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VARIABLES, WITH AN APPLICATION TO THE AGEMAP GENE
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In high throughput settings we inspect a great many candidate variables
(e.g., genes) searching for associations with a primary variable (e.g., a pheno-
type). High throughput hypothesis testing can be made difficult by the pres-
ence of systemic effects and other latent variables. It is well known that those
variables alter the level of tests and induce correlations between tests. They
also change the relative ordering of significance levels among hypotheses.
Poor rankings lead to wasteful and ineffective follow-up studies. The prob-
lem becomes acute for latent variables that are correlated with the primary
variable. We propose a two-stage analysis to counter the effects of latent
variables on the ranking of hypotheses. Our method, called LEAPP, statis-
tically isolates the latent variables from the primary one. In simulations, it
gives better ordering of hypotheses than competing methods such as SVA
and EIGENSTRAT. For an illustration, we turn to data from the AGEMAP
study relating gene expression to age for 16 tissues in the mouse. LEAPP
generates rankings with greater consistency across tissues than the rankings
attained by the other methods.

1. Introduction. There has been considerable progress in multiple testing
methods for high throughput applications. A common example, coming from bi-
ology, is testing which of N genes’ expression levels correlate significantly with a
scalar variable, which we’ll call the primary variable. The primary variable may be
an experimentally applied treatment or it may be a covariate such as a phenotype.
We will use the gene expression example for concreteness, although it is just one
of many instances of this problem.

High throughput experiments may involve thousands or even millions of hy-
potheses. Because N is so large, serious problems of multiplicity arise. For inde-
pendent tests, methods based on the false discovery rate [Dudoit and van der Laan
(2008)] have been very successful. Attention has turned more recently to depen-
dent tests [Efron (2010)].

One prominent cause of dependency among test statistics is the presence of
latent variables. For example, in microarray-based experiments, it is well known
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that samples processed in the same batch are correlated. Batch, technician and
other sources of variation in sample preparation can be modeled by latent vari-
ables. Another example comes from genetic association studies, where differences
in ancestral history among subjects can lead to false or inaccurate associations.
Price et al. (2006) used principal components to extract and correct for ancestral
history, in effect modeling the genetic background of the subjects as latent vari-
ables. A third example comes from copy number data, where local trends along
the genome cause false positive copy number calls [Olshen et al. (2004)]. Diskin
et al. (2008) conducted experiments showing that these local trends correlate with
the percentage of bases that are guanines or cytokines along the genome, and are
caused by differences in the quantity and handling of DNA. These laboratory ef-
fects are hard to measure, but can be quantified using a latent variable model. In
this paper, we consider latent variables that might even be correlated with the pri-
mary variable.

When the primary variable is an experimentally applied treatment, then prob-
lematic latent variables are those that are partially confounded with the treatment.
Randomization reduces the effects of such confounding, but randomization is not
always perfectly applied and batch or other effects may be imbalanced with respect
to the treatment [Leek et al. (2010)].

These latent variables have some severe consequences. They alter the level of
the hypothesis tests and they induce correlations among multiple tests. Another
consequence, that we find especially concerning, is that the latent variables may
affect the rank ordering among the N p-values. When high throughput methods
are used to identify candidates for further follow-up it is important that the highly
ranked items contain as many nonnull cases as possible.

Our approach to this problem uses a rotated model in which we separate the
latent variables from the primary variable. We do this by creating two data sets,
one in which both primary and latent variables are present and one in which the
primary variables are absent. We use the latter data set to estimate the latent vari-
ables and then substitute their estimates into the former. Since each gene has its
own effect size in relation to the primary variable, the former model is supersatu-
rated. We conduct inference under the setting where the parameter vector relating
the genes to the primary variable is sparse, as is commonly assumed in multiple
testing situations. Each nonnull hypotheses behaves as an additive outlier, and we
then apply an outlier detection method from She and Owen (2011) to find them.
We call the method LEAPP, for latent effect adjustment after primary projection.

Section 2 presents our notation and introduces LEAPP along with several other
related models, including SVA [Leek and Storey (2008)] and EIGENSTRAT [Price
et al. (2006)], to which we make comparisons. Section 3 shows via simulation that
LEAPP generates better rankings of the nonnull hypotheses than one would get by
either ignoring the latent variables, by SVA, or by EIGENSTRAT. EIGENSTRAT
estimates the latent variables (by principal components) without first adjusting for
the primary variable. LEAPP outperforms it when the latent variable is weaker than
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the primary. EIGENSTRAT does well in simulations with weak primary variables,
which matches the setting that motivated it. Still it is interesting to learn that it
does not extend well to problems with strong primary variables. SVA estimates the
primary variable’s coefficients without first adjusting for correlation between the
primary and latent variables. LEAPP outperforms it when the latent and primary
variables are correlated.

Section 4 compares the methods on the AGEMAP data of Zahn et al. (2007).
The primary variable there is age. While we do not know the truly nonnull genes
for this problem, we have a proxy. The data set has 16 subsets, each from a dif-
ferent tissue type. We find that LEAPP gives gene lists with much greater overlap
among tissues than the gene lists achieved by the other methods. Our conclusions
are in Section 5. We include some brief remarks on calibration of the p-values
themselves as opposed to the rank ordering which is the primary focus of this pa-
per. Some theory is given in the Appendix for a simplified version of LEAPP. The
specific rotation matrix used does not affect our answer. For the case of one latent
variable and no covariates, the simplified LEAPP consistently estimates the latent
structure. We also get a bound for the sum of squared coefficient errors when the
effects are sparse.

2. Notation and models. In this section we describe the data model and intro-
duce the parameters and latent variables that arise. Then we describe our LEAPP
proposal which is based on a series of reductions from a heteroscedastic multivari-
ate regression including latent factors to a single linear regression problem with
additive outliers and known error variance. We also describe EIGENSTRAT and
SVA, to which we make comparisons, and then survey several other published
methods for this problem.

2.1. Data, parameters, latent variables and tests. The data we observe are a
response matrix Y ∈ R

N×n and a variable of interest g ∈ R
n, which we call the

primary variable. In an expression problem Yij is the expression level of gene i

for subject j . Very often the primary variable g is a group variable taking just
two values, such as ±1 for a binary phenotype, then linearly transformed to have
mean 0 and norm 1. The quantity gj can also be a more general scalar, such as the
age of subject j .

