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High resolution microarrays and second-generation sequencing plat-
forms are powerful tools to investigate genome-wide alterations in DNA copy
number, methylation and gene expression associated with a disease. An inte-
grated genomic profiling approach measures multiple omics data types simul-
taneously in the same set of biological samples. Such approach renders an in-
tegrated data resolution that would not be available with any single data type.
In this study, we use penalized latent variable regression methods for joint
modeling of multiple omics data types to identify common latent variables
that can be used to cluster patient samples into biologically and clinically
relevant disease subtypes. We consider lasso [J. Roy. Statist. Soc. Ser. B 58
(1996) 267-288], elastic net [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005)
301-320] and fused lasso [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005)
91-108] methods to induce sparsity in the coefficient vectors, revealing im-
portant genomic features that have significant contributions to the latent vari-
ables. An iterative ridge regression is used to compute the sparse coefficient
vectors. In model selection, a uniform design [Monographs on Statistics and
Applied Probability (1994) Chapman & Hall] is used to seek “experimental”
points that scattered uniformly across the search domain for efficient sam-
pling of tuning parameter combinations. We compared our method to sparse
singular value decomposition (SVD) and penalized Gaussian mixture model
(GMM) using both real and simulated data sets. The proposed method is ap-
plied to integrate genomic, epigenomic and transcriptomic data for subtype
analysis in breast and lung cancer data sets.

1. Introduction. Clustering analysis is an unsupervised learning method that
aims to group data into distinct clusters based on a certain measure of similar-
ity among the data points. Clustering analysis has many applications in a wide
variety of fields including pattern recognition, image processing and bioinformat-
ics. In gene expression microarray studies, clustering cancer samples based on
their gene expression profile has revealed molecular subgroups associated with
histopathological categories, drug response and patient survival differences [Perou
et al. (1999), Alizadeh et al. (2000), Sorlie et al. (2001), Lapointe et al. (2003),
Hoshida et al. (2003)].
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In the past few years, integrative genomic studies are emerging at a fast pace
where in addition to gene expression data, genome-wide data sets capturing so-
matic mutation patterns, DNA copy number alterations and DNA methylation
changes are simultaneously obtained in the same biological samples. A fundamen-
tal challenge in translating cancer genomic findings into clinical application lies
in the ability to find “driver” genetic and genomic alterations that contribute to tu-
mor initiation, progression and metastasis [Chin and Gray (2008), Simon (2010)].
As integrated genomic studies have emerged, it has become increasingly clear that
true oncogenic mechanisms are more visible when combining evidence across pat-
terns of alterations in DNA copy number, methylation, gene expression and muta-
tional profiles [Cancer Genome Atlas Research Network (2008), TCGA Network
(2011)]. Integrative analysis of multiple “omic” data types can help the search for
potential “drivers” by uncovering genomic features that tend to be dysregulated
by multiple mechanisms [Chin and Gray (2008)]. A well-known example is the
HER? oncogene which can be activated through DNA amplification and mRNA
over-expression. We will discuss the HER2 example further in our motivating ex-
ample.

In this paper, we focus on the class discovery problem given multiple omics
data sets (multidimensional data) for tumor subtype discovery. A major challenge
in subtype discovery based on gene expression microarray data is that the clini-
cal and therapeutic implications for most existing molecular subtypes of cancer
are largely unknown. A confounding factor is that expression changes may be re-
lated to cellular activities independent of tumorigenesis, and therefore leading to
subtypes that may not be directly relevant for diagnostic and prognostic purposes.
By contrast, as we have shown in our previous work [Shen, Olshen and Ladanyi
(2009)], a joint analysis of multiple omics data types offers a new paradigm to
gain additional insights. Individually, none of the genomic-wide data type alone
can completely capture the complexity of the cancer genome or fully explain the
underlying disease mechanism. Collectively, however, true oncogenic mechanisms
may emerge as a result of joint analysis of multiple genomic data types.

Somatic DNA copy number alterations are key characteristics of cancer
[Beroukhim et al. (2010)]. Copy number gain or amplification may lead to ac-
tivation of oncogenes (e.g., HER?2 in Figure 1). Tumor suppressor genes can be in-
activated by copy number loss. High-resolution array-based comparative genomic
hybridization (aCGH) and SNP arrays have become dominant platforms for gen-
erating genome-wide copy number profiles. The measurement typical of aCGH
platforms is a log-ratio of normalized intensities of genomic DNA in experimental
versus control samples. For SNP arrays, copy number measures are represented by
log of total copy number (logR) and parent-specific copy number as captured by
a B-allele frequency (BAF) [Chen, Xing and Zhang (2011), Olshen et al. (2011)].
Both platforms generate contiguous copy number measures along ordered chro-
mosomal locations (an example is given in Figure 6). Spatial smoothing methods
are desirable for modeling copy number data.
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In addition to copy number aberrations, there are widespread DNA methylation
changes at CpG dinucleotide sites (regions of DNA where a Cytocine nucleotide
occurs next to a Guanine nucleotide) in the cancer genome. DNA methylation is the
most studied epigenetic event in cancer [Feinberg and Vogelstein (1983), Holliday
(1979), Laird (2003, 2010)]. Tumor suppressor genes are frequently inactivated by
hypermethylation (increased methylation of CpG sites in the promoter region of
the gene), and oncogenes can be activated through the promoter hypomethylation.
DNA methylation arrays measure the intensities of methylated probes relative to
unmethylated probes for tens of thousands of CpG sites located at promoter regions
of protein coding genes. M-values are calculated by taking log-ratios of methylated
and unmethylated probe intensities [Irizarry et al. (2008)], similar to the M-values
used for gene expression microarrays which quantify the relative expression level
(abundance of a gene’s mRINA transcript) in cancer samples compared to a normal
control.

In this paper, we focus on the class discovery problem given multiple omics data
sets for tumor subtype discovery. Suppose t = 1, ..., T different genome-scale
data types (DNA copy number, methylation, mRNA expression, etc.) are obtained
in j =1,...,n tumor samples. Let X; be the p; x n data matrix where x;; denote
the ith row and xj; the jth column of X;. Rows are genomic features and columns
are samples. Here we use the term genomic feature and the corresponding feature
index i in the equations throughout the paper to refer to either a protein-coding
gene (typically for expression and methylation data) or ordered genomic elements
that do not necessarily have a one-to-one mapping to a specific gene (copy number
measure along chromosomal positions) depending on the data type.

