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APPROXIMATING THE CONDITIONAL DENSITY GIVEN LARGE
OBSERVED VALUES VIA A MULTIVARIATE EXTREMES

FRAMEWORK, WITH APPLICATION TO ENVIRONMENTAL DATA

BY DANIEL COOLEY1, RICHARD A. DAVIS2 AND PHILIPPE NAVEAU3

Colorado State University, Columbia University and LSCE-CNRS

Phenomena such as air pollution levels are of greatest interest when ob-
servations are large, but standard prediction methods are not specifically de-
signed for large observations. We propose a method, rooted in extreme value
theory, which approximates the conditional distribution of an unobserved
component of a random vector given large observed values. Specifically, for
Z = (Z1, . . . ,Zd)T and Z−d = (Z1, . . . ,Zd−1)T , the method approximates
the conditional distribution of [Zd |Z−d = z−d ] when ‖z−d‖ > r∗. The ap-
proach is based on the assumption that Z is a multivariate regularly varying
random vector of dimension d. The conditional distribution approximation
relies on knowledge of the angular measure of Z, which provides explicit
structure for dependence in the distribution’s tail. As the method produces a
predictive distribution rather than just a point predictor, one can answer any
question posed about the quantity being predicted, and, in particular, one can
assess how well the extreme behavior is represented.

Using a fitted model for the angular measure, we apply our method to ni-
trogen dioxide measurements in metropolitan Washington DC. We obtain a
predictive distribution for the air pollutant at a location given the air pollu-
tant’s measurements at four nearby locations and given that the norm of the
vector of the observed measurements is large.

1. Introduction and motivation. Nitrogen dioxide (NO2) is an air pollutant
which is among those monitored by the US Environmental Protection Agency
(EPA). Figure 1 shows NO2 measurements at four locations in the Washington
DC metropolitan area on September 9, 2002. This day’s measurements are par-
ticularly large: each of the four measurements exceeds the 0.97 quantile of the
empirical distribution for its location. Certainly, air pollution levels are of most in-
terest when pollution levels are high. It is natural to ask, given the measurements at
these four locations and given that they are large, what can be said about pollution
levels at nearby unmonitored locations?
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FIG. 1. Locations of the NO2 monitors used in the Washington DC study. Locations are Alexandria
(alx), McMillan (mc), River Terrace (rt), Takoma School (ts) and Arlington (arl). Also shown is the
boundary of the District of Columbia. Measurements for September 9, 2002 are shown for the four
locations we use for predicting the measurement at Arlington.

Linear prediction methods are questionable when the data are non-Gaussian,
and a better approach may be to approximate the conditional density. Extreme
value theory leads one to describe the joint tail with non-Gaussian distributions,
and dependence in the tail is typically not well described by covariances upon
which linear prediction methods rely. In applications like the above air pollution
example where interest lies in the large occurrences, approximating a conditional
density allows one to answer important questions such as “Given that nearby lo-
cations’ measurements are large, what is the probability a certain unmonitored
location exceeds some critical level?” or “Given that nearby locations’ measure-
ments are large, what is a reasonable probabilistic upper bound for the air pollution
level at an unmonitored location?”

Our method to approximate the conditional density is based on extreme value
theory and is therefore specifically designed for instances when the observations
are large. Extreme value theory provides a framework for describing the depen-
dence found in the joint upper tail of the distribution, and, at the same time, does
not require knowledge of the entire joint distribution. In particular, we will assume
that the joint distribution of the observations and the random variable we wish to
predict are multivariate regularly varying, and we use the angular measure of this
random vector to approximate the conditional density. By approximating the con-
ditional density, we are able to address questions of the type posed above about the
unobserved random variable.

In the next section we provide some necessary background on extreme value
theory. In Section 3 we discuss prediction for extremes; we review previous related
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work in Section 3.1 and then introduce our method in Section 3.2. In Section 4 we
apply the prediction method to the Washington DC air pollution data. We conclude
with a summary and discussion section.

2. Characterizing extremes, multivariate regular variation and the angu-
lar measure. Extreme value analysis is the branch of statistics and probability
theory whose aim is to describe the upper tail of a distribution. In this section
we give a very brief overview of the discipline, particularly focusing on multi-
variate regular variation and the angular measure. There are a number of excel-
lent resources if one wishes to delve more into the theory or practice of extreme
value analysis. The book by de Haan and Ferreira (2006) gives a comprehensive
overview of extreme value theory in the univariate, multivariate and stochastic
process settings. Beirlant et al. (2004) also give a thorough treatment of the theory
and give a broad overview of recent statistical practice. Resnick (2007) focuses
on the heavy-tailed case for both the univariate and multivariate settings. Coles
(2001) gives an approachable introduction to statistical practice focusing primar-
ily on maximum likelihood inference.

2.1. Extreme value analysis. Extreme value analysis is founded on asymptotic
results that characterize a distribution’s upper tail by a limited class of functions.
Statistical practice fits this class of functions to a subset of data which are consid-
ered extreme. Two approaches for choosing this subset of extreme data are com-
monly used: in the first, block (e.g., annual) maxima are extracted, in the second,
observations which exceed a threshold are retained.

In the univariate case, asymptotic results lead one to model block maximum data
with a generalized extreme value (GEV) distribution which consolidates the three
extremal types [Fisher and Tippett (1928), Gnedenko (1943)] into one paramet-
ric family. Threshold exceedance data are generally modeled via the generalized
Pareto distribution (GPD) or an equivalent point process representation.

Statistical modeling of multivariate extremes is more complicated. Given a
sequence of i.i.d. random vectors Yi = (Yi,1, . . . , Yi,d)T , i = 1,2, . . . , classical
multivariate extreme value theory considers the vector of renormalized element-
wise maxima Mn−cn

bn
, where the division is taken to be element-wise, Mn =

(
∨n

i=1 Yi,1, . . . ,
∨n

i=1 Yi,d)T , and
∨

denotes the maximum function. The theory
shows the distribution of Mn−cn

bn
converges to a multivariate max-stable distribu-

tion (equivalently, multivariate extreme value distribution), which we characterize
below. For threshold exceedance data, one must first define what it means for a
random vector to exceed a threshold. Rootzén and Tajvidi (2006) define a multi-
variate GPD which is well-suited to describe threshold exceedances in which the
threshold has been defined for each vector element. For the work below, we em-
ploy the framework of multivariate regular variation [Resnick (2007)] to describe
threshold exceedances.
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2.2. Multivariate regular variation. Multivariate regular variation is a notion
that is used for modeling multivariate heavy-tailed data. This behavior is best
seen via a natural decomposition into pseudo-polar coordinates. If nonnegative
Z = (Z1, . . . ,Zd)T is a multivariate regularly varying random vector, then the ra-
dial component ‖Z‖ decays like a power function; that is, P(‖Z‖ > t) = L(t)t−α ,
where L(t) is a slowly varying function4 at ∞ and α > 0 is termed the tail index.
The angular component, ‖Z‖−1Z, is described by a probability measure that lives
on the unit sphere and which becomes independent of the radial component as the
radial component drifts off to infinity. Central ideas in the more detailed treatment
that follows are: (1) the convergence to a measure � that serves as the intensity
measure for a limiting point process, (2) that the limiting intensity measure is a
product measure when described in terms of radial and angular components, and
(3) the angular measure H which describes the distribution of the angular compo-
nents.

