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Accurate forecasting of zero coupon bond yields for a continuum of ma-
turities is paramount to bond portfolio management and derivative security
pricing. Yet a universal model for yield curve forecasting has been elusive,
and prior attempts often resulted in a trade-off between goodness of fit and
consistency with economic theory. To address this, herein we propose a novel
formulation which connects the dynamic factor model (DFM) framework
with concepts from functional data analysis: a DFM with functional factor
loading curves. This results in a model capable of forecasting functional time
series. Further, in the yield curve context we show that the model retains eco-
nomic interpretation. Model estimation is achieved through an expectation-
maximization algorithm, where the time series parameters and factor loading
curves are simultaneously estimated in a single step. Efficient computing is
implemented and a data-driven smoothing parameter is nicely incorporated.
We show that our model performs very well on forecasting actual yield data
compared with existing approaches, especially in regard to profit-based as-
sessment for an innovative trading exercise. We further illustrate the viability
of our model to applications outside of yield forecasting.

1. Introduction. The yield curve is an instrument for portfolio management
and for pricing synthetic or derivative securities [Diebold and Li (2006)]. Bond
prices are hypothesized to be a function of an underlying continuum of yields as
a function of maturity, known as the yield curve. Our contribution to the yield
literature is pragmatic: we introduce a dynamic factor model with functional co-
efficients which reconciles the theory-based desire to model yield data as a curve
with the applied need of accurately forecasting that curve over time.

The yield curve is a theoretical construct not without its own inherent practical
difficulties. First and foremost, although yield determines prices, only bond prices
are observed for a set of discrete maturity horizons; from these a corresponding
discrete set of yields are calculated. Thus, the yields themselves are not directly
observed, nor is an entire curve for every possible maturity. Further, not only is it of
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interest to know the yield for all maturities at each point in time (cross-sectional),
but also for a single maturity as it evolves over time (dynamic). Finally, because a
bond at time i of maturity t is essentially the same bond as the one at time i + 1
of maturity t − 1, there is also a certain amount of systematic cross-correlation in
yield data. Therefore, predictive modeling of bond data needs to consider each of
the cross-sectional, dynamic and cross-correlational behaviors.

To this end, yield curve models have traditionally assumed either of two formu-
lations. The first is theoretical in nature: as in Hull and White (1990) and Heath,
Jarrow and Morton (1992), for a given date the emphasis is on fitting a yield curve
to existing yields based on no-arbitrage principles stemming from economic the-
ory. The other approach is the so-called equilibrium or affine-class models where
time series techniques are used to model the dynamics of yield on a short-term or
instantaneous maturity, and yields for longer maturities are then derived using an
affine model. This method has been developed in works such as Vasicek (1977),
Cox, Ingersoll and Ross (1985), and Duffie and Kan (1996).

These contrasting methods illustrate the dichotomy of yield forecast models. As
a practical matter, goodness of fit is paramount in a model for it to be of any use.
Still, a yield model should be consistent with its underlying theory, and maintain
a degree of economic interpretation. Cross-sectional/no-arbitrage models ignore
the dynamics of yields over time [as noted in Diebold and Li (2006), Koopman,
Mallee and Van der Wel (2010), e.g.] and thus threaten the former yet satisfy the
latter. Time series/equilibrium models place emphasis on the former at the expense
of the latter [as seen in Duffee (2002)].

What we propose in this paper is a synthesis of the cross-sectional and dy-
namic considerations mentioned above. We approach yield curves as a functional
time series; the yields of the observed maturities are a discrete sampling from
a true underlying yield curve. To this end, we conflate concepts from functional
data analysis [FDA; Ramsay and Silverman (2002, 2005)] and from dynamic fac-
tor analysis/modeling [DFM; Basilevsky (1994), e.g.]. Ours is a dynamic factor
model with functional coefficients which we call (not surprisingly) the functional
dynamic factor model (FDFM). These functional coefficients, or factor loading
curves, are natural cubic splines (NCS): a significant result which facilitates in-
terpolation of yields both within and out of sample so that forecasts are indeed
true yield curves. While the factor loadings account for the cross-sectional/curve
dimension of yields, the dynamic factors, in turn, determine the evolution of these
functions over time. Thus, they account for the time series and cross-correlational
nature of yield data. Our particular specification of the FDFM enables its esti-
mation via the Expectation Maximization (EM) algorithm [Dempster, Laird and
Rubin (1977)].

Why the need for both a functional and a dynamic factor framework? Recall
that the unifying goal is to develop a model that is consistent with the concept of
the yield curve posited by economic theory and is of use for practical forecasting.
A naive attempt to merge the latter need with the former is to model yields for all
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observed maturities over time as a multivariate time series. However, as the num-
ber of observed maturities increases to even moderate size, vector autoregressive
models (VARs)—for example—become intractable because of high dimensional-
ity.

Abstracting from the yield setting for a moment, in a more general sense
large multivariate time series have been successfully modeled [Engle and Watson
(1981), Geweke and Singleton (1981), Molenaar (1985), Peña and Box (1987),
Peña and Poncela (2004), to name just a few] using a dynamic factor approach.
In DFMs the multivariate data are assumed to be dependent on a small set of un-
observed dynamic factors. This solves the dimensionality problem, yet DFMs per
se leave to question the interpretability of the unobserved factors. Further, in our
present context, DFMs fall short of producing a functional yield curve.

To incorporate the functional aspect, we propose to combine the DFM frame-
work with ideas from functional data analysis (FDA). However, FDA in general
is an area still nascent in development, and most applications deal primarily with
collections of independent curves. Earlier work by Besse, Cardot and Stephenson
(2000) applied functional autoregressive models (FAR) to univariate climatologi-
cal data: the seasonal cycle is hypothesized to be functional. In a similar hypoth-
esis, Shen (2009) forecasted periodic call volume data using a method akin to
functional principle component analysis (FPCA). In an applied setting more sim-
ilar to ours, Hyndman and Shang (2009) developed a weighted FPCA method to
forecast time series of curves and applied it to multivariate time series of fertility
or mortality data indexed by different ages. Yet, unlike these models where FPCA
and time series modeling are performed in separate steps, ours is a method that
estimates both functional and time series components simultaneously, and does so
in a quite natural manner.

