obtain a standard error.

Suppose L is even and one further equality constraint is added, namely, L/2 =∑L−1
m=1

∑L
�=m+1 am� [so B has an L + 1 row consisting of a vector with

(L
2

)
coordi-

nates all equal to 1]. Then setting η�m equal to a covariate distance between babies
� and m and solving (1) would yield a minimum distance nonbipartite match that
divides the L babies into L/2 nonoverlapping pairs to minimize the total of the
L/2 distances within pairs. This optimization problem can be solved quickly using
network techniques [Derigs (1988)] as implemented in R in the nbpmatching
package [Lu et al. (2011)].
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In contrast, the remainder of this section imposes additional constraints as addi-
tional rows of B to achieve specific effects, and these require the integer program-
ming formulation. In Section 3.2.1, the marginal distributions of several nominal
variables are forced to balance exactly, a condition known as fine balance, as seen
in Tables 1 and 2. In Section 3.2.2, a binary requirement is imposed on pairs,
while permitting a small fraction of pairs to escape the requirement as needed, a
condition which together with fine balance produced Table 4 for low birth weight,
with perfect balance for marginal distributions combined with most pairs exactly
matched. Section 3.2.3 forces the means of a continuous covariate to balance, as
seen for birth weight in Table 3, while Section 3.2.5 forces the means of the in-
strument to differ, thereby strengthening the instrument, as seen in Figure 1. Fine
balance is generalized to near-fine balance in Section 3.2.4. Finally, Section 3.2.7
adjusts η�m to optimize deletion of some babies while making the remaining babies
closer on covariates and further apart on the instrument.

In teaching, multiple linear regression is defined abstractly, and then specific
ways of coding its predictor matrix are shown to fit useful models, such as polyno-
mials or interactions. In parallel, the integer programming solution to nonbipartite
matching is best viewed abstractly as (1) with a�m ∈ {0,1} and the first L rows of
B requiring

∑�−1
m=1 am� + ∑L

m=�+1 a�m ≤ 1. Then one obtains a match that meets
specific requirements by suitably adjusting B and η�m, as described in Sections
3.2.1–3.2.7.

3.2.1. Fine balance. Table 2 exhibits fine balance of the marginal distribu-
tions for the seven nominal variables. Fine balance for a covariate means that the
marginal distributions of the covariate are exactly the same in matched treated and
control groups, although individual pairs may not be exactly matched for this co-
variate. If a nominal variable has C categories, it is represented as C − 1 binary
indicators. Let w� be the binary indicator for one such category, say, w� = 1 if
baby � is Hispanic and w� = 0 if baby � is not Hispanic. Fine balance for this
category is the linear equality constraint

L−1∑
�=1

L∑
m=�+1

a�m(w� − wm) = 0.(2)

Fine balance in Table 2 is actually present in every year in every hospital; that
is, for instance, among babies born in 2000 in hospital 22, the number of His-
panic long-HOB babies equals the number of Hispanic short-HOB babies. Fine
balance was imposed through several linear equality constraints of this form. In
principle, an equality constraint (2) may be expressed in the formulation (1) as
two inequalities or two rows of B, namely,

∑L−1
�=1

∑L
m=�+1 a�m(w� − wm) ≤ 0 and∑L−1

�=1
∑L

m=�+1 a�m(wm − w�) ≤ 0; however, most solvers including CPLEX ac-
cept either inequality or equality constraints. In CPLEX, each fine balance con-
straint (2) becomes one additional row of B with an equality constraint.
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Treated-versus-control minimum distance matching with fine balance for one
nominal variable, possibly with many levels, was proposed in Rosenbaum [(1989),
Section 3.2] and Rosenbaum, Ross and Silber (2007) using either network opti-
mization or the optimal assignment algorithm; however, that approach is not ap-
plicable in nonbipartite matching and can only balance one nominal variable. In
contrast, the integer programming formulation of fine balance (2) is applicable to
nonbipartite matching while balancing one or more variables.