We are interested to know which genes, if any, are linearly associated with the
variable g. We capture this linear association through the N ×n matrix γgT, where
γ is a vector of N coefficients. When most genes are not related to g, then γ is
sparse.

Often there are covariates X other than g that we should adjust for. The covariate
term is βXT where β contains coefficients. The latent variables that cause tests to
be mutually correlated are assumed to take an outer product form UV T. Neither
U nor V is observed. Finally, there is observational noise with a variance that is
allowed to be different for each gene, but assumed to be constant over subjects.
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The full data model is

Y = γgT + βXT + UV T + �E(2.1)

for variables

Y ∈ R
N×n response values,

g ∈ R
n×1 primary predictor, that is, treatment, with gTg = 1,

γ ∈ R
N×1 primary parameter, possibly sparse,

X ∈ R
n×s s covariates (e.g., sex) per subject,

β ∈ R
N×s s coefficients, including per gene intercepts,

U ∈ R
N×k latent, nonrandom rows (e.g., genes),

V ∈ R
n×k latent, independent rows (e.g., subjects),

E ∼ N (0, IN ⊗ In) noise

and

� = diag(σ1, . . . , σN) standard deviations

with dimensions

n number of arrays/subjects,

N � n number of genes,

s � n number of covariates

and

k ≥ 1 latent dimension.

After adjusting for X, the genes are correlated through the action of the latent
portion UV T of the model. They may have unequal variances, through both �

and U . We adopt the normalization E(V TV ) = Ik . It is possible to generalize the
model to have a primary variable g of dimension larger than one, but we focus on
the case of a single primary variable.

We pay special attention to the case of k = 1 latent variable. The algorithm is
the same for all values of k. But, when k = 1, the dependence between the variable
g of interest and the latent variable V can be summarized by a single correlation
coefficient ρ = gTV/

√
V TV which aids interpretation.

Writing (2.1) in terms of indices yields

Yij = γigj + βT
i Xj + UT

i Vj + σiεij , 1 ≤ i ≤ N,1 ≤ j ≤ n.(2.2)

Here βi and Ui are the ith rows of β and U , respectively, as column vectors.
Similarly, Xj and Vj are the j th rows of X and V , σi is the ith diagonal element
of � and εij is the ij element of E.
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Our LEAPP proposal is based on a series of reductions described next. In out-
line, we first split the data into two parts, one of which is completely free of the
primary variable. We then estimate some properties of the latent variable model
from that primary-free data. Finally, we use those estimated quantities in the part
of the data which does contain the primary variable to identify genes related to the
primary variable.

2.2. Data rotation. We begin by choosing an orthogonal matrix O ∈ R
n×n

such that gTOT = (η,0,0, . . . ,0) ∈ R
1×n where η = ‖g‖ > 0. Without loss of

generality, we assume that the primary predictor has been scaled so that η = 1.
A convenient choice for O is the Householder matrix O = In − 2κκT, where κ =
(g − e1)/‖g − e1‖2 and e1 = (1,0, . . . ,0)T.

Using O , we construct the rotated model

Y (r) ≡ YOT = γgTOT + βXTOT + UV TOT + �EOT(2.3)

≡ γg(r)T + βX(r)T + UV (r)T + �E(r),(2.4)

where g(r), X(r), V (r) and E(r) are rotated versions of g, X, V and E, respectively.
For each major transformation of the data, a new mnemonic superscript will be
introduced. Some superscripts use the same letter also used as a data dimension,
but the usages are distinct enough that one will not be mistaken for the other.

Notice that E(r) = EOT d= E, because E ∼ N (0, IN ⊗ In). By construc-
tion, g(r) = (1,0, . . . ,0). Therefore, the model for Y

(r)
ij is different depending on

whether j = 1 or j �= 1:

Y
(r)
i1 = βT

i X
(r)
1 + UT

i V
(r)
1 + γi + σiε

(r)
i1(2.5)

and

Y
(r)
ij = βT

i X
(r)
j + UT

i V
(r)
j + σiε

(r)
ij , j = 2, . . . , n,(2.6)

where ε
(r)
ij is the (i, j)th element of E(r).

The rotated model concentrates the primary coefficients γi in the first column
of Y (r). Our approach is to base tests and estimates of γi on equation (2.5). We
need to substitute estimates for unknown quantities σi , βi and Ui in (2.5). The
estimates come from the model in equation (2.6).

This rotated approach has some practical advantages: First, we do not need to
iterate between applying equations (2.5) and (2.6). Instead we use (2.6) once to
estimate unknowns U , σ and β and then use (2.5) once to judge γi . Second, the
last n − 1 columns of Y (r), and hence estimates σ̂ , β̂ , and Û , are statistically
independent of the first column. Third, problems (2.5) and (2.6) closely match
settings for which there are usable methods as described next.

Using estimates σ̂i , Ûi and β̂i from (2.6) described below, we may write (2.5)
as

Y
(r)
i1 − β̂T

i X
(r)
1 = ÛT

i V
(r)
1 + γi + σ̂iε

(r)
i1 .(2.7)
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The right-hand side of equation (2.7) is a regression with measurement errors in
the predictors Ûi , mean-shift outliers γi and unequal error variances. We will use
the 
–IPOD algorithm of She and Owen (2011), adjusted to handle unequal σi , to
get our estimate of γi .

Before describing 
–IPOD we show how to get the estimates β̂i , Ûi and σ̂i

from the criss-cross regression algorithm of Gabriel and Zamir (1979). Criss-cross
regression will also produce an estimate of V

(r)
j for j ≥ 2, but those vectors do not

play a role in (2.7).