Within the context of yield curve forecasting, other recent developments have
begun to reconcile the statistical viability of DFMs and functional data analysis
with the underlying theory in regard to yield dynamics—a constraint which all
but requires the usually absent interpretation for the dynamic factors. Diebold and
Li (2006) introduced the Dynamic Nelson–Siegel model (DNS): a three factor
DFM with functional coefficients estimated in two steps, which extends the orig-
inal Nelson–Siegel model [Nelson and Siegel (1987)]. The functional coefficients
are pre-specified as fixed parametric curves and the authors further provide an eco-
nomic interpretation of each. Koopman, Mallee and Van der Wel (2010) extended
the DNS specification to allow (G)ARCH volatility and a fourth dynamic factor
which allows time dependence to the otherwise fixed parametric factor loading
curves. Another DFM-type approach is provided by Bowsher and Meeks (2008)
which present a cointegrated DFM using natural cubic splines (NCS). Spline knots
serve as dynamic factors following an error correction model process; the knot lo-
cations are determined via an initial exhaustive search-selection procedure prior to
model estimation. As noted in Koopman, Mallee and Van der Wel (2010), cointe-
grated factors present a difficulty in terms of retaining economic interpretation.
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Presented in this paper is our functional dynamic factor model (FDFM) which
we show to perform very well in regard to yield curve forecasting. Further, we do
so in multiple assessments which highlight the model’s capability of accurately
forecasting the entire function as well as the potential profit generated from em-
ploying these forecasts in trading strategies. Finally, via our online supplement
(a brief description follows Section 4), in simulation studies we illustrate the accu-
racy of both FDFM forecasts and predicted parameters. In either sense the FDFM
outperforms existing models which require either multiple-step estimation or lack
a functional component.

It is worth noting our FDFM is in a similar vein as those of the aforemen-
tioned yield models: a dynamic factor model with functional coefficients; one
which—quite coincidentally—even exploits the properties of NCS for the cross-
sectional/curve dimension of yields. However, unlike Diebold and Li (2006), the
FDFM functional coefficients are estimated; thus, they are free to vary with the
particular application to explain the functional nature of the data. Further, as op-
posed to the existing two classes of models, estimation of the FDFM is achieved
in a single step. Within the yield context it will be seen that the FDFM satisfies our
two aforementioned criteria: goodness of fit and economic interpretability. That the
factor loading curves are estimated facilitates application of the FDFM to contexts
outside of yield curve forecasting as well. We will show through simulation (online
supplement) that our specification even permits the inclusion of observed nonla-
tent variables in the dynamic factors similar to Diebold, Rudebusch and Aruoba
(2006).

The remainder of our paper is organized as follows. In Section 2 we develop our
model, including discussion of its formulation, details regarding estimation and
significant results in terms of application and utilization. Section 3 examines in
detail the motivating example of real yield data in multiple forecasting and assess-
ment exercises. Finally, we conclude with Section 4 containing a discussion of our
key findings and some directions of future research. In an online supplement we
illustrate simulation results and highlight the model’s viability for both forecasting
and parameter accuracy, especially in regard to applications outside of yield curve
forecasting. In addition, our online supplement [Hays, Shen and Huang (2012)]
provides technical proofs for the theorem and propositions presented in Section 2.

2. Functional dynamic factor models. Abstracting for a moment from the
present setting of yield curve forecasting, consider the more general process of
a time series of curves {xi(t) : t ∈ T ; i = 1, . . . , n}, where T is some continuous
interval and i indexes discrete time. It is hypothesized that each curve is composed
of a forecastable smooth underlying curve, yi(t), plus an error component, εi(t),
that is,

xi(t) = yi(t) + εi(t).(2.1)
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There are two primary goals of a functional time series model: to provide an accu-
rate description of the dynamics of the series, and to accurately forecast the smooth
curve yn+h(t) for some forecast horizon h > 0.

In practice, of course, only a discrete sampling of each curve is observed.
Specifically, consider a sample of discrete points {t1, t2, . . . , tm} with tj ∈ T for j ∈
{1, . . . ,m}. The observed data for the ith curve are xij ≡ xi(tj ), j ∈ {1, . . . ,m}.

2.1. The model. By synthesizing DFM and FDA, we propose a model referred
to as the functional dynamic factor model (FDFM). The formulation is similar to
that of a DFM where the observed data {xij } is a function of a small set of K la-
tent dynamic factors {βik;k = 1, . . . ,K} and their corresponding factor loadings.
But in this setting the factor loadings fkj ≡ fk(tj ) are discrete samples from con-
tinuous, unobserved though nonrandom factor loading curves fk(·). Together, the
dynamic factors with their functional coefficients generate the forecastable part of
the time series of curves {xi(t)}.

In theory, the dynamic factors can follow any type of time series process such as
(V)ARIMA, but for the purpose of this paper we focus on factors which are inde-
pendent, stationary AR(p) processes. Although it is not necessary for the number
of lags p to be the same for each factor, as a matter of notational convenience we
simply define p = max {p1, . . . , pK} and use the appropriate placement of zeros.
The factors can include explanatory variables3 or just a constant. In the former
case, we have a 1 × d regressor vector Aik having the d × 1 coefficient vector μk .
Similarly, we let d = max {d1, . . . , dK}, but do retain the option for the regres-
sors themselves to differ among factors; thus, we continue to use the k subscript
per factor. Finally, for the model to be identified, we require that the functional
coefficients are orthonormal.4 The model is explicitly stated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(tj ) =
K∑

k=1

βikfk(tj ) + εi(tj ),

βik − Aikμk =
p∑

r=1

ϕrk(βi−r,k − Ai−r,kμk) + vik,

∫
T

fk(t)fl(t) dt =
{

1, if k = l,

0, otherwise,

(2.2)

with εi(tj ) ≡ εij
i.i.d.∼ N(0, σ 2), vik

i.i.d.∼ N(0, σ 2
k ) and E[vikεi′j ] = 0 for i, i′ =

1, . . . , n. Should we require only a constant in place of regressors, then Aikμk

is a scalar μk for all i. With the assumption of stationarity, this yields the con-
stant ck = μk(1 −∑p

r=1 ϕrk). This is a broad framework that includes the standard

3These could be economic indicators or seasonal effects, for example.
4Other types of constraints may be employed to ensure identification, such as conditions on the

covariance function of the factor loading curves.
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versions of both DFMs and FPCA models: when the coefficients {fk(t)} are non-
functional, model (2.2) reduces to the standard DFM; when the factors {βk} are
nondynamic, the model is similar to FPCA.

2.2. Estimation. With the error assumptions for model (2.2), we propose es-
timation via maximum likelihood (ML). To ensure smooth and functional esti-
mates for the factor loading curves, we augment the likelihood expression with
“roughness” penalties [Green and Silverman (1994)] and maximize a penalized
log-likelihood expression. Because our dynamic factors are unobserved, we con-
sider this a problem of missing data, and use the expectation maximization (EM)
algorithm [Dempster, Laird and Rubin (1977)] to estimate model parameters and
smooth curves.