There are several equivalent definitions of multivariate regular variation of a
random vector. We say the nonnegative random vector Z is regularly varying if

P(t−1Z ∈ ·)
P(‖Z‖ > t)

v−→ �(·)(1)

as t → ∞, where v denotes vague convergence on C = [0,∞]d \ {0} and ‖ · ‖ is
any norm5 [Resnick (2007), Chapter 3]. For any measureable set A ⊂ C and scalar
s > 0, the measure � has the scaling property

�(sA) = s−α�(A)(2)

from which one sees the power-function-like behavior. Choosing a sequence an

such P(‖Z‖ > an) ∼ n−1, one can obtain the sequential version of (1)6:

nP

(
Z
an

∈ ·
)

v−→ �(·).(3)

The transformation to polar coordinates R = ‖Z‖ and W = ‖Z‖−1Z naturally
arises from the scaling property (2). If Sd−1 = {z ∈ C | ‖z‖ = 1} denotes the unit
sphere under the chosen norm, then one can show there exists a probability mea-
sure H on Sd−1 such that for any H -continuity Borel subset B of Sd−1,

nP

(
R

an

> r,W ∈ B

)
−→r−αH(B).(4)

4L(t) is slowly varying if limt→∞ L(st)
L(t)

= 1. Roughly, L(t) cannot go to zero or infinity faster
than any power function.

5The compact sets in C are all closed sets in [0,∞]d , that do not contain 0, that is, the closed sets
bounded away from 0.

6Other normalizing sequences are sometimes used; see Resnick (2007), page 174.
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Following Resnick (2007), we refer to H as the angular measure, although it is
also referred to as the spectral measure. The advantage of the polar transformation
is that the radial component R acts independently of the angular component W
whose behavior is captured by H .

From (4), one can characterize the tail behavior of Z if one knows (or can esti-
mate) α and H . However, without further assumptions, this proves to be difficult,
as H can be any probability measure on Sd−1. For simplification purposes, in
multivariate extremes it is often assumed that the components Zj , j = 1, . . . , d ,
of the random vector have a common marginal distribution, not just the common
tail index that is implied by the general conditions of multivariate regular varia-
tion [e.g., Resnick (2002), Section 2]. There is no loss in generality by assuming
specific margins [Resnick (1987), Proposition 5.10]. For the remainder, we will
assume Z = (Z1, . . . ,Zd)T is regularly varying with tail index α = 1 and that
Zj , j = 1, . . . , d , have a common marginal distribution. Under this assumption, it
follows that ∫

Sd−1

w1 dH(w) =
∫
Sd−1

wj dH(w) for j = 2, . . . , d,(5)

providing some structure to the angular measure H . Furthermore, when α = 1 it
is particularly useful to choose the L1 norm: ‖z‖ = z1 + · · · + zd , for which the
unit sphere is the simplex Sd−1 = {w ∈ C :w1 + · · · + wd = 1}. With this norm,
1 = ∫

Sd−1
dH(w) = ∫

Sd−1
(w1 + · · · + wd)dH(w) and, hence,

∫
Sd−1

wj dH(w) =
d−1. In practice, the assumption of common marginals (or, for that matter, a com-
mon tail index) is rarely met. If the data that one intends to model arise from a
d-dimensional random vector Y for which the regularly varying α = 1 and com-
mon marginal assumptions do not hold, we presume there exist probability integral
transforms Tj such that Tj (Yj ) = Zj for j = 1, . . . , d . This preprocessing of the
random variables is common in extreme value analyses [e.g., Cooley, Davis and
Naveau (2010), Coles and Tawn (1991)] and can be viewed analogously to the
preprocessing required to fit a stationary model to time series or spatial data.

One recognizes that (3) is the classic relationship characterizing convergence
to a Poisson process, and it is often useful to think in terms of point processes
when describing multivariate regular variation. From (3), the sequence of point
processes Nn consisting of point masses located at Zi/an, i = 1,2, . . . , n, where
Zi are i.i.d. copies of Z converges to a nonhomogeneous Poisson process N with
intensity measure �(·) on B(C) [Resnick (2007), Section 6.2]. We denote the cor-
responding intensity function by �(dz), where �(A) = ∫

A �(dz). From (4), in
terms of polar coordinates, �(dr × dw) = r−2 drH(dw). If the angular measure
H is differentiable, then we refer to the angular density h(w), and �(dr × dw) =
r−2h(w) dr dw.

Multivariate regular variation is a useful way to characterize the joint upper
tail of a random variable Y for a number of reasons. First, interest in extreme
behavior is often greatest in cases when the tails are believed to be heavy (i.e.,
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having asymptotic behavior like a power function), and multivariate regular varia-
tion provides a mathematical framework for such behavior. Even when the tails do
not share a common tail index, marginal transformations as described above can
be employed to utilize the framework. Second and more importantly, the angular
measure H specifically describes the dependence found in the tails. Since our in-
terest is in performing prediction when the observations are large, it is natural to
use a framework specifically designed for describing tail dependence.

We perform prediction by approximating the conditional density. To do so, we
will rely on a model for the angular measure H , and this model must be able to be
evaluated for any w ∈ Sd−1. There have been several parametric models proposed
for H which meet the moment conditions (5). An early parametric model was
the tilted Dirichlet model of Coles and Tawn (1991). Recently, Cooley, Davis and
Naveau (2010) and Ballani and Schlather (2011) employed a geometric approach
to construct new parametric models. A semi-parametric model via a mixture of
Dirichlet densities was introduced by Boldi and Davison (2007). Model fitting is
done by Coles and Tawn (1991), Cooley, Davis and Naveau (2010) and Ballani
and Schlather (2011) via a likelihood based on the point process representation for
multivariate regular variation, while Boldi and Davison (2007) use both a Bayesian
MCMC approach as well as an EM approach to fit their mixture model. Once fit,
any of these models could be used for H in the prediction procedure we outline in
Section 3.2.

