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ASSESSING TRANSIENT CARRYOVER EFFECTS IN RECURRENT
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In some settings involving recurrent events, the occurrence of one event
may produce a temporary increase in the event intensity; we refer to this phe-
nomenon as a transient carryover effect. This paper provides models and tests
for carryover effect. Motivation for our work comes from events associated
with chronic health conditions, and we consider two studies involving asthma
attacks in children in some detail. We consider how carryover effects can be
modeled and assessed, and note some difficulties in the context of heteroge-
neous groups of individuals. We give a simple intuitive test for no carryover
effect and examine its properties. In addition, we demonstrate the need for
detailed modeling in trying to deconstruct the dynamics of recurrent events.

1. Introduction. Recurrent events experienced by individuals, units or sys-
tems occur in many fields [Cook and Lawless (2007)]. For example, repeated fail-
ures can occur for equipment or for software systems [Ascher and Feingold (1984),
Baker (2001), Lindqvist (2006)]. In medical contexts, individuals may experience
multiple episodes of hospitalization, recurrent infections or children may suffer
repeated attacks of asthma [Duchateau et al. (2003)]. Models for recurrent events
are discussed in books such as Cox and Isham (1980) and Daley and Vere-Jones
(2003). Cox and Lewis (1966), Karr (1991) and Cook and Lawless (2007) discuss
related methods of analysis.

In certain settings an event intensity is temporarily increased (or in some cases,
decreased) after some condition or event occurs. Such transient effects may be
due to factors that are either external or internal to the individuals or systems in
question. Transient effects due to external factors have received considerable re-
cent attention. For example, Farrington and Whitaker (2006) and Farrington and
Hocine (2010) have examined potential adverse health effects following adminis-
tration of the mumps, measles and rubella (MMR) vaccine to children. Farrington,
Whitaker and Hocine (2009) consider adverse effects related to drug treatments.
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Our focus in this paper is on internal factors. These are not usually observable, and
evidence for their existence is sought by examining whether event intensities are
temporarily increased soon after an event occurs. We call such effects carryover
effects, which is also a term used to describe transient effects due to external fac-
tors such as vaccinations or residual effects of drugs [Cook and Lawless (2007),
Section 3.8.2]. This phenomenon has also often been discussed for hardware or
software systems, where repairs or modifications undertaken to deal with a failure
may not resolve the problem or may even create new problems [e.g., Baker (1996,
2001), Peña (2006)].

The motivation for the present paper is from attempts to identify potential car-
ryover effects related to events occurring in subjects with chronic medical con-
ditions. Such effects are inherently difficult to assess because of complex factors
that may influence event occurrence. These include unobservable covariates that
can produce wide heterogeneity in event rates across individuals and the presence
of temporal trends that may be related to the age of a process or to external factors
such as seasonal effects. In addition, clinical events are often related to unobserv-
able processes concerning a person’s health and fluctuations in such processes can
produce clustering of events. This paper is motivated specifically by studies of ad-
verse events in children. Two studies that we consider here involve randomized
treatment trials for the prevention of asthma attacks; a third study that will be
discussed more briefly later in the paper involves failures associated with shunts
which are used to drain excess cerebrospinal fluid in children with hydrocephalus
[Tuli et al. (2000)].

In the first asthma prevention trial, infants who were considered at high risk
for asthma were randomized at 6 months of age to receive either a placebo or
drug treatment [Duchateau et al. (2003)]. They then were followed for 18 months,
and occurrences of any asthma attacks (according to specified symptoms) were
recorded. In addition to the assessment of any drug effect, other points of interest
are the evolution of the asthma recurrent event rate over time and how the occur-
rence of an event influences the event rate [Duchateau et al. (2003), page 356]. In
the second study [Verona et al. (2003)], children aged 4–11 years were random-
ized to receive either 200 or 400 μg per day of fluticasone propionate (FP) for
the prevent of asthma exacerbations. The original protocol called for 3 months of
follow-up per child, but this was later amended to 12 months. Most of the exacer-
bations in question were defined as “moderate;” these were defined as occurring
if a child experienced a period of two consecutive days on which either (i) their
morning percentage predicted expiratory flow (PEF, a measure of lung function)
fell more than 20% below their baseline value measured at randomization, or (ii)
they had an increase in inhaler (β2-agonist) usage.

In each of these studies we will examine whether there is an indication that in-
dividuals are temporarily at a higher risk of a new event (exacerbation) following
the resolution of a previous exacerbation. Insights into this can affect strategies for
the prevention and treatment of exacerbations. As an illustration we show a simple
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synopsis of data from the first asthma trial, in which 119 children were random-
ized to the placebo control group and 113 were randomized to the treatment group.
The total numbers of asthma attacks were 483 (control group) and 336 (treatment
group). The total observed and expected (calculated under a hypothesis of no car-
ryover effect, as described in Section 5.1) number of attacks which occurred within
two weeks of the preceding attack are as follows:

Control group: Observed = 121, Expected = 80.3,

Treatment group: Observed = 76, Expected = 40.5.

The data show an excessive number of events soon after the preceding event.
The presence of a carryover effect can be assessed fairly readily in single sys-

tems which experience large numbers of events [e.g., Baker (2001)]. However,
in medical contexts we typically have a large number of individuals, each with a
small number of events. The purpose of this paper is to discuss models through
which the presence of a carryover effect can be assessed in settings involving mul-
tiple heterogeneous individuals, as seen in the preceding studies. We make three
novel contributions. First, we show that internal carryover effects can be difficult
to distinguish from subject heterogeneity in settings where the average number of
events per subject is fairly small. Second, we show that the data often have limited
information about the duration of an effect, so reliance on background informa-
tion is crucial. Finally, we provide tests for no carryover effect which are simple to
interpret and reasonably robust.

In Section 2 we consider models for transient carryover effects, discuss their
connection to the concept of event clustering, and show how heterogeneity makes
the assessment of transient effects more difficult. Section 3 considers some simple
tests and Section 4 presents simulation results on their properties. Section 5 exam-
ines the studies on asthma in infants. Section 6 contains concluding remarks and
discusses a study of cerebrospinal fluid shunt failures in pediatric patients. In the
interests of exposition, some technical derivations are placed in the Appendix.

2. Models for carryover effects. We use standard notation for recurrent
events. We assume that an individual process is observed over time interval [0, τ ],
and let N(t) denote the number of events in (0, t]. The history of events over [0, t)

is denoted by H(t) and the event intensity function [Cook and Lawless (2007),
page 10] is given by

λ(t |H(t)) = lim
�t↓0

Pr{N(t + �t−) − N(t−) = 1|H(t)}
�t

.(2.1)

The intensity fully specifies continuous time processes where at most one event
can occur at a given time. The times of events are denoted T1 < T2 < · · · , and
B(t) = t −TN(t−) is the elapsed time since the most recent event prior to t . Familiar
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models include Poisson processes, where λ(t |H(t)) = ρ(t) for some function ρ,
and renewal processes, where λ(t |H(t)) = h(B(t)) for some function h.