Let Z be a g x n matrix where rows are latent variables and columns are sam-
ples, and g is the number of latent variables. Latent variables can be interpreted
as “fundamental” variables that determine the values of the original p variables
[Jolliffe (2002)]. In our context, we use latent variables to represent disease driving
factors (underlying the wide spectrum of genomic alterations of various types) that
determine biologically and clinically relevant subtypes of the disease. Typically,
g < Y, pt, providing a low-dimension latent subspace to the original genomic
feature space. Following a similar argument for reduced-rank linear discriminant
analysis in Hastie, Tibshirani and Friedman (2009), a rank-g approximation where
g < K — 1 is sufficient for separating K clusters among the n data points. For the
rest of the paper, we assume the dimension of Z is (K — 1) x n with mean zero
and identity covariance matrix. A joint latent variable model expressed in matrix
form is

(1) X, =W, Z+E,, r=1,...,T.

In the above, W; is a p; x (K — 1) coefficient (or loading) matrix relating X; and
Z with w j; being the jth row and wy, the kth column of W;, and E; is a p; x n ma-
trix where the column vectors e, j =1, ..., n, represent uncorrelated error terms
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that follow a multivariate distribution with mean zero and a diagonal covariance
matrix ¥, = (012, e, 0;%)- Each data matrix is row-centered so no intercept term
is presented in equation (1).

Equation (1) provides an effective integration framework in which the latent
variables Z = (z1, ..., Zx—1) are common for all data types, representing a prob-
abilistic low-rank approximation simultaneously to the 7" original data matrices.
In Section 3.2 we point out its connection and differences from singular value de-
composition (SVD). In Sections 6 and 7 we illustrate that applying SVD to the
combined data matrix broadly fails to achieve an effective integration of various
data types.

Equation (1) is the basis of our initial work [Shen, Olshen and Ladanyi (2009)]
in which we introduced an integrative model called iCluster. We considered a soft-
thresholding estimate of W, that continuously shrinks the coefficients for nonin-
formative features toward zero. The motivation for sparse coefficient vectors is
clearly indicated by Figure 1 panels (D) and (E). A basic sparsity-inducing ap-
proach is to use a lasso penalty [Tibshirani (1996)]. Nevertheless, different data
types call for appropriate penalty terms such that each W; is sparse with a specific
sparsity structure. In particular, copy number aberrations tend to occur in contigu-
ous regions along chromosomal positions (Figure 6), for which the fused lasso
penalty [Tibshirani et al. (2005)] is appropriate. In gene expression data where
groups of genes involved in the same biological pathway are co-regulated and thus
highly correlated in their expression levels, the elastic net penalty [Zou and Hastie
(2005)] is useful to encourage a grouping effect by selecting strongly correlated
features together. In this paper, we present a sparse iCluster framework that em-
ploys different penalty terms for the estimation of W, associated with different
data types.

In Section 3 we present the methodological details of the latent variable regres-
sion combined with lasso, elastic net and fused lasso penalty terms. To determine
the optimal combination of the penalty parameter values, a very large search space
needs to be covered, which presents a computational challenge. An exhaustive grid
search is ineffective. We use a uniform design by Fang and Wang (1994) that seeks
“experimental” points that scattered uniformly across the search domain has supe-
rior convergence rates over the conventional grid search (Section 3.3). Section 4
presents an EM algorithm for maximizing the penalized data log-likelihood. The
number of clusters K is unknown and must be estimated. Section 5 discusses the
estimation of K based on a cross-validation approach. Section 6 presents results
from simulation studies. Section 7 presents results from real data applications. In
particular, Section 7.1 presents an integrative analysis of epigenomic and tran-
scriptomic profiling data using a breast cancer data set [Holm et al. (2010)]. In
Section 7.2 we illustrate our proposed method to construct a genome-wide por-
trait of copy number induced gene expression changes using a lung cancer data set
[Chitale et al. (2009)]. We conclude the paper with a brief summary in Section 8.
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2. Motivating example. In this section we show an example where an inte-
grated analysis of multiple omics data sets is far more insightful than separate anal-
yses. Pollack et al. (2002) used customized microarrays to generate measurements
of DNA copy number and mRNA expression in parallel for 37 primary breast can-
cer and 4 breast cancer cell line samples. Here the number of data types T = 2.
In the mRNA expression data matrix Xy, the individual element x;;; refers to the
observed expression of the ith gene in the jth tumor. In the DNA copy number
data matrix Xj, the individual element x;;, refers to the observed log-ratio of tu-
mor versus normal copy number of the ith gene in the jth tumor. In this example,
both data types have gene-centric measurement by design.

A heatmap of the genomic features on chromosome 17 is plotted in Figure 1.
In the heatmap, rows are genes ordered by their genomic position and columns
are samples ordered by hierarchical clustering [panels (A)] or by the lasso iCluster
method [panels (B)]. There are two main subclasses in the 41 samples: the cell line
subclass (samples labeled in red) and the HER2 tumor subclass (samples labeled
in green). It is clear in Figure 1(A) that these subclasses cannot be distinguished
well from separate hierarchical clustering analyses.

Separate clustering followed by manual integration as depicted in Figure 1(A)
remains the most frequently applied approach to analyze multiple omics data sets
in the current literature due to its simplicity and the lack of a truly integrative
approach. However, Figure 1(A) clearly shows its lack of a unified system for
cluster assignment and poor correlation of the outcome with biological and clinical
annotation. As we will illustrate in the simulation study in Section 7, separate
clustering can fail drastically in estimating the true number of clusters, classifying
samples to the correct clusters and selecting cluster-associated features. Several
limitations of this common approach are responsible for its poor performance:

e Correlation between data sets is not utilized to inform the clustering analysis,
ignoring an important piece of information that plays a key role for identifying
“driver” features of biological importance.

e Separate analysis of paired genomic data sets is an inefficient use of the avail-
able information.

e It is not straightforward to integrate the multiple sets of cluster assignments that
are data-type dependent without extensive prior biological information.

e The standard clustering method includes all genomic features regardless of their
relevance to clustering.