There is further justification for using the framework of multivariate regular
variation for modeling extreme values. The multivariate max-stable distributions
obtained by the classical theory can be characterized by the angular measure H . If
one assumes that the marginals of the limiting distribution are unit Fréchet [P(Z ≤
z) = exp(−z−1)]; that is, the domain of attraction of all regularly varying random
variables with α = 1, then

P

(
Mn

bn

≤ z
)

d−→ exp

[
−d

∫
Sd−1

d∨
j=1

(
wj

zj

)
dH(w)

]
.(6)

Here the normalizing sequence bn = an/d to obtain the unit-Fréchet marginals.
There have been parametric models developed which give closed-form expressions
for subfamilies of multivariate max-stable distributions such as the asymmetric
logistic [Tawn (1990)] and negative logistic [Joe (1990)], and these can be used
to fit block maxima. Besides being max-stable, these distributions are multivariate
regularly varying and we later use the logistic model [Gumbel (1960)] to simulate
random vectors whose distribution function and limiting angular measure are both
known in closed form.

3. Conditional distribution estimation and prediction for extremes.

3.1. Previous work in prediction for extremes. There has been a small amount
of work which has tried to devise methods for performing prediction for extremes.
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Davis and Resnick (1989, 1993) define a distance d between the components
of a bivariate max-stable random variable, and suggest a method of prediction
which minimizes the distance between the observed component and the predictor.
Craigmile et al. (2006) offer a geostatistical approach to the problem of determin-
ing exceedances in a spatial setting by adjusting the loss function of the kriging
predictor.

A recent important advance in the area of approximating a conditional dis-
tribution for extremes is the work of Wang and Stoev (2011), and we view
the work in this paper as complementary. Wang and Stoev perform prediction
for the case of max-stable random vectors. Let M(d+p)

n = (M(d)
n ,M(p)

n )T , where
M(d)

n = (Mn,1, . . . ,Mn,d)T , M(p)
n = (Mn,1, . . . ,Mn,p)T , and where M(d+p)

n is
assumed to be a max-stable random vector with a known distribution. Given
data m(d)

n = (mn,1, . . . ,mn,d)T , Wang and Stoev obtain approximate draws from
M(p)

n | M(d)
n = m(d)

n . They accomplish this by sampling from spectrally-discrete
max-stable models which can be represented as a max-linear combination of in-
dependent random variables. Using a spectrally discrete model would seem to be
limiting, as it would imply that the corresponding angular measure would only
have mass at discrete locations. However, it is known that any multivariate max-
stable distribution can be approximated arbitrarily well by a max-linear model
with a sufficient number of elements, and Wang and Stoev claim that their com-
putational method can handle max-linear combinations on the order of thousands.
Wang and Stoev (2011) apply their approach in the spatial setting and the results
show the discrete approximation performs quite well.

The method we propose in the next section differs from that of Wang and Stoev
(2011) in a number of important ways. Perhaps the most important difference is
that, rather than performing prediction in a max-stable setting which would lend
itself to data that are block maxima, our prediction method is best suited for large
observations, that is, the threshold exceedance case. Another difference is that,
rather than successively drawing from the conditional distribution as Wang and
Stoev do, we provide an analytic approximation to the conditional density given
the observations are sufficiently large. Additionally, rather than relying on an ap-
proximation which corresponds to a discrete angular measure, our method instead
relies on a parametric or semi-parametric model for the angular measure. Both
methods involve nontrivial computation, although our method requires only the
numerical computation of a one-dimensional integral, whereas Wang and Stoev’s
approach requires computation in fitting an adequate discrete approximation to the
spectral measure and then in drawing from the conditional distribution.

3.2. Approximating the conditional density when observations are large via
the angular measure. Let Z−d = (Z1, . . . ,Zd−1)

T , and define z−d analogously.
Working with the L1 norm, our goal is to approximate the distribution of [Zd |
Z−d = z−d ] when ‖z−d‖ > r∗ and r∗ is large. Let us assume that H is absolutely
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continuous with respect to the Lebesgue measure on Sd−1 and let h denote the
corresponding density.

To approximate the conditional density, we employ the conditional p.d.f.

fZd |Z−d
(zd | z−d) ≈ ‖z‖−(d+1)h(z/‖z‖)∫ ∞

0 ‖z(t)‖−(d+1)h(z(t)/‖z(t)‖) dt
,(7)

where z = (z1, . . . , zd−1, zd)T and z(t) = (z1, . . . , zd−1, t)
T . This approximation

arises from the point process representation for a regularly varying random vector
as we show below. Consequently, the approximate conditional distribution utilizes
the angular measure H , which characterizes the dependence in Z’s components
when ‖Z‖ is large.

The first step in justifying the approximation (7) is to characterize the limiting
measure �(·) in terms of Cartesian rather than polar coordinates.

PROPOSITION 1. Assume Z is d-dimensional multivariate regularly varying
with common marginal distributions, tail index α = 1, and angular density h. Let
Nn denote the sequence of point processes consisting of the point masses located
at {Zi/an, i = 1,2, . . . , n}, where Zi are i.i.d. copies of Z, and let N be the lim-
iting point process as n → ∞. Denote the intensity measure of N by �(·). Then
�(dz) = ‖z‖−(d+1)h(z‖z‖−1) dz.

PROOF. The proof is a simple change-of-variables argument. Define the trans-
formation p : (0,∞) × Sd−1 �→ C by z := p(r,w) = rw and note that p is the in-
verse of the usual Cartesian-to-polar coordinate transform. To make the change of
variables, we need |detJp−1 |. It is known that |detJp| = r(d−1) [Hogg, McKean
and Craig (2005), Example 3.37 (specific for the L1-norm) and Song and Gupta
(1997), Lemma 1.1 (for the general Lq -norm)]. Thus, |detJp−1 | = ‖z‖−(d−1).

Let A be an arbitrary set bounded away from {0}, and consider �(A):

�(A) =
∫
(r,w)∈p(A)

r−2h(w) dr

=
∫

z∈A
‖z‖−2h(z‖z‖−1)‖z‖−(d−1) dz

=
∫

z∈A
‖z‖−(d+1)h(z‖z‖−1) dz.

Thus, �(dz) = ‖z‖−(d+1)h(z‖z‖−1) dz. �

REMARK. The result is similar to Theorem 1 in Coles and Tawn (1991), which
allows one to start with a known multivariate max-stable distribution with unit
Fréchet marginals and find its corresponding angular measure. Coles and Tawn
state “the drawback to the use of theorem 1 is that it can be applied only to MEVDs,
of which very few have been obtained” (page 381). It is important to note that
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our aim is somewhat the reverse of Coles and Tawn: we wish to start with an
angular measure, and obtain an approximation for the (conditional) density given
the observed values are large.