Carryover effects can be modeled in a number of ways. A model that is very
useful when events may display time trends is a modulated Poisson process. In
this case, (2.1) takes the form

λ(t |H(t)) = ρ0(t) exp(β ′Z(t)),(2.2)

where Z(t) is a q × 1 vector of time-varying covariates that is allowed to contain
functions of the event history H(t) as well as external covariates. More specifically,
we can consider models for which Z(t) includes terms that are zero except for a
limited time period following the occurrence of an event; such terms specify the
carryover effects. A simple but very useful model is one where Z(t) in (2.2) takes
the form

Z(t) = I
(
N(t−) > 0

)
I
(
B(t) ≤ �

)
,(2.3)

where � > 0 is a specified value. In that case the intensity function following
an event temporarily changes from ρ0(t) to eβρ0(t). Tests of the null hypothesis
H0 :β = 0, developed below, provide simple and intuitive tests of no carryover
effect.

Other similar models with carryover effects can also be specified. For exam-
ple, a model (2.2) with Z(t) = I (N(t−) > 0) exp(−γB(t)) or an additive lin-
ear self-exciting process [Cox and Isham (1980), Section 3.3; Ogata (1983)] with

λ(t |H(t)) = ρ0(t) + β
∑N(t−)

j=1 e−γ (t−tj ) also produces transient effects following
events, while allowing possible time trends as in (2.2). Such models are more diffi-
cult to handle than (2.2) and (2.3), and do not impose a time limit on the duration of
an effect, but have been found useful in areas such as seismology [Ogata (1983)].

There is a close connection between what we term carryover effects and cluster
processes [Cox and Isham (1980), Section 3.4]. In a cluster process the events
occur in clusters, or groups of events that are close together in time. Carryover
effects in essence produce a type of clustering, and models such as (2.3) or the
linear self-exciting process can be viewed as cluster processes in which each new
event produces a subprocess going forward in time, with a decreasing rate function
[e.g., Cox and Isham (1980), pages 69, 77]. On the basis of observed events alone,
it is impossible to say what produces observed clustering, and we must rely on
context-specific background to suggest plausible mechanisms. We view internal
carryover effects as arising when a “remedy” for an adverse effect is unsuccessful
or partially successful, and consider models that facilitate interpretation within that
framework. Many models for cluster processes are harder to handle [e.g., Cox and
Isham (1980), Section 3.4; Xie, Sun and Naus (2009)], especially when the rate
of events is not stationary, and there is heterogeneity. Standard clustering models
do not address these points. Our models are straightforward to handle and provide
insight, but as always, models should be checked, and other approaches may be
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needed in some situations. We note as well that although we focus on the case
where the intensity temporarily increases following an event, in some contexts it
could decrease, with β in (2.2) being negative in that case.

Another way to consider carryover effects is through the distribution of gap
times Wj = Tj − Tj−1 (with T0 = 0) between successive events. Gap time models
[Cook and Lawless (2007), Chapter 4] are particularly useful in settings where an
adverse event results in some corrective action which ideally returns an individual
to a “good as new” state [e.g., Peña (2006)]. Gap time models in which the times
between successive events have distributions with substantial mass near zero could
be considered as suggesting a carryover effect [e.g., see Baker (2001), Lindqvist
(2006), Peña (2006)]. They contain more parameters and are more difficult to han-
dle than (2.2) and (2.3), and do not accommodate calendar time trends as readily,
but are often useful. In the special stationary case where ρ0(t) in (2.2) is a con-
stant α, the model with Z(t) given by (2.3) is a delayed renewal process where
the times Wj (j = 2,3, . . .) between successive events are independent random
variables with a hazard function of the form h(w) = αeβI (w ≤ �) + αI (w > �).

In applications involving multiple systems or individuals, heterogeneity is often
apparent [e.g., Lawless (1987), Baker (2001), Lindqvist (2006), Cook and Lawless
(2007), Section 3.5]. For example, individual processes may be (approximately)
Poisson, but their rate functions may vary. Such variation is typically due to un-
measured differences in the individuals or the environment in which the processes
operate. It is imperative to consider the possibility of heterogeneity because, as we
show below, it can create an appearance of a carryover effect when no such exists.

The simplest and most useful extension of modulated Poisson process models
(2.2) to include heterogeneity is where independent processes i = 1, . . . ,m have
rate functions

ρi(t |Hi (t)) = αiρ0(t) exp(βZi(t)),(2.4)

where α1, . . . , αm are positive-valued variables. Models for which the αi are fixed
parameters can be problematic because the αi cannot be estimated consistently. An
alternative is to assume the αi are independent and identically distributed random
effects with some distribution function G(α;φ), where φ is a vector of parameters
[Cook and Lawless (2007), Section 3.5], and we consider this for most analyses.

We now show why heterogeneity that is not taken into account can misleadingly
suggest a carryover effect. Suppose for illustration that the model (2.4) with β =
0 and αi following a gamma distribution describes a situation. Without loss of
generality, we take the αi to have mean 1 and variance φ, and then [Cook and
Lawless (2007), page 79] we find that the intensity function for the process with
the unobservable αi integrated out is

λi(t |Hi (t)) = E(αi |Hi (t))ρ0(t)
(2.5)

=
{

φ−1 + Ni(t
−)

φ−1 + ∫ t
0 ρ0(u) du

}
ρ0(t).
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Note that when an event occurs, the numerator term in brackets in (2.5) increases
by one, thus increasing the intensity. As t increases up to the next event, the de-
nominator in brackets increases, so the overall effect is that the intensity increases
immediately after an event occurs and then decreases. This is the type of behavior
we associate with a carryover effect. The larger the degree of heterogeneity across
the individuals (i.e., the larger φ is), the larger is the increase following an event.
As t becomes arbitrarily large, the term in brackets converges in probability to αi

so the appearance of a carryover effect is mainly in the earlier events. However,
failure to incorporate heterogeneity in models can produce spurious evidence of
an effect. To demonstrate, we ran a small simulation by generating 1000 realiza-
tions of a random effect model without carryover effects; we used model (2.4)
where the αi have a gamma distribution with mean 1 and variance φ and parame-
ters ρ0(t) = γ and β = 0 (no carryover effect). We considered eight scenarios with
various combinations of γ , φ and m (γ = 2, 5, φ = 0.2, 0.5 and m = 100, 500).
Observation periods were (0, τi) and the τi times were generated from a uniform
distribution over (0.8,1.2). For τi = 1 the expected number of events per indi-
vidual is 2 or 5 when γ = 2 or 5, respectively. For each sample we obtained the
maximum likelihood estimates of parameters and their standard errors in the carry-
over effect model (2.2) with (2.3), without incorporating heterogeneity. We found
that β̂ was positively biased across the 1000 simulations for each scenario, with
mean to standard deviation ratios varying from 0.7 to over 10. Correspondingly,
tests of the null hypothesis H0 :β = 0 incorrectly reject H0 with high probability.
Using the same data sets, we also fitted the carryover effect model with random
effects (2.4) with ρ0(t) = γ , and in this case the means of β̂ were close to zero for
all scenarios. The results can be found in the supplementary material [Çığşar and
Lawless (2012)].