Our method aims to overcome these obstacles by formulating a joint analysis
across multiple omics data sets. The heatmap in Figure 1(B) demonstrates the su-
periority of our working model in correctly identifying the subgroups (vertically
divided by solid black lines). From left to right, cluster 1 (samples labeled in red)
corresponds to the breast cancer cell line subgroup, distinguishing cell line samples
from tumor samples. Cluster 2 corresponds to the HER2 tumor subtype (samples
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FIG. 1. A motivating example using the Pollack data set to demonstrate that a joint analysis using
the lasso iCluster method outperforms the separate clustering approach in subtype analysis given
DNA copy number and mRNA expression data. (A) Heatmap with samples ordered by separate hier-
archical clustering. Rows are genes and samples are columns. Samples labeled in red are breast can-
cer cell line samples. Samples labeled in green are HER2 breast tumors. (B) Heatmap with samples
ordered by integrative clustering using the lasso iCluster method. (C) Kaplan—Meier plot indicates
the HER?2 subtype has poor survival outcome. (D) Standard cluster centroid estimates. (E) Sparse
coefficient estimates under the lasso iCluster model.

labeled in green), showing concordant amplification in the DNA and overexpres-
sion in mRNA at the HER?2 locus (chr 17q12). This subtype is associated with poor
survival as shown in Figure 1(C). Cluster 3 (samples labeled in black) did not show
any distinct patterns, though a pattern may have emerged if there were additional
data types such as DNA methylation.

The motivation for sparseness in the coefficient estimates is illustrated by Fig-
ure 1(E). It clearly reveals the HER2-subtype specific genes (including HER?2,
GRB7, TOP2A). By contrast, the standard cluster centroid estimation is flooded
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with noise [Figure 1(D)], revealing an inherent problem with clustering methods
without regularization.

The copy number data example in Figure 1 depicts a narrow (focal) DNA am-
plification event on a single chromosome involving only a few genes (including
HER?). Nevertheless, copy number is more frequently altered across long contigu-
ous regions. In the lung cancer data example we will discuss in Section 7.2, chro-
mosome arm-level copy number gains (log-ratio > 0) and losses (log-ratio < 0) as
illustrated in Figure 6 are frequently observed, motivating the use of a fused lasso
penalty to account for such structural dependencies. In the next section we discuss
methodological details on lasso, fused lasso and elastic net in the latent variable
regression.

3. Method. Assuming Gaussian error terms, equation (1) implies the follow-
ing conditional distribution

2) X|Z~NW,Z,¥,), t=1,...,T.

Further assuming Z ~ N (0, I), the marginal distribution for the observed data is
then

(3) X; ~N(@©, %)),

where £; = W, W, + W, Direct maximization of the marginal data log-likelihood
is difficult. We consider an expectation—maximization (EM) algorithm [Dempster,
Laird and Rubin (1977)]. In the EM framework, the latent variables are considered
“missing data.” Therefore, the “complete” data log-likelihood that consists of these
latent variables is

T T
n 1 _
b= -5 > log|W,| — 3 > (X — W,2)'¥; (X, — W,2))
=1 =1

“) !

The constant term in £, has been omitted. In the next section we discuss a penalized
complete data log-likelihood to induce sparsity in W;.

3.1. Penalized likelihood approach. As mentioned earlier, sparsity in W, di-
rectly impacts the interpretability of the latent variables. A zero entry in the ith
row and kth column (w;x; = 0) means that the ith genomic feature has no weight
on the kth latent variable in data type ¢. If the entire row w;; = 0, then this genomic
feature has no contribution to the latent variables and is considered noninforma-
tive. We use a penalized complete-data log-likelihood as follows to enforce desired
sparsity in the estimated W;,:

T
(5) Cep(IWZ1 AWY) =t =) T, (W),

t=1
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where £, is the complete-data log-likelihood function defined in (4) which con-
trols the fitness of the model; J;,(W;) is a penalty function which controls the
complexity of the model; and A, is a nonnegative tuning parameter that determines
the balance between the two. The subscript p in £, ;, stands for penalized.
Different data types call for different penalty functions. We introduce three
types of penalties in the iCluster model: lasso, elastic net, and fused lasso. Both
lasso and elastic net regression methods have been applied to gene expression data
[Zhao and Simon (2010), Barretina et al. (2012)]. For feature selection, the elastic
net may have an additional advantage by shrinking coefficients of correlated fea-
tures toward each other, and thus encourages a grouping effect toward selecting
highly correlated features together. Copy number aberrations tend to occur in con-
tiguous regions along chromosomal positions, motivating the use of fused lasso.

3.1.1. The lasso penalty. The lasso penalty is a basic sparsity-inducing that
takes the form

K—1 p:
(6) Dy Wo) =24 DD |wikel,
k=1 i=1

where wjy; is the element in the ith row and kth column of W;. The £;-penalty
continuously shrinks the coefficients toward zero and thereby yields a substantial
decrease in the variance of the coefficient estimates. Owing to the singularity of
the £;-penalty at the origin (w;;; = 0), some estimated w;x, will be exactly zero.
The degree of sparseness is controlled by the tuning parameter A;.

3.1.2. The fused lasso penalty. To account for the strong spatial dependence
along genomic ordering typical in DNA copy number data, we consider the fused
lasso penalty [Tibshirani et al. (2005)], which takes the following form:

K—1 p: K—1 p:
) Dy W) =i D) lwird + A D D lwike — wii— el
k=1 i=1 k=1i=2

where A1, and Ay, are two nonnegative tuning parameters. The first penalty encour-
ages sparseness while the second encourages smoothness along index i. The fused
lasso penalty is particularly suitable for DNA copy number data where contiguous
regions of a chromosome tend to be altered in the same fashion [Tibshirani and
Wang (2008)].