2.3. Estimating U , β and �. We get our estimates of Ui , βi and σi from the
last n − 1 columns of the data set. Let Y (�), X(�), V (�) and E(�) be the last n − 1
columns of Y (r), X(r), V (r) and E(r), respectively. Then the model for the last
n − 1 columns of the data is

Y (�) = βX(�)T + UV (�)T + �E(�).(2.8)

Notice that the quantities β , U and � in (2.8) are the same as those in the original
model (2.1) because the steps taken so far operate on columns of Y . We can write
Y (�) = Y (r)Dn where Dn = ( 0

In−1

) ∈ R
n×(n−1) and similarly for X(�) and V (�). The

matrix Dn deletes the first column out of n in the matrix that it follows.
We adopt an iterative approach based on (2.8) that alternates between updating

�̂ and updating the quantities β̂ , Û and V̂ (�) given �̂. The update for �̂ is

�̂ =
(

1

n − 1
diag

(̂
εε̂T))1/2

where ε̂ = Y (�) − β̂X(�) − Û V̂ (�)T.(2.9)

That is, σ̂ 2
i is simply the mean squared error of a regression for the ith gene.

Given �̂, we standardize the last n − 1 columns, yielding Y (s�) = �̂−1Y (�). In
terms of the other variables,

Y (s�) = β(s)X(�)T + U(s)V (�)T + E(s�),(2.10)

where β(s) = �̂−1β , U(s) = �̂−1U and E(s�) = �̂−1E(�) are standardized ver-
sions of β , U and E(�), respectively.

Because �−1E(�) has IID Gaussian entries, equation (2.10) closely matches the
criss-cross regression model of Gabriel and Zamir (1979). Criss-cross regression
for a matrix of data sums three outer products: row based features (with column
coefficients), column based features (with row coefficients), and a low rank factor
model with latent rows and columns.

We fit a criss-cross regression by first estimating β(s) by least squares regres-
sion:

β̂(s) = Y (s�)X(�)(X(�)TX(�))−1
.

Then we estimate U(s) and V (�) by a truncated singular value decomposition
(SVD) of rank k applied to the residuals ε̂(s�) = Y (s�) − β̂(s)X(�)T. We absorb
the singular values into Û (s) but retain the identity V̂ (�)TV̂ (�) = Ik .
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Our use of criss-cross regression has a latent factor model of the form UV T and
terms of the form βXT representing column features with row coefficients. The full
criss-cross regression model also allows for terms of the form ZδT that combine
row features with column coefficients.

To apply the algorithm, we need a starting point for the iteration and a value
of k. We start with �̂ = IN . We have assumed that the rank k for the latent vari-
ables is known. When it must be estimated from the data, we follow Leek and
Storey (2008) in using the method of Buja and Eyuboglu (1992), as described in
Section 2.5.

Criss-cross regression gives us estimates �̂, β̂(s) and Û (s). We can estimate β̂

by �̂1/2β̂(s) and Û by �̂1/2Û (s). We will use these estimates normalized by σ̂i and
so it is also possible to work with β̂(s) and Û (s) themselves.

2.4. Gene identification. Now we return to the first column of the rotated data
matrix which contains the effects of the primary variable. If we divide Y

(r)
i1 by σi ,

we get

Y
(r)
i1

σi

= βT
i

σi

X
(r)
1 + UT

i

σi

V
(r)
1 + γi

σi

+ ε
(r)
i1 , i = 1, . . . ,N.(2.11)

For our purposes, equation (2.11) can be cast as a regression of standardized vari-
ables on k predictors Ui/σi with coefficient vector V

(r)
1 ∈ R

k , with additive out-

liers γi/σi and offsets βT
i X

(r)
1 /σi . Though σi and βi and Ui are unknown, we have

estimates of them from the previous section.
We use those estimates to construct the primary variable regression model

Y
(p)
i = U

(p)T
i V

(p)
1 + γ

(p)
i + ε

(p)
i(2.12)

with response Y
(p)
i = (Y

(r)
i1 − β̂T

i X
(r)
1 )/σ̂i , predictors U

(p)
i = Û

(r)
i1 /σ̂i = Û

(s)
i1 , co-

efficient vector V
(p)
1 = V

(r)
1 , additive outliers γ

(p)
i = γi/σ̂i , and error ε

(p)
i =

ε
(r)
i1 σi/σ̂i .

The 
–IPOD algorithm of She and Owen (2011) is designed to estimate a re-
gression coefficient in the presence of additive outliers as well as to identify which
observations are outliers. In the present context, the outliers correspond to genes
that are associated with the primary variable.

For a complete description of 
–IPOD see She and Owen (2011), who also cite
related work in the robust regression literature. Here we give a brief account of the
main points.

The primary variable model (2.12) could be fit by minimizing ‖Y (p) −
U(p)V

(p)
1 ‖2

2 + λ‖γ (p)‖ over V
(p)
1 and γ (p). Large enough penalties λ > 0 would

yield a sparse estimate of γ (p) which is desirable because the model has N + k

parameters and only N observations.
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The natural algorithm to minimize the sum of squared errors with an L1 penalty
on the additive outlier coefficients alternates between two steps. One step estimates
the additive outlier effects by soft thresholding residuals from a least squares re-
gression. The other step does the least squares regression after first subtracting the
estimated outlier effects. She and Owen (2011) found that while soft threshold-
ing is not robust, simply changing the algorithm to do hard thresholding proved to
be very robust. Their algorithm also takes account of the leverage values in least
squares regression. The algorithm requires a choice for λ. They used a modified
BIC statistic from Chen and Chen (2008).

Our statistic for testing Hi0 :γi = 0 is

Ti = Y
(p)
i − U

(p)T
i V̂1

τ̂
,(2.13)

where V̂1 is the 
–IPOD estimate of V
(p)
1 and τ̂ is an estimate of the error vari-

ance from (2.12). The estimate τ̂ is the median absolute deviation from the median
(MAD) of Y

(p)
i − U

(p)T
i V̂1, with the customary scaling to match the standard de-

viation for a Gaussian distribution.
For p-values we use Pr(|Z| ≥ |Ti |) where Z ∼ N (0,1). Candidate hypotheses

are ranked from most interesting to least interesting by taking the p-values from
smallest to largest. This is equivalent to sorting |Ti | from largest to smallest. We
consider the quality of this ordering, not whether the p-values are properly cali-
brated, apart from a brief remark in the conclusions.