We remark also that heterogeneity is to some extent confounded with a carry-
over effect even with a proper model specification. With (2.4), for example, and
gamma distributed αi , the intensity function is

λi(t |Hi (t)) =
{

φ−1 + Ni(t
−)

φ−1 + ∫ t
0 ρ0(u)eβZi(u) du

}
ρ0(t)e

βZi(t).

As t becomes large the term in brackets once again converges in probability to αi ,
so a carryover effect represented by β �= 0 can be readily assessed. When t and
Ni(t

−) are small, however, the carryover effect and the expression in brackets can
both produce substantial temporary increases in the event intensity. In many of the
applications we consider, there are many individuals but relatively few events for
most individuals, and therefore a process of careful modeling and model-checking
is warranted. Next, we consider some tests of no carryover effect based on (2.4).
These are reasonably robust and have a simple interpretation in terms of the ob-
served data.
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3. Tests based on Poisson processes. We consider tests of no carryover ef-
fect based on the Poisson model (2.4), and testing that β = 0. This can be done
either using a parametric model for ρ0(t) or by using a nonparametric specifica-
tion, in which case (2.4) is a modulated Andersen–Gill model with frailty [Cook
and Lawless (2007), page 81]. We describe the parametric setting in detail, so as to
show the intuitive form of the test statistics, and then discuss the semiparametric
case. The tests use a specified value for � in (2.3) and (2.4). This is consistent with
common practice and the resulting tests have the nice form of a difference between
observed and expected numbers of events in the window of length � following an
event. However, we later consider the effects of misspecifying � and in Section 5
we consider estimation of �.

3.1. Fixed effects model. We consider first the fixed effects model (2.4), for
which the αi are treated as unknown parameters. This can be useful when the
number of individual processes m is small but there are many events per process.
The follow-up (censoring) times τi throughout the paper are assumed to be stop-
ping times [Cook and Lawless (2007), page 48]. The follow-up times are therefore
allowed to be random and to depend on previous event history. In this case, data
on m independent processes give the log likelihood function


(α, γ,β) =
m∑

i=1

{
ni logαi +

ni∑
j=1

[logρ0(tij ;γ ) + βZi(tij )] − αiRi(γ,β)

}
,(3.1)

where α = (α1, . . . , αm)′ and

Ri(γ,β) =
∫ τi

0
ρ0(t;γ )eβZi(t) dt.(3.2)

For given γ and β , (3.1) is maximized by α̃i(γ, β) = ni/Ri(γ,β), and substitution
of this into (3.1) gives the profile log likelihood for γ and β as a constant plus


p(γ,β) =
m∑

i=1

{
ni∑

j=1

[logρ0(tij ;γ ) + βZi(tij )] − ni logRi(γ,β)

}
.(3.3)

A likelihood ratio test of H0 :β = 0 requires estimates γ̂ , β̂ that maximize (3.3)
and the estimate γ̃ that maximizes 
p(γ,0); the estimates are found easily by
general optimization software.

A score test can be based on Uβ(γ̃ ,0), where Uβ(γ,β) = ∂
p(γ,β)/∂β . The
standardized score statistic

Uβ(γ̃ ,0) =
m∑

i=1

{
ni∑

j=1

Zi(tij ) − ni

∫ τi

0 Zi(t)ρ0(t; γ̃ ) dt∫ τi

0 ρ0(t; γ̃ ) dt

}

= Obs(�) − Exp(�),
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where Obs(�) = ∑m
i=1

∑ni

j=1 Zi(tij ) is the observed number of events that oc-
cur within time � of a preceding event, and Exp(�) is an estimate of the ex-
pected number of such occurrences under the hypothesis of no carryover effect.
For the simple case of a homogeneous Poisson process, ρ0(t;γ ) is one, and we find
Exp(�) = (ni/τi)

∑ni+1
j=2 min(wij ,�), where wij = tij − ti,j−1 (j = 1, . . . , ni) and

wi,ni+1 = τi − tini
. The form “observed minus expected” for Uβ(γ̃ ,0) is easily un-

derstood and useful. The standardized form of Uβ(γ̃ ,0) is [Peña (1998)]

S = Uβ(γ̃ ,0)

V̂ar[Uβ(γ̃ ,0)]1/2
,(3.4)

where V̂ar[Uβ(γ̃ ,0)] = Ĩββ − Ĩγβ Ĩ−1
γ γ Ĩβγ is obtained from the observed informa-

tion matrix for β and γ based on (3.3), evaluated at (γ,β) = (γ̃ ,0).
A problem with S, and with the likelihood ratio statistic, is that if m → ∞

but the τi are fixed, the limiting distributions are not standard normal and χ2
(1),

respectively, due to the fact that the αi are not estimated consistently. The normal
and χ2 approximations may be adequate in cases where m is not too large and
the numbers of events per process are fairly large, but simulations in Section 4
show they are inadequate in settings like those in Section 5. However, we can use
a simulation (parametric bootstrap) approach to get p-values. Under H0, the event
times Ti1, . . . , Tini

, given Ni(τi) = ni , are the order statistics for a random sample
of size ni from the truncated distribution with density function [Cox and Lewis
(1966), Section 3.3]

fi(t;γ ) = ρ0(t;γ )∫ τi

0 ρ0(s;γ )ds
, 0 ≤ t ≤ τi.

Thus, we can generate random samples from each fi(t; γ̃ ), i = 1, . . . ,m, and use
these to obtain values of the test statistic in question. For the HPP case, fi(t;γ )

is the uniform distribution on [0, τi]. It should be noted that p-values obtained
from this approach are conditional on the observed values n1, . . . , nm and so are
not strictly comparable to the unconditional p-values provided by a normal or χ2

approximation, or to p-values for the random effects model in Section 3.2.

3.2. Random effects model. Random effects models employ a distribution for
the αi in (2.4), which are assumed independent. We assume for discussion that the
αi have a gamma distribution with mean 1 and variance φ, which is a widely used
model; similar developments can be given for other distributions. In this case the
log likelihood function is [Cook and Lawless (2007), Section 3.5.3]


(γ,β,φ) =
m∑

i=1

{
ni∑

j=1

[logρ0(tij ;γ ) + βZi(tij )]

+ log
(ni + φ−1) − log
(φ−1)(3.5)

+ ni logφ − (ni + φ−1) log[1 + φRi(γ,β)]
}
.



CARRYOVER EFFECTS IN RECURRENT EVENT PROCESSES 1649

Likelihood ratio tests of H0 :β = 0 require maximum likelihood estimates γ̂ , β̂, φ̂

and γ̃ , φ̃ (when β = 0); these are readily obtained with general optimization soft-
ware. The Ri(γ,β) in (3.5) are as defined in (3.2).