3.1.3. The elastic net penalty. The elastic net penalty [Zou and Hastie (2005)]
takes the form

K—-1 p: K—-1 p:

(8) Dy W) =201 Y03 Jwikel + 220 Y Y wiiy,

k=1 i=1 k=1 i=1
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F1G. 2. A simulated pair of data sets each with 100 subjects (n = 100) and 200 features
(pr =200,1 =1,2), and 2 subgroups (K = 2). Top panel plots the cluster centroids in data set 1
(left) and in data set 2 (right). Estimated sparse iCluster coefficients are plotted below.

where A1, and Ay; are two nonnegative tuning parameters. Zou and Hastie (2005)
showed that the elastic net penalty tends to select or remove highly correlated
predictors together in a linear regression setting by enforcing their estimated co-
efficients to be similar. In our experience, the elastic net penalty tends to be more
numerically stable than the lasso penalty in our model.

Figure 2 shows the effectiveness of sparse iCluster using a simulated pair of data
sets (T = 2). We simulated a single length-n latent variable z ~ N (0,I) where
n = 100. The coefficient matrix Wy consists of a single column w; of length
p1 = 200 with the first 20 elements set to 1.5 and the remaining elements set to 0,

that is, w;; = 1.5 fori = 1,...,20 and O elsewhere. The coefficient matrix W5
consists of a single column w; of length p» = 200 and set to have w;> = 1.5 for
i =101, ..., 120 and 0 elsewhere. The lasso, elastic net and fused lasso coefficient

estimates are plotted to contrast the noisy cluster centroids estimated separately in
data type 1 (left) and in data type 2 (right) in the top panel of Figure 2. The algo-
rithm for computing these sparse estimates will be discussed in Section 4.

3.2. Relationship to singular value decomposition (S§VD). An SVD/PCA on
the concatenated data matrix X = (X/, ..., X/)" is a special case of equation (1)
that requires a common covariance matrix across data types. Specifically, it can be
shown that when ¥| = --- = Wy = o2, equation (1) reduces to a “probabilistic
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SVD/PCA” on the concatenated data matrix X. Following similar derivation in
Tipping and Bishop (1999), the maximum likelihood estimates of W, where W =
(W1, ..., W,) is the concatenated coefficient matrix, coincide with the first K — 1
eigenvectors of the sample covariance matrix XX’ or the right singular vector of
the concatenated data matrix X. The MLE of o2 is the average of the remaining
n — K + 1 eigenvalues, capturing the residual variation averaged over the “lost”
dimensions.

The major assumption is the requirement that all features have the same vari-
ance. The genomic data types, however, are fundamentally different and the
method we propose primarily aims to deal with heteroscedasticity among genomic
features of various types. The common covariance assumption that leads to SVD is
therefore not suitable for integrating omics data types. It is worth mentioning that
feature scaling may not necessarily yield 012 == 03:‘ In our modeling frame-
work, aiz is the conditional variance of x;; given z;. Standardization on x;; will
yield the same marginal variance across features, but the conditional variances of
features are not necessarily the same after standardization.

Our method aims to identify common influences across data types through the
latent component Z. The independent error terms E;, t =1, ..., T capture the re-
maining variances unique to each data type after accounting for the common vari-
ance. In SVD, however, the unique variances are absorbed in the term WZ by
enforcing ¥ =--. =Wy = o21. As a result, common and unique variations are
no longer separable. This is in fact one of the fundamental differences between
the factor analysis model and PCA, which has practical importance in integrative
modeling.

In Sections 6 and 7 we illustrate that SVD on the concatenated data matrix
broadly fails to achieve an effective integration in both simulated and real data sets.
By contrast, our method can more effectively deal with heteroscedasticity among
genomic features of various types. The contrast with a sparse SVD method lies in
the fact that our framework allows block-wise sparse constraints to the coefficient
matrix.

3.3. Uniform sampling. An exhaustive grid search for the optimal combina-
tion of the penalty parameters that maximizes a certain criterion (the optimization
criterion will be discussed in Section 5) is inefficient and computationally pro-
hibitive. We use the uniform design (UD) of Fang and Wang (1994) to generate
good lattice points from the search domain, a similar strategy adopted by Wang
et al. (2008). A key theoretical advantage of UD over the traditional grid search
is the uniform space filling property that avoids wasteful computation at close-by
points. Let D be the search region. Using the concept of discrepancy that mea-
sures uniformity on D C R¢ with arbitrary dimension d, which is basically the
Kolmogorov statistic for a uniform distribution on D, Fang and Wang (1994) point
out that the discrepancy of the good lattice point set from a uniform design con-
verges to zero with a rate of on! (log n)?), where n (a prime number) denotes
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the number of generated points on D. They also point out that the sequence of
equi-lattice points on D has a rate of O(n~!/¢) and the sequence of uniformly
distributed random numbers on D has a rate of O (n—1/ 2(1og log n)1/2). Thus, the
uniform design has an optimal rate for d > 2.

4. Algorithm. We now discuss the details of our algorithm for parameter es-
timation in sparse iCluster. The latent variables (columns of Z) are considered
to be “missing” data. The algorithm therefore iterates between an E-step for im-
puting Z and a penalized maximization step (M-step) that updates the estimates
of W, and ¥, for all 7. Given the latent variables, the data types are condition-
ally independent and, thus, the integrative omics problem can be decomposed into
solving T independent subproblems with suitable penalty terms. The penalized es-
timation procedures are therefore “decoupled” for each data type given the latent
variables Z. When convergence is reached, cluster membership will be assigned
for each tumor based on the posterior mean of the latent variable Z.

E-step. In the E-step, we take the expectation of the penalized complete-data log-
likelihood £, as defined in equations (4) and (5), which primarily involves
computing two conditional expectations given the current parameter estimates:

9) E[ZX]=WZx !X
(10) E[2Z/X]=1-W'X~'W + E[Z|X]E[Z|X],

where ¥ = WW' + ¥ and ¥ = diag(¥, ..., ¥7). Here, the posterior mean
in (9) effectively provides a simultaneous rank-(K — 1) approximation to the
original data matrices X.

M-step. In the M-step, given the quantities in equations (9) and (10), we maxi-
mize the penalized complete-data log-likelihood to update the estimates of W,
and ¥,.