The entire LEAPP algorithm is summarized in Figure 1.
We have emphasized the setting in which γ is a sparse vector. When γ is not a

sparse vector, then its large components may not be flagged as outliers because
the MAD estimate of τ would be inflated due to contamination by γ . In this
case, however, we can fall back on a simpler approach to estimating τ . The er-
ror ε

(p)
i has variance E(σ 2

i /σ̂ 2
i ). This variance differs from unity only because

of estimation errors in σ̂i . We can then use τ 2 = 1. We can account for fitting s

regression parameters to the n − 1 samples in each row of Y (�) by taking τ 2 =
E((n − 1 − s)/χ2

n−1−s) = (n − s − 1)/(n − s − 3). A further approximate adjust-
ment for estimating k latent vectors is to take τ 2 = (n− s −k −1)/(n− s −k −3).
This estimate of τ can be used in (2.13) for ranking of hypotheses if γ is not sus-
pected to be sparse.

2.5. SVA. We compare our method to the surrogate variable analysis (SVA)
method of Leek and Storey (2008). Their iteratively reweighted surrogate variable
analysis algorithm adjusts for latent variables before doing a regression. But it does
not isolate them.

A full and precise description of SVA appears in the supplementary information
and online software for Leek and Storey (2008). Here we present a brief outline.
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(1) Standardize the primary variable, g = g/‖g‖.
(2) Define the rotation matrix O = In − 2κκT for κ = (g − e1)/‖g − e1‖.
(3) Rotate Y (r) = YOT and X(r) = XOT.
(4) Select the last n − 1 columns Y (�) = Y (r)Dn and X(�) = X(r)Dn.
(5) Let β̂(s) = Y (�)TX(�)(X(�)TX(�))−1.
(6) Use Buja and Eyuboglu (1992) to estimate the rank k for Y (�) − β̂(s)X(�).
(7) Set �̂ = IN .
(8) Iterate to convergence:

(a) Y (s�) = �̂−1Y (�).
(b) β̂(s) = Y (s�)TX(�)(X(�)TX(�))−1.
(c) Ê

(s�)
k gets rank k truncated SVD of Ê(s�) = Y (s�) − β̂(s)X(�)T.

(d) �̂ = (diag((Ê(s�) − Ê
(s�)
k )(Ê(s�) − Ê

(s�)
k )T)/(n − 1))1/2.

(9) Let Û (s) be the k right singular vectors of Ê(s�).
(10) Set β̂ = �̂β̂(s), Û = �̂Û (s).
(11) Set Y

(p)
i = (Y

(r)
i1 − β̂T

i X
(r)
1 )/σ̂i , U

(p)
i = Û

(s)
i .

(12) Fit 
–IPOD with response Y
(p)
i predictors U

(p)
i getting γ̂

(p)
i , V̂

(p)
1 and τ̂ .

(13) Let Ti = (Y
(p)
i − U

(p)T
i V̂

(p)
1 )/τ̂ , i = 1, . . . ,N .

(14) Rank genes from most significant (largest |Ti |) to least.

FIG. 1. The LEAPP algorithm, using notation from the text. Step (6) can be omitted if the desired
value of k is already known. Step (8)(d) is written concisely but can be computed more efficiently.
We use |Ti | to rank genes. Convergence at (8) is declared when ‖�̂new − �̂old‖1/‖�̂old‖1 < 10−4

with ‖ · ‖1 here being the sum of absolute diagonal elements. There is an R package for LEAPP at
http://cran.r-project.org/web/packages/ leapp/ .

Their model takes the form

Y = γgT + UV T + �E,

where UV T is their “dependence kernel” and E is not necessarily normally dis-
tributed but has independent rows.

The SVA algorithm uses iteratively reweighted SVDs to estimate U , V and γ .
The weights are empirical Bayes estimates of Pr(γi = 0,Ui �= 0 | Y,g,V ) from
Storey, Akey and Kruglyak (2005). Their method seeks to remove the primary
term γgT by downweighting rows with γi �= 0. Our method creates columns that
are free of the primary variable by rotation.

The SVA iteration is as follows. First, they fit a linear model without any latent
variables, getting estimates γ̂ and the residual R = Y − γ̂ gT. Second, they apply
the simulation method of Buja and Eyuboglu (1992) to R to estimate the number k

of factors, and then take the top k right eigenvectors of R as the initial estimator V̂ .
Third, they form the empirical Bayes estimates wi = Pr(γi = 0,Ui �= 0 | Y,g, V̂ )

from Storey, Akey and Kruglyak (2005). Fourth, based on those weights, they per-
form a weighted singular value decomposition of the original data matrix Y , where

http://cran.r-project.org/web/packages/leapp/
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row i is weighted by wi . The weighted SVD gives them an updated estimator V̂ .
They repeat steps (3) and (4), revising the weights wi and then the matrix V̂ , un-
til V̂ converges. They perform significance analysis on γ through the multivariate
linear regression model

Y = γgT + UV̂ T + �E,

where V̂ is treated as known covariates to adjust for the primary effect g.
To estimate the number k of factors in the SVD, they use a simulation method

of Buja and Eyuboglu (1992). That algorithm uses Monte Carlo sampling to adjust
for the well-known problem that the largest singular value in a sample covariance
matrix is positively biased. That method has two parameters: the number of simu-
lations employed and a significance threshold. The default significance threshold
was 0.1 and the default uses 20 permutations.

2.6. EIGENSTRAT. EIGENSTRAT [Price et al. (2006)] was developed to
control for differences in ancestry in genetic association studies, where the ma-
trix Y represent the alleles carried by the subjects at the genetic markers (e.g.,
Yij ∈ {0,1,2} counts the number of one of the alleles). The primary variable can
be case versus control, disease status or other clinical traits.

In our notation, they begin with a principal components analysis approximating
Y by Û V̂ T for Û ∈ R

N×k and V̂ ∈ R
n×k . Then for i = 1, . . . ,N they test whether

Yi,1:n is significantly related to g in a regression including the k columns of V̂ or,
equivalently, whether the partial correlation of Yi,1:n on g, adjusted for V̂ , is sig-
nificant. Although the data are discrete and the method resembles one for Gaussian
data, the results still clearly obtain latent variables showing a natural connection to
the geographical region of the subjects’ ancestors.