Score tests of β = 0 require only γ̃ and φ̃. Appendix B gives the score statistic

S = Uβ(γ̃ ,0, φ̃)/V̂ar[Uβ(γ̃ ,0, φ̃)]1/2(3.6)

corresponding to (3.4). It is instructive to consider the numerators of (3.4) and
(3.6); the numerator of (3.6) is (see Appendix B)

Uβ(γ̃ ,0, φ̃) = Obs(�) −
m∑

i=1

(1 + niφ̃)
∫ τi

0 Zi(t)ρ0(t; γ̃ ) dt

1 + φ̃
∫ τi

0 ρ0(t; γ̃ ) dt
.(3.7)

Equation (3.7) differs from the numerator of (3.4) in the calculation of the second
term, Exp(�). The fixed effects case (3.4) corresponds to the limit of (3.7) as the
estimated variance φ̃ of the αi becomes arbitrarily large. Assuming that the gamma
distribution for the αi is correct, the statistic S in (3.6) is asymptotically N(0,1) as
m → ∞, unlike the fixed effects statistic. In Section 4 we examine the adequacy of
the normal approximation in practical settings. In situations where it is inadequate
we can use simulation (parametric bootstrap) to obtain p-values. In addition, the
gamma distribution will never be exactly correct in practice, so we consider the
performance of (3.6) under departures from the gamma in Section 4.

The Andersen–Gill model with random effects αi [Cook and Lawless (2007),
page 81] can also be used. This model places no parametric restrictions on ρ0(t)

in (2.4). The R/S-Plus function coxph with the frailty option implements this,
but some work is needed to extract Observed–Expected components analogous
to (3.7); see Appendix B.

3.3. Power of tests and choice of �. The tests of no carryover effect in the
preceding section are based on a specified value of � and a family of alternative
hypotheses, but are robust in the sense that the tests of the null Poisson processes
are, under some conditions, consistent against carryover alternatives that are not
in the family represented by (2.2) and (2.3). That is, as m → ∞, the probability
H0 is rejected approaches one under the alternative. We illustrate this property
via simulation in Section 4, where we show that the tests in Sections 3.1 and 3.2
retain good power when � is misspecified and when the random effects distribu-
tion (Section 3.2) is misspecified. Simulation results (not shown) also indicate the
tests retain power against alternatives where the true form of the process intensity
is additive [λ0(t;γ ) + βZi(t)] rather than multiplicative. The model (2.4) should,
however, be checked for consistency with the data; ways to do this are discussed by
Cook and Lawless (2007), Chapters 3 and 5. Carryover effects can also be tested
within alternative modulated Poisson process models such as the preceding addi-
tive model. We also note that assessment of the dynamics of individual processes
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with rather few events is inherently difficult, and we have found it useful to con-
sider models based on gap times as well as Poisson models. This is illustrated in
Sections 5.1 and 6.

In choosing a value of �, we must rely on background information that sug-
gests how long a carryover effect might last for the process under study. Typically
� would be fairly small relative to the average time between events across indi-
viduals. The use of specified durations � for carryover effects is common [e.g.,
Farrington and Whitaker (2006), Cook and Lawless (2007), Section 3.8.2], but
there is generally some uncertainty concerning � and it is best to consider a few
separate values. Xu et al. (2011) have recently considered uncertainty about � for
external carryover effects but do not discuss estimation of �. If we treat � as an
unknown parameter, there is often an estimability issue, because the profile likeli-
hood for � supports quite a wide range of values. We examine this in Section 5,
where we find that the asthma data sets do not rule out fairly large values of �,
due partly to the fact that a carryover effect is partially confounded with hetero-
geneity. In addition, as � becomes sufficiently large all events after the first will
lie within the carryover period and an effect β as in (2.2) is confounded with the
scale parameter in ρ0(t).

4. Simulation studies. In this section we present the results of simulation
studies conducted to assess when asymptotic normal approximations for para-
metric score test statistics are satisfactory, to investigate the tests’ power and to
evaluate their robustness with respect to model misspecification. Because of space
limitations, we provide figures and tables for selected scenarios, and briefly dis-
cuss other scenarios. Additional results are given in Çığşar (2010) and in the sup-
plementary material [Çığşar and Lawless (2012)]. We focus on cases where the
null models are homogeneous Poisson processes; results for nonhomogeneous pro-
cesses are similar.

We first consider the fixed effects model (2.4) where ρ0(t;γ ) = γ , and the hy-
pothesis of no carryover effect is tested by using the statistic (3.4). In simulations
we took γ = 1, and generated the αi from the gamma distribution with mean 1
and variance φ = 0.3. This variance represents a degree of heterogenity often seen
in medical data. Similar results were obtained for φ = 0.6. The αi were generated
once for each scenario, so that α1, . . . , αm are fixed across the repeated samples.
To examine the asymptotic normal approximation for the null distribution of (3.4),
we generated 10,000 realizations of the m homogeneous Poisson processes. In
simulations reported below, scenarios with various combinations of m, τ , � were
considered, with m = 10, 20, 50, 100 and τi = τ = 10. Results are similar if the
τi vary, with mean equal to 10. In practice, we would be interested in small val-
ues of �, and we consider � = 0.0202, 0.0513 and 0.1054. The inter-event times
satisfy Pr(Wij ≤ �) = 1 − e−γ� = c (say), and with γ = 1, the preceding values
of � give c = 0.02, 0.05 and 0.10, respectively. Table 1 presents empirical pth
quantiles, Q̂p , of the 10,000 score statistics S as well as the estimates P̂ (S > Qp),
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TABLE 1
Q̂p is the empirical pth quantile of S in (3.4) computed from 10,000 samples when τ = 10.

P̂ (S > Qp) is the proportion of the values of S in 10,000 samples which are larger than the pth
quantile of a standard normal distribution. The null model (2.4) has ρ0(t;γ ) = 1 and

αi ∼ gamma (mean = 1, variance = 0.3)

� m Q̂0.950 Q̂0.975 Q̂0.990 P̂ (S > 1.645) P̂ (S > 1.960) P̂ (S > 2.326)

0.0202 10 1.658 2.090 2.632 0.0515 0.0301 0.0174
20 1.569 1.950 2.426 0.0433 0.0248 0.0115
50 1.362 1.720 2.095 0.0292 0.0148 0.0067

100 1.243 1.591 1.990 0.0226 0.0107 0.0049

0.0513 10 1.469 1.873 2.289 0.0367 0.0206 0.0090
20 1.418 1.781 2.166 0.0319 0.0168 0.0072
50 1.234 1.511 1.932 0.0192 0.0096 0.0024

100 0.988 1.265 1.622 0.0094 0.0045 0.0017

0.1054 10 1.361 1.685 2.139 0.0276 0.0142 0.0074
20 1.242 1.599 1.981 0.0220 0.0104 0.0045
50 1.013 1.365 1.703 0.0117 0.0059 0.0026

100 0.751 1.047 1.417 0.0062 0.0027 0.0008

where Qp are the standard normal p-quantiles for p = 0.950, 0.975 and 0.990.
The results indicate that as m increases the standard normal approximation signif-
icantly underestimates right tail probabilities 0.05, 0.025 and 0.01. As the discus-
sion in Section 3.1 indicates, this inaccuracy reflects the fact that, for fixed τ and
increasing m, the αi are not estimated consistently and (3.4) is not asymptotically
normal. Most applications of the type considered here involve fairly large m and
rather small numbers of events per individual, so we need an alternative way to get
“honest” p-values. We recommend the use of simulation to obtain conditional (on
n1, . . . , nm) p-values, as described at the end of Section 3.1.