(1) Sparse estimates of W,.Fort =1, ..., T, we obtain the penalized estimates
by
1< A
W, < argmin ~ Z E[tr((X; — WtZ)/\Ilt_l(X, —W,Z))|W,, ¥]
w =1
(11) -
+ Ji, (Wy),

where W; and \ilt denote the parameter estimates in the last EM iteration.
We apply a local quadratic approximation [Fan and Li (2001)] to the £;
term involved in the penalty function J;, (W;). Using the fact |a| = o? /e
when o # 0, we consider the following quadratic approximation to the £
term:

K—1 p: 2

(12) e Y ik

k=1 i=1 |ﬁ)ik1| .
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(13)

(14)

(15)
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Due to the uncorrelated error terms (diagonal ¥,) and “noncoupling”
structure of the lasso and elastic net penalty terms, the estimation of W; can
then be computed feature-by-feature by taking derivatives with respect to
each row w;; fori =1, ..., p;. The solution for (11) under various penalty
terms can then be obtained by iteratively computing the following ridge
regression estimates:

(a)

(b)

(c)

Lasso estimates. Fori =1, ..., p;,
Wir =i E[Z|X;, Wy, W, | (E[ZZ' X, W, ¥, ]+ A1),

where A; = 20?)», diag{1/|w;1,|, ..., 1/|Wik—1)¢|}. Computing (13)
only requires the inversion of a (K — 1) x (K — 1) matrix in the la-
tent subspace.

Elastic net estimates. Similarly, we consider a quadratic approximation
to the £; term in the elastic net penalty and obtain the solution for (11)
by iteratively computing a ridge regression estimate similar to (13) but
with A; =207 (1, diag{1 /i1, .., 1/1ik -1y 1} + A2 D).

Fused lasso estimates. For fused lasso penalty terms, we consider the
following approximation:

K—1 p 2
lkt (Wikt — W(i—1)ke)

Alt E E 2t E E |w~ W | .
k=1 i=1| k=1 i=2 Wikt = Wi—Dkt

In the fused lasso scenario, the parameters are coupled together and the
estimation of w; are no longer separable. However, we circumvent the
problem by expressing the estimating equation in terms of a vectorized
form w; = vec(W}) = (Wy, ..., Wxg—_1)’, a column vector of dimension
s = ps - (K — 1) by concatenating the columns of W;. Then (14) can
be expressed in the following form:

AIIW;A\TVI‘ + AZZW;LW[,

where

A =diag{1/|w1], ..., 1/},

L=D-M,

M={1/|wi_wj|’ |’_]|‘:K_1’ (s x s dimension),
0, otherwise

D = diag{d, ..., dy} where d; is the summation of the jth row of M.

Letting C = X, E[Z/|X;, W,, ¥,] and Q = E[ZZ/|X,, W,, ¥,], the
corresponding estimating equation is then

0 - -
ow
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where
o1 ’Q oy %]
(16) Q= - . C=[
-2 -2
JPz Q UPI C/pt
where ¢; is the jth row of C. The solution for (11) under the fused
lasso penalty is then computed by iteratively computing

(17) W, = (Q+2x1,A + 22 L)' C.
(2) Estimates of W;. Finally, for t =1, ..., T, we update ¥, in the M-step as
follows:
1 . A R A
(18) W, = — diag(X,X; — Wi E[ZI{X),_, (Wikizy, (W0),2,1X)).

The algorithm iterates between the E-step and the M-step as described above
until convergence. Cluster membership will then be assigned by applying a stan-
dard K-means clustering on the posterior mean E[Z|X]. In other words, cluster
partition in the final step is performed in the integrated latent variable subspace of
dimension n x (K — 1). Applying k-means on latent variables to obtain discrete
cluster assignment is commonly used in spectral clustering methods [Ng, Jordan
and Weiss (2002), Rohe, Chatterjee and Yu (2010)].

5. Choice of tuning parameters. We use a resampling-based criterion for
selecting the penalty parameters and the number of clusters. The procedure en-
tails repeatedly partitioning the data set into a learning and a test set. In each it-
eration, sparse iCluster (for a given K and tuning parameter values) will be ap-
plied to the learning set to obtain a classifier and subsequently predict the cluster
membership for the test set samples. In particular, we first obtain parameter es-
timates from the learning set. For new observations in the test data X*, we then

. . |
compute the posterior mean of the latent variables E[Z|X*] = W,X, X*, where

\\78 )A:Z_l denote parameter estimates from the learning set. A K-means clustering
is then applied to E[Z|X*] to partition the test set samples into K clusters. De-
note this as partition C;. In parallel, the procedure applies an independent sparse
iCluster with the same penalty parameter values to the test set to obtain a sec-
ond partition C,, giving the “observed” test sample cluster labels. Under the true
model, the predicted C; and the “observed” C, (regarded as the “truth”) would
have good agreement by measures such as the adjusted Rand index. We there-
fore define a reproducibility index (RI) as the median adjusted Rand index across
all repetitions. Values of RI close to 1 indicate perfect cluster reproducibility
and values of RI close to O indicate poor cluster reproducibility. In this frame-
work, the concepts of bias, variance and prediction error that typically apply to
classification analysis where the true cluster labels are known now become rele-
vant for clustering. The idea is similar to the “Clest” method proposed by Dudoit
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and Fridlyand (2002), the prediction strength measure proposed by Tibshirani and
Walther (2005) and the in-group proportion (IGP) proposed by Kapp and Tibshi-
rani (2007).

6. Simulation. In this section we present results from two simulation stud-
ies. In the first simulation setup, we simulate a single length-n latent variable
z~ N(0, 1) where n = 100. Subject j, j =1,...,n, belongs to cluster 1 if z; >0
and cluster 2 otherwise. For simplicity, the pair of coefficient matrices (W1, W»)
are of the same dimension 200 x 1 (p; = p» =200), with w;; =3 fori =1,...,20
for both data types (r = 1, 2) and zero elsewhere. Next we obtain the data matri-
ces (X1, X») with each element generated according to equation (1) with standard
normal error terms. This simulation represents a scenario where an effective joint
analysis of two data sets should be expected to enhance the signal strength and
thus improve clustering performance.