EIGENSTRAT has an apparent weakness. If the signal γgT is large, then its
presence will corrupt the estimates of Û and V̂ . The estimate V̂ will be correlated
with the effect g that we are trying to estimate a coefficient for. Indeed, we find in
our simulations of Section 3 that EIGENSTRAT performs poorly when the signal
is large compared to the latent variable. While EIGENSTRATs strong latent with
weak signal assumption seems to be appropriate for genetic association studies, a
method that does not rely on such assumptions is desirable.

EIGENSTRAT also requires the choice of a rank k for the latent term. Price
et al. (2006) describe a default choice of k = 10. Patterson, Price and Reich (2006)
apply a spiked covariance model test of Johnstone (2001) using the Tracy–Widom
distribution [Tracy and Widom (1994)].

2.7. Other methods. We have used Eigenstrat and SVA in our comparisons be-
cause they are widely used in applications. A number of other methods have been
proposed for this problem. It is not feasible to include them all in our numerical
comparisons. Instead we describe several of them here, relating their approaches
to the notation of Section 2.1.
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Friguet, Kloareg and Causeur (2009) model their data as Y = γgT + UV T +
�E. They assume the latent V is normally distributed (independent of E) and
that U is nonrandom. They do not assume sparsity for γ . They estimate U , V , γ

and � by an EM algorithm. They find that using V̂ in an FDR procedure is an
improvement compared to a model that does not employ latent variables.

Lucas, Kung and Chi (2010) take Y = βXT + UV T + �E and make extensive
use of sparsity priors. They include the primary variable g as one of the columns
of X, instead of singling it out as we do. Under their sparsity priors, a coefficient
is either 0 or it is N (0, τ 2). The probability of a nonzero coefficient is π , which
in turn has a Beta distribution with a small mean. They apply sparsity priors to the
elements of both the coefficient matrix β and the latent variables U . The param-
eters π and τ are different for each column of β . They use Markov chain Monte
Carlo for their inferences.

Allen and Tibshirani (2010) model the data as Y = γgT + E where E ∼
N (0,� ⊗ �). That is, the noise covariance is of Kronecker form which models
dependence between rows and between columns. Our model has a different vari-
ance equal to the sum of two Kronecker matrices, one from UV T and one from
�E. They estimate their � and � by maximum likelihood with a penalty on the
norm of the inverses of � and �. Their L1 penalties encourage sparsity in �̂−1

and �̂−1. They then whiten Y using �̂ and �̂ and apply false discovery rate meth-
ods. They also show that correlations among different columns lead to incorrect
estimates of FDR, while correlated rows do not much affect the estimates of FDR.

Efron (2007) proposed a method to fit an empirical null to the data to directly
account for correlations across arrays. The empirical null method works with esti-
mated Z scores (one per gene) and uses the histogram of those scores to account
for the effects of latent variables. This process adjusts significance levels for hy-
potheses but does not alter their ordering.

Carvalho et al. (2008) consider similar problems but apply a very different for-
mulation. They treat the primary variable (our g) as the response and use the data
matrix (our Y ) as predictors.

2.8. Rank estimation. The problem of choosing the number k of latent vari-
ables is a difficult one that arises for all the methods we used. The Tracy–Widom
strategy is derived for the case with � = σIN , while our motivating applications
have heteroscedasticity.

Even for � = σIN it is known that the best rank for estimating UV T is not
necessarily the true rank. There is a well-known threshold strength below which a
factor is not detectable and Perry (2009) shows that there is a still higher threshold
below which estimating that factor worsens the estimate of UV T. Owen and Perry
(2009) present a cross-validatory estimate for the rank k and Perry (2009) shows
how to tune it to choose a rank k that gives the best reconstruction as measured by
the Frobenius norm.
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In our numerical comparisons, LEAPP, SVA and EIGENSTRAT were all given
the same rank k to use. Sometimes k was fixed at a default value. Other times we
used the method of Buja and Eyuboglu (1992).

3. Performance on synthetic data. In this section we generate data from the
model (2.1) and compare the results from the algorithms to each other, to an oracle
which is given the latent variable, and to a raw regression method which makes no
attempt to adjust for latent variables. Some simulations by Sun (2011) made under
a different model are described in Section 5.

We choose s = 0, omitting the βXT covariate term, so the simulated data satisfy

Y = γgT + UV T + �E.(3.1)

The model (3.1) is a special case of both the LEAPP model and the SVA model.
Our simulations have n = 60 (subjects) and N = 1000 (genes). Our primary co-

variate is a binary treatment vector g ∝ (1, . . . ,1,−1, . . . ,−1), with equal num-
bers of 1 and −1, normalized so that gTg = 1.

The vector γ of treatment effects has independent components γi taking the
values c > 0 and 0 with probability π = 0.1 and 1 − π = 0.9, respectively. We
chose c in order to attain specific signal to noise ratios as described below. The
matrix � is a diagonal with nonzero entries σi sampled independently from an
inverse gamma distribution: 1/σ 2

i ∼ Gamma(5)/4. Note that E(σ 2
i ) = 1.

We use k = 1 latent variable that has correlation ρ with g. The latent vector
U = (u1, . . . , uN) is generated as independent U(−a, a) random variables. We
will choose a to obtain specific latent to noise variance ratios. The latent vector V

is taken to be ρg +
√

1 − ρ2W , where W is uniformly distributed on the set of unit
vectors orthogonal to g. That is, we sample V so as to have a sample correlation
and squared norm that both match their population counterparts.

The model (3.1) gives Y three components: the signal S = γgT, the latent struc-
ture L = UV T, and the noise N = �E. The relative sizes of these components
affect the difficulty of the problem. We use Frobenius and spectral norms to de-
scribe the sizes of these matrices.

The noise matrix is constructed so that E(σ 2
i ε2

ij ) = E(σ 2
i ) = 1, so that

E(‖N ‖2
F ) = Nn. Because the signal and latent matrices have rank 1,

E
(‖S‖2

F

) = E
(‖S‖2

2
) = E

(‖γ ‖2
2
) = Nπc2(3.2)

and

E
(‖L‖2

F

) = E
(‖L‖2

2
) = E

(‖U‖2
2
) = Na2/3.(3.3)

For our simulation, we specified the ratios

SNR ≡ πc2 and LNR ≡ a2/3

and varied them over a wide range. We also use SLR = 3πc2/a2.
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We also varied the level of ρ, the correlation between the latent and primary
variables. For each setting of SNR, SLR, LNR and ρ under consideration, we sim-
ulated the process 100 times and prepared ROC curves, from the pooled collection
of 100,000 predictions.