We next examine the power of (3.4) for tests with size 0.05. In each scenario
described below we used the 10,000 realizations of the m processes represented in
Table 1 to estimate 5% critical values, so as to have (approximately) correct type 1
error 0.05. We then estimated the power of (3.4) by generating 1000 samples in
each scenario from the following model:

λi(t |Hi(t)) = αi exp
{
βI

(
Ni(t

−) > 1
)
I
(
Bi(t) ≤ �0

)}
, i = 1, . . . ,m,(4.1)

where the αi (i = 1, . . . ,m) are generated from a gamma distribution with mean 1
and variance φ. We allow �0 to differ from � used in (3.4) in order to check on the
effect of misspecifying �. We report here only the results under the model in (4.1)
when m = 20. Table 2 and further simulation results confirm that power increases
as τ and m increase. There is some loss of power if the assumed value of � is too
large (i.e., if � > �0), but little loss if it is too small. We also examined the effect
of using the statistic (3.4) when the αi in (2.4) are actually equal [model (4.1) with
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TABLE 2
Proportion of times in 1000 samples that test statistic (3.4) exceeded its 0.05
critical value for the alternative model (4.1) under various scenarios when

m = 20 and φ = 0.3. Critical values were estimated from
10,000 simulated samples

τ = 5 τ = 10

� �0 eβ = 2 eβ = 4 eβ = 2 eβ = 4

2
3� 0.174 0.675 0.290 0.908

0.0202 � 0.294 0.874 0.481 0.983
4
3� 0.298 0.889 0.473 0.988

2
3� 0.317 0.945 0.531 0.998

0.0513 � 0.543 0.994 0.821 1.000
4
3� 0.509 0.991 0.794 1.000

2
3� 0.505 0.998 0.779 1.000

0.1054 � 0.794 1.000 0.973 1.000
4
3� 0.720 0.999 0.940 1.000

αi = α], so that there is no heterogeneity. There is a slight loss of power relative
to the test based on homogeneous Poisson processes [Çığşar (2010)], due to the
fact that m values α1, . . . , αm are estimated instead of a single common value α.
However, since failure to recognize heterogeneity can lead to incorrect rejection
of the hypothesis of no carryover effect, the statistic (3.4) is preferable to the test
statistic based on homogeneous processes.

The fixed effects tests are primarily of interest when m is small. We recommend
the random effects tests more generally, and the remaining discussion concerns
them. We first investigated the random effects test statistic (3.6) for the case where
ρ0(t;γ ) = γ in (2.4), and the αi were independent gamma random variables with
mean 1 and variance φ = 0.3. We generated 10,000 replicates of m homogeneous
Poisson processes for γ = 1 and different combinations of (�, m, τ ) to evaluate
the null distribution and critical values of (3.6). Normal quantile–quantile plots
indicate that the standard normal approximation underestimates small p-values
slightly for m less than 50 but is quite good at m = 100. Table 3 shows empirical
type 1 errors corresponding to normal errors of 0.01, 0.025 and 0.05 for τ = 10
and m = 10, 20, 50, 100. We also generated 1000 samples from versions of model
(4.1) to estimate the power of the test. In each simulation run, we generated a new
set of αi from the gamma distribution with mean 1 and variance φ. Table 4 shows
the results for different (�0, eβ , m, τ ) combinations and φ = 0.3. The power is
generally high when eβ = 3, with a little decrease when � is chosen too large.
The power values are higher than those for the fixed effects test in Table 2, in
comparable scenarios. A simulation study for the power of the statistic (3.6) when
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TABLE 3
Q̂p is the empirical pth quantile of S in (3.6) computed from 10,000 samples when m > 1 and

τ = 10. P̂ (S > Qp) is the proportion of the values of S in 10,000 samples which are larger than the
pth quantile of a standard normal distribution. The null model (2.4) has ρ0(t;γ ) = 1 and

αi ∼ gamma (mean = 1, variance = 0.3)

� m Q̂0.950 Q̂0.975 Q̂0.990 P̂ (S > 1.645) P̂ (S > 1.960) P̂ (S > 2.326)

0.0202 10 1.835 2.263 2.735 0.0479 0.0303 0.0171
20 1.785 2.177 2.707 0.0625 0.0370 0.0196
50 1.725 2.099 2.589 0.0573 0.0326 0.0159

100 1.703 2.020 2.434 0.0561 0.0284 0.0124

0.0513 10 1.779 2.179 2.656 0.0627 0.0357 0.0192
20 1.694 2.080 2.458 0.0562 0.0312 0.0146
50 1.691 2.027 2.404 0.0554 0.0289 0.0120

100 1.665 1.997 2.361 0.0515 0.0268 0.0111

0.1054 10 1.682 2.049 2.456 0.0534 0.0291 0.0126
20 1.669 2.016 2.366 0.0523 0.0285 0.0110
50 1.642 2.008 2.345 0.0497 0.0280 0.0105

100 1.631 1.942 2.359 0.0479 0.0238 0.0107

φ = 0.6 gave similar results [Çığşar (2010) and supplementary file, Çığşar and
Lawless (2012), Table S. 4].

In applications like the ones we consider, the number of individuals m is usually
large but the expected number of events per individual is small. We next generated
10,000 realizations of m processes under the model (4.1) with φ = 0.6 and β = 0,

TABLE 4
Proportion of times in 1000 samples that test statistic (3.6) exceeded its 0.05 critical value for the

alternative model (4.1) under various scenarios when φ = 0.3

m = 20, τ = 10 m = 40, τ = 5 m = 40, τ = 10

� �0 eβ = 2 eβ = 3 eβ = 2 eβ = 3 eβ = 2 eβ = 3

2
3� 0.282 0.693 0.316 0.692 0.493 0.936

0.0202 � 0.437 0.912 0.496 0.924 0.781 0.994
4
3� 0.460 0.886 0.498 0.914 0.776 0.994

2
3� 0.565 0.959 0.527 0.949 0.805 0.999

0.0513 � 0.828 0.997 0.809 0.998 0.979 1.000
4
3� 0.776 0.997 0.806 0.996 0.972 1.000

2
3� 0.785 0.999 0.808 0.996 0.959 1.000

0.1054 � 0.968 1.000 0.968 1.000 1.000 1.000
4
3� 0.961 1.000 0.942 1.000 0.997 1.000
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for the cases m = 100, 200, 500 and E{Ni(τi)} made equal to 1, 2, 5 by generating
τi from a uniform distribution over (0.8, 1.2), (1.6, 2.4) or (4.0, 6.0), respectively.
We calculated test statistic (3.6) for the values of � = 0.0513, 0.1054 and 0.2231.
The larger � values reflect features of the data considered in Section 5 and φ = 0.6
is between plausible values in the two data sets there. Normal probability plots of
(3.6) and Tables S. 5, S. 6 and S. 7 in the supplementary material [Çığşar and Law-
less (2012)] show the standard normal approximation to be quite good except when
� = 0.0513, m = 100 and E{Ni(τi)} = 1, 2. Once again, we recommend using
simulation (parametric bootstrap) to get “honest” p-values for such cases. We also
conducted a simulation study to investigate the power of the score statistic (3.6).
We used the 10,000 realizations of the null model discussed above to estimate 5%
critical values. We considered m = 100, 200, 500 and φ = 0.6, and generated 1000
realizations of processes with the intensity function (4.1) for exp(β) = 1, 2 and 3.
Table 5 shows power of (3.6) for the combinations of [�, �0, exp(β), E{Ni(τi)}]
when m = 200 (Tables S. 8 and S. 9 in the supplementary material give the results
when m = 100 and 500, resp.). Overall, test statistic (3.6) maintains high power in
these settings, and is robust with respect to mild misspecification of �.