2.2.1. Penalized likelihood. Let the n × m matrix X denote collectively the
observed data where the (i, j)th element of X is xij for i = 1, . . . , n, j = 1, . . . ,m.
Each row of X corresponds to a yield curve for a fixed date; each column represents
the time series of yield for a specific maturity. Next, we denote fkj = fk(tj ), the
m × 1 vector f′k = [fk1, . . . , fkm], and the factor loading curve matrix F as

F′ = [f1, . . . , fK ],
so that the rows of F are the transposed column vectors fk [this convention is
to conform with some standard factor analysis matrix notation; see Basilevsky
(1994), e.g.]. In a similar manner, we define βk = [β1k · · · βnk]′ and the ma-
trix Bn×K = [β1 · · · βK ]. Thus, the columns of B are the time series factors
β1, . . . ,βK . Then, the model (2.2) is represented in matrix form as

Xn×m = Bn×KFK×m + εn×m =
K∑

k=1

βkf′k + ε,(2.3)

where ε = [εij ]n×m with εij = εi(tj ).
Assuming the matrix of dynamic factors B is observable, the log-likelihood

expression can be obtained by successive conditioning of the joint distribution
for X and B:

l(X,B) = l(B) + l(X|B).(2.4)

Because we have assumed that the K factors of AR(p) series are independent,
their joint distribution is the product of the individual distributions. To each of
those, we further condition on the first p values of each factor time series; thus,
our likelihood (2.4) is a conditional one. For ease of notation we assume there are
no regressors in the factor time series. Then

l(B) = (n−p)

K∑
k=1

ln(2πσ 2
k )+

n∑
i=p+1

K∑
k=1

1

σ 2
k

(
βik − ck −

p∑
r=1

ϕrkβi−r,k

)2

,(2.5)
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and

l(X|B) = nm ln(2πσ 2) + 1

σ 2

n∑
i=1

m∑
j=1

(
xij −

K∑
k=1

βikfkj

)2

.(2.6)

To ensure the underlying factor loading curve fk(·) is smooth, following Green
and Silverman (1994), we introduce roughness penalties to (2.6) to obtain the fol-
lowing penalized log-likelihood:

lp(X,B) = l(B) + lp(X|B),
(2.7)

≡ l(B) +
[
l(X|B) +

K∑
k=1

λk

∫
[f ′′

k (t)]2 dt

]
.

The penalty parameter λk controls how strictly the roughness penalty is enforced,
and we allow it to differ for each loading curve (thus the “k” subscript). The se-
lection process for the penalty parameters is discussed in Section 2.5. We refer to
the latter term in equation (2.7), lp(X|B), as the penalized sum of squares (PSS).
Intuitively, optimization of PSS balances a familiar goodness-of-fit criterion with
a smoothness requirement for the resulting estimates of fk(t).

Below we assume the dynamic factors are known and discuss how to estimate
the AR model parameters and the smooth factor loading curves.

When the dynamic factors have no regressors the conditional MLEs for the
AR parameters ({σ 2

k , ck, ϕ1,k, . . . , ϕp,k}) are the same as the ordinary least squares
(OLS) solutions. In the case where the factors do have regressors, an additional
step is required to alternatively solve for the AR parameters {ϕ1,k, . . . , ϕp,k} and
the regressor coefficient vectors {μk}. The resulting solutions are the (feasible)
generalized least squares (GLS) solution; see Judge (1985) for a detailed discus-
sion. We do consider this general formulation in the simulation studies reported in
our online supplement; a brief discussion follows Section 4.

Now we discuss how to estimate the loading curves fk(t). In order to allow the
curves to have their own smoothness, through allowing different λk , we proceed
in a sequential manner to estimate fk(t) one at a time, incorporating penalty pa-
rameter selection for that loading curve through cross-validation, as discussed in
Section 2.5.

According to Theorem 2.1 of Green and Silverman (1994), for fixed k, the min-
imizer f̂k(·) of PSS is a natural cubic spline with knot locations t1, . . . , tm. Further,
this NCS interpolates the discrete vector f̂k which is the solution to the minimiza-
tion problem

min
fk

[l(X|B) + λkf′k�fk],(2.8)

where �m×m is a matrix determined solely by the spline knot locations; the explicit
formulation of � is deferred until Section 2.3.
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Let X ≡ vec(X) which stacks the columns of X into an nm × 1 vector. Then
using the Kronecker product ⊗, model (2.3) can be rewritten in vector form as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X = (F′ ⊗ In)β + vec(ε) =
K∑

k=1

(fk ⊗ In)βk + vec(ε),

X =
K∑

k=1

(βk ⊗ Im)fk + vec(ε).

(2.9)

The lattermost form facilitates a straightforward derivation of the optimal factor
loading curves. To see this, consider the solution f̂k for fixed k ∈ {1, . . . ,K} ≡ K.
For the remaining h ∈ K, we define X∗ = X − ∑

h �=k(βh ⊗ Im)fh. Then the mini-
mization problem (2.8) is equivalent to

min
fk

∥∥∥∥ 1

σ
X∗ − 1

σ
(βk ⊗ Im) · fk

∥∥∥∥
2

+ λkf′k�fk,(2.10)

where ‖ · ‖ is the Euclidean norm. Expanding the first term and differentiating with
respect to fk yields the solution

f̂k = 1

σ 2

[‖βk‖2

σ 2 Im + λk�

]−1

(Im ⊗ β ′
k)X

∗,(2.11)

or σ−2S(Im ⊗ β ′
k)X

∗ for S ≡ [‖βk‖2

σ 2 Im + λk�]−1; S ≡ S(λk). In Section 2.5 we
derive a generalized cross-validation (GCV) procedure for the selection of each λk .

2.2.2. EM algorithm. In the realistic situation that B is unobservable, we treat
it as missing data and resort to the EM algorithm for maximizing the observed data
log-likelihood. First, the EM is inaugurated with initial values for the factors and
factor loading curves. From these initial values, maximum likelihood estimates for
the remaining parameters from � are calculated based on equations (2.5), (2.6)
and (2.7); we call this Step 0. Then the algorithm alternates between the E-step
and the M-step. In the E-step, values for the factor time series are calculated as
conditional expectations given the observed data and current values for the MLEs.
In the M-step, MLEs are calculated for the factor loading curves and other param-
eters based on the factor scores from the conditional expectations in the E-step.
After the initial step, the E-step and the M-step are repeated until differences in
the estimates from one iteration to the next are sufficiently small. More details are
given below.

Step 0: Akin to the method used in Shen (2009), initial values for B are com-
posed of the first K singular values and left singular vectors from the singular value
decomposition (SVD) of the data matrix X. Initial values for F are the correspond-
ing right singular vectors. From these, initial parameter estimates are computed
for σ 2 and the set of factor parameters {σ 2

k , ck, ϕ1,k, . . . , ϕp,k}.
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The E-step: Derivation of the conditional moments for the E-step requires the
expressions of some of the unconditional moments. Define the n × n variance ma-
trix for βk as �k , and let c be the K ×1 vector with elements ck/[1− (

∑p
r=1 ϕr,k)].

Then, using equations (2.9),

E[β] ≡ μβ = c ⊗ 1n, E[X] ≡ μX = (F′ ⊗ In)μβ,

Var[β] ≡ �β = diag{�1, . . . ,�K},
(2.12)

Cov[β,X] ≡ �β,X = �β(F ⊗ In),

Var[X] ≡ �X = (F′ ⊗ In)�β(F ⊗ In) + σ 2Inm.