Now, for any r0 > 0 and z ∈ R
d such that ‖z‖ > r0, let

FZ/an
(z, r0) = P

(
Z
an

∈ [z,∞)
∣∣∣ ‖Z‖

an

> r0

)
.

Then,

FZ/an
(z, r0) = P((Z/an) ∈ [z,∞), (‖Z‖/an) > r0)

P((‖Z‖/an) > r0)

= nP((Z/an) ∈ [z,∞))

nP((‖Z‖/an) > r0)

→ �([z,∞))

�({z | ‖z‖ > r0}) from (3)

= r0�([z,∞)) because
∫
r>r0

r−2 dr = r−1
0(8)

= r0

∫
[z,∞)

‖z‖−(d+1)h(z‖z‖−1) dz see Proposition 1.(9)

We wish to speak of fZ/an
(z, r0), a joint density of Z/an given ‖Z‖/an > r0.

Heuristically from (9), we will assume that

fZ/an
(z, r0) → r0‖z‖−(d+1)h(z‖z‖−1) for ‖z‖ > r0(10)

as n → ∞. More specifically, the convergence would be guaranteed if d
dzFZ/an

(z,
r0) converged uniformly to r0‖z‖−(d+1)h(z‖z‖−1), allowing us to switch the order
of the limits associated with differentiation and as n → ∞. See also Theorem 6.4
in Resnick (2007) in which regularly varying densities are described.

EXAMPLE (Bivariate logistic distribution). Let Z have c.d.f. P(Z1 ≤ z1,Z2 ≤
z2) = exp[−(z

−1/β
1 + z

−1/β
2 )β] for β ∈ (0,1]. Z is then said to have a bivariate

logistic distribution, which is a known multivariate max-stable distribution, and
which (more importantly for our purposes) is also regularly varying with com-
mon unit-Fréchet marginals P(Zj ≤ z) = exp(−z−1) for j = 1,2. Coles and Tawn
(1991) show that the angular density of the bivariate logistic is given by

h(w) = 1

2

(
1

β
− 1

)
(w1w2)

−1/β−1(w
−1/β
1 + w

−1/β
2 )β−2.

For a bivariate regularly varying random vector with unit Fréchet margins, it can
be shown that an = 2n is a normalizing sequence such that P(‖Z‖ > an) ∼ n−1.
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Now,

P

(
Z
2n

∈ [z,∞)

)
= P(Z1 > 2nz1,Z2 > 2nz2)

= 1 − exp(−(2nz1)
−1) − exp(−(2nz2)

−1)

+ exp
[−(

(2nz1)
−1/β + (2nz2)

−1/β)β]
(11)

= (2nz1)
−1 + (2nz2)

−1 − (
(2nz1)

−1/β + (2nz2)
−1/β)β

+ o(n−1)

and, hence, for ‖z‖ > r0,

FZ/2n(z, r0) → 1
2r0

(
z−1

1 + z−1
2 − (z

−1/β
1 + z

−1/β
2 )β

)
.

Differentiating this, we obtain the density

fZ/2n(z, r0) → 1

2
r0(β

−1 − 1)(z
−1/β
1 + z

−1/β
2 )β−2z

−1/β−1
1 z

−1/β−1
2

= 1

2
r0(β

−1 − 1)(z1 + z2)
−3

((
z1

z1 + z2

)−1/β

+
(

z2

z1 + z2

)−1/β)β−2

×
(

z1

z1 + z2

)−1/β−1(
z2

z1 + z2

)−1/β−1

= r0‖z‖−3h(z‖z‖−1),

which agrees with (10). Similar arguments could be made for logistic models of
dimension d > 2, but the inclusion/exclusion argument made in (11) becomes te-
dious.

Now, let us assume n is fixed, but large enough such that fZ/an
(z, r0) ≈

r0‖z‖−(d+1)h(z‖z‖−1). We wish to approximate fZ(z, r∗), the density of Z given
that ‖Z‖ > r∗ where r∗ is large. To obtain an approximation, we do a change-of-
variables from Z/an to Z, which yields

fZ(z, r∗) ≈ r0‖z/an‖−(d+1)h(z‖z‖−1)a−d
n

(12)
= r∗‖z‖−(d+1)h(z‖z‖−1),

where r∗ = anr0, and thus is large.
Finally, consider the conditional distribution of [Zd | Z−d = z−d ] when

‖z−d‖ > r∗ and r∗ is large. Integrating to normalize the conditional density yields
(7).
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3.3. An approximation example. We investigate our approximation method
via an example with a known distribution and angular measure. The trivariate
logistic is a random vector with distribution P(Z1 ≤ z1,Z2 ≤ z2,Z3 ≤ z3) =
exp[−(z

−1/β
1 + z

−1/β
2 + z

−1/β
3 )β)] for β ∈ (0,1]. The angular measure of the

trivariate logistic is given by

h(w) = 1

3

(
1

β
− 1

)(
2

β
− 1

)
(w1w2w3)

−1/β−1

(13)
× (w

−1/β
1 + w

−1/β
2 + w

−1/β
3 )β−3.

We first investigate the quality of the approximation as ‖z−d‖ increases and when
β = 0.3. Since both the distribution and the angular measure are known, we can
compare the approximated conditional density from (7) to the actual conditional
density. The first three panels of Figure 2 show how the approximation improves
as the magnitude of the observations grows. The top left panel shows that when
the observed values are small (z1 = 0.23, z2 = 0.24), the approximation to the
true conditional density is poor. However, as the next two panels show, when the
observations are sufficiently large, the approximation is quite good.