Finally, simulation studies were conducted to examine the performance of the
test statistic (3.6) when the assumption that the αi have a gamma distribution is not
true. To do that, we generated the αi from a lognormal distribution with mean 1 and
variance φ. We then generated 1000 realizations of m processes when � = 0.0202
and eβ = 1, 2, 3, 4, and calculated the proportion of the time that (3.6) exceeded the
0.05 critical value. Results are given in Supplementary Table S. 10, for scenarios
with τ = 10 and m = 20, 40. The column eβ = 1 shows the empirical type 1 errors
based on the 1000 samples; they are close to the nominal significance level 0.05.

TABLE 5
Proportion of times in 1000 samples that test statistic (3.6) exceeded its 0.05 critical value for the

alternative model (4.1) under various scenarios when φ = 0.6 and m = 200

E{Ni(τi)} = 1 E{Ni(τi)} = 2 E{Ni(τi)} = 5

� �0 eβ = 2 eβ = 3 eβ = 2 eβ = 3 eβ = 2 eβ = 3

2
3� 0.585 0.975 0.858 1.000 0.995 1.000

0.0513 � 0.843 0.999 0.990 1.000 1.000 1.000
4
3� 0.809 0.998 0.985 1.000 1.000 1.000

2
3� 0.756 1.000 0.984 1.000 1.000 1.000

0.1054 � 0.952 1.000 1.000 1.000 1.000 1.000
4
3� 0.873 1.000 0.997 1.000 1.000 1.000

2
3� 0.803 1.000 0.999 1.000 1.000 1.000

0.2231 � 0.951 1.000 1.000 1.000 1.000 1.000
4
3� 0.842 0.999 0.999 1.000 1.000 1.000
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In addition, (3.6) maintains high power in this case, and we conclude that mild
misspecification of the distribution of random effects is not a problem; this agrees
with similar results for estimation of rate functions in mixed Poisson processes
without carryover effects [Lawless (1987)].

5. Applications.

5.1. Recurrent asthma attacks in children (I). Duchateau et al. (2003) dis-
cussed data from a prevention trial in infants with a high risk of asthma, but without
a prior attack. The subjects were 6 months of age on entry to the study. The follow-
up period for each subject was approximately 18 months, and started after random
allocation to a placebo control group or an active drug treatment group. The main
aim of the study was to assess the effect of the drug on the occurrence of asthma
attacks, but an interesting secondary question was whether the occurrence of an
event (asthma attack) influences the future event rate. There were 483 asthma at-
tacks among 119 children in the control group and 336 asthma attacks among 113
children in the treatment group, during the 18 month follow-up.

The Nelson–Aalen estimates of the mean function [Cook and Lawless (2007),
Section 3.4] for each treatment group are close to linear but that does not in itself
show that the possibly heterogeneous individual rate functions are constant. There-
fore, we fitted models (2.4) in which ρ0(t) took the power law form γ1γ2t

γ2−1. We
found no evidence against the constancy of ρ0(t), and so the following details are
based on constant rates which may vary across individuals. A caveat concerning
the data is that Duchateau et al. (2003) do not provide the trial entry dates for each
subject, so it is not possible to assess whether there might be a seasonal effect.
However, for the second asthma data set considered in Section 5.2, such infor-
mation was available and no seasonal effect was seen. An asthma attack lasts an
average of 6–7 days, and a patient is not considered at-risk for a new attack over
that time. The at-risk indicator Yi(t) takes value 1 if subject i is at risk of an asthma
attack at time t , and the intensity model for subject i that we consider is therefore

λi(t |Hi (t)) = Yi(t)αiγ exp{βZi(t)}, t ≥ 0,(5.1)

where Zi(t) = I {Ni(t
−) > 0}I {Bi(t) ≤ �}, and Bi(t) is the time since the subject

i started their current at-risk period.
We will consider the treatment and control groups separately. To allow for het-

erogeneity, we use the tests of Section 3 with the random effects model (5.1), where
αi ∼ Gamma(1, φ), for testing H0 :β = 0. Results obtained by fitting models with
a range of values for � are shown in Table 6; to conserve space, standard errors
for estimates φ̂ are not given, but in every model heterogeneity (φ > 0) is strongly
significant.

Table 6 gives, for each value of �, the estimates of γ , β and φ in model (5.1),
along with the squared score statistic S2 [with S given by (3.6)] and a correspond-
ing Wald statistic for testing β = 0, defined as Z2 = β̂2/V̂ar(β̂). The models were
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TABLE 6
The results of the no carryover test based on (3.6) for various � values. Exp(�) is the second term

on the right-hand side of (3.7). Z2 is the square of β̂/se(β̂), and 
max = 
(γ̂ , β̂, φ̂)

Group � Obs(�) Exp(�) γ̂ β̂ φ̂ S2 Z2 �max

Treatment 7 40 22.858 0.006 0.681 0.476 14.900 14.314 −2009.41
14 76 40.464 0.005 0.904 0.388 40.513 33.338 −1998.52
28 119 67.099 0.005 1.017 0.305 61.968 59.360 −1988.08
42 143 86.213 0.004 1.015 0.284 65.206 62.880 −1985.84
56 162 101.774 0.004 1.029 0.270 68.857 66.694 −1983.75
70 171 114.660 0.004 0.942 0.288 57.882 56.791 −1988.47

Control 7 68 47.173 0.008 0.486 0.521 11.751 11.551 −2726.18
14 121 80.302 0.007 0.637 0.455 29.921 29.142 −2717.95
28 185 130.457 0.007 0.678 0.399 40.284 39.411 −2712.53
42 227 167.050 0.006 0.699 0.373 43.944 43.485 −2710.27
56 260 195.336 0.006 0.745 0.350 49.393 48.478 −2707.26
70 272 218.287 0.006 0.622 0.383 33.698 33.169 −2714.75

fitted using R function nlm, which automatically provides variance estimates via
numerical differentiation. The score statistic S is more easily obtained since only
restricted estimates γ̃ and φ̃ are needed, but computational differences are unim-
portant here. The two statistics agree closely and strongly contradict the hypothesis
(β = 0) of no carryover effect for every value of � shown. The p-values obtained
from χ2

(1) approximations for S2 and Z2 are virtually zero. As a check on this we

also obtained p-values for S2 by simulating 1000 samples under the null model
with parameter values γ̃ , φ̃. For each value of �, there were no samples out of the
1000 generated in which S2 exceeded its observed value in the data set. We also
show observed and expected numbers [Obs(�), Exp(�)] of events in carryover
periods, assuming no carryover effect; these are given in (3.7). This provides a
nice summary of the excess events observed within time � of a preceding event.