Next, using properties of multivariate normal random vectors, the conditional
distribution of β|X can be found. Let(

β

X

)
∼ N

[(
μβ

μX

)
,

(
�β �β,X

�X,β �X

)]
.

Then ⎧⎪⎪⎨
⎪⎪⎩

μβ|X ≡ E[β|X] = μβ + �β,X�−1
X (X − μX),

�β|X ≡ Var[β|X] = �β − �β,X�−1
X �X,β ,

E[ββ ′|X] = �β|X + μβ|Xμ′
β|X.

(2.13)

From a computational standpoint there is concern over the inversion of �X
which is of order nm. Because the EM is an iterative procedure, this could be
especially problematic. However, we can use the following result based on the
Sherman–Morrison–Woodbury factorization [Press et al. (1992), e.g.] to simplify
the computation:

PROPOSITION 2.1.

�−1
X = σ−2Inm − σ−4(F′ ⊗ In)[σ−2InK + �−1

β ]−1(F ⊗ In).(2.14)

A derivation of this result is included in our online supplement; the form of
the result is not so important as what it means. Instead of inverting �X directly,
which is an nm × nm matrix, only the middle matrix [σ−2InK + �−1

β ] needs to be
inverted. This matrix is of smaller size nK ×nK . Further, as �β is block diagonal,
then σ−2InK + �−1

β is as well. Thus, using this factorization, the inversion of �X
is reduced from an nm × nm inversion to K , n × n inversions.

With the conditional moments, the E-step of the EM posits that the missing
data (the time series factors) are replaced with the known values of the conditional
distribution given X. Thus, in the following M-step, in solving for the MLEs, ex-
pressions involving βk will utilize values from μβ|X, �β|X and E[ββ ′|X].

The M-step: For each EM iteration, the M-step optimizes the conditional pe-
nalized log-likelihood in equation (2.7) given the observed data and the current
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parameter estimates for �. It is clear from equations (2.5) and (2.6) that in the
MLEs, the factor time series appear either singly or in terms of cross products
both within and between factors. Values for terms like βik come directly from the
vector μβ|X. But because a term like βik′βhk , k, k′ = 1, . . . ,K , i, h = 1, . . . , n, is
a conditional expectation of a product, its replacement values are obtained from
the E[ββ ′|X] matrix. We will show in Section 2.5 some rather fortunate results to
simplify computation of the conditional expectation of the factor products.

The M-step, then, is just a matter of making these substitutions into the like-
lihood, and solving for the MLEs. After the M-step, we return to the E-step to
update the values for the factor time series. This procedure is repeated until the
parameter estimates from one iteration of the EM are sufficiently close to those of
the next.

2.3. Connection with natural cubic splines. We now explain the origin of the
penalty matrix � from equation (2.8) following Green and Silverman (1994). Let
hj = tj+1 − tj . For j = 1, . . . ,m, we define the banded matrix Qm×(m−2) with
columns numbered in a nonstandard way: elements qjj ′ denote the j = 1, . . . ,mth
row and j ′ = 2, . . . , (m − 1)st column of Q. These elements, in particular, for
|j − j ′| < 2, are given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1 − h−1
j , qj+1,j = h−1

j ,(2.15)

and are 0 otherwise. Further, we define the symmetric matrix R(m−2)×(m−2) with
elements rjj ′ ; j, j ′ = 2, . . . , (m − 1) such that rjj ′ = 0 for |j − j ′| ≥ 2 and other-
wise {

rjj = 1
3(hj−1 − hj ), for j = 2, . . . ,m − 1,

rj,j+1 = rj+1,j = 1
6(hj−1 − hj ), for j = 2, . . . ,m − 2.

(2.16)

Note that R is diagonal dominant and, thus, it is positive definite and invertible.
Let

� = QR−1Q′.(2.17)

The following result is based on Theorem 2.1 of Green and Silverman (1994).

PROPOSITION 2.2. For fixed k, the f̂k(·) optimizing PSS in (2.7) is a natural
cubic spline with knot locations at tj , and∫

[f ′′
k (t)]2 dt = f′k�fk.

A proof of Proposition 2.2 is included in our online Supplement.
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2.4. Forecasting and curve synthesis. Recall that the goal of our Functional
Dynamic Factor Model (FDFM) is to provide forecasts of an entire curve from an
observed time series of sampled curves. Once the FDFM has been estimated, it is
a straightforward exercise to do just this. Further, due to the functional nature of
the model, we are not restricted to forecasts for only the observed knot locations;
the natural cubic spline (NCS) results of Section 2.3 allow us to forecast to any
degree of fineness between knot locations. Indeed, Proposition 2.2 even allows
within sample imputation of an entire time series.

Forecasting is straightforward: for illustrative purposes, suppose we estimate
our FDFM with K factors following an AR(1) process with constants {ck},
k = 1, . . . ,K . Then the h-step ahead forecasted curve x̂n+h|n(t) is based on the
components of the forecast of the factor time series β̂n+h|n,k and the estimated
factor loading curves f̂k(t):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂n+h|n(t) =
K∑

k=1

β̂n+h|n,kf̂k(t),

β̂n+h|n,k = ĉk + ϕ̂kβ̂n+h−1,k =
h−1∑
r=0

ϕ̂r ĉk + ϕ̂h
k βnk.

(2.18)

The NCS result of Section 2.3 ensures that f̂k(t) is indeed a function rather than
a discrete set of points. Thus, we can interpolate f̂k(t) to any degree of fineness
between any two knot locations tj and tj+1.

Specifically, consider t ∈ [tj , tj+1]; j = 1, . . . ,m. We can compute values for an
entire time series {x̂1(t)}ni=1 because each f̂k(t) is an NCS. Denote γkj ≡ f ′′

k (tj ).
It can be shown [Green and Silverman (1994)]

f̂k(t) = (t − tj )fk,j+1 + (tj+1 − t)fkj

hj
(2.19)

+ 1

6
(t − tj )(tj+1 − t)

[(
1 + t − tj

hj

)
γk,j+1 +

(
1 + tj+1 − t

hj

)
γkj

]

for each k = 1, . . . ,K . For t < t1, or t > tm, the f̂k(t) is a linear extrapolation,
which may or may not perform well depending on whether the linearity assumption
beyond the boundary knots is suitable for the application of interest; we illustrate
this limitation in Section 3.3.2. Using this method together with equations (2.18),
we can just as easily impute and forecast at the same time, a result that enables,
for example, yield forecasts for bonds of maturities that have not been observed.

2.5. Computational efficiency. This section presents results intended to ease
some of the computational aspects of the estimation for the functional dynamic
factor model, the reason for this being that the EM algorithm is an iterative pro-
cedure and each iteration is rife with large matrix inversions and manipulations.
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Further, given the results of Section 2.2.1, we propose to sequentially solve for
each factor loading curve fk ; k = 1, . . . ,K . Finally, the smoothing parameter λk

needs to be selected in a data-adaptive manner for each k. Below, we present a
(generalized) cross-validation (GCV) procedure to achieve this. Efficient imple-
mentation allows us to easily evaluate the GCV score over many candidate values
of λk .