Next we use a simulation experiment to assess the skill in using (7) for approx-
imating the conditional density when the conditioning observations are extreme.
From the R package evd [Stephenson (2002)], we simulate 5000 trivariate lo-
gistic random vectors with β = 0.3. Let Zi = (Zi,1,Zi,2,Zi,3)

T , i = 1, . . . ,5000,
denote the i.i.d. random variables and zi = (zi,1, zi,2, zi,3)

T be the realized val-
ues, of which only zi,1 and zi,2 are initially observed. We rank the realizations zi

according to the sum of the observed values zi,1 + zi,2. We then apply our approx-
imation method to the largest 1000 of these simulations which corresponds to the
condition zi,1 + zi,2 > 8.7. As each simulated random vector results in a unique
conditional density approximation, we assess our method via a probability inte-
gral transform (PIT) or rank histogram [Gneiting, Balabdaoui and Raftery (2007),
Wilks (2006), Section 7.7.2]. Let fZi,3|Zi,1,Zi,2(zi,3 | zi,1, zi,2) be the approximated
conditional density given by (7). On simulation i, if the observed values are large
enough, we let pi = ∫ zi,3−∞ fZi,3|Zi,1,Zi,2(s | zi,1, zi,2) ds, where zi,3 is the (previously
unobserved) value of Zi,3. We then construct a histogram for the values pi . If the
approximation is well-calibrated, then the PIT histogram should be flat, since there
should be equal probability of pi occurring in each bin. If the conditional density
were correct, the counts in each bin would have a binomial (n = 1000,p = 0.1)

distribution and approximate quantiles for the sampling distribution can be gener-
ated under this null hypothesis. The bottom right panel indicates that the approxi-
mation seems to be quite good given that the observations are large, and given that
the angular measure is known.

4. Application to nitrogen dioxide air pollution measurements. The nitro-
gen oxides (NOx) constitute one of the six common air pollutants for which the US



CONDITIONAL DENSITY APPROXIMATION FOR EXTREMES 1417

FIG. 2. Upper left, upper right and lower left panels show three approximations of the conditional
density of the third component of a trivariate logistic random variable given the first two components.
The true conditional density is shown with the dotted line, the approximated density with the solid
line. Note the different scales for the horizontal axis for these three figures. The approximation is poor
when the observed values are small (upper left), but improves as these values become larger (upper
right, lower left). The bottom right panel shows the PIT histogram of the largest 1000 (as determined
by z1 + z2) of 5000 total simulations. As the PIT histogram is flat, it shows that the approximation
is good for these large observations. Dotted lines indicate the approximate 0.05 and 0.95 quantiles
for the sampling distributions of each bin under the null hypothesis that the conditional distribution
is correct.

EPA is required to set air quality standards by the Clean Air Act. Of the various
nitrogen oxides, nitrogen dioxide (NO2) is the component of “greatest interest”
and is used as an indicator of the entire group of NOx .7 According to the EPA fact
sheet [EPA (2010)], short term NO2 exposures have been shown to cause adverse

7http://www.epa.gov/air/nitrogenoxides/.

http://www.epa.gov/air/nitrogenoxides/


1418 D. COOLEY, R. A. DAVIS AND P. NAVEAU

respiratory effects such as increased asthma symptoms. In January 2010, a new 1-
hour NO2 standard was set at 100 parts per billion (ppb) to protect against adverse
health effects due to short-term exposure to NO2.

Under the guidelines set by the EPA’s Ambient Air Monitoring Program,8 state
and local agencies are charged with establishing and maintaining a network of
air pollution monitoring stations. The EPA has made available data from these
stations. Using an online tool,9 we collected data from five stations located in
Washington DC and nearby Virginia which were all active during the entire period
from 1995–2010. The stations were Alexandria (site ID: 51-510-0009), McMillan
(11-001-0043), River Terrace (11-001-0041), Takoma School (11-001-0025) and
Arlington (51-013-0020). The locations of these stations are shown in Figure 1.

Of course, air pollution measurements are of most interest when levels are
believed to be high, and monitors only record pollutant levels at specific loca-
tions. We test our prediction method when observations are large on these five
Washington-area stations. We aim to predict the NO2 level at the Arlington station,
given the NO2 measurement at the other four stations. We choose NO2 because all
five stations measured this pollutant, and NO2 appears to have the heaviest tail of
the pollutants we examined.

From each of the five stations, we extract the daily maximum NO2 measure-
ment; all of the stations have over 5000 daily NO2 measurements recorded between
Jan 1, 1995–Jan 31, 2010 which meet EPA’s daily summary quality requirements.
From these, we keep only days in which all five stations have measurements, re-
sulting in 4497 daily measurements. Finally, because the data are truncated to the
nearest ppb, the empirical c.d.f. appears quite discrete. Thus, we add a uniform
random variable on the interval [−0.5,0.5] to the data so that they behave more
like the underlying continuous variable.10

Figure 3 shows the time series of the retained measurements at the Arlington
station. Unlike other pollutants such as ground-level ozone, there does not appear
to be a strong seasonal effect for NO2. Although a very weak seasonal signal is de-
tectable for a moving-average smoothed time series, this signal is hard to discern
from a smoothed periodogram. It also appears that NO2 levels have decreased at
this site over the study period, and the other stations show a similar, but weaker,
trend. Checking for serial dependence in the data, we find the sample autocorre-
lation function of the deseasonalized data shows a highly significant correlation
only at lag 1 [ρ̂(1) = 0.35]. Figure 4 shows scatter plots of the measurements at
the Arlington station versus the four stations used for prediction. The strong pos-
itive correlation between NO2 measurements shown in Figure 4 is indicative of

8http://epa.gov/airquality/qa/monprog.html.
9http://www.epa.gov/airdata/.

10Data available at http://www.stat.colostate.edu/~cooleyd/DataAndCode/PredExtremes/.

http://epa.gov/airquality/qa/monprog.html
http://www.epa.gov/airdata/
http://www.stat.colostate.edu/~cooleyd/DataAndCode/PredExtremes/
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FIG. 3. Time series plot of the retained measurements at the Arlington station.

that found among all pairs, with the strongest sample correlation being 0.83 be-
tween Arlington and Alexandria and the weakest being 0.66 between Alexandria
and McMillan. Figure 4 also shows that largest values can be coincident between
stations. In our analysis that follows, we assume that the dependence in the upper
tail of the joint distribution of NO2 measurements is not affected by the weak sea-
sonality or the trend found in the data. We checked the trend assumption by fitting
angular measure models to the first half and second half of the multivariate time
series separately and found similar parameter estimates. We also ignore the serial
dependence in the data, predicting the Arlington station’s measurement using only
the other four stations’ measurements from that day.

Let Yt = (Yt,1, . . . , Yt,5)
T represent the random vector of measurements on day

t at the five locations. Our first task is to estimate the angular measure which
describes the tail dependence of the NO2 measurements at these locations. As for-
mulated in Section 2.2, angular measure models assume a common marginal dis-
tribution with tail index α = 1. To obtain common marginal distributions, we use
the following procedure. Mean residual life plots [Coles (2001), Section 4.3.1] are
used to select the 0.93 quantile as an appropriate threshold above which each loca-
tion’s data were approximately Pareto-distributed. At each location, a generalized
Pareto distribution (GPD) is fit to the data above the threshold via maximum like-

FIG. 4. Scatterplots of the measurements at the Arlington (arl) station verses the other four sta-
tions.
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TABLE 1
Threshold and GPD estimates (and standard errors) of the tail for

the five Washington DC area locations. The GPD is

parametrized P(Y > y|Y > u) = (1 + ξ
y−u
ψ )

−1/ξ
+ .

