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THE SCREENING AND RANKING ALGORITHM TO DETECT
DNA COPY NUMBER VARIATIONS1

BY YUE S. NIU AND HEPING ZHANG

University of Arizona and Yale University

DNA Copy number variation (CNV) has recently gained considerable
interest as a source of genetic variation that likely influences phenotypic dif-
ferences. Many statistical and computational methods have been proposed
and applied to detect CNVs based on data that generated by genome analy-
sis platforms. However, most algorithms are computationally intensive with
complexity at least O(n2), where n is the number of probes in the experi-
ments. Moreover, the theoretical properties of those existing methods are not
well understood. A faster and better characterized algorithm is desirable for
the ultra high throughput data. In this study, we propose the Screening and
Ranking algorithm (SaRa) which can detect CNVs fast and accurately with
complexity down to O(n). In addition, we characterize theoretical properties
and present numerical analysis for our algorithm.

1. Introduction. The problem of change-points detection has been studied
by researchers in various fields including statisticians, engineers, economists, cli-
matologists and biostatisticians since 1950s. We refer to Bhattacharya (1994) for
an overview of this subject. In this paper, we focus on a high dimensional sparse
normal mean model

Yi = μi + εi, 1 ≤ i ≤ n,(1.1)

where Y = (Y1, . . . , Yn)
T is a sequence of random variables, its mean μ =

(μ1, . . . ,μn)
T is a piecewise constant vector and the errors εi are i.i.d. ∼ N(0, σ 2).

A change-point in this model is a position τ such that μτ �= μτ+1. Assume that
there are J change-points 0 < τ1 < · · · < τJ < n. We are interested in the case
when n is large, and J is small. The goal is to estimate the number of change-
points, J, and the location vector τ = (τ1, . . . , τJ )T . Note that all positions are
potential candidates for a change-point, which makes the problem high dimen-
sional and hard to solve. However, the small J implies the sparse structure of the
model, which we can utilize to develop fast and efficient algorithms.
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1.1. Background. The main motivation of this project is to develop efficient
statistical techniques for DNA copy number variation (CNV) detection, for which
model (1.1) plays an important role, for example, Olshen et al. (2004), Huang
et al. (2005), Zhang and Siegmund (2007), Tibshirani and Wang (2008), among
others. The DNA copy number of a region is the number of copies of the genomic
DNA. CNV usually refers to deletion or duplication of a region of DNA sequences
compared to a reference genome assembly. Recent studies in genetics have shown
that CNVs account for a substantial amount of genetic variation and provide new
insights in disease association studies [Freeman et al. (2006), McCarroll and Alt-
shuler (2007)]. Identification of CNVs is essential in the systematic studies of un-
derstanding the role of CNV in human diseases. Over the last decade, efforts have
been made to detect DNA copy number variation with the help of significant ad-
vances in DNA array technology, including array comparative genomic hybridiza-
tion (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and
next-generation sequencing. We refer to Zhang et al. (2009) for a nice review of
these technologies. These various platforms and techniques have provided a large
amount of data that are rich in structure, motivating new statistical methods for
their analysis.

1.2. Current segmentation methods. Historically, the case that there is at most
one change-point in model (1.1) has been intensively studied. See Sen and Sri-
vastava (1975), James, James and Siegmund (1987), among others. The problem
of single change-point detection is equivalent to the following hypothesis testing
problem:

H0 :μ1 = · · · = μn, against,
(1.2)

H1 :μ1 = · · · = μj �= μj+1 = · · · = μn for some j.

Let Sk be the partial sum of observations
∑k

i=1 Yi . When Var(Yi) is known, a com-
monly used test statistic is the log likelihood ratio statistic

Tn = max
1≤j≤n−1

{(jSn/n − Sj )
2/[j (1 − j/n)]}.(1.3)

The log likelihood ratio test is usually satisfactory although the distribution of Tn

is quite complicated. We refer to Csörgő and Horváth (1997) for the theoretical
analysis of the log likelihood ratio test.