3.2.2. Binary requirements for individual pairs. Let h�m ∈ {0,1} be a binary
variable describing the pairing of two babies, � and m, where we wish to sharply
limit the number of times that paired babies have h�m = 1, say, to at most H pairs.
Taking H = 0 requires h�m = 0 for all � and m, whereas taking H = 5 permits at
most five matched pairs to have h�m = 1. In this study, we wanted paired babies
to differ substantially in terms of anticipated length of stay, so we set h�m = 1
whenever baby � had an anticipated length of stay that was less than 12 hours more
than the anticipated length of stay for baby m. The linear inequality constraint

L−1∑
�=1

L∑
m=�+1

a�mh�m ≤ H(3)

is added as a row to B to impose this constraint with H = 0. In addition, within
each hospital in each year, a constraint of the form (3) was used with h�m = 1 if
babies � and m differed in terms of low birth weight < 2500 grams and H was
twenty percent of the number of births in that hospital in that year.

3.2.3. Balancing means. For any covariate v, not necessarily a binary covari-
ate, suppose that we wish to ensure that the means in matched treated and controls
groups differ by at most a number ε > 0. Unlike a binary covariate in (2), for a con-
tinuous covariate such as birth weight, one cannot reasonably take ε = 0. Because
there are

∑L−1
�=1

∑L
m=�+1 a�m matched pairs, this requirement is the same as

∣∣∣∣∣
L−1∑
�=1

L∑
m=�+1

a�mv� −
L−1∑
�=1

L∑
m=�+1

a�mvm

∣∣∣∣∣ ≤ ε

L−1∑
�=1

L∑
m=�+1

a�m.(4)

Now, because of the absolute values in the constraint (4), this constraint is not
one linear inequality. However, requiring (4) to hold is equivalent to requiring two
linear inequalities to both hold, namely,

L−1∑
�=1

L∑
m=�+1

a�m(v� − vm − ε) ≤ 0 and
L−1∑
�=1

L∑
m=�+1

a�m(vm − v� − ε) ≤ 0.(5)

So, a requirement that the means of v after matching differ by at most ε is rep-
resented in the integer program as two rows of the matrix B. Notice in Table 3
that the mean of birth weight is almost the same for the long-HOB and short-HOB
babies. The same technique was applied to birth injury and oligohydramnios in
Table 3.
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3.2.4. Near-fine balance. Sometimes fine balance (2) for a binary variable w

is infeasible or just too restrictive. For bipartite matching, Yang et al. (2012) pro-
posed a network optimization algorithm for treatment-versus-control near-fine bal-
ance requiring |∑L−1

�=1
∑L

m=�+1 a�m(w� − wm)| ≤ ε rather than (2) for the binary
variables w that define categories of a single nominal variable, and Yang imple-
mented this in her finebalance package in Rwhich uses network optimization.
Just as (4) became two linear inequalities in (5), so too |∑L−1

�=1
∑L

m=�+1 a�m(w� −
wm)| ≤ ε may be split into two linear inequality constraints which are imposed
using integer programming. Also, unlike network optimization, integer program-
ming permits near-fine balance for one or more nominal variables in nonbipartite
matching.

3.2.5. Forcing pairs to differ with respect to the mean of the instrument. Al-
though we set a minimum requirement of a 12 hour difference in anticipated length
of stay using a constraint of the form (3), we wanted the typical difference to be
larger than the minimum. Specifically, we imposed the requirement that the mean
difference in anticipated length of stay, say, v�, should be at least φ = 13 hours,
that is, we required

L−1∑
�=1

L∑
m=�+1

a�mv� −
L−1∑
�=1

L∑
m=�+1

a�mvm ≥ φ

L−1∑
�=1

L∑
m=�+1

a�m

by imposing the linear inequality constraint

L−1∑
�=1

L∑
m=�+1

a�m(v� − vm − φ) ≥ 0.

In Table 3, the anticipated length of stay based on birth hour is 39.56 hours for
the long-HOB babies and 25.48 hours for the short-HOB babies, an anticipated
difference of more than 14 hours.