GCV selection: In general, cross-validation is based on sequentially leaving out
sections of the observed data, estimating a model for each “leave-out” and com-
puting some metric for how well the model predicts the left out sections. Although
a popular method for GCV in FDA is row/curve deletion, because the present set-
ting involves a dynamic system of curves, deletion of a curve removes an entire
time point from the data and destroys the time dependency structure. Therefore,
here, we pursue a GCV criterion based on a leave-out of each series or column.
In either sense, it is costly to re-estimate the model when each of m columns or n

rows of the data X are deleted, for each candidate value of λk and for each k. For-
tunately we have the following result that obviates re-estimation of the FDFM for
each column leave-out:

THEOREM 2.1. Let X∗ ≡ X−∑
h �=k βkf′k . Then the GCV criterion for each λk

based on column deletion is explicitly expressed by components of estimation on
the complete data:

GCV(λk) = ‖(Im − ‖βk‖2/σ 2S)(X∗)′βk‖2/m

[1 − tr(‖βk‖2/σ 2S)/m]2 .(2.20)

The proof of Theorem 2.1 is found in our online supplement. GCV(λk) is cal-
culated over a grid of possible values during the M-step of each EM iteration for
each factor loading curve. The smoothing parameter that corresponds to the least
value of GCV(·) is selected as the optimal one. It is worthwhile to note that this can
be a computationally intensive procedure: calculating GCV(λ) for several values
for λ during each EM iteration and for each factor. Criterion (2.20) depends on the

inversion of the matrix S−1 = [‖βk‖2

σ 2 Im + λk�]. Using the eigen-decomposition
of �, a method exists for which the only inversion required is the inversion of
a diagonal matrix. Consider the following proposition, the derivation of which is
included in our online supplement:

PROPOSITION 2.3. Given the eigen-decomposition of the m × m penalty ma-
trix � = ���′ with �m×m = diag{δj }mj=1, then

S(λk) = � · diag
{(‖βk‖2

σ 2 + λkδj

)−1}
�′,

and

tr{S(λk)} =
m∑

j=1

1

‖βk‖2/σ 2 + λkδj

.
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Thus, a single eigen-decomposition, followed by a diagonal matrix inversion for
each of the factors, circumvents performing an m × m inversion for each of the K

factors and each of the candidate values for λk .
Block diagonality: In the M-step, when products of the factors appear, such as

〈βk,βh〉 = E[〈βk,βh〉|X], then the imputation comes from the E[ββ ′|X] matrix.
It can be shown that �β|X is block diagonal; this property facilitates a rather con-
venient result regarding between-factor cross products (the derivation of this result
is found in our online supplement).

PROPOSITION 2.4. �β|X is block diagonal with K n × n blocks. Further, for
h �= k, E[〈βk,βh〉|X] = 〈μβk |X,μβh|X〉.

Therefore, the conditional expectation of a product of two (distinct) factors is
simply the product of their individual expectations. This greatly simplifies the
M-step calculations.

3. Application to yield curve data.

3.1. Yield curve data. In this section we consider the application of our func-
tional dynamic factor model to actual yield data. We use the same data set as
Diebold and Li (2006) which consists of a sample of monthly yields on zero
coupon bonds of eighteen different maturities (in months):

1.5,3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120,

from the period January 1985 through December 2000 (192 months), originally
obtained from forward rates provided by the Center for Research in Securities
Prices (CRSP), then converted to unsmoothed Fama–Bliss yield rates [see Fama
and Bliss (1987) for the conversion methodology].

3.2. The dynamic Nelson–Siegel model (DNS). In the following sections we
compare the FDFM with the DNS model presented in Diebold and Li (2006).
Their model is composed of three factors with corresponding factor loading curves.
The factor loadings are pre-specified parametric curves (see the dashed curves in
Figure 1) based on financial economic theory. Let xi(t) denote the yield at date i

on a zero coupon bond of maturity t , then the DNS model is represented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t) =
3∑

k=1

βi,kfk(t) + εi(t) for i = 1, . . . , n,

f1(t) ≡ 1, f2(t) ≡ 1 − exp(−αit)

αit
,

f3(t) ≡ f2(2) − exp(−αit),

βi,k = ck + ϕkβi−1,k + ζi,k for k = 1,2,3,

(3.1)
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FIG. 1. Example of factor loading curves: FDFM curves (solid, left axis) estimated from the period
May 1985 to April 1994; pre-specified DNS curves (dashed, right axis). FDFM estimates closely
resemble the shape of the DNS curves for the second and third factors, while the first FDFM factor
loading curve resembles a typical yield curve shape. Dual axes are used to account for difference in
scale: FDFM is represented on the left axis; DNS on the right axis.

evaluated at maturities tj , j = 1, . . . ,m. The first loading curve f1(t) is constant
and intended to represent the long-term component of yields (level); the second
f2(t) represents a short-term component, or slope. Finally, the third loading f3(t)

represents a mid-term component, or curvature. The parameter αi determines the
point t∗(αi) at which f3(t) achieves its maximum. While this can be estimated
as a fourth factor [see, e.g., Koopman, Mallee and Van der Wel (2010)], Diebold
and Li (2006) set αi to a fixed value for all i = 1, . . . , n. This results in entirely
predetermined, parametric curves. The specific value α = 0.0609 is determined by
their definition of “mid-term” as t = 30 months.

Estimation of the DNS model is a two-step procedure. First, time series of
factor scores of β̂i,k are estimated by ordinary least squares (OLS) of xi(tj ) on
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[1, f2(tj ), f3(tj )] for j = 1, . . . ,m at each time point i = 1, . . . , n. Second, an
AR(1) model is fit on each series β̂i,k for the purpose of forecasting β̂n+1,k and
ultimately x̂n+1(tj ) via equation (2.18) from Section 2.4.

3.3. Assessment. We assess the performance of the FDFM in three distinct ex-
ercises. The first two are traditional error based assessments of forecasts or within-
sample predictions of yield curves or sections thereof. The final application is a
combination of both forecasting and curve synthesis. Through an adaptation of the
trading algorithms introduced in Bowsher and Meeks (2008), we develop trading
strategies based on the forecasts of the FDFM and DNS models and assess the
resulting profit generated by each.

For each of these, as a comparison, we use the DNS specification aforemen-
tioned above in Section 3.2. For the purpose of making an unbiased comparison,
we use a similar formulation of our FDFM model with 3 factors following inde-
pendent AR(1) processes. The key distinction between this FDFM model and the
DNS model is that the FDFM estimates the model simultaneously: the smooth
factor loading curves and the AR(1) parameters are estimated in a single step.
In contrast, the estimation for the DNS model requires two steps given the pre-
specified factor loading curves: first the factor time series are estimated; from these
the AR(1) parameters are determined.