Table 1 summarizes the performances of each method in terms of the ability
to choose the correct number of clusters, cross-validated error rates and cluster
reproducibility. In Table 1 separate K-means methods perform poorly in terms of
the ability to choose the correct number of clusters, cluster reproducibility and
the cross-validation error rates (with respect to the true simulated cluster mem-
bership). K-means on concatenated data performs even worse, likely due to noise
accumulation. For sparse SVD, a cluster assignment step is needed. We took a
similar approach of applying K-means on the first K — 1 right singular vectors of
the data matrix. Sparse SVD performs better than simple K-means, though data

TABLE 1
Clustering performance summarized over 50 simulated data sets under setup 1 (K =2). Separate
clustering methods have two sets of numbers associated with model fit to each individual data type.
Numbers in parentheses are the standard deviations over 50 simulations

Percent of
times choosing Cross-validation Cluster

Method the correct K error rate reproducibility
Separate K-means 58 0.08 (0.04) 0.67 (0.17)

62 0.08 (0.04) 0.70 (0.19)
Concatenated K-means 50 0.06 (0.04) 0.66 (0.19)
Separate sparse SVD 74 0.07 (0.06) 0.71 (0.13)

76 0.07 (0.07) 0.72 (0.12)
Concatenated sparse SVD 78 0.07 (0.08) 0.70 (0.12)
Separate AHP-GMM 38 0.06 (0.04) 0.72 (0.15)

40 0.05 (0.04) 0.74 (0.14)
Concatenated AHP-GMM 46 0.06 (0.04) 0.75 (0.13)
Lasso iCluster 90 0.04 (0.02) 0.81 (0.08)
Enet iCluster 94 0.03 (0.02) 0.85 (0.07)

Fused lasso iCluster 94 0.03 (0.02) 0.83 (0.08)
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TABLE 2
Feature selection performance summarized over 50 simulated data sets for K = 2. There are a total
of 20 true features simulated to distinguish the two sample clusters

Data 1 Data 2

True False True False
Method positives positives positives positives
Separate K-means - - - -
Concatenated K-means - - - -
Separate sparse SVD 18.7 (3.2) 21.5(37.7) 18.8 (2.9) 27.4 (43.6)
Concatenated sparse SVD 14.0 (5.3) 22.5(16.1) 13.7(5.2) 22.8 (16.4)
Separate AHP-GMM 19.6 (2.1) 0.02 (0.16) 19.1 3.1) 0(0)
Concatenated AHP-GMM 18.8 (3.6) 0.02 (0.15) 18.6 (4.0) 0.02 (0.15)
Lasso iCluster 20 (0) 0.07 (0.3) 20 (0) 0.07 (0.3)
Enet iCluster 20 (0) 0.1 (0.3) 20 (0) 0.02 (0.1)
Fused lasso iCluster 20 (0) 0(0) 20 (0) 0(0)

concatenation does not seem to offer much advantage. In this simulation scenario,
AHP-GMM models show good performance in feature selection (Table 2), but ap-
pear to have a low frequency of choosing the correct K = 2. A common theme
in this simulation is that a data concatenation approach is generally ineffective
regardless of the clustering methods used. By contrast, sparse iCluster methods
achieved an effective integrative outcome across all performance criteria.

Table 2 summarizes the associated feature selection performance. No numbers
are shown for the standard K-means methods, as they do not have an inherent
feature selection method. Among the methods, sparse iCluster methods perform
the best in identifying the true positive features while keeping the number of false
positives close to 0.

In the second simulation, we vary the setup as follows. We simulate 150 subjects
belonging to three clusters (K = 3). Subjects j = 1,...,50 belong to cluster 1,
subjects j =51, ..., 100 belong to cluster 2, and subjects j = 101, ..., 150 belong
to cluster 3. A total of T = 2 data types (X1, X») are simulated. Each has p; =
p2 = 500 features. Here each data type alone only defines two clusters out of the
three. In data set 1, x;;1 ~ N(@2,1) fori=1,...,10 and j =1,...,50, x;;1 ~
N(1.5,1) for i =491,...,500 and j =51,...,100, and x;;; ~ N(O, 1) for the
rest. In data set 2, x;j» = 0.5%x;j1 +e wheree ~ N(0, 1) fori =1,...,10and j =
1,...,50, x;jo ~ N(2,1) fori =491,...,500 and j =101, ..., 150, and x;;> ~
N (0, 1) for the rest. The first 10 features are correlated between the two data types.
In Tables 3 and 4, the sparse iCluster methods consistently outperform the other
methods in clustering and feature selection.

The core iCluster EM iterations are implemented in C. Table 5 shows some
typical computation times for problems of various dimensions on a 3.2 GHz Xeon
Linux computer.
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TABLE 3
Clustering performance summarized over 50 simulated data sets under setup 2 (K = 3)

Frequency of

choosing the Cross-validation Cluster

Method correct K error rate reproducibility
Separate K-means 2 0.33 (0.001) 0.54 (0.07)

0 0.33 (0.002) 0.47 (0.04)
Concatenated K-means 100 0.01 (0.07) 0.96 (0.03)
Separate sparse SVD 0 0.28 (0.10) 0.45 (0.03)

0 0.31 (0.07) 0.44 (0.04)
Concatenated sparse SVD 16 0.01 (0.002) 0.59 (0.05)
Separate AHP-GMM 0 0.07 (0.13) 0.63 (0.05)

0 0.32 (0.02) 0.54 (0.06)
Concatenated AHP-GMM 100 0.01 (0.07) 0.98 (0.03)
Lasso iCluster 100 0.0003 (0.001) 0.98 (0.01)
Enet iCluster 100 0.0003 (0.001) 0.97 (0.02)
Fused lasso iCluster 100 0(0) 0.94 (0.05)

7. Results. In this section we present details of two real data applications.
7.1. Integration of epigenomic and transcriptomic profiling data in the Holm
breast cancer study. In Section 2 we discussed a motivating example using the
Pollack et al. (2002) data set. In this section we present our first real data applica-
tion which involves integrative analysis of DNA methylation and gene expression
data from the Holm et al. (2010) study. In this data set, methylation profiling in 189
breast cancer samples using Illumina methylation arrays for 1452 CpG sites (cor-

TABLE 4
Feature selection performance summarized over 50 simulated data sets under K =3