3.2.6. Using several techniques to balance one covariate. It is possible to use
several of these devices for the same variable. Birth weight is an especially impor-
tant prognostic variable. We finely balanced the indicator of birth weight < 2500
grams in Table 2 using a constraint of the form (2). We limited the difference in
means of birth weight in Table 3 using a pair of constraints of the form (5), and
we limited the number of times individual pairs (�,m) were mismatched for the
indicator of birth weight < 2500 grams using a constraint of the form (3).

3.2.7. Optimal selection of a subset. Recall that our match discards some ba-
bies and must optimally decide the following: (i) how many babies to discard,
(ii) which babies to discard, and (iii) how to pair the babies not discarded. Extend-
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ing the technique in Rosenbaum (2012) to nonbipartite matching, the objective
function ηT a is

L−1∑
�=1

L∑
m=�+1

a�mω�m − λ

L−1∑
�=1

L∑
m=�+1

a�m(6)

or η�m = ω�m − λ, where ω�m is a robust Mahalanobis distance between the co-
variates for babies � and m, and λ is a constant selected by the investigator. For
discussion of the use of Mahalanobis distances in matching, see Rubin (1980), and
for a robust Mahalanobis distance, see Rosenbaum (2010), Sections 8.3 and 13.11.
Because

∑L−1
�=1

∑L
m=�+1 a�m is the number of matched pairs, the objective func-

tion (6) has the following interpretation. When comparing two possible matched
samples, say, a�m and a′

�m, that satisfy the constraints with the same number of
pairs, (6) prefers the pairing with the smaller total distance within pairs. Suppose,
instead, a�m includes A > 0 more pairs than a′

�m, A = ∑L−1
�=1

∑L
m=�+1 a�m − a′

�m.
Then (6) prefers a′

�m to a�m if

L−1∑
�=1

L∑
m=�+1

a′
�mω�m − λ

L−1∑
�=1

L∑
m=�+1

a′
�m <

L−1∑
�=1

L∑
m=�+1

a�mω�m − λ

L−1∑
�=1

L∑
m=�+1

a�m

or, equivalently, if
∑L−1

�=1
∑L

m=�+1 a�mω�m − ∑L−1
�=1

∑L
m=�+1 a′

�mω�m∑L−1
�=1

∑L
m=�+1 a�m − ∑L−1

�=1
∑L

m=�+1 a′
�m

> λ.(7)

In words, the match represented by a�m had A pairs more than the match a′
�m, so

the sum of the distances ω�m for a�m contained A more distances, and the total
distance within pairs rose by more than Aλ if (7) holds, so the average cost of
these A additional pairs was more than λ. The objective (6) prefers more pairs
to fewer pairs if, on average, more pairs may be had for less than λ and prefers
fewer pairs if, on average, they cost more than λ. Because a�m and a′

�m pair babies
differently, the change in average cost is produced by all of the paired babies, not
just A babies; see Rosenbaum (2012) for detailed discussion. In our case, λ was
the median of all distances before matching, and the algorithm prefers more pairs
to fewer pairs providing the added pairs are, on average, closer than pairs typically
are. Of 231,831 babies, this value of λ paired 161,200 babies. Although it would be
possible to pair additional babies, each of these additions would, on average, raise
the distance by more than λ, that is, by more than the median pairwise distance
before matching. One might choose a different λ in a different context.