If ξ > 0, the tail index α = 1/ξ

Site # Location u ψ̂ ξ̂

1 alx 59.44 7.78 (0.64) 0.07 (0.06)
2 mc 56.80 8.29 (0.70) 0.05 (0.06)
3 rt 59.69 8.96 (0.78) 0.10 (0.07)
4 ts 55.51 6.67 (0.55) 0.02 (0.06)
5 arl 57.97 7.56 (0.62) 0.07 (0.06)

lihood. Letting F̂j be the estimated marginal distribution function formed by using
the empirical distribution below the threshold and the fitted GPD above (appropri-
ately weighted by the observed exceedance probability), each location’s data are
transformed to have a unit Fréchet distribution: Zt,j = (− log(F̂j (Yt,j ))

−1. Table 1
summarizes the marginal tail estimates.

The data are divided into a training set and test set. The training set, consisting of
two-thirds of the available data (ntrain = 2998), is used to fit a five-dimensional an-
gular measure model. The test set, consisting of the other one-third (ntest = 1499),
is used to test the prediction method. Because of the decreasing trend, we construct
the test set by extracting every third observation so that both the training and test
sets would reflect the behavior over the entire study period.

The pairwise beta model [Cooley, Davis and Naveau (2010)] is an angular mea-
sure model for dimension d > 2 with parameters which help to control the amount
of dependence between each pair of elements in the random vector. We fit the pair-
wise beta via maximum likelihood, and the likelihood arises by assuming that the
point process relationship implied by (4) is exact for large observations [Coles and
Tawn (1991), Cooley, Davis and Naveau (2010)]. The largest observations were
determined by ‖zt‖, that is, the radial component of the transformed data, and the
largest 210 observations (0.93 quantile) were used to fit the model.

The pairwise beta has angular density given by

h(w;γ,β) = Kd(γ )
∑

1≤j<k≤d

hj,k(w;γ,βj,k) for 0 < wj < 1(14)

where

hj,k(w;γ,βj,k) = (wj + wk)
2γ−1(

1 − (wj + wk)
)γ (d−2)−d+2

× 	(2βj,k)

	2(βj,k)

(
wj

wj + wk

)βj,k−1(
wk

wj + wk

)βj,k−1
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TABLE 2
Parameter estimates (and standard errors) for the pairwise beta angular measure model fit to the

Washington DC NO2 data

γ̂ β̂1,2 β̂1,3 β̂1,4 β̂1,5 β̂2,3 β̂2,4 β̂2,5 β̂3,4 β̂3,5 β̂4,5

0.37 0.51 0.64 0.56 6.11 0.76 1.64 0.96 0.56 0.98 1.01
(0.03) (0.18) (0.28) (0.19) (2.59) (0.44) (1.08) (0.51) (0.20) (0.51) (0.61)

and

Kd(γ ) = 2(d − 3)!
d(d − 1)

√
d

	(γ d + 1)

	(2γ + 1)	(γ (d − 2))

is a normalizing constant. The estimated parameters for the fitted model are given
in Table 2. In the pairwise beta model the magnitude of the βi,j parameter is related
to the level of dependence between the ith and j components; the fact that β̂1,5 is
the largest indicates that the Alexandria and Arlington stations show the strongest
tail dependence.

For the test set, we assume that the Arlington station is not observed, and
aim to approximate the conditional density of this station’s NO2 measurement
given the measurements at the other four stations. Since our method is only valid
when the observations are large, we perform prediction for the 105 test-set ob-
servations with the largest values of ‖zt,−5‖. That is, we threshold at the em-
pirical 0.93 quantile of the radial component (sum) of the transformed data at
the observed locations. Using the fitted pairwise beta angular measure, the con-
ditional density fZt,5|Zt,−5(zt,5 | zt,−5) was approximated using the procedure de-
scribed in Section 3.2 for each of these top 105 observations.11 The integration
in the denominator of (7) was approximated using Simpson’s Rule. These were
then back-transformed to obtain the conditional densities on the original scale
gYt,5|Yt,−5(yt,5 | yt,−5). Three of the approximated conditional densities can be
found in the top row of Figure 5.

We compare our prediction method to two other approaches: best linear un-
biased prediction (kriging) and indicator kriging [Cressie (1993), Schabenberger
and Gotway (2005)]. Kriging is a prediction method that utilizes only mean and
covariance information. At its most fundamental level, kriging does not make a
distributional assumption, it provides a point prediction which corresponds to the
best linear unbiased predictor in mean-square prediction error (MSPE), and addi-
tionally provides an estimate of the MSPE. To obtain confidence intervals, typi-
cally a Gaussian assumption is made. Furthermore, if one assumes the data arise

11The code used to produce the results is available at http://www.stat.colostate.edu/~cooleyd/
DataAndCode/PredExtremes/PredExtremesFiles.zip.

http://www.stat.colostate.edu/~cooleyd/DataAndCode/PredExtremes/PredExtremesFiles.zip
http://www.stat.colostate.edu/~cooleyd/DataAndCode/PredExtremes/PredExtremesFiles.zip
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FIG. 5. Comparison of the approximated conditional densities at the Arlington site given the mea-
surements at the other sites: gYt,5|Yt,−5 (yt,5|yt,−5) for three different days with high measurements.
Top figure in each column is the approximated conditional density via the angular measure, middle
figure is from simple kriging, and the bottom figure is from indicator kriging. Below each figure is
the vector of actual measurements at all five sites. The fifth element corresponds to the Arlington site
which we are trying to predict and which is plotted with a dot in the figures. The dotted line in the
upper left corresponds to the marginal distribution for the Arlington site.

from a Gaussian process, then the kriging estimate and MSPE correspond to the
conditional expectation and variance. Since our method generates a conditional
distribution, we will compare it to the conditional distribution provided by kriging
under a Gaussian assumption.

Our kriging procedure is in parallel to the angular measure procedure above.
The training set is used to formulate a model; here all 2298 observations are used
to estimate the mean NO2 levels at all five locations as well as to estimate the co-
variance matrix between the measurements at the locations. It is important to note
that no spatial covariance function is fit, as our training set allows us to estimate the
covariance matrix directly. Treating the mean and covariance as known, we then
use simple kriging [Cressie (1993)] to obtain a point prediction at the Arlington
location given the measurements at the other locations for the same 105 large ob-
servations in the test set. The MSPE is calculated from the estimated covariances,
we use it to obtain the estimated conditional density at the Arlington location given
the other measurements under a Gaussian assumption.