When there are multiple change-points, the problem is much more complicated.
Here we briefly review several popular approaches, including an exhaustive search
with the Schwarz criterion [Yao (1988), Yao and Au (1989)], the circular binary
segmentation method [Olshen et al. (2004), Venkatraman and Olshen (2007)] and
the �1 penalization method [Huang et al. (2005), Tibshirani et al. (2005), Tibshirani
and Wang (2008)].

To estimate J and τ , an exhaustive search among all possibilities 0 ≤ J̃ ≤ n−1
and 0 < τ̃1 < · · · < τ̃

J̃
< n can be applied, theoretically. Let τ̃ = (τ̃1, . . . , τ̃J̃

)T .
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For each candidate (J̃ , τ̃ ), the MLE for the variance, σ̂ 2
(J̃ ,τ̃ )

, can be calculated by

the least squares method. Yao (1988), Yao and Au (1989) applied the Schwarz cri-
terion, or the Bayesian Information Criterion (BIC), to estimate the number and
locations of change-points and showed the consistency of the estimate. In particu-
lar, the number of change-points is estimated as

Ĵ = argmin
J̃

n

2
log σ̂ 2

J̃
+ J̃ logn where σ̂ 2

J̃
= min

τ̃
σ̂ 2

(J̃ ,τ̃ )
.(1.4)

Once Ĵ is determined, the location estimator is defined as

τ̂ = argmin
τ̃

σ̂ 2
(Ĵ ,τ̃ )

.

Unfortunately, when n is large, these estimators are not attainable due to the com-
putational complexity. Braun, Braun and Müller (2000) employed a dynamic pro-
gramming algorithm to reduce the computational burden to the order of O(n2).
But it is still computationally expensive for large n.

An alternative approach is through the binary segmentation method, which ap-
plies the single change-point test recursively to determine all the change-points.
As pointed out in Olshen et al. (2004), one of the drawbacks is that the binary seg-
mentation can hardly detect small segments buried in larger ones. To overcome this
problem, Olshen et al. (2004) introduced a Circular Binary Segmentation (CBS)
method and applied it for CNV detection. Lai et al. (2005) compared 11 algorithms
on the segmentation in array CGH data and reported that CBS is one of the best.
However, they found that CBS was also one of the slowest algorithms. The compu-
tational complexity of these recursive algorithms are at least O(n2). Venkatraman
and Olshen (2007) proposed a faster CBS algorithm by setting an early stopping
rule. The improved algorithm works much faster in practice without loss of much
accuracy.

Another alternative to exhaustive searching is the �1 penalization approach.
Huang et al. (2005) studied the change-points detection problem via the follow-
ing optimization problem:

minimize ‖Y − μ‖2 subject to
∑
j

|μj − μj+1| ≤ s.(1.5)

Tibshirani and Wang (2008) applied the fused lasso [Tibshirani et al. (2005)] for
change-points detection, which

minimizes ‖Y − μ‖2 subject to
∑
j

|μj | ≤ s1,
∑
j

|μj − μj+1| ≤ s2.

They added one more constraint since they assume that μ itself is a sparse vector.
In fact, the simpler one of the above two, that is, (1.5), is equivalent to the lasso

after a reparametrization ξj = μj+1 − μj , j = 1, . . . , n − 1. The complexity of
the fastest algorithm to solve the lasso is at least O(n2) [Friedman et al. (2007)].
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See also recent developments on the fused lasso [Rinaldo (2009), Hoefling (2010),
Zhang et al. (2010), Tibshirani and Taylor (2011)].

We consider all aforementioned methods as global methods, in the sense that
they use all data points repeatedly in the process of determining change-points.
Consequently, the algorithms are usually computationally expensive. To the best
of our knowledge, the algorithms for the change-point detection that possess con-
sistency properties have the computational complexities in the order of O(n2) or
higher, although there are other algorithms that are shown to be fast numerically
but whose theoretical properties in consistency and computational complexities are
not well understood. As pointed out in Braun, Braun and Müller (2000), the con-
struction of efficient O(n) algorithms which scale up to large sequences remains
to be an important research topic.