3.3. Comparison with three other matched samples. Table 6 compares the
match described in Section 2 with three other sets of matched pairs. As noted
in Section 3.2, the match in Section 2 insisted on a separation of 12 hours in an-
ticipated length-of-stay within each pair. Table 6 contrasts matching with 12 hour
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TABLE 6
Comparison of four the actual match required samples with different
required differences in anticipated length of stay. The actual matched

required a 12 hour difference in anticipated length of stay. This 12 hour
required difference is compared with 0, 9 and 15 hours. The table
records the percent of babies staying longer than one day and the
number of pairs. Because zero days is a length of stay less than 12

hours, and one day is a length of stay greater than 12 hours but less
than 36 hours, the table indicates the percent of babies staying

longer than 36 hours

Separation in anticipated LOS

Hours 0 9 12 15

Long-HOB % 46.9 50.2 52.7 58.7
Short-HOB % 40.7 38.0 39.2 41.8

Difference % 6.2 12.1 13.4 16.9

Number of pairs 91,053 90,360 80,600 59,678

separation to matching with no required separation, ≥9 hours and ≥15 hours. Two
quantities are reported in Table 6: the number of pairs and the percent of babies
staying more than one day, where one day is a length-of-stay between 12 and 36
hours. With 0 separation, there is only a 6.2% difference between long-HOB and
short-HOB births in stays more than one day. With 12 hours of separation, the dif-
ference is more than twice as large, 13.4%. In the terminology of Angrist, Imbens
and Rubin (1996), the percent of compliers is estimated to be more than twice as
large with 12 hours of separation as with 0 separation.

Matching is part of the design of an observational study, a task that should
be completed before outcomes are examined [Langenskiold and Rubin (2008),
Rosenbaum (2010)], and, in particular, one matched sample should be selected as
the design without using or examining outcomes. We selected the 12 hour match
based on its qualities as a matched comparison, for instance, the covariate balance
in Tables 1–5 and Figure 1, and the number of pairs and instrument strength in
Table 6. The analysis of outcomes for this selected match is discussed in Section 4.

4. Inference: Effects on rapid readmission.

4.1. Null hypotheses of no effect or substantial inequivalence. We will con-
duct both a test of no effect and an equivalence test for readmissions within two
days of discharge from the hospital. That is, we wish to ask whether our data are
compatible with no effect or substantial effects of shifting the norm for length of
stay. Following Bauer and Kieser (1996), a three part null hypothesis is tested,
where one part asserts no effect, a second part asserts moderately large benefits
from a 2-day norm and the third part asserts moderately large benefits from a
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TABLE 7
Readmission within two days of discharge in matched pair.

The table counts pairs, not babies

Observed data

Short-HOB baby

Long-HOB baby Not readmitted Readmitted

Not readmitted 78,431 1032
Readmitted 1108 29

1-day norm. Because these three null hypotheses are logically incompatible with
one another, at most one of the null hypotheses is true, so all three hypotheses
may be tested without a correction for testing multiple hypotheses; see Bauer and
Kieser (1996). In particular, the hypothesis of no effect is a two-sided hypothe-
sis saying changing the hour of birth for a baby would not change whether the
baby is readmitted within two days of discharge. The hypothesis that a norm
of a one-day length-of-stay is harmful asserts that it caused at least 500 read-
missions that would not have occurred with a two-day norm. Because there are
80,600 pairs in Table 7, each pair containing one short-HOB baby, 500 read-
missions is slightly more than one half of one percent of these babies (actually
500/80,600 = 0.00620). In Table 5, 18,746 − 8704 = 10,042 more long-HOB ba-
bies stayed 2 days rather than 1 day, and 500 babies is about 5% of these 10,042
babies (actually 500/10,042 = 0.0498). The same value, 500, is used to test the
third hypothesis of substantial harm, rather than substantial benefit, from a two-
day norm. In testing these hypotheses, we are concerned about both sampling vari-
ability and bias from nonrandom treatment assignment.