The methods that we applied are as follows:

true an oracle given UV T which then does regression of Y − UV T on g,
raw multivariate regression of Y on g ignoring latent variables,
eig EIGENSTRAT of Price et al. (2006),
sva surrogate variable analysis from Leek and Storey (2008), and
lea our proposed LEAPP method.

The ROC curves for two sets of conditions are shown in Figure 2. The best
performance is always from the oracle. The next best method is LEAPP. For the
conditions in the left panel RAW is next best followed by SVA and EIGENSTRAT.
In the right panel SVA is third, followed by EIGENSTRAT and then RAW.

Because the ROC curves from the simulations have few if any crossings, we
can reasonably summarize each one by a single number. We have used the area
under the curve (AUC) for a global comparison. We also use a precision measure
for the quality of the most highly ranked values. That measure is the fraction of
truly nonnull genes among the highest ranking H genes. We use H = 50.

When ρ = 0, EIGENSTRAT, SVA and LEAPP have almost equivalent per-
formance. For ρ > 0, the oracle always had the highest AUC and LEAPP was

FIG. 2. This figure shows the knee of the ROC curves for two simulations with ρ = 1/2 and
SNR = 1. The left panel has SLR = 1/2. In this case the raw method beats SVA which beats
EIGENSTRAT. The right panel has SLR = 1/4 and SVA beats EIGENSTRAT which beats the raw
method. In every case we simulated, the best results are for an oracle that was given the latent vari-
ables. The second best was always for the proposed LEAPP method. The relative performance for
SVA, EIGENSTRAT and the raw method were different in other settings.
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FIG. 3. This figure shows the improvement in AUC for LEAPP relative to SVA. Here ρ is the cor-
relation between the primary and latent variables. The signal to noise ratio and latent to noise ratio
are described in the text. The color scheme encodes (AUClea − AUCsva)/AUCsva.

always second. The ordering among the other three methods varied. Sometimes
EIGENSTRAT was the best of those three, other times SVA was the best of those
three and other times RAW was the best of those three.

Figure 3 shows a heatmap of the improvement in AUC for LEAPP versus SVA.
The improvements are greatest when ρ is large. This is reasonable because SVA is
not designed to account for correlation between the latent and primary variables.
At each correlation level, the greatest differences arise when SNR is small and
LNR is about 2.

Figure 4 shows the improvement in AUC for LEAPP versus EIGENSTRAT.
The improvements are largest when the primary effect is large.

The improvements versus SVA are smaller than those versus EIGENSTRAT.
To judge the practical significance of the improvement, we repeated some of these
simulations for SVA, increasing n until SVA achieved the same AUC that LEAPP
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FIG. 4. This figure shows the improvement in AUC for LEAPP relative to EIGENSTRAT.
The simulation conditions are as described in Figure 3. The color scheme encodes
(AUCrot − AUCeig)/AUCeig.

did. Sometimes SVA required only 2 more observations (one treatment and one
control) to match the AUC of LEAPP. Sometimes it was unable to match the AUC
even given double the sample size, that is, n = 120 observations instead of n = 60.
Not surprisingly, the advantage of LEAPP is greatest when the latent variable is
most strongly correlated with the primary.

Table 1 shows a feature of this problem that we also see in the figures. The
improvement over SVA is quite small when LNR = 0.5. A small enough latent
effect becomes undetectable, both methods suffer and there is little difference.
Similarly, a very large latent effect (LNR = 8) is easy to detect by both methods.
The largest differences arise for medium sized latent effects.

High throughput methods are often used to identify candidates for future follow-
up investigation. In that case we value high precision for the most highly ranked
hypotheses. Figure 5 shows the improvement of LEAPP over SVA, as measured



LEAPP 1679

TABLE 1
This table shows the number of samples required for SVA to attain the same AUC that LEAPP

attains with n = 60 samples. For example, with SNR = 2 and LNR = 0.5, and ρ = 0.25,
SVA requires 66 samples or 10% more. The entries of 100% denote settings

where the increase needed was ≥100%

Conditions ρ = 0.25 ρ = 0.5 ρ = 0.75

SNR LNR n % n % n %

2 0.5 66 10 66 10 62 3
2 1 68 13 92 53 120 100
2 2 66 10 74 23 114 90
2 4 62 3 66 10 88 47
2 8 62 3 66 10 72 20

1 0.5 64 7 64 7 62 3
1 1 66 10 90 50 120 100
1 2 64 7 76 27 120 100
1 4 64 7 66 10 90 50
1 8 62 3 66 10 76 27

0.5 0.5 64 7 64 7 62 3
0.5 1 66 10 84 40 120 100
0.5 2 66 10 78 30 110 83
0.5 4 66 10 68 13 88 47
0.5 8 62 3 68 13 72 20

by precision. Figure 6 shows the improvement of LEAPP over EIGENSTRAT, as
measured by precision.

4. AGEMAP data. It is hard to find a real data set where the true set of impor-
tant genes is known. Even if we are confident that a few genes are active, we still
cannot be sure that the others are really inactive: the corresponding null hypothe-
ses might be accepted, but they are not proved. We turn instead to the AGEMAP
study [Zahn et al. (2007)].

The AGEMAP study [Zahn et al. (2007)] investigated age-related gene expres-
sion in mice. Ten mice at each of four age groups were investigated. From these 40
mice, samples were taken of 16 different tissues, resulting in 640 microarray data
sets. A small number of those 640 microarrays were missing. From each microar-
ray, 8932 probes were sampled. Perry and Owen (2010) found that many of the
tissues in this data set exhibited strong latent variables. Their approach assumed
that the latent variables were orthogonal to the treatment.