Last but not least, it is worth mentioning that the PennCNV [Wang et al. (2007)]
is a fast and efficient algorithm to detect CNVs, although it is based on a different
model from (1.1).

1.3. An approach via local information. To detect the change-points, we need
to examine the sequence both globally and locally. Heuristically, there should ex-
ist a neighborhood around a change-point that contains sufficient information to
detect the change-point. For instance, it is unlikely for the value of Y10,000 to con-
tribute much information for detecting a change-point around the position 100.
Therefore, global methods mentioned in the last subsection may not be efficient.
By focusing on a local region, we can reduce the computational burden, especially
when the data set is huge. Based on this philosophy, we propose the Screening and
Ranking algorithm (SaRa), which is a powerful change-point detection tool with
computational complexity down to O(n).

Roughly speaking, the idea is to find a locally defined diagnostic measure D

to reflect the probability of a position being a change-point. By calculating the
measure D for all positions, which we call the screening step, and then ranking,
we can quickly find a list of candidates that are most likely to be the change-
points. In fact, such diagnostic measures have been proposed and used in related
literature, for example, Yin (1988), Gijbels, Hall and Kneip (1999). For example,
at a point of interest x, a simple diagnostic function is the difference of the average
among observations on the left-hand side and the right-hand side, that is, D(x) =∑h

t=1 Yj+1−t /h − ∑h
t=1 Yj+t /h. The larger |D(x)| is, the more likely that x is a

change-point. Note that, to calculate D(x), we need only the data points near the
position x. Therefore, the strategy through a local statistic can save a lot of time,
compared to global methods. Moreover, we will show that this fast algorithm is
also accurate by theoretical and numerical studies. In particular, the SaRa satisfies
the sure coverage property, which is slightly stronger than model consistency.

To summarize, the local methods are usually more efficient than global ones
to solve the change-points problem for high-throughput sequencing data, and it
is feasible to evaluate their computational and asymptotic properties. With these
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merits, we believe the local methods have been under utilized and deserve more
attention and development in solving change-points problems.

This paper is organized as follows. In Section 2 we introduce the screening and
ranking algorithm to solve the change-points problem (1.1). In Section 3 we study
the theoretical properties of the SaRa and show that it satisfies the sure coverage
property. Numerical studies are illustrated in Section 4. Proofs of theorems and
lemmas are presented in the supplementary material [Niu and Zhang (2012)].

2. The screening and ranking algorithm.

2.1. Model (1.1) revisited. In model (1.1), assume the mean of each variable
in the j th segment is βj , that is, μi = βj , for all integers i ∈ (τj , τj+1]. For clarity,
the errors εi are assumed to be i.i.d. N(0, σ 2) as before, although the normality
may be relaxed. Note that in some of the existing work, the step function μ is
defined as a left-continuous function on unit interval [0,1], and change-points 0 <

t1 < · · · < tJ < 1 are discontinuities of μ(x). Two notations are consistent with
convention μ( i

n
) = μi and tj = τj /n.

For 0 ≤ J < ∞, we refer to the Gaussian model (1.1) with J change-points as
MJ . After a reparameterization of βj = β0 + ∑j

l=1 δl , that is, δj = βj − βj−1,
j = 1, . . . , J , model MJ has parameters

θ = (β0, δ1, . . . , δJ , τ1, . . . , τJ , σ 2)

to be determined. Let τ = (τ1, . . . , τn) and δ = (δ1, . . . , δn) be the change-points
location vector and jump-size vector, respectively. The purpose is to estimate J as
well as the model parameter vector θ . Since n is large and J � n, the variance σ 2,
or an upper bound of σ 2, can be easily estimated. Once J and τ are well estimated,
β0 and δ can be estimated by the least squares method. In short, the main task is to
estimate the number of change-points J and the location vector τ .