4.2. Randomization inference in matched pairs: Viewing hour of birth as ran-
dom. There are I matched pairs, i = 1, . . . , I of two babies, j = 1,2, one treated,
Zij = 1, the other control, Zij = 0, so Zi1 + Zi2 = 1 for each i. In Section 1.2,
there were I = 80,600 pairs of babies, or 2 × 80,600 = 161,200 babies in total,
and somewhat arbitrarily we designate short-HOB as treatment and long-HOB as
control. Babies were matched for an observed covariate xij , so xi1 = xi2 for all i,
but they may have differed in terms of an unmeasured covariate uij , so quite possi-
bly ui1 �= ui2 for many or all i. Write Z = (Z11, . . . ,ZI2)

T for the 2I -dimensional
vector of treatment assignments and write Z for the set containing the 2I pos-
sible values z of Z, so z ∈ Z if z = (z11, . . . , zI2)

T with zij = 0 or zij = 1 and
zi1 + zi2 = 1 for each i. If S is a finite set, write |S| for the number of elements
of S , so |Z| = 2I . Conditioning on the event Z ∈ Z is abbreviated to conditioning
on Z .

Each baby has two potential binary 1 or 0 responses, rT ij if treated, rCij if con-
trol, so the effect of the treatment on this baby, namely, δij = rT ij − rCij , is not
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seen for any baby ij but the response actually seen from ij is Rij = Zij rT ij + (1−
Zij )rCij = rCij + Zij δij ; see Neyman (1923), Welch (1937), Rubin (1974), Reiter
(2000) or Gadbury (2001). Write R = (R11, . . . ,RI2)

T , δ = (δ11, . . . , δI2)
T , rC =

(rC11, . . . , rCI2)
T , rT = (rT 11, . . . , rT I2)

T , so rT = rC + δ. Here, δij ∈ {−1,0,1}
for each ij and Fisher’s (1935) sharp null hypothesis H0 of no treatment asserts
that H0 : δ = 0. In the discussion here, Rij indicates whether baby ij was read-
mitted, Rij = 1, or not, Rij = 0, within two days of discharge from the hospi-
tal. If rT ij = 1 and rCij = 0 so δij = rT ij − rCij = 1, then baby ij would have
been readmitted if born at an hour that would typically lead to a one-day stay and
would not have been readmitted if born at an hour that would typically lead to a
two-day stay, so being born at a short-HOB rather than a long-HOB would have
caused this baby to be readmitted. Aside from Fisher’s null hypothesis of no ef-
fect, greatest interest attaches to hypotheses in which one treatment may cause but
does not prevent a readmission, Hδ0 : δ = δ0 with δ0 ≥ 0 and δ0 �= 0, because hy-
potheses of this form say that one treatment is clearly better than the other. Write
F = {(rT ij , rCij ,xij , uij ), i = 1, . . . , I, j = 1,2} for the potential responses and
covariates.

In a paired randomized experiment, one baby in each pair would be picked at
random for treatment, the other baby receiving control, with independent assign-
ments in distinct pairs, that is, Pr(Z = z|F , Z) = 2−I for z ∈ Z . In Section 1.2,
hour-of-birth is not randomized, but because hour of birth should not pick out a
particular type of baby, the hope is that Pr(Z = z|F , Z) is close to the randomiza-
tion distribution. Section 4.3 examines the sensitivity of conclusions to departures
of various magnitudes from Pr(Z = z|F , Z) = 2−I .

The statistic T = ∑I
i=1

∑2
j=1 ZijRij is the observed number of readmissions

within two days among babies born at a short-HOB. Some of the readmissions
recorded in T may have been caused by the short-HOB and others might have
occurred whether the baby was born at a short or a long HOB. The unobservable
quantity Tc = ∑I

i=1
∑2

j=1 Zij rCij is the number of readmissions that would have
occurred had all babies been born at a long-HOB. Fisher’s sharp null hypothesis,
H0 : δ = 0, says that no readmission was caused or prevented by the hour of birth,
with the consequence that T = Tc. Consider the distribution of Tc in a randomized
experiment, that is, Pr(Tc ≤ k|F , Z) when Pr(Z = z|F , Z) = 2−I . Define n11 to
be the number of pairs i with rCi1 = rCi2 = 1, n00 to be the number of pairs with
rCi1 = rCi2 = 0, and n10 to be the number of pairs with rCi1 �= rCi2. If H0 : δ = 0
were true, then Rij = rCij and it would be possible to calculate (n11, n10, n00) from
the observed Rij ’s. Because Pr(Z = z|F , Z) = 2−I and rC is fixed by conditioning
on F , the I terms