The key distinction between the two models raises an interesting question: How
do the factor loading curves between the two models compare? Figure 1, pan-
els (a)–(c), show an example of the factor loading curves estimated by the FDFM
(solid line) for the period May 1985 through April 1994. Pictured alongside, the
dashed line plots the DNS model curves. Recall the DNS motivation for the form
of f1, f2 and f3 was an economic argument, while the formulation of the FDFM
described in Section 2 is based entirely on statistical considerations. Despite this,
we see that the FDFM model is flexible enough to adapt to a specific application.
Factor loading curves f2(t) and f3(t) from the FDFM assume the behavior of
those from the DNS model without imposing any constraints that would force this.
Thus, the FDFM inherits the economic interpretation of f2(t) and f3(t) set forth in
Diebold and Li (2006). In the case of f1(t), the FDFM version resembles a typical
yield curve shape as opposed to a constant value for DNS; however, inspecting the
magnitude suggests that departure of the FDFM version from a constant value is
small. Less typical yield curve shapes are usually characterized by deviations in
the short and mid-term yields from the norm. This is exactly what f2(t), f3(t) and
their corresponding scores capture. Thus, we consider the first factor as the mean
yield, while the second and third account for short and mid-term deviations from
this norm.

3.3.1. Forecast error assessment. In this section we compare the FDFM and
DNS models using a rolling window of 108 months to forecast the yield curve 1,
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6 or 12 months ahead. For example, for the one month ahead forecast we fit the
models on the first 108 months of data and forecast the 109th month, then fit the
models on the 2nd through 109th month and forecast the 110th month, etc. Yields
on bonds of maturity less than three months are omitted in order to match the
methodology used in Diebold and Li (2006). To compare the models, we use the
mean forecast error (MFE), root mean squared forecast error (RMSFE) and mean
absolute percentage error (MAPE):

MFEj =
r∑

i=1

[xn+h(tj ) − x̂n+h(tj )]
r

,

RMSFEj =
√√√√ r∑

i=1

[xn+h(tj ) − x̂n+h(tj )]2

r
,

MAPEj = 100

r

r∑
i=1

|xn+h(tj ) − x̂n+h(tj )|
xn+h(tj )

,

where r = 84,79,73 is the number of rolling forecasts for forecast horizon h =
1,6,12, respectively.

A summary of the forecasting performance is shown in Table 1. For month
ahead forecasts, the MFE is lower (in magnitude) with the FDFM for four out of
the five displayed maturities (highlighted in bold), while RMSFE is lower for all
five. For six months ahead, DNS outperforms FDFM just 2 out of five times in both
MFE and RMSFE. For twelve month ahead forecasts, DNS outperforms FDFM in
MFE for 3 of 5 displayed maturities. However, FDFM has lower RMSE for all 5
maturities. In terms of MAPE, the FDFM exhibits lower MAPE than DNS nearly
uniformly for the displayed maturities and for 1, 6 and 12 month ahead forecasts.

3.3.2. Curve synthesis. Because each factor loading curve f̂k(·) is an NCS,
between any two observed maturities tj and tj+1, we can calculate the value for
f̂k(t). It follows, then, that between any two time series of yields {xi(tj )}ni=1 and
{xi(tj+1)}ni=1, we are able to replicate an entire time series for the intermediate
maturity t : {x̂i(t)}ni=1.

To illustrate this point, we use the entire data set (see introduction of Section
3), that is, use i = 1, . . . , n = 192 months of yield data for maturities tj , m = 18.
For both the DNS and FDFM models, we delete a set of adjacent time series from
the data, estimate the model, then assess the prediction error of the predicted se-
ries in reference to the actual deleted series. Specifically, for our data matrix Xn×m

with columns x1, . . . ,xm, we omit l = 1, . . . ,L consecutive columns from X, then
estimate the model on the remaining Q ≡ m − L maturities. From this we com-
pute the L time series of missing data: x̂j , . . . , x̂j+L; an example for the case where
L = 3 is shown in Figure 2. For each choice of L, we delete a “horizontally” rolling
window of width L maturities and estimate the model on the remaining Q maturi-
ties, R ≡ m − L + 1 times. As an example, for L = 3, we can estimate the models
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TABLE 1
MFE, RMSFE and MAPE: 1, 6 and 12 month ahead yield curve forecast results. The better result
between the two models is highlighted in bold. For 1 month ahead forecasts, the FDFM results in

lower (magnitude) MFE for most maturities, but results are mixed for 6 and 12 months ahead.
RMSFE and MAPE is typically lower with the FDFM for 1, 6 and 12 months ahead

1 month ahead 6 months 12 months

Maturity DNS FDFM DNS FDFM DNS FDFM

MFE
3 months −0.045 0.026 0.123 0.172 0.203 0.257
1 year 0.023 0.035 0.177 0.168 0.229 0.215
3 years −0.056 0.015 0.022 0.060 0.003 0.013
5 years −0.091 −0.004 −0.079 −0.021 −0.166 −0.133
10 years −0.062 −0.023 −0.139 −0.121 −0.316 −0.318

RMSFE
3 months 0.176 0.164 0.526 0.535 0.897 0.867
1 year 0.236 0.233 0.703 0.727 0.998 0.967
3 years 0.279 0.274 0.784 0.775 1.041 0.947
5 years 0.292 0.277 0.799 0.772 1.078 0.953
10 years 0.260 0.250 0.714 0.697 1.018 0.921

MAPE
3 months 2.58 2.50 8.21 8.11 12.99 12.05
1 year 3.37 3.30 10.25 10.29 12.70 12.08
3 years 3.79 3.77 11.68 11.33 14.16 12.71
5 years 3.88 3.81 11.94 11.42 14.93 13.41
10 years 3.24 3.24 10.49 9.99 14.22 13.22

FIG. 2. Example of curve synthesis: Entire time series of yields are omitted from estimation, then
“filled in” using the imputation described in Section 2.4. Here, 3 consecutive maturities have been
omitted, resulting in 3 missing time series corresponding to these maturities.
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TABLE 2
Average RMSFE; FDFM as a fraction of DNS: (a) with extrapolation (b) without extrapolation

(a) With extrapolation (b) Without extrapolation

Omitted Short Mid Long All Short Mid Long All

1 0.88 0.97 1.05 0.95 0.84 0.97 1.04 0.94
2 0.95 0.90 1.13 1.00 0.90 0.90 1.01 0.94
3 0.94 0.98 1.06 0.98 1.00 0.98 1.00 0.99
4 0.87 0.93 1.64 1.14 0.99 0.93 1.07 1.01

5 0.99 1.01 0.88 0.95 1.07 1.01 0.99 1.03
6 0.99 1.00 1.67 1.26 1.05 1.00 1.20 1.09
7 1.34 1.11 0.93 1.13 1.24 1.11 1.16 1.19
8 0.92 1.17 1.82 1.39 1.30 1.18 1.48 1.33

on x4, . . . ,xm and predict x̂1, . . . , x̂3; then estimate the models on x1,x5, . . . ,xm

and predict x̂2, . . . , x̂4, etc.
We examine the RMSFE for the lth omitted maturity of the r th sequence;

r = 1, . . . ,R; l = 1, . . . ,L. Because the models are estimated based on a rolling
window of maturities, for each choice of L a time series xj for yield tj will be
estimated multiple times. Therefore, for each choice of L we take the mean of
the RMSFE of the predicted series for each maturity. We further average over our
definitions of short (t ∈ [1.5,21)), mid (t ∈ [21,36]) and long-term (t ∈ (36,120])
horizons. Finally, we average over all maturities as a one-number summary. These
results are presented in Table 2 with FDFM as a fraction of DNS. Because predic-
tion for the FDFM model outside the range of the data is linear extrapolation,5 we
expect these to become increasingly inaccurate as L grows large. Thus, results are
also presented excluding extrapolated predictions in order to better illustrate the
truly functional predictions of the FDFM.