Our underlying assumption is that aging should have partially though not totally
consistent results from tissue to tissue. According to Kim (2008): “Some aspects
of aging only affect specific tissues; examples include progressive weakness of
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FIG. 5. This figure shows the improvement in precision for LEAPP relative to SVA. Precision is the
fraction of truly affected genes among the top H = 50 ranked genes. The simulation conditions are
as described in Figure 3. The color scheme encodes (PRElea − PREsva)/PREsva.

muscle, declining synaptic function in the brain, and decreased filtration rate in
the kidney. Other aspects of aging occur in all cells regardless of their tissue type,
such as the accumulation of oxidative damage, and telomere shortening.” Zahn
et al. (2006) found some genetic pathways with common age regulation in (human)
kidney, brain and muscle. Rodwell et al. (2004) found common aging between
human kidney, cortex and medulla. Some aspects of aging are also common from
species to species Kim (2007).

A tendency for some common component to aging should in turn produce over-
lap in gene lists computed from multiple tissues. Because age-related genes are
sparse, noisy estimation is more likely to reduce overlap in gene lists than to cre-
ate it.
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FIG. 6. This figure shows the improvement in precision for LEAPP relative to EIGENSTRAT. Pre-
cision is the fraction of truly affected genes among the top H = 50 ranked genes. The simulation
conditions are as described in Figure 3. The color scheme encodes (PRErot − PREeig)/PREeig.

To illustrate this point, consider a setting with 1000 genes and two tissues A and
B with counts

( A ¬A

B 10 10
¬B 10 970

)
.

Here 10 genes are truly age-related in both tissues, 10 are age-related in A but
not B , and, finally, 970 genes are not age-related in either tissue. Suppose now that
statistical testing identifies each truly age-related gene with power 0.6 and that
each nonage-related gene has a false discovery probability of 0.01. Using Â and B̂

to represent genes identified as age-related, the expected counts (for independent



1682 Y. SUN, N. R. ZHANG AND A. B. OWEN

test statistics) are in the following matrix:

( Â ¬Â

B̂ 3.817 17.983

¬B̂ 17.983 960.217

)
.

The effect of noisy gene identification is severely biased toward reducing the ap-
parent overlap.

For any two tissues, we can measure the overlap between their sets of highly
ranked genes. For two sets A and B , their resemblance [Broder (1997)] is

res(A,B) = |A ∩ B|
|A ∪ B| ,

where | · | denotes cardinality. Given two tissues and a significance level α, we
can compute the resemblance of the genes identified as age-related in the tissues.
Resemblance is then a function of α. Plotting the numerator |A ∩ B| versus the
denominator |A∪B| as α increases, we obtain curves depicting the strength of the
overlap.

In our setting with 16 tissues there are
(16

2

) = 120 resemblances to consider. To
keep the comparison manageable as well as to pool information from all tissues,
we computed the following quantities:

Iα = ∑
1≤j<j ′≤16

∣∣Aα
j ∩ Aα

j ′
∣∣ and Uα =

∣∣∣∣∣
16⋃

j=1

Aα
j

∣∣∣∣∣,(4.1)

where Aα
j is the set of statistically significant genes at level α for tissue j . We can

think of Iα/Uα as a pooled resemblance. We would like to see large Iα at each
given level of Uα .

Figure 7 plots Iα versus Uα for the methods we are comparing. To make a
precise comparison, we arranged for each method that estimated latent structure to
employ the same estimate for the rank of the latent component. That rank is either
1, 2, 3 or the value chosen by the method of Buja and Eyuboglu (1992). At any
rank LEAPP generates the most self-consistent gene lists over almost the entire
range. EIGENSTRAT is usually second. SVA beats a raw method that makes no
adjustments. LEAPP retains its strong performance when the rank is chosen from
the data while the other two methods become poorer in that case.

Resemblance across tissues could also be high if there exists latent variables
strongly correlated with age which are repeated across tissues. For example, con-
sider a scenario where all tissues from young mice are in one batch, and all tissues
from elder mice are in a different batch. If there are strong batch biases, then “age-
related” genes would be reported by the raw method, and the same genes would
be ranked high across all tissues. However, note that raw performs the worst of all
methods in Figure 7, which gives some reassurance that the high resemblance of
the other methods is due to successful removal of latent variables.
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FIG. 7. This figure shows the resemblance among significant gene sets from 16 tissues in the
AGEMAP study. We plot Iα versus Uα [from equation (4.1)], increasing α from 0 until Uα = 700.
The greatest self-consistency among lists is from LEAPP. EIGENSTRAT is second best. The baseline
curve is computed assuming that the rankings for all 16 tissues are mutually independent.

Given what we have learned from simulations, the relative performance
of EIGENSTRAT and SVA gives us some insight into these data. Since
EIGENSTRAT has done well, it is more likely that the signal is not very strong.
Since SVA has done poorly, it is more likely that the latent variables in these data
are correlated with age. There is also the possibility that they are correlated with
sex (the covariate). Our simulations did not include a covariate.

5. Conclusions. High throughput testing has performance that deteriorates in
the presence of latent variables. Latent variables that are correlated with the treat-
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ment variable of interest can severely alter the ordering of p-values. Our LEAPP
method separates the latent variable from the treatment variable, making an adjust-
ment possible.

We have found in simulations that the adjustment brings about a better order-
ing among hypotheses than is available from either SVA or EIGENSTRAT. The
improvement over SVA is largest when the latent variable is correlated with the
primary one. The improvement over EIGENSTRAT is largest when the primary
variable has a large effect.

A referee asked about the case where the coefficients of γ for the primary vari-
able correlate over genes with the per gene latent variable, U in our notation. We
have not simulated such a case. It might be very difficult for all methods or it might
be comparable to the case where g correlates with V . It seems clear that if UV T

matches γgT closely enough, then it will be impossible to identify relevant genes
in this model.

In the simulations reported here the data are drawn from the model under
which LEAPP was derived. Sun (2011) also simulates the LEAPP, SVA and
EIGENSTRAT algorithms on the model used by Price et al. (2006) to repre-
sent SNP association studies. The SNPs themselves are drawn from the Balding–
Nichols model [Balding and Nicols (1995)]. Two scenarios were considered. In
both, the LEAPP ROC curve placed above that for SVA which was above that for
EIGENSTRAT. All methods were close when the relative risk for the causal allele
was R = 1.5 while EIGENSTRAT lagged behind for the case with R = 3.