∑2
j=1 Zij rCij are independent for distinct i, and

∑2
j=1 Zij rCij

is 1 with certainty if the pair is concordant with rCi1 = rCi2 = 1, is 0 with certainty
if the pair is concordant with rCi1 = rCi2 = 0, and is 1 or 0 each with probability
1
2 if the pair is discordant with rCi1 �= rCi2; therefore, Tc is the constant n11 plus a
binomial random variable with probably of success 1

2 and sample size n10. Because
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T = Tc when Fisher’s sharp null hypothesis H0 : δ = 0 is true, it follows that H0
may be tested in a randomized experiment by comparing T with the randomization
distribution of Tc, and this is essentially the same as McNemar’s test.

Let δ0 be a 2I -dimensional with coordinates δ0ij ∈ {−1,0,1}, and consider the
hypothesis Hδ0 : δ = δ0. Not all hypotheses of this form are logically compatible
with the observed data because Rij − Zij δij = rCij and Rij + (1 − Zij )δij = rT ij

must both be in {0,1}. If Hδ0 is logically incompatible with the data, we may re-
ject it with type 1 error rate of zero, so for the remainder of the discussion, assume
that Hδ0 is logically compatible with the observed data, or briefly compatible. If
Hδ0 : δ = δ0 were true (and hence compatible), then rCij = Rij − Zij δ0ij may be
calculated from the hypothesis and the data, so n11, n10, n00 and Tc may be calcu-
lated as well, so Tc may be compared with the constant-plus-binomial distribution
to test Hδ0 . Unfortunately, there are many hypotheses Hδ0 : δ = δ0 and it is not
practical to test them all; however, the testing of many hypotheses Hδ0 : δ = δ0
may be summarized using a scalar quantity, the attributable effect.

The attributable effect 	 = ∑I
i=1

∑2
j=1 Zij δij is an unobservable quantity giv-

ing the net increase in the number of babies readmitted because they were born
at a short-HOB; see Rosenbaum (2002a). It is a random variable because it de-
pends upon Z, but it is not an observable random variable because it depends
on δ. Among babies born at a short-HOB, we see T = ∑I

i=1
∑2

j=1 ZijRij =∑I
i=1

∑2
j=1 Zij rT ij readmissions, whereas these same babies would have had

Tc = ∑I
i=1

∑2
j=1 Zij rCij readmissions had they been born at a long-HOB. If

Hδ0 : δ = δ0 were true, then 	 may be calculated using the hypothesized δ0 as
	0 = ∑I

i=1
∑2

j=1 Zij δ0ij , and T − 	0 would equal Tc.
For the reason noted above, we consider hypotheses Hδ0 : δ = δ0 that say that

one treatment is better than the other in the sense that δ0 ≥ 0 and δ0 �= 0. We will
do this twice, once reversing the roles of treatment and control, but for the moment
consider the hypothesis that a short-HOB may cause but not prevent readmissions
in the sense that δ0 ≥ 0. A value of 	0 is rejected if every hypothesis Hδ0 : δ = δ0

with δ0 ≥ 0 and δ0 �= 0 that gives rise to this value of 	0 = ∑I
i=1

∑2
j=1 Zij δ0ij is

rejected; otherwise, this value of 	0 is not rejected. For all of these hypotheses,
T −	0 = Tc will be the same number; however, n11, n10 and n00 typically change
with δ0. For a given 	0, among all hypotheses Hδ0 : δ = δ0 with δ0 ≥ 0 and δ0 �= 0
that yield the same attributable effect 	0, there is one hypothesis Hδ̃0

: δ = δ̃0

with 	0 = ∑I
i=1

∑2
j=1 Zij δ̃0ij that is the most difficult to reject, so if Hδ̃0

is re-
jected, then the associated value of 	0 is rejected. In a cohort study, as in Sec-
tion 1.2, this hypothesis Hδ̃0