In general, as L increases from 1 to 8 we see the expected decline in the per-
formance of the FDFM model relative to DNS. In panel (a) of Table 2 the average
RMSFE on short-term bonds for the FDFM remains surprisingly robust as we
delete more and more maturities. On mid-term bonds, DNS results in lower pre-
diction error when the number of deleted series reaches 5 or more. For long term,
DNS more or less outperforms FDFM across the board (this trend will be echoed
in Section 3.3.3). These results are similar whether or not the extrapolated results
are included. Perhaps the best summary is the last column in each of panel (a)
and (b) of Table 2, where, beyond 3 or 4 omitted maturities, the parametric based
DNS model begins to outperform the FDFM.

5This is due to the NCS framework; see Section 2.3 for details.
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3.3.3. Portfolio-based assessment. RMSFE-type assessment provides a good
diagnostic measure of forecast performance from a statistical perspective. How-
ever, as Bowsher and Meeks (2008) argued in their paper, in applied economic
settings, a pure error-based assessment measure may fail to fully explain the finan-
cial implications of having used a particular model. Therefore, in this section we
consider an adaptation of the profit based assessment introduced therein. By using
modified versions of their three trading strategies, we create portfolios based on
the model forecasts, then measure the cumulative profit of the strategy. This also
serves as a good capstone exercise for our presentation of the FDFM, as it simul-
taneously involves both forecasting and curve synthesis: the primary uses for our
model.

In each strategy we use the same rolling window of 108 months as described
in Section 3.3.1 so that the trading algorithm is employed every month over the
course of 84 months. Each period i we create a portfolio consisting of a $1M
purchase of one bond or set of bonds and a corresponding sale of another bond or
set of bonds for the same amount. Therefore, the net investment per period is $0.
The decision of which bond to sell and which to buy is made based on the sign of
the predicted spread in their one period returns.

At time i + 1 we cash out our portfolio and record the cumulative profit over
the 84 month trading period. Denoting the yield at time i of a zero coupon bond of
maturity t months as xi(t), the price of the bond at time i is

Pi(t) = exp[−txi(t)].(3.2)

Correspondingly, the price the next period (month) is then Pi+1(t − 1) =
exp[−(t − 1)xi+1(t − 1)] since in the month that has elapsed the maturity is re-
duced by, not surprisingly, one month. We denote the one period return as

Ri+1(t) =
[
Pi+1(t − 1)

Pi(t)

]
− 1,(3.3)

and the log one period return as ri+1(t) ≡ ln[1 + Ri+1(t)]. Equations (3.2)
and (3.3) imply

ri+1(t) = txi(t) − (t − 1)xi+1(t − 1).(3.4)

Thus, for a forecasted yield x̂i+1|i (t) we have r̂i+1|i(t) = txi(t)− (t −1)x̂i+1|i (t −
1), which is a combination of both actual and forecasted yields. We use the data
presented in Section 3.1 and thus are limited to a set of nonconsecutive observed
maturities. Akin to Bowsher and Meeks (2008), we rely on linear interpolation of
xi(t − 1) to provide the yield for xi(t) and use the same random walk forecast
(RW) as a benchmark by which to compare models:

xi+1(t) = xi(t) + ηi+1(t), ηi+1(t)
i.i.d.∼ WN(0, ν2),(3.5)

with forecast x̂i+1|i(t) = xi(t).



FUNCTIONAL DYNAMIC FACTOR MODELS 889

ALGORITHM 1. For this strategy, we adopt the method used in the second
algorithm presented in Bowsher and Meeks (2008). Ours differs slightly since the
data we use (introduced in Section 3.1) does not contain the two month maturity.
Let T = {4,5, . . . ,13,16, . . . ,85}, t1 = 4 and t2,j ∈ T \ {4}; j = 1, . . . ,33. Every
period i we form a portfolio of sub-portfolios with two bonds {t1, t2,j }. Define
weights wj as the proportion of the historical absolute excess return on portfolio
{t1, t2,j } to the sum over all j of the same:

wj =
∑

i |Ri(t2,j ) − Ri(t1)|∑
j

∑
i |Ri(t2,j ) − Ri(t1)| ,

where i spans the period January 1985 to December 1993.
To borrow some notation from Bowsher and Meeks (2008), let dij represent

the investment rule for the amount at time i invested in each j th sub-portfolio. To
determine the amount invested in each sub-portfolio, let

dij = $1M × wj × sgn[r̂i+1|i(t2j ) − r̂i+1|i(t1)].
We set dij = 0 in the off chance of r̂i+1|i(t2j ) = r̂i+1|i(t1). Let πi+1 denote the
time i + 1 profit resulting from these rules. Then

πi+1 = ∑
j

dij [Ri+1(t2j ) − Ri+1(t1)] ≈ ∑
j

dij [ri+1(t2j ) − ri+1(t1)].

The results of this trading strategy are summarized in Table 3. Use of the FDFM
model results in nearly twice the cumulative profit produced from the DNS model.
Also shown is the capability of each model in successfully predicting the posi-
tive (1520) and negative (1252) actual spreads of the sub-portfolios in each period.
Surprisingly, the random walk model has the greatest accuracy in predicting posi-
tive spreads (84%), as compared to the FDFM (73%) and DNS (61%) models. All
three models are less accurate in the prediction of a negative spread, though RW is
the worst by far (8%).