Data 1 Data 2

True False True False
Method positives positives positives positives
Separate K-means - - - -
Concatenated K-means - - - -
Separate sparse SVD 19.8 (0.7) 349.6 (167.1) 19.9 (0.3) 347.5 (142.5)
Concatenated sparse SVD 20 (0) 396.6 (128.7) 19.6 (1.6) 395.4 (128.3)
Separate AHP-GMM 15.8 (5.0) 239.9 (245.5) 15.5(5.5) 269.9 (246)
Concatenated AHP-GMM 19.2 (1.7) 0.33 (0.64) 14.4 (4.0) 0.21 (0.66)
Lasso iCluster 20 (0) 1.5(1.4) 19.9 (0.2) 1.9 (1.5)
Enet iCluster 20 (0) 0.5 (0.6) 19.8 (0.5) 0.7 (1.0)
Fused lasso iCluster 20 (0) 0(0) 20 (0) 0(0)
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TABLE 5
Computing time (in seconds) for typical runs of sparse iCluster under various dimensions

Time (in seconds)

p N Lasso iCluster Elastic net iCluster Fused lasso iCluster
200 100 0.10 0.11 0.37

500 100 0.50 0.36 3.56

1000 100 1.40 1.45 25.05

2000 100 6.49 5.90 76.40

5000 100 18.93 18.94 33 (min)

responding to 803 cancer-related genes) is available. The original study performed
a hierarchical clustering on the methylation data alone. Through manual integra-
tion, the authors then correlated the methylation status with gene expression levels
for 511 oligonucleotide probes for genes with CpG sites on the methylation as-
says in the same sample set. Here we compare clustering of individual data types
to various integration approaches. We included the most variable 288 CpG sites
(following a similar procedure taken in the Holm study) in the methylation data.

We applied sparse iCluster for a joint analysis of the methylation (p; = 288)
and gene expression (p2 = 511) data using different penalty combinations. In Fig-
ure 3(A) the first two latent variables separated the samples into three distinct
clusters. By associating the cluster membership with clinical variables, it becomes
clear that tumors in cluster 1 are predominantly estrogen receptor (ER)-negative
and associated with the basal-like breast cancer subtype (Figure 4). Among the rest
of the samples, sparse iCluster further identifies a subclass (cluster 3) that highly
expresses platelet-derived growth factor receptors (PDGFRA/B), which have been
associated with breast cancer progression [Carvalho et al. (2005)].

In Section 3.2 we discussed an SVD approach on a combined data matrix as a
special case of our model. Here we present results from SVD and a sparse SVD
algorithm proposed by Witten, Tibshirani and Hastie (2009) on the concatenated
data matrix. Figures 3(B) and 3(C) indicate that SVD applied to each data type
alone can only separate one out of the three clusters. Figures 3(D) and 3(E) indicate
that data concatenation does not perform any better in this analysis than separate
analyses of each data type alone.

In Table 6 the results from sparse iCluster with two different sets of penalty
combinations are presented: the combination of (lasso, lasso) and the combina-
tion of (lasso, elastic net) for methylation and gene expression data, respectively
(Table 6 top panel). The reproducibility index (RI) is computed for various K’s
and penalty parameters are sampled based on a uniform design described in Sec-
tion 3.3. As described in Section 5, RI (ranges between 0 and 1) measures the
agreement between the predicted cluster membership and the “observed” cluster
membership using a 10-fold cross-validation.
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Integrative clustering of the Holm study DNA methylation and gene expression data re-
vealed three clusters with a cross-validated reproducibility of 0.7 and distinct clinical and molecular

characteristics.
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TABLE 6
Cluster reproducibility and number of genomic features selected using sparse iCluster, sparse SVD
on concatenated data matrix and Adaptive Hierarchically Penalized Gaussian Mixture Model
(AHP-GMM) on concatenated data matrix. Two variations of the sparse iCluster method were
presented: iCluster (lasso, lasso) implements lasso penalty for both data types, and iCluster (lasso,
elastic net) implements lasso penalty for the methylation data and elastic net penalty for the gene
expression data. K: the number of clusters. RI: reproducibility index

Selected Selected Selected Selected
methylation expression methylation expression
K RI features features RI features features
iCluster (lasso, lasso) iCluster (lasso, elastic net)
2 0.68 138 151 0.70 183 353
3 0.46 150 204 0.70 273 182
4 0.42 183 398 0.48 273 182
5 0.42 205 454 0.47 282 223
sparse SVD AHP-GMM
2 0.78 1 105 0.93 9 63
3 0.34 1 134 0.42 28 105
4 0.27 288 511 0.49 116 368
5 0.22 273 504 0.43 42 243

Both methods identified a 2-cluster solution with an RI around 0.70, distin-
guishing the ER-negative, Basal-like subtype from the rest of the tumor samples
(Figures 3 and 4, samples labeled in red). The iCluster (lasso, elastic net) method
adds an ¢, penalty term to encourage grouped selection of highly correlated genes
in the expression data. This approach further identified a 3-cluster solution with
high reproducibility (RI = 0.70). The additional division finds a subgroup that
highly expresses platelet-derived growth factor receptors (Figure 4).

Figure 5 displays heatmaps of the methylation and expression data. Columns
are samples ordered by the integrated cluster assignment. Rows are cluster-
discriminating genes (with nonzero coefficient estimates) grouped into gene clus-
ters by hierarchical clustering. In total, there are 273 differentially methylated
genes and 182 differentially expressed genes. Several cancer genes including
MUCI, SERPINAS, RARA, MECP2 and RADS50 are hypermethylated and show
concordant underexpression in cluster 1. On the other hand, hypomethylation of
cancer genes including ETSI, HDACI, FANCE, RAB32 and JAK3 are observed
and, correspondingly, these genes show increased expression levels.

To compare with other methods, we implemented the sparse SVD method by
Witten, Tibshirani and Hastie (2009) and an adaptive hierarchical penalized Gaus-
sian mixture model (AHP-GMM) by Wang and Zhu (2008) on the concatenated
data matrix. None of these methods generated additional insights beyond separat-
ing the ER-negative and basal-like tumors from the others (Figure 3 and Table 6).
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F1G. 5. Integrative clustering of the Holm study DNA methylation and gene expression data re-
vealed three clusters with a cross-validated reproducibility of 0.7. Selected genes with negatively
correlated methylation and expression changes are indicated to the left of the heatmap.