: δ = δ̃0 has
∑2

j=1 Zij δij = 1 for as many pairs with
Ri1 + Ri2 = 2 as possible; see Rosenbaum [(2002a), Section 6] for a precise state-
ment and proof. For instance, if Table 7 had come from a randomized experiment,
Pr(Z = z|F , Z) = 2−I , then 	0 ≥ 500 would be rejected if McNemar’s one-sided
test rejected no effect in the adjusted Table 8, where all 29 pairs with Ri1 +Ri1 = 2
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TABLE 8
Readmission within two days of discharge in matched pair
adjusted for a null hypothesis H0 : δ = δ0 that attributes∑

δijZij = 	 = 500 readmissions to early discharge

Data adjusted for H0 : δ = δ0

Short-HOB baby

Long-HOB baby Not readmitted Readmitted

Not readmitted 78,902 561
Readmitted 1137 0

have δ̃0ij = 1 and 471 pairs with Ri1 + Ri1 = 1 have δ̃0ij = 1. Why is this Hδ̃0
the

hypothesis that is most difficult to reject among hypotheses with 	0 ≥ 500? In-
tuitively, this Hδ̃0

has 	0 = 500 with the most variability because the number of
discordant pairs n10 is as large as possible; see Rosenbaum [(2002a), Section 6]
for precise discussion.

If Table 7 had been seen in a randomized experiment, Pr(Z = z|F , Z) = 2−I ,
then the procedure just described would yield the following conclusions. Testing
the null hypothesis of no effect, H0 : δ = 0, yields a two-sided P -value of 0.105
using McNemar’s two-sided test, so no effect is plausible. Is a substantial benefit
of 	0 = 500 from being born at a long-HOB also plausible? It is not. McNemar’s
one-sided test rejects in Table 8 with P -value 2.1 × 10−45, so it rejects for every
Hδ0 : δ = δ0 with δ0 ≥ 0 and δ0 �= 0 and 	0 ≥ 500. Reversing the roles of (and
notation for) a short-HOB and a long-HOB, a substantial benefit of 	0 = 500
from being born at a short-HOB is rejected with a P -value 2.9 × 10−25. In brief,
if Table 7 had been seen in a randomized experiment, the hypothesis of no effect
would be plausible, whereas a benefit or harm that affected at least one half of one
percent of babies would not be remotely plausible. Of course, Table 7 is not from
a randomized experiment.

Our hope has been that a baby’s hour of birth tells you little or nothing about the
baby and her mother, that is, our hope was that hour of birth was nearly random,
at least after matching for covariates. We cannot be certain of this, however. It
is possible to use drugs to induce or accelerate labor, and perhaps the use of such
drugs shifts the hour of delivery for some mothers, possibly in a fashion that biases
randomization inferences based on Table 7. Moreover, the distribution of times for
vaginal delivery may be affected by cesarean sections, which again may be related
to aspects of the mother or the hospital. How large would such biases have to
be to alter the qualitative conclusions based on randomization inferences? This is
examined in Section 4.3 using a sensitivity analysis.
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4.3. Sensitivity analysis in matched pairs: What if birth hour is not random?
The assumption in Section 4.2 was that hour of birth is effectively random, that
it tells you nothing about the baby or the mother or the hospital and its staff,
so that Pr(Z = z|F , Z) = 2−I for z ∈ Z . The current section studies sensitiv-
ity of the conclusions to quantified violations of this assumption. The model
(9) for sensitivity analysis used here is discussed in Rosenbaum (2002b), Sec-
tion 4. Other methods of sensitivity analysis in observational studies are dis-
cussed by Cornfield et al. (1959), Rosenbaum and Rubin (1983), Yanagawa (1984),
Gastwirth (1992), Marcus (1997), Imbens (2003), Diprete and Gangl (2004), Yu
and Gastwirth (2005), Wang and Krieger (2006), McCandless, Gustafson and Levy
(2007), Egleston, Scharfstein and MacKenzie (2009) and Hosman, Hansen and
Holland (2010), among others.