We also compare to indicator kriging [Cressie (1993), Schabenberger and Got-
way (2005)] which is a nonparametric version of kriging designed to provide esti-
mates of P(Yd > u|Y1, . . . , Yd−1) for a given threshold u. When performing indica-
tor kriging, one first needs an estimate of the covariance matrix of the random vari-
ables corresponding to the indicators I(Yj > u) for all the j locations. At time t ,
given observations yt,1, . . . , yt,d−1, these are converted into indicators, I(yt,j > u)
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and ordinary kriging is used to estimate E[I(Yt,d > u) | I(yt,1 > u), . . . , I(yt,d−1 >

u)] = P(Yt,d > u | I(yt,1 > u), . . . , I(yt,d−1 > u)). Repeating the analysis for vari-
ous values of u allows one to estimate a conditional distribution, although there is
no guarantee that the estimate will be monotonic.

Our indicator kriging analysis is again parallel to the angular measure and
simple kriging analyses. We let u vary from 10–105 ppm with a step size of
0.25 ppm which covers the range of observations. The training set is used to es-
timate the covariance matrix of indicators at the various levels of u, and then in-
dicator kriging is performed on each of the sets of observations in the test set.
To guarantee that the conditional distribution is monotonic, we then perform a
monotone quadratic smoothing spline regression [Meyer (2008)] on the estimates
P(Yt,d > u | I(yt,1 > u), . . . , I(yt,d−1 > u)) for all the values of u. Densities are
obtained by differentiating the smoothing spline.

Conditional densities obtained by the angular measure method, simple kriging
and indicator kriging are shown in Figure 5 for three different days’ data. In these
three figures the conditional density approximated via the angular measure is less
concentrated than the conditional density from simple kriging, and that proves
to be the case in general. The angular measure can also be somewhat skewed or
slightly bimodal depending on the combination of the observed measurements.
Although indicator kriging is performed for each pollution level u, the conditional
density as approximated by indicator kriging is very rough, as there are only four
locations.

We evaluate the performance of the three approaches using various methods.
All comparisons are done at the original scale. To test the overall fit of the approx-
imated conditional density, we again use the PIT histogram. Figure 6 shows the

FIG. 6. PIT histograms for the angular measure approach (left), simple kriging (center) and in-
dicator kriging (right). Perfect estimation of the conditional density would be indicated by a flat
histogram. Error bars are obtained for each decile from a binomial distribution (n = 105,p = 0.10).
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PIT histograms for all three methods. The PIT histogram for the angular measure
method is relatively flat with perhaps some indication that the model is overesti-
mating the probability in the lower tail, resulting in too few observations falling in
the first decile of the approximated conditional density. This could be due to the an-
gular density model: the pairwise beta model fit to the data is certainly not the true
model for the angular density which is unknown. It could also be due to thresh-
old choice, although the parameter estimates of the pairwise beta model did not
appear to be sensitive to the threshold. The kriging estimate with the Gaussian as-
sumption shows a classic u-shape associated with underdispersion [Wilks (2006),
Section 7.7.2]. This model underestimates the probability of the observation oc-
curring in the lower tail and also the upper tail. Indicator kriging also appears to
underestimate the upper tail of the distribution, resulting in too many observations
appearing in the highest decile of the approximated conditional distribution. Using
the terminology of Gneiting, Balabdaoui and Raftery (2007), the PIT histograms
indicate that the angular measure method is better (probabilistically) calibrated,
particularly in the upper quantiles of the predictive distribution.

Another performance evaluation is to see how well each method estimates a
quantile, and, particularly, a high quantile. For instance, regulators might wish to
have an accurate assessment of a high quantile of an unmonitored location given
large observations nearby. Such an estimate could be used as a probabilistic upper
bound, that is, officials could state that they were 95% confident that the level at
the unmonitored location was below a reported level. For each of the 105 large
observations, we use the approximated conditional density from all three methods
to estimate the 0.99, 0.95, 0.90, 0.75 and 0.50 quantiles. We examine coverage by
calculating the proportion of actual observations that fell beneath these quantiles
and also calculate each method’s quantile verification score (QVS) [Gneiting and
Raftery (2007)]. Let g

(m)
Yt,5|Yt,−5

(s | yt,−5) and G
(m)
Yt,5|Yt,−5

(s | yt,−5) be the predictive

density and cumulative distribution function for Yt,5 | Yt,−5 = yt,−5, where m de-
notes the angular measure method (m = 1), kriging (m = 2) or indicator kriging
(m = 3). We have parameterized the QVS as in Friederichs and Hense (2007),

QV S(m) =
105∑
t=1

ρτ

(
yt,5 − q

(m)
t,τ

)
,

where q
(m)
t,τ = G

(m)←
Yt,5|Yt,−5

(τ ), and ρτ (u) = τuI (u ≥ 0)+(τ −1)uI (u < 0). A lower
QVS score indicates better skill, but the scale of the QVS score depends on the
quantile to which it is being applied. The QVS is a proper scoring rule, meaning
that it is minimized if the predictive distribution corresponds to the “true” distri-
bution. Both the coverage and QVS results for the tested quantiles are shown in
Table 3, as well as the sampling error assuming independent Bernoulli trials with
p equal to the given quantile. The angular measure method does a superior job
of estimating the high quantiles (0.99, 0.95 and 0.90) when the observations are
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TABLE 3
Gives the skill of the different methods for assessing high quantiles. Coverage (Cvg) column reports

the proportion of the observations at the Arlington location that fell beneath the quantile as
calculated from the estimated conditional density and QVS column reports the quantile

verification score (lower is better)

Quantile

0.99 0.95 0.90 0.75 0.50

Cvg QVS Cvg QVS Cvg QVS Cvg QVS Cvg QVS

Angular 0.97 40.97 0.93 134.77 0.88 225.68 0.70 398.97 0.44 502.51
measure

Simple 0.92 65.80 0.83 170.04 0.81 246.26 0.65 378.27 0.54 444.84
kriging

Indicator 0.90 67.80 0.86 153.41 0.83 238.63 0.73 377.20 0.49 452.68
kriging

Sampling (0.01) – (0.02) – (0.03) – (0.04) – (0.05)
error

large, whereas both simple kriging and indicator kriging underestimate these high
quantiles. The angular measure method seems to be outperformed by indicator
kriging for the 0.75 and 0.50 quantiles, although its coverage rates fall well within
acceptable ranges when sampling error is accounted for.