Feature selection is predominantly “biased” toward gene expression features when
directly applying sparse SVD on the combined data matrix (bottom panel of Ta-
ble 6), likely due to the larger between-cluster variances observed in the gene ex-
pression data.

7.2. Constructing a genome-wide portrait of concordant copy number and gene
expression pattern in a lung cancer data set. We applied the proposed method to
integrate DNA copy number (aCGH data) and mRNA expression data in a set of
193 lung adenocarcinoma samples [Chitale et al. (2009)]. Figure 6 displays an
example of the probe-level data (log-ratios of tumor versus normal copy number)
on chromosomes 3 and 8 in one tumor sample. Many samples in this data set
display similar chr 3p whole-arm loss and chr 3q whole-arm gain.

Chromosome 3 Chromosome 8

1.0
1.0

0.0

Copy number log-ratio
-1.0 0.0 .

1
Copy number log-ratio

-1.0

T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000

Genomic position (Mb) Genomic position (Mb)

FIG. 6. lllustration of copy number probe-level data from a lung tumor sample [Chitale et al.
(2009)]. Log-ratios of copy number (tumor versus normal) on chromosomes 3 and 8 are displayed.
Log-ratio greater than zero indicates copy number gain and log-ratio below zero indicates loss.
Black line indicates the segmented value using the circular binary segmentation method [Olshen
et al. (2004), Venkatraman and Olshen (2007)].
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Arm-length copy number aberrations are surprisingly common in cancer
[Beroukhim et al. (2010)], affecting up to thousands of genes within the region
of alteration. A broader challenge is thus to pinpoint the “driver” genes that have
functional roles in tumor development from those that are functionally neutral
(“passengers”). To that end, an integrative analysis with gene expression data
could provide additional insights. Genes that show concordant copy number and
transcriptional activities are more likely to have functional roles.

In the search for copy number-associated gene expression patterns, we fit a
sparse iCluster model for each of the 22 chromosomes using (fused lasso, lasso)
a penalty combination for joint analysis of copy number and gene expression data.
To facilitate comparison, we compute a 2-cluster solution with a single latent vari-
able vector z (instead of estimating K) to extract the major pattern for each chro-
mosome. Penalty parameter tuning is performed as described before. In Figure 7
we plot the 22 pairs of the sparse coefficient vectors ordered by chromosomal
position. The coefficients can be interpreted as the difference between the two
cluster means. Positive and negative coefficient values in Figure 7(A) thus indi-
cate copy number gains and losses in one cluster relative to the other. Similarly,
in Figure 7(B), coefficient signs indicate over- or under-expression in one cluster

A Fused Lasso estimates (DNA copy number data) B Lasso estimates (mRNA expression data)
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F1G. 7. Penalized coefficient vector estimates arranged by chromosomes 1 to 22 derived by iCluster
(fused lasso, lasso) applied to the Chitale et al. lung cancer data set. A single latent variable vector
is used to identify the major pattern of each chromosome.
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relative to the other. Concordant copy number and gene expression changes can
thus be directly visualized from Figure 7.

Several chromosomes (1, 3, 8, 10, 15 and 16) show contiguous regions of gains
or losses spanning whole chromosome arms. As discussed before, arm-length aber-
rations can affect up to thousands of genes within the region of alteration. A great
challenge is thus to pinpoint the “driver” genes that have important roles in tumor
development from those that are functionally neutral (“passengers”). To that end,
an integrative analysis could provide additional insights for identifying potential
drivers by revealing genes with concordant copy number and transcriptional ac-
tivities. Figure 7 shows that the application of the proposed method can unveil a
genome-wide pattern of such concordant changes, providing a rapid way for iden-
tifying candidate genes of biological significance. Several arm-level copy number
alterations (chromosomes 3, 8, 10, 16) exhibit concerted influence on the expres-
sion of a small subset of the genes within the broad regions of gains and losses.

8. Discussion. Integrative genomics is a new area of research accelerated by
large-scale cancer genome efforts including the Cancer Genome Atlas Project.
New integrative analysis methods are emerging in this field. van Wieringen and
van de Wiel (2009) proposed a nonparametric testing procedure for DNA copy
number induced differential mRNA gene expression. Peng et al. (2010) and Vaske
et al. (2010) considered pathway and network analysis using multiple genomic data
sources. A number of others [Waaijenborg, Verselewel de Witt Hamer and Zwin-
derman (2008), Parkhomenko, Tritchler and Beyene (2009), Le Cao, Martin and
Robert-Granie (2009), Witten, Tibshirani and Hastie (2009), Witten and Tibshi-
rani (2009), Soneson et al. (2010)] suggested using canonical correlation analysis
(CCA) to quantify the correlation between two data sets (e.g., gene expression
and copy number data). Most of this previous work focused on integrating copy
number and gene expression data, and none of these methods were specifically
designed for tumor subtype analysis.

We have formulated a penalized latent variable model for integrating multiple
genomic data sources. The latent variables can be interpreted as a set of distinct
underlying cancer driving factors that explain the molecular phenotype manifested
in the vast landscape of alterations in the cancer genome, epigenome and transcrip-
tome. Lasso, elastic net and fused lasso penalty terms are used to induce sparsity
in the feature space. We derived an efficient and unified algorithm. The implemen-
tation scales well for increasing data dimension.

A future extension on group-structured penalty terms is to incorporate a group-
ing structure defined a priori. Two types of group structures are relevant for our
application. One is to treat the w;y, ..., w;x—1) as a group since they are asso-
ciated with the same feature. Yuan and Lin’s group lasso penalty [Yuan and Lin
(2006)] can be applied directly. Similar to our current algorithm, by using Fan and
Li’s local quadratic approximation, the problem reduces to a ridge-type regres-
sion in each iteration. The other extension is to incorporate the grouping structure
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among features to boost the signal to noise ratio, for example, to treat the genes
within a pathway as a group. We can consider a hierarchical lasso penalty [Wang
et al. (2009)] to achieve sparsity at both the group level and the individual variable
level.
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