One model for sensitivity analysis in observational studies asserts that, in the
population before matching, treatment assignments are independent and two ba-
bies, say, ij and ij ′, with the same observed covariates, xij = xij ′ , may differ in
their odds of treatment by at most a factor of 
 ≥ 1,

1



≤ Pr(Zij = 1|F )Pr(Zij ′ = 0|F )

Pr(Zij = 0|F )Pr(Zij ′ = 1|F )
≤ 
;(8)

then the distribution of Z is returned to Z by conditioning on Z ∈ Z . Model (8) is
similar to the sensitivity analysis of Cornfield et al. (1959) and is exactly the same
as assuming that

Pr(Z = z|F , Z) =
I∏

i=1

exp(
∑2

j=1 γ zijuij )

exp(γ ui1) + exp(γ ui2)
(9)

= exp(γ uT z)∑
b∈Z exp(γ uT b)

with u ∈ [0,1]2I and γ = log(
);(10)

see Rosenbaum [(2002b), Section 4] where uij satisfying (9) is constructed from
Pr(Zij = 1|F ) satisfying (8) and conversely.

Using either of the two approaches in Gastwirth, Krieger and Rosenbaum
(1998) or Rosenbaum and Silber (2009b), the one parameter 
 may be unpacked
into two sensitivity parameters, one controlling the relationship between uij and
treatment Zij , the other controlling the relationship between uij and response un-
der control rCij . For instance, an unobserved covariate uij that both doubles the
odds of a short-HOB and doubles the odds of readmission within two days is equiv-
alent to 
 = 1.25, whereas doubling the odds of a short-HOB with a four-fold in-
crease in the odds of readmission is equivalent to 
 = 1.5. See Gastwirth, Krieger
and Rosenbaum (1998) and Rosenbaum and Silber (2009b) for specifics, noting
that the approaches taken in these two papers differ in general but agree in the case
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of a binary outcome rCij . See Gastwirth (1992) for related results for the method
of Cornfield et al. (1959).

Under (8) or (9), sharp lower and upper bounds on the distribution of Tc are
obtained as a constant plus a binomial random variable with n10 trials and, re-
spectively, probabilities 1/(1 + 
) and 
/(1 + 
), yielding an interval of possible
P -values for each 
 ≥ 1; see Rosenbaum (2002a). Consider the null hypothesis
that being born at a short-HOB sometimes causes but never prevents readmis-
sion within two days such that at least 	0 = 500 readmissions were caused. Test-
ing the null hypothesis 	0 ≥ 500, the upper bound on the P -value is 0.040 for

 = 1.85 and 0.110 for 
 = 1.9. Reversing roles and testing the less plausible null
hypothesis that a long-HOB causes but does not prevent readmissions and caused
at least 500 readmissions, the upper bound on the P -value is 0.0192 for 
 = 1.5
and 0.079 for 
 = 1.55. In brief, for it to be plausible that 	0 = 500 readmissions
were caused or prevented by short-versus-long-HOB, the unobserved covariate uij

would need a 
 > 1.5. As mentioned in the previous paragraph, a 
 = 1.5 corre-
sponds with a uij that doubles the odds of delivering at a long-HOB and increases
the odds of readmission by a factor of four.

5. Summary: Flexible new tools for nonbipartite matching. When com-
pared with network optimization [e.g., Derigs (1988)], the integer programming
formulation in Section 3 substantially enlarges the set of tools available for nonbi-
partite matching to strengthen an instrumental variable. Among the new tools not
previously available are the following: (i) fine or near-fine nonbipartite matching
for one or more nominal variables (2), (ii) nonbipartite matching with constraints
on imbalances in means (4), and (iii) optimal subset nonbipartite matching us-
ing (6), (iv) combining fine balance with optimal subset nonbipartite matching. In
the example, this approach formed 80,600 pairs of two babies who were similar on
numerous covariates yet very different in anticipated length of stay based on hour
of birth.
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