Roughly speaking, to detect the change-points in model (1.1), the SaRa pro-
ceeds as follows. In the screening step, we calculate at each point x a local diag-
nostic function D(x) which depends only on the observations in a small neigh-
borhood [x − h,x + h]. In the ranking step, we rank the local maximum of the
function |D(x)| and the top Ĵ points τ̂1, . . . , τ̂Ĵ

will be the estimated change-

points, where Ĵ can be determined by a thresholding rule or Bayesian information
criterion.

In the following subsections, we describe the SaRa in detail.

2.2. Local diagnostic functions. We begin with the local diagnostic function
which is crucial in the SaRa. Roughly speaking, an ideal local diagnostic statistic
at a position, say, x, is a statistic whose value directly related to the possibility
that x is a change-point. For model (1.1), we first introduce two simple examples
of a local diagnostic statistic.
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An obvious choice is D(x) = ∑h
k=1 Yx+1−k/h − ∑h

k=1 Yx+k/h, for a fixed in-
teger h [Yin (1988)]. It is simply the difference between averages of h data points
on the left side and right side of x. Heuristically, consider the noiseless case in
which Y = μ is a piecewise constant vector. D(x) is simply a piecewise linear
function, whose local optimizers correspond to the true change-points. Obviously,
the quantity of D(x) reflects the probability that x is, or is near to, a change-point.

An alternative choice is the “local linear estimator of the first derivative,” stud-
ied in Gijbels, Hall and Kneip (1999). Intuitively, if we use a smooth curve to
approximate the true step function μ, the first derivative or slope of the approxi-
mation curve should be large around a change-point and near zero elsewhere. The
approximation curve as well as its first derivative can be calculated easily by local
polynomial techniques. Therefore, a local linear estimator of the first derivative is
a reasonable choice for the local diagnostic statistic.

In both examples above, the local diagnostic statistics are calculated as linear
transformations of data points around the position of interest. We may consider a
more general form of local diagnostic functions, which is the weighted average of
Yi ’s near the point of interest x,

D(x,h) =
n∑

i=1

wi(x)Yi,

where the weight function wi(x) = 0 when |i − x| > h.
In the first example, we have

wi(x) =
⎧⎨
⎩

1/h, 1 − h ≤ i − x ≤ 0,

−1/h, 1 ≤ i − x ≤ h,

0, otherwise.
(2.1)

To present the weight vector in a kernel, K(u), the weight can be chosen as
wi(x) = sgn(x+ 1

2 − i) ·Kh(i−x), where Kh(u) = h−1K(u/h). The equal-weight
case (2.1) is a special case corresponding to the uniform kernel K(u) = 1

2 ·1{|u|≤1}.
For the second example, at the point of interest x, the local linear estimator of

the first derivative is

D(x,h) =
n∑

i=1

wiYi,

where wi = 1
Sn,0Sn,2−S2

n,1
Kh(i − x)[Sn,0(i − x) − Sn,1], and Sn,l = ∑n

i=1 Kh(i −
x)(i − x)l, l = 0,1,2. Note that this is simply the local linear estimator for the
first derivative with kernel K(u) and bandwidth h. See Fan and Gijbels (1996) or
Gijbels, Hall and Kneip (1999). In the supplementary material [Niu and Zhang
(2012)], a class of more general local diagnostic statistics is introduced.

In all numerical studies within this paper, we use only the equal-weight diagnos-
tic function (2.1) for properly chosen h, because of the piecewise constant struc-
ture of the mean μ. In Section 2.5 we discuss the choices of weight and bandwidth
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in detail. From now on, we denote the diagnostic function by D(x,h) when h is
specified. When the context is clear, we may simply use D(x).

2.3. The screening and ranking algorithm. Given an integer h, the local di-
agnostic function D(x,h) can be calculated easily. Obviously, a large value of
|D(x,h)| implies a high probability of x being or neighboring a change-point.
Therefore, it is reasonable to find and rank the local maximizers of |D(x,h)|. To
be precise, we first define the h-local maximizer of a function as follows.