Each method’s conditional density is essentially a probabilistic forecast, and
scoring rules have been developed which provide an overall measure of the quality
of probabilistic forecasts [Gneiting and Raftery (2007)]. We assess the methods
using two different proper scoring rules: the logarithmic score and the continuous
rank probability score (CRPS). The logarithmic score for the prediction at time
t is given by − log(g

(m)
Yt,5|Yt,−5

(yt,5 | yt,−5)), where yt,5 is the actual observation

at the Arlington station and g
(m)
Yt,5|Yt,−5

is the estimated conditional density via the
angular measure approach (m = 1), kriging (m = 2) and indicator kriging (m = 3).
The logarithmic score has an information-theoretic basis and corresponds to the
Kullback–Leibler divergence between the predictive density g

(m)
Yt,5|Yt,−5

(s | yt,−5))

and the Kronecker delta function δs,yt,5 . We assess the methods by the mean of the
logarithmic scores

1

105

105∑
t=1

− log
(
g

(m)
Yt,5|Yt,−5

(yt,5 | yt,−5)
)

over assumed independent realizations yt , t = 1, . . . ,105. The mean logarithmic
score is 3.93 for the angular measure approach, 4.24 for kriging, and infinity for
indicator kriging, as 8 of the 105 of the observations yt,5 fall outside the support
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of the predictive distribution. Since a lower score is better, the angular measure
method outperforms kriging and indicator kriging by this performance measure.

The logarithmic score has been criticized, as it is not “robust” to cases when
observations fall outside the support of the distribution as in the indicator kriging
case above. A popular alternative is the CRPS. For our example, the CRPS for a
particular day t is given by∫ ∞

−∞
(
G

(m)
Yt,5|Yt,−5

(s | yt,−5) − I{s ≥ yt,5})2
ds(15)

and can be understood as a nonlinear function of the area between each method’s
predictive c.d.f. G

(m)
Yt,5|Yt,−5

(s | yt,−5) and the heavyside function associated with
the realized value yt,5. The CRPS score rewards appropriate centering of the pre-
dictive distribution and narrowness of the predictive distribution otherwise known
as “sharpness.” We assess the three methods by the mean of the CRPS scores for
t = 1, . . . ,105. Given the PIT histograms and logarithmic scores, it is perhaps sur-
prising that the mean CRPS scores associated with the angular measure method,
kriging and indicator kriging are 6.83, 6.36 and 6.21, respectively, indicating that
by this performance measure, the angular measure method is performing worst.
While all three methods produce predictive densities that are centered (i.e., the re-
alized values exceed the predictive density’s median about half of the time), the
predictive densities from kriging and indicatior kriging are sharper than (but not as
well calibrated as) the density produced by the angular measure method (Figure 5).

The CRPS score can be written as an integral with respect to a threshold s

as in (15) or, equivalently, in terms of the quantile function G
(m)
Yt,5|Yt,−5

−1(p) and

integrated with respect to p ∈ (0,1) [Gneiting and Ranjan (2011)]. Further, the
overall mean CRPS score can be decomposed into a mean CRPS score at each p,
then integrated with respect to p. Gneiting and Ranjan (2011) suggest plotting the
quantile score verses p as a diagnostic tool. When done for the three forecasts,
Figure 7 shows that the angular measure method outperforms the other methods
for high quantiles, but both kriging and indicator kriging outperform the angular
measure method for quantiles near 0.5, likely due to the increased sharpness of
these methods. Since the quantile scores are naturally larger near values of 0.5, the
overall mean CRPS scores for kriging and indicator kriging end up lower. Gneiting
and Ranjan (2011) also discuss a quantile weighted CRPS score

∫ 1

0
2
(
I
{
yt,5 ≤ G

(m)
Yt,5|Yt,−5

−1(p)
} − p

)(
G

(m)
Yt,5|Yt,−5

−1(p) − yt,5
)
v(p)dp,

where one can choose the weight function v(q) to emphasize quantiles of interest.
Letting v(q) = I{v(q) > 0.85}, the mean weighted CRPS scores for the angular
measure method, kriging and indicator kriging are 0.50, 0.57 and 0.55.
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FIG. 7. Mean CRPS score for the three methods decomposed by quantile p as in Gneiting and Ran-
jan (2011). Solid line is the angular measure method, dashed is kriging, dotted is ordinary kriging.
The angular measure method performs best for high quantiles, but performs less well for the middle
quantiles.

5. Summary and discussion. In this work we obtain an approximation for
the distribution of a component of a regularly varying random vector given that the
observed components are large. We apply the approximation to estimate the con-
ditional distribution of an air pollutant given nearby measurements that are large.
Results show that our method outperforms traditional spatial prediction methods
at capturing the conditional distribution of the random variable when the observa-
tions are large. PIT histograms show that our method is better calibrated, and the
method proves to be much better suited for obtaining probabilistic upper bounds of
the pollutant level. For example, the estimated 95% quantiles provided by kriging
and indicator kriging were too low and the actual exceedance rates were 17% and
14%, respectively. The exceedance rate of the angular measure method’s estimated
95% quantile was 7% and was within sampling error of 5%.

We believe that this is the first work to perform prediction using extremes tech-
niques in a threshold exceedance setting. The classic theory that leads to max-
stable distributions and processes is quite elegant and forms the foundation for
all of extreme value theory. Statistical practice utilizing multivariate max-stability
generally requires one to obtain component-wise block maximum data, and such
data can be viewed as “artificial” in the sense that one models data vectors that
are likely to have never occurred, since the block maxima are likely to occur at
different times. It seems natural to try and attempt to describe large concurrent
observations, and the framework of multivariate regular variation allows this.

Our method relies on an adequate angular measure model. There has been some
renewed interest of late in constructing flexible models which meet the moment
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conditions (5) [Cooley, Davis and Naveau (2010), Ballani and Schlather (2011),
Boldi and Davison (2007)]. However, no model with a finite parameterization can
completely describe the possible angular measures, and the existing models may
not prove to adequately model every multivariate data set. These models become
unwieldy as the dimension increases beyond moderate levels (d ≈ 5). Certainly
there remains a need for flexible multivariate extremes models.

Although we apply our method to multivariate time series data, we do not make
use of any temporal dependence in the data. Our method proceeds as if the se-
quence of multivariate random vectors are i.i.d. One could extend the method by
allowing the marginal distributions to vary in time; such extreme value models are
regularly used [e.g., Beirlant et al. (2004), chapter 7] and might be required if, for
instance, the seasonality of this data had been more influential.
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