Table 6 indicates that a wide range of values for � is plausible. We show the
maximum values 
max of the log likelihood for each model, and see that the value
of � (among those shown) best supported by the data is � = 56 days in both the
treatment and control groups. It is also seen in Table 6 that estimates β̂ and φ̂

are negatively correlated, as our discussion in Section 2 suggests. As � increases
further beyond 70 days, the values of 
max continue to decrease, and � = 100 days
still gives values that are about the same as � = 14 days. The values of γ̃ in the
treatment and control groups, respectively, are 0.00608 and 0.00822, indicating
an average of about one event every 165 days per subject in the treatment group,
and one event every 122 days for the control group. The evidence indicates that
events tend to occur closer to the previous event more often than is expected under
a homogeneous Poisson process.
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Our results can also be interpreted as indicating that the gap times between
successive asthma attacks do not follow exponential distributions for individual
subjects. Duchateau et al. (2003) fitted models in which gap times are assumed
to be independent Weibull random variables within individuals, and heterogeneity
is incorporated through individual-level gamma-distributed random effects. They
found strong evidence of a decreasing hazard function for gap times, which is con-
sistent with a carryover effect. The Duchateau et al. model has p = 4 parameters
and ours has three, but AIC values (−2
max + 2p) are very close. For example, in
the control group we find the AIC for (5.1) with � = 14 days as 5441.9 (p = 3)
and the AIC for the Duchateau et al. model as 5437.6 (p = 4). Smaller AIC values
are obtained for models (5.1) with larger values of �; for example, when � = 56
the AIC for the control group is 5420.5, the smallest for the models considered
here.

Thus, all models indicate that the probability of a new asthma attack is high-
est soon after a preceding attack, and then decreases. Whether a delayed renewal
process or a modulated Poisson process best describe the situation is not clear, nor
whether there is a carryover effect of limited duration or a smooth decreasing haz-
ard function for gap times. Without additional information concerning the asthma
attacks and their treatment, we also cannot know the basis of the perceived effect.

5.2. Recurrent asthma attacks in children (II). We now briefly consider the
randomized trial on the effects of 200 versus 400 μg per day of fluticasone pro-
pionate (FP) in preventing asthma attacks in children, mentioned in Section 1.
Verona et al. (2003) describe the study in detail, and the data have been reanalyzed
by Cook and Lawless (2007), Section 5.5.2. None of the previous analyses has
looked at the interesting secondary issue of whether there is any indication of a
carryover effect; we consider this here.

Earlier analyses showed that age and predicted expiratory flow (PEF) at enroll-
ment had some predictive power for asthma exacerbations and we included them
in our models. Seasonal effects and covariates such as sex and weight were exam-
ined but were not found significant and are excluded here. We ran analyses based
on the modulated Poisson model (2.4) with gamma random effects and different
values of � for the duration of carryover. In the interest of brevity we focus here
on the FP200 group, which had 267 subjects. About one-third had approximately
3 months follow-up, with two-thirds followed for approximately 12 months. Cook
and Lawless [(2007), page 195] show the numbers of asthma attacks per subject;
there were a total of 359 in the FP200 group. As an illustration of the semiparamet-
ric approach we used the Andersen–Gill version of (2.4) with additional covariates,
so no parametric assumption concerning ρ0(t) was made. According to the proto-
col for the trial, an exacerbation was counted only if it was not within 10 days
of the start of a previous exacerbation, so the at-risk indicator Yi(t) introduced in
(5.1) is defined so that Yi(t) equals 1 if and only if subject i is not within 10 days
of a preceding exacerbation.



1658 C. ÇIĞŞAR AND J. F. LAWLESS

TABLE 7
Estimation results for Andersen–Gill models (2.4) with

gamma random effects, fitted to FP200 asthma
trial data

�a β̂ se(β̂) φ̂ Z2b �max

7 0.206 0.185 1.58 1.24 −1800.28
14 0.394 0.144 1.46 2.49 −1797.56
28 0.241 0.133 1.47 3.28 −1799.43
42 0.426 0.130 1.27 10.34 −1796.77
56 0.487 0.132 1.18 13.61 −1796.00
70 0.462 0.134 1.19 11.89 −1796.89
84 0.419 0.136 1.21 9.49 −1797.78

a� is in days.
bZ2 = β̂2/se(β̂)2.

Table 7 shows results for models fitted with various values of carryover dura-
tion �; models were fitted using R function coxph. As in the preceding example,
there is strong evidence against the hypothesis of no carryover effect (β = 0), but
a wide range of values for � is supported by the data. The best supported value is
about 56 days (8 weeks), as in the study in Section 5.1. The average rate of events
per subject in these data is about 1.8 per year, or about one asthma attack every 29
weeks. Therefore, there is once again an indication that the risk of a new attack is
higher soon after a previous attack. As in the preceding case, there is also strong
evidence of heterogeneity across subjects. This information, in conjunction with
background medical information, may suggest that modifications to the prevention
or treatment of attacks be considered.

6. Concluding remarks. We have considered modulated Poisson process
models and tests for carryover effects, allowing for time trends and heterogene-
ity across processes. The random effects models and tests are recommended for
general use; the tests have better power and are better approximated by asymptotic
normal theory, especially when m is large. Fixed or time-varying covariates can be
incorporated into our approach, as illustrated in Section 5.2.

It can be hard to deconstruct the dynamics of event occurrence when there
are few events for most individuals, and the examination of alternative models
is important. An alternative approach that is useful is to examine the distribution
of “gap” times between successive events. The presence of a carryover effect is
suggested by the density or hazard function for the gap times having substan-
tial mass near zero. Such models do not produce definitions or tests for a car-
ryover effect or handle time trends as readily as the models in Section 3. How-
ever, examination of gap time models as in Section 5.1 is often helpful, and in
the absence of covariates, nonparametric estimates of hazard or density functions
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for gap times are useful. As an additional illustration, we consider data on chil-
dren with hydrocephalus, who have shunts inserted to drain excess cerebrospinal
fluid. In the study mentioned in Section 1 [Tuli et al. (2000)], data on 839 chil-
dren who had initial shunts inserted during the years 1989–1996 at one Canadian
hospital were analyzed. Such shunts can “fail” due to blockages, infections and
other conditions, necessitating full or partial replacement of the shunt. The data in
question were analyzed previously by Lawless et al. (2001) and Cook and Law-
less (2007), Section 5.4.2. Gap time models are a natural approach in this case:
the occurrence of a failure results in a new shunt, and it makes sense to exam-
ine the lifetime of each subsequent shunt. The previous analyses were based on
Cox models fitted to the survival times of successive shunts, and they showed that
there were several important covariates, including the cause of a child’s hydro-
cephalus and the age of the child at the time a shunt was (surgically) inserted.
They also showed a tendency for second or third shunts to fail sooner than initial
shunts. Plots of estimated baseline cumulative hazard functions H̃0j (t) for shunts
j = 1,2, . . . [e.g., Cook and Lawless (2007), Figure 5.9] suggested that the risk
of failure was high soon after a new shunt was inserted, but this was not exam-
ined further. Table 8 shows a discretized estimate of the baseline hazard functions
h02(w) and h03(w) for second and third shunts for a model involving adjustment
for important covariates and additional allowance for heterogeneity. The covariates
are coded for the two models such that the baseline hazard functions h02(w) and
h03(w) represent the same vector of covariate values. The estimates are piecewise-
constant, with h̃0j (w) = [H̃0j (aj ) − H̃0j (aj−1)]/(aj − aj−1) for aj−1 < w ≤ aj

and aj = 0,60,120, . . . (days) for j = 0,1,2, . . . . It is seen that the hazard func-
tions are sharply decreasing. The time to failure of the initial shunt also shows a
decreasing hazard function, but with overall smaller values. This indicates the risk