DEFINITION. For any number x, the interval (x − h,x + h) is called the h-
neighborhood of x. And, x is an h-local maximizer of function f (·) if f reaches
the maximum at x within the h-neighborhood of x. In other words,

f (x) ≥ f (x′) for all x′ ∈ (x − h,x + h).

Since we always consider the h-local maximizer of |D(x,h)|, we may omit h

when the context is clear. Let L M be the set of all local maximizers of the function
|D(x,h)|. We select a subset Ĵ = {τ̂1 < τ̂2 < · · · < τ̂

Ĵ
} ⊂ L M by a thresholding

rule

|D(τ̂ , h)| > λ.(2.2)

The index set, Ĵ , and Ĵ are the SaRa estimators for the locations and the num-
ber of change-points, respectively. A choice of the threshold λ by asymptotic anal-
ysis is given in Section 3. An alternative way to determine Ĵ is by a Bayesian-type
information criterion [Yao (1988), Zhang and Siegmund (2007)]. By ranking local
maximizers of |D(x)|, we get a sequence x1, x2, . . . with |D(x1)| > |D(x2)| > · · ·.
Plugging the first J̃ xi ’s into

BIC(J̃ ) = n

2
log σ̂ 2

J̃
+ J̃ logn,

where σ̂ 2
J̃

is the MLE of the variance assuming x1, . . . , xJ̃
are change-points.

Then Ĵ = argmin BIC(J̃ ) is the estimate for the number of change-points and
(τ̂1, . . . , τ̂Ĵ

) = (x(1), . . . , x(Ĵ )
) is the estimate for the location vector, where x(·) are

the order statistics of x1, . . . , xĴ
. The procedure for the modified BIC, proposed in

Zhang and Siegmund (2007), is the same as the BIC except using

mBIC(J̃ ) = n

2
log σ̂ 2

J̃
+ 3

2
J̃ logn + 1

2

J̃+1∑
i=1

log
(
x(i)/n − x(i−1)/n

)
,

where x(0) = 0 and x
(J̃+1)

= n.
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2.4. Computational complexity. One of the advantages of the SaRa is its com-
putational efficiency. To calculate the SaRa estimator, there are three steps: cal-
culate local diagnostic function D, find its local maximizers, and rank the local
maximizers. For the equal-weight case, it takes O(n) operations to calculate D,
thanks to the recursive formula

Dh(x + 1) = Dh(x) + (2Yx+1 − Yx−h+1 − Yx+h+1)/h.

Moreover, 2n comparisons are sufficient to find local maximizers of D. Note that
there are at most n/h of h-local maximizers by definition, which implies that only
O(n

h
log n

h
) operations are needed to rank these local maximizers. As h is sug-

gested to be O(logn) by asymptotic analysis, O(n
h

log n
h
) = O(n). In fact, by the

thresholding rule, we may not have to rank all the local maximizers, which can
save more time. Altogether, it takes O(n) operations to calculate the SaRa estima-
tor.

For the general case, the computational complexity is O(nh) = O(n logn).
Therefore, the SaRa is more efficient than the O(n2) algorithms.

2.5. The multi-bandwidth SaRa. In the SaRa procedure, involved are several
parameters such as bandwidth h, weight w and threshold λ. Although we give an
asymptotic order of these quantities in Section 3, it is desirable to develop a data
adaptive technique to determine their values.

Similar to other kernel-based methodologies, the choice of the kernel function,
or the weight, is not as crucial as the bandwidth. In this paper, since we consider
model (1.1) with piecewise constant mean μ, the equal-weight (2.1) performs well.
In some potential applications, when the mean μ is piecewise smooth, the local
linear estimator of the first derivative is more appropriate.

Choosing the optimal bandwidth is usually tricky for algorithms involving band-
widths. To better understand the bandwidth selection problem, let us look at the
local diagnostic statistic D(x) more carefully. In fact, D(x) is just a statistic used
to test the hypothesis

H0 : there is no change at x vs H1 : there is a change at x.

Consider the simplest case when there is no other change-point nearby. We have

D(x,h) ∼ N

(
δ,

2

h

)
,(2.3)

where δ is the difference between the means on the left and right of x. Obviously,
the larger the h is, the more powerful the test is. Therefore, when applying the
SaRa to detect change-points, we prefer to use long bandwidth for a change-point
at which the mean function jumps only slightly. However, when using a large band-
width, there might be other change-points in the interval (x −h,x +h). Then (2.3)
does not hold anymore. To lower this risk, we prefer small bandwidth, especially at
a point where the jump size is large. In summary, the bandwidth is of less concern
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when the change-points are far away from each other and the mean shifts greatly at
each change-point. Otherwise, we need to choose the bandwidth carefully. More-
over, the optimal bandwidths for various positions may be different. It is not an
easy task to determine the optimal bandwidth for each position when we do not
have any prior knowledge of change-points.

The choice of the threshold λ is easy if we know in advance that the jump sizes
are more than a constant c for all change-points or we target on only the change-
points where the mean shifts tremendously. Otherwise, the choice can be tricky. If
we do not use a uniform bandwidth for all points, we may have to use different
thresholding rules for different positions.

From the discussion above, we see that it is necessary to develop a data-adaptive
method for parameter selection to enhance the power of the SaRa. Here we propose
the multi-bandwidth SaRa, which can choose the bandwidth and threshold implic-
itly and data-adaptively for each change-point. The procedure of multi-bandwidth
SaRa is as follows. In Step 1, we select several bandwidths, say, h1, . . . , hK , and
run the SaRa for each of these bandwidths. We can use a conservative threshold,
say, λk = C

√
2/hkσ̂ with C = 2 or 3. Note that |D(x,hk)|, k = 1, . . . ,K , typi-

cally have different local maximizers, especially when the signal-to-noise ratio is
small. We collect these SaRa estimators which constitute a candidate pool with a
moderate size. In Step 2, we may apply the best subset selection with a BIC-type
criterion [Yao (1988), Zhang and Siegmund (2007)] to the candidate pool. For ex-
ample, (1.4) can be used to estimate the number and locations of change-points.
That is, the candidate pool has a much smaller size than n and can cover the true
change-points in the sense of Theorem 1 in Section 3. In practice, we recommend
a forward stepwise selection or backward stepwise deletion instead of the best
subset selection when the candidate pool is still big. For instance, to employ the
backward stepwise deletion method, we delete the elements one by one from the
candidate pool. At each step, we delete the one which leads to the least increase for
σ̂ 2 in (1.4). The procedure stops if n

2 log σ̂ 2
J + J logn stops decreasing, where J is

the size of the remaining candidate pool.
We may consider that the multi-bandwidth SaRa is a combination of local and

global methods. In the first step, the fast local method is employed to reduce the
dimensionality. In the second step, the global method is applied for accurate model
selection. Moreover, the second step also serves as a parameter selection tool for
the SaRa. For example, imagine the case that j = 100 is a change-point, and the
SaRa with bandwidths h = 10, 15 and 20 suggests 97, 99 and 105 as the estimates
of the change-point, respectively. The second step of the multi-bandwidth SaRa,
that is, the subset selection procedure with the BIC-type criterion, might suggest 99
as the change-point. In this case, the bandwidth is selected implicitly as 15. As a re-
sult, the multi-bandwidth SaRa behaves like the SaRa with the optimal bandwidth
at each change-point, which is also verified by the numerical studies. Note that we
can use the strategy of the multi-bandwidth SaRa for a single bandwidth h, which
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usually improves the performance. The reason is that the SaRa arranges the loca-
tion estimators in the order of magnitudes of the local diagnostic functions, while
the multi-bandwidth SaRa can rearrange the order using the best subset selection
by making use of global information, and, hence, the multi-bandwidth SaRa is
more reasonable in most cases. In this procedure, the threshold parameter is se-
lected implicitly for each position by the subset selection procedure.

The computation cost of Step 2 in the multi-bandwidth SaRa depends on the
size of the candidate pool, which is highly related to the true number of change-
points J . With J � n, the size of the candidate pool can be well controlled by
setting appropriate threshold λk . Thanks to the sequential structure of observations,
the backward stepwise selection can be employed for subset selection efficiently.
In applications when n is large, Step 2 will not increase the computation time
significantly.

In practice, we still have to choose bandwidths h1, . . . , hK for the multi-
bandwidth SaRa, although their values are not as crucial as the one in the original
SaRa. The choice of these bandwidths should depend on the applications, in which
certain information may be available. If not, a default setting of K = 3, h1 = logn,
h2 = 2 logn and h3 = 3 logn is recommended.

3. Sure coverage property. The main purpose of this section is to show that
the SaRa satisfies the sure coverage property. In other words, the union of intervals
Ĵ ± h selected by the SaRa includes all change-points with probability tending to
one as n goes to infinity. The nonasymptotic probability bound is shown as well.
It will also be clear that the sure coverage property implies model consistency of
the SaRa.

Let J = J (n) be the number of change-points in model (1.1). We denote the
set of all change-points by J = {τ1 < τ2 < · · · < τJ }. We assume τ0 = 0 and
τJ+1 = n for notational convenience. For simplicity, we assume that the noises
are i.i.d. Gaussian with variance σ 2. We will use the equally weighted diagnostic
function (2.1) with bandwidth h in this section, but all theorems can be easily ex-
tended for all weights in the family W , defined in the supplementary material [Niu
and Zhang (2012)]. We write Ĵ = Ĵh,λ, defined by the thresholding rule (2.2),
which depends on the choices of the bandwidth h and the threshold λ.

Define δ = min1≤j≤J |δj |, L = min1≤j≤J+1(τj − τj−1). Intuitively, when δ

and L are too small, no methods can detect all change-points. A key quantity for
detecting change-points is S2 = δ2L/σ 2. We assume

S2 = δ2L/σ 2 > 32 logn.(3.1)

THEOREM 1. Under Assumption (3.1), there exist h = h(n) and λ = λ(n)

such that Ĵ = Ĵh,λ = {τ̂1, . . . , τ̂Ĵ
} satisfies

lim
n→∞ P({Ĵ = J } ∩ {J ⊂: Ĵ ± h}) = 1,(3.2)
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where by J ⊂: Ĵ ± h we mean τj ∈ (τ̂j − h, τ̂j + h) for all j ∈ {1, . . . , J }. In
particular, taking h = L/2 and λ = δ/2, we have

P({Ĵ = J } ∩ {J ⊂: Ĵ ± h}) > 1 − 8S−1 exp{logn − S2/32}.(3.3)

REMARK 1. We believe Theorem 1 can be generalized to the non-Gaussian
case, although we may need a stronger condition than (3.1) in order to bound the
tail probability by Bernstein’s inequality. However, the theoretical results are likely
to be more complicated.

REMARK 2. We take h = L/2, λ = δ/2 and constant 32 in Assumption (3.1)
for clearer demonstration of our proof. Obviously the optimal constant in Assump-
tion (3.1) to make (3.2) hold depends on the choice bandwidth h, threshold λ as
well as the usually unknown true data generating process.

REMARK 3. If L = o(n) [e.g., in Assumption (3.1), δ and σ are constants, L

is of order logn], by Theorem 1, with probability tending to 1, we have Ĵ = J

and |τ̂i − τi | < h. In particular, |τ̂i/n − τi/n| → 0, which implies consistency
[in the sense of Yin (1988), Yao and Au (1989)] of the SaRa. In fact, the con-
clusion of Theorem 1 is slightly stronger than model consistency since it shows
|τ̂i/n − τi/n| → 0 uniformly with an explicit rate. Moreover, in the conventional
asymptotic analysis, it is usually assumed that J is fixed and τi/n → ti is constant
for each i, as n goes to infinity, which implies L/n → constant. Our asymptotic
setting (3.1) is more challenging but it incorporates L, δ and n better.

4. Numerical results.

4.1. Simulation I: Detecting for a single change-point. Although the SaRa, as
a change-point detecting tool, is designed for large data sets with multiple change-
points, we may also compare its power with classical methods in the conventional
setting. In this subsection, we consider the hypothesis testing problem (1.2) (with
a known variance) and compare the SaRa with the likelihood ratio test (1.3).

We assume Yi ∼ N(μi, σ
2) with known σ 2 in hypothesis testing problem (1.2).

Let n = 100. The maximum of the diagnostic function max1≤x≤99 |D(x,h)| can
serve as a test statistic and can be viewed as the simplest version of SaRa. We
consider only the equal weight case (2.1) for simplicity. We compare three test
statistics, the log likelihood ratio test statistic (1.3) and the SaRa with bandwidths
h = 10 and h = 15. We run 10,000 replications to get distributions of the three
test statistics under the null hypothesis. We control the type I error to the levels
α = 0.05 and 0.01, respectively, and examine the powers of the three tests when
the change-point locations are 10, 30, 50 and uniformly distributed, respectively.

In Figure 1, we see that the power increases as the Jump size to Standard de-
viation Ratio (JSR) increases. The likelihood ratio test is more powerful when the
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FIG. 1. Power comparison of the three tests under different Jump size to Standard deviation Ratios
(JSR), change-point locations (Lo) and type I errors (α). Black solid, red dashed and blue dotted
lines correspond to the likelihood ratio test, and SaRa with bandwidths 10 and 15, respectively. The
results are based on 10,000 replications.

change-point location is near the middle and less powerful otherwise. The tests
using the SaRa are robust with respect to the location since the diagnostic function
is locally defined. It is not surprising that the likelihood ratio test performs better
overall since the SaRa-based tests use information only within a small neighbor-
hood. However, we see that the SaRa-based tests perform well when the JSR is
greater than 1.5, and the SaRa with h = 15 outplays the likelihood ratio test when
the locations are far from the middle or random.

4.2. Simulation II: Sure coverage property. In this subsection we test the SaRa
on a simple but challenging example. Consider the situation when there is a
small CNV with length L buried in a very large segment with length n, where
L = O(logn). Explicitly, we assume the true mean vector μ = E(Y) satisfying
μi = 0 + δ · I{n/2<i≤n/2+L}. In other words, among all n positions, there are two
change-points located on the position n/2 and n/2 + L with jump sized δ and −δ.
The locations and the number of aberrations do not influence our method. We set
(n,L) = (400,12), (3000,16), (20,000,20) and (160,000,24), which satisfy ap-
proximately L ≈ 2 logn. We fix the jump size δ = 1 and assume that the noises are
i.i.d. N (0, σ 2) with σ = 0.5 and 0.25, so S2 ≈ 8 logn and 32 logn respectively.
We run the SaRa with the thresholding rule (2.2), taking h = 3

4L and λ = 3
4δ. We

list the simulation results in Table 1, based on the 1000 replications. We see that
the SaRa can estimate the number of change-points as well as their locations ac-
curately in the less noisy case. The two change-points can be detected with very
high probabilities and the estimated errors are very small with the average below
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TABLE 1
The estimated model sizes Ĵ and Sure Coverage Probabilities (SCP) of SaRa by the thresholding
rule under different settings (n,L) and noise levels σ . Column 3 lists the distribution and mean

value of the estimated number of change-points. Columns 4 and 5 list SCPs of two change-points as
well as mean distance between estimated change-point locations and true locations. The results are

based on 1000 replications

Number of change-points

(n,L) σ Ĵ = 2 <2 >2 Mean
Change-point 1

SCP (Mean)
Change-point 2

SCP (Mean)

(400, 12) 0.5 63.5% 11.7% 24.8% 2.175 91.3% (0.756) 91.3% (0.716)
0.25 98.2% 1.8% 