On the AGEMAP data we found better consistency among tissues for signifi-
cance estimated by LEAPP than for either SVA or EIGENSTRAT.

Some applications may have features measured on the genes with per-sample
covariates to be estimated statistically. Such terms can be included in the criss-
cross regression framework but we have no experience fitting them.

LEAPP produces p-values in addition to the relative ordering of the genes.
In this paper we have only looked at the quality of the relative ordering. In re-
sponse to a reviewer’s query about calibration of p-values, we created a QQ-plot
of test statistics Ti at (2.13) on simulated data (not shown) and found it very nearly
linear. That simulated data was pure noise, having no regression or latent struc-
ture. For an investigation on real data, Sun [(2011), Chapter 4.5.2] considered the
breast cancer data from Hedenfalk (2001). She finds that the test statistics pro-
duced by LEAPP have an empirical null distribution from the R package locfdr
[Efron (2008)] of N (0.012,1.0182) that closely matches the nominal null distri-
bution. That is what we would expect to see if the nominal p-values coming out
of LEAPP had the U [0,1] distribution that they should have. Corresponding em-
pirical nulls are N (−0.01,1.552) for the RAW method, N (−0.009,1.4252) for
SVA and N (−0.093,1.1992) for EIGENSTRAT. Thus, in addition to a general
improved ordering of genes, this one example had p-values that are better cali-
brated in LEAPP than in SVA or EIGENSTRAT.
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APPENDIX

Here we give some properties of our approach to testing many hypotheses in
the presence of latent variables. We focus on a simpler version of the model that is
more tractable:

Y = γgT + UV T + σE,(A.1)

where g ∈ R
n×1 with ‖g‖ = 1 as before, U ∈ R

N×k is nonrandom, V ∈ R
n×k has

IID rows with E(V TV ) = Ik , known rank k and E ∼ N (0, IN ⊗ In). Compared to
the full model (2.1), equation (A.1) has no covariate term βXT, and has constant
variance � = σIN .

This simplification allows us to apply results from the literature to our model. It
removes the Monte Carlo based rank estimation step and the alternation between
estimating � and using the estimate �̂. When k = 1, the primary to latent correla-
tion is ρ = gTV/

√
V TV .

Our algorithm requires the choice of a rotation matrix O such that Og = e1.
There are multiple possibilities for this matrix. Our algorithm is invariant to the
choice of O .

THEOREM A.1. Let Y follow the model (A.1). Then our estimates of U and
γ do not depend on the rotation O used as long as Og = e1.

PROOF. See Sun (2011). �

It is not hard to extend the proof of Theorem A.1 to account for the βXT term.
The criss-cross regression begins by computing β̂ from sums of squares and cross-
products. Those sums of squares and cross-products are invariant under the rota-
tion.

The following theorem provides a sufficient condition for our estimate Û to
consistently estimate U . We study the case where the data are generated with k = 1
and the model is also estimated using the correct rank k = 1. Then as long as the
latent factor U is large enough compared to the noise level, we will be able to detect
and estimate U fairly well. Our size measure ‖U‖2

2(1−ρ2)/n takes account of the
correlation. With a higher ρ, more of the latent factor is removed from Y (�).

We measure error by the cosine �(Û,U) = ÛTU/(‖Û‖2‖U‖2) of the angle
between Û and U . The estimate Û is determined only up to sign. Replacing Û

by −Û causes a change from V̂ to −V̂ and leaves the model unchanged. We only
need max(�(Û,U),�(−Û ,U)) = |�(Û,U)| → 1 for consistency.

THEOREM A.2. Let Y follow the model (A.1) with k = 1 and ‖U‖2
2(1 − ρ2)/

n → ∞ and N(n)/n → c ∈ (0,∞) as n → ∞. Let Û be our estimator for U using
k = 1. Then |�(Û,U)| → 1 as n → ∞ with probability 1.
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PROOF. See Sun (2011). �

Next we give conditions for the final step of LEAPP to accurately estimate γ ,
that is, for ‖γ̂ − γ ‖2 to be small. To do this, we combine methods used in random
matrix theory from Bai (2003) with methods used in compressed sensing in Candès
and Randall (2006).

In our simulations we found little difference between robust and nonrobust
versions of the 
–IPOD algorithm. This is not surprising, since our simulations
did not place nonzero γi preferentially at high leverage points (extreme Ui1). For
our analysis we replace the robust 
–IPOD algorithm by the Dantzig selector for
which strong results are available.

Our algorithm was designed assuming that the primary variable g is not too
strongly correlated with the latent variable V . In our analysis we also impose a
separation between the effects γ and the latent quantity U . Specifically, we assume
that γ is sparse and that U is not.

The vector x is s-sparse if it has at most s nonzero components. Following
Candès and Randall (2006), we define the sequences as(A) and bs(A) as the largest
and smallest numbers, respectively, such that

as(A)‖x‖2 ≤ ‖Ax‖2 ≤ bs(A)‖x‖2

holds for all s-sparse x.

THEOREM A.3. Suppose that Y follows the model (A.1) with k = 1, a fixed
correlation ρ ∈ (−1,1) between g and V , and an s-sparse vector γ . Assume that

N/n → c ∈ (0,∞), V TV
p→ 1, and (Nn)−1‖U‖2

2 → σ 2
u > 0 hold as n → ∞.

Let our estimated U be Û and set U� = Û/‖Û‖2. Writing |U�
(1)| ≥ |U�

(2)| ≥ · · · ≥
|U�

(N)| for the ordered components of U�, assume that there is a constant 0 < B <

1 such that

2s∑
i=1

(
U�

(i)

)2 + 1

2

3s∑
i=1

(
U�

(i)

)2 ≤ B.

Then the Dantzig estimator γ̂ , which minimizes

‖γ̂ ‖1 subject to
∥∥(

I − U�U�T)(
Y

(r)
1 − γ̂

)∥∥∞ ≤ σ
√

logN

satisfies

‖γ̂ − γ ‖2
2 ≤ 16σ 2s log(N)

(1 − ρ2)(1 − B)2 .

PROOF. See Sun (2011). �
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