TABLE 3
Algorithm 1: Weighted pairs. Use of the FDFM model results in nearly twice the cumulative profit

produced from the DNS model

Profit (×$1000) Directional accuracy of sub-portfolios

Percentile + −
Model Cumulative Median 10th 90th

FDFM 1089 5.06 −101.92 149.53 1102/1520 (72.5%) 392/1252 (31.3%)
DNS 519 5.07 −110.77 116.02 926/1520 (60.9%) 538/1252 (43%)
RW −94 −10.52 −190.5 163.64 1274/1520 (83.8%) 97/1252 (7.7%)
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ALGORITHM 2. The strategy in Algorithm 1 is a fairly basic one: to use every
available bond at our disposal to predict the spread between its return and a short-
term bond. Our second strategy is more sophisticated by creating portfolios of an
optimal pair of bonds each period i. Given a fixed value of t1, we choose t2i to
optimize the absolute spread in predicted return each trading period:

t2i = arg max
t �=t1

|r̂i+1|i(t) − r̂i+1|i(t1)|.(3.6)

This is an adaption of the third algorithm presented in Bowsher and Meeks
(2008). There, in a single exercise, the authors fix t1 = 3 and select t2i according
to equation (3.6) each trading period. Here, we examine multiple choices for t1
and determine t2i according to equation (3.6) each trading period for each choice of
fixed t1. Because we examine multiple portfolios, we use a sparser set of maturities
in this exercise than previously, though of the same range. This set is defined by
the observed maturities of Section 3.1:

t1, t2i ∈ T = {4,7,10,13,16,19,22,25,31,37,49,61,73,85}.
We perform this exercise for all choices of t1 and t2i as long as t1 < t2i , and com-
pare the results. Our investment rule di at time i and resulting profit πi+1 the next
period is of a similar form to Algorithm 1:

di = $1M × sgn[r̂i+1|i(t2i ) − r̂i+1|i(t1)],
πi+1 = di[Ri+1(t2i ) − Ri+1(t1)] ≈ di[ri+1(t2i ) − ri+1(t1)].

Again, we set di = 0 whenever r̂i+1|i(t2i ) = r̂i+1|i(t1).
The results of the strategy are shown in Table 4. When the choice of t1 is six

months or less, the DNS model generates greater cumulative profit than either of
the other models. However, when the choice of t1 is within 9 and 36 months, the
FDFM consistently generates significantly greater profit than the DNS and RW

TABLE 4
Algorithm 2: Optimal pairs portfolio

Profit (×$1000) Profit (×$1000)

t1 FDFM DNS RW t1 FDFM DNS RW

Short 3 1013 3574 −228 Mid 21 1246 202 680
6 1381 2828 −133 24 1592 242 70
9 1061 1013 −297 30 2284 203 −951

12 1873 −367 −307 36 1466 919 −173
15 1519 −582 −432 Long 48 −361 589 236
18 1081 −481 −263 60 740 339 −284

72 −131 −1 72
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models. Thus, when we are free to pick the bond that optimizes the predicted
spread each period, the FDFM performs rather well, provided the maturity of the
first bond is within a certain range. Our final strategy expands upon this idea.

ALGORITHM 3. Because the choice of the optimal second bond can vary from
one period to the next in Algorithm 2, it is not clear what a consistently good
combination is. Thus, for our third strategy we consider an exploratory and ex-
haustive approach as a diagnostic assessment of with which combination of bonds
our model excels. As such, we expand our set of bonds to include those of longer
maturity:

t1, t2 ∈ T = {4,7,10,13,16,19,22,25,31,37,49,61,73,85,97,109}.
In this modification of strategy 1 from Bowsher and Meeks (2008), the portfolio

is a simple one consisting of two bonds with maturities t1 and t2. For the duration
of the strategy, these maturities remain fixed over all periods i = 1, . . . ,84. As
before, the decision at time i of which bond to sell and which to buy is made based
on the predicted direction of the spread in log one period returns: di = $1M ×
sgn[r̂i+1|i(t2) − r̂i+1|i(t1)] [we set di = 0 whenever r̂i+1|i(t2) = r̂i+1|i(t1)]. This
yields the time i + 1 profit

πi+1 = di[Ri+1(t2) − Ri+1(t1)] ≈ di[ri+1(t2) − ri+1(t1)].
We examine the cumulative profit of all combinations of this type or portfolio such
that t2 > t1.

Figure 3 depicts the results of our final trading strategy. For each combination
of t2 > t1, the name of model with the largest cumulative profit is displayed in that

FIG. 3. Algorithm 3: All combinations of portfolios for t2 > t1. The model with the largest cumu-
lative profit is displayed by the first initial of its acronym with “+” or “−” indicating positive or
negative profit.
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cell by the first initial of its acronym (“F” for FDFM, e.g.). A “+” or “−” suffix
indicates the largest profit was positive or negative, respectively.

The FDFM model typically has the greatest profit when t2 ∈ {30, . . . ,72}. These
results are consistent with Sections 3.3.1 and 3.3.2: the FDFM was either compa-
rable or better on RMSFE for forecasting and for imputation on maturities in this
range. We also see a certain similarity in these results to those of Algorithm 2.
Namely, that the FDFM typically outperformed the other two models when t1 was
exactly in this range.

For the longest maturities (> 72), the DNS model results in greater profit when
t1 < 48. Results for other regions are mixed. Recall from Section 3.1 that in our
data short and mid-term yields are typically spaced either 3 or 6 months apart,
whereas long-term maturities are spaced 12 months apart. As we saw in Sec-
tion 3.3.2, as the spacing between maturities increased, the FDFM model even-
tually broke down; it is, after all, very much a data driven model. DNS, on the
other hand, maintains the same factor loading curves regardless of the data, which
could explain its greater profits at long maturities.

4. Conclusion and discussion. In this paper we developed a method for mod-
eling and forecasting functional time series. This novel approach synthesizes con-
cepts from functional data analysis and dynamic factor modeling culminating in
a functional dynamic factor model. By specifying error assumptions and smooth-
ness conditions for functional coefficients, estimation by the Expectation Maxi-
mization algorithm results in nonparametric factor loading curves that are natural
cubic splines. Thus, for a given time series of curves we can forecast entire curves
as opposed to a discrete multivariate time series.

The motivating application is yield curve forecasting, where existing ap-
proaches typically exhibit a trade-off of consistency-with-economic-theory and
goodness of fit. However, through multiple forecasting exercises we show that our
model satisfies both of these criteria. A further online supplement underscores
these results and also showcases the model’s viability to settings well outside of
economics and yield curve forecasting and where a prior theory does not exist.
Indeed, this exciting new class of models is fertile for further development and
application.

The present paper focuses on yields of zero coupon bonds. A particularly inter-
esting direction for future research is the extension of our modeling framework to
yields implied by commodities that include convenience factors. For example, see
Casassus and Collin-Dufresne (2005) and Chua et al. (2008). A potential difficulty
in this regard is the consistent control of multiple parameters: the commodity, the
maturity and the liquidity of said maturity, for example. Another interesting di-
rection of research is to develop nonlinear time series models for functional data;
existing approaches for nonlinear univariate time series modeling [see Fan and Yao
(2003), Section 1.5.4] may be helpful for that purpose.
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SUPPLEMENTARY MATERIAL

Simulation studies and technical proofs (DOI: 10.1214/12-AOAS551SUPP;
.pdf). The online supplement contains the following: (1) additional simulation
studies to further illustrate the advantages of our method; (2) detailed proofs of
Theorem 2.1 and Propositions 2.1–2.4.
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