TABLE 8
Estimates of baseline cumulative hazard and

piecewise-constant hazard functions for cerebrospinal
fluid shunts

Second shunts Third shunts

a Ĥ02(a) ĥ02(a)a Ĥ03(a) ĥ03(a)a

0 0 0
60 0.19263 0.00321 0.30316 0.00505

120 0.26584 0.00122 0.39280 0.00149
180 0.29106 0.00042 0.44324 0.00084
240 0.32343 0.00054 0.47100 0.00046
300 0.35529 0.00053 0.48560 0.00024
360 0.38951 0.00057 0.51582 0.00050

aĥ0j (a) = [Ĥ0j (a) − Ĥ0j (a − 60)]/60, j = 2, 3.
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of shunt failure is highest soon after it is inserted, and one explanation is that prob-
lems leading to a shunt failure may in some cases persist and create problems for
the new shunt.

Finally, in many settings events of different types may occur. For example, that
is the case with shunt failures, which can be due to obstruction, infection or other
causes. In this context we can specify separate covariates to represent carryover
effects related to the different event types. This is readily done in either the mod-
ulated Poisson process framework or the gap time framework. Table 8 is from a
combined-causes analysis of the shunt failures, but separate causes could be con-
sidered similarly.

APPENDIX A: ANDERSEN–GILL MODEL

For the modulated Andersen–Gill model (2.2) for recurrent events, the Cox par-
tial likelihood function for β gives the score function [Cook and Lawless (2007),
page 71]

Uβ(β) =
m∑

i=1

{∫ τi

0
Zi(t)

[
dNi(t) − dN̄·(t)eβ ′Zi(t)∑m

l=1 Yl(t)eβ ′Zl(t)

]}
,(A.1)

where dNi(t) = I (process i has an event at time t), Yl(t) = I (τl ≥ t), and
dN̄·(t) = ∑m

l=1 Yl(t) dNl(t). The score statistic at β = 0 is

Uβ(0) =
m∑

i=1

{∫ τi

0
Zi(t)[dNi(t) − ρ̃0(t) dt]

}
,(A.2)

where, taking liberties with notation,

ρ̃0(t) dt = dN̄·(t)∑m
l=1 Yl(t)

(A.3)

is the estimated baseline rate function at time t . Thus, (A.1) can be rewritten in
“Observed–Expected” form as

Uβ(0) =
m∑

i=1

ni∑
j=1

Zi(tij ) −
R∑

r=1

Z·(t∗r )
dN̄·(t∗r )

Y·(t∗r )
,(A.4)

where t∗1 , . . . , t∗R are the distinct event times across all processes, and Z·(t) =∑m
i=1 Zi(t), Y·(t) = ∑m

i=1 Yi(t), and dN̄·(t) is defined following (A.1). This ap-
proach can be used if there is no evidence of heterogeneity across individuals.
Usually this is not the case and then we should use the approach described at the
end of Appendix B.



CARRYOVER EFFECTS IN RECURRENT EVENT PROCESSES 1661

APPENDIX B: SCORE STATISTICS FOR GAMMA RANDOM
EFFECTS MODELS

We consider here the score statistic (3.6) arising from the log likelihood (3.5).
The numerator is easily shown to be

Uβ(γ̃ ,0, φ̃) =
(

∂
(γ,0, φ)

∂β

)
(γ̃ ,0,φ̃)

(B.1)

=
m∑

i=1

{
ni∑

j=1

Zi(tij ) − (1 + φ̃ni) ∂Ri(γ̃ ,0)/∂β

1 + φ̃Ri(γ̃ ,0)

}
,

where Ri(γ,β) is given by (3.2). A variance estimate for Uβ(γ̃ ,0, φ̃) under H0
is given by asymptotic theory for counting processes in the case where m → ∞
[Andersen et al. (1993), Chapter 6, Peña (1998)]. This takes the standard form

V̂ar{Uβ(γ̃ ,0, φ̃)} = Ĩββ − ( Ĩβγ Ĩβφ )

(
Ĩγ γ Ĩγ φ

Ĩφγ Ĩγ γ

)−1 (
Ĩγβ

Ĩφβ

)
.(B.2)

The 2 × 2 matrix in (B.2) is the inverse of the negative Hessian matrix for the
log likelihood 
(γ,0, φ) evaluated at γ̃ , φ̃, and the terms Ĩββ , Ĩβγ and Ĩβφ are
based on the following, evaluated at γ̃ , β = 0, φ̃:

Iββ = −∂2
(γ,β,φ)

∂β2

=
m∑

i=1

(ni + φ−1)

{ [φ−1 + Ri(γ,β)][∂Ri/∂β] − [∂Ri/∂β]2

[φ−1 + Ri(γ,β)]2

}
,

Iβγ = −∂2
(γ,β,φ)

∂β ∂γ ′

=
m∑

i=1

(ni + φ−1)

{ [φ−1 + Ri(γ,β)][∂2Ri/∂β ∂γ ′] − [∂Ri/∂β][∂Ri/∂γ ′]
[φ−1 + Ri(γ,β)]2

}
,

Iβφ = −∂2
(γ,β,φ)

∂β ∂φ
=

m∑
i=1

{
(∂Ri/∂β)[ni − Ri(γ,β)]

[1 + φRi(γ,β)]2

}
.

The Andersen–Gill model of Appendix A with added frailty can be handled by
the R/S-Plus Cox model function coxph. This implementation returns an estimate
β̂ and standard error, as well as a maximum likelihood value, so that a likelihood
ratio or Wald test of β = 0 can be used. A score statistic analogous to (B.1) for the
Cox model is

Uβ(0) =
m∑

i=1

{
ni∑

j=1

Zi(tij ) − (1 + φ̃ni)
∑

t∗r ≤τi
Zi(t

∗
r )(dN·(t∗r )/Y·(t∗r ))

1 + φ̃
∑

t∗r ≤τi
(dN·(t∗r )/Y·(t∗r ))

}
,
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where the t∗r , dN·(t∗r ) and Y·(t∗r ) are as defined in Appendix A. This statistic has
the form “Observed–Expected;” the function coxph does not give it as output so
some additional coding is required.

SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/12-AOAS560SUPP; .pdf). The
supplementary file contains detailed simulation results to support the discussion
in Sections 2 and 4. Each simulation study in the supplementary file has its own
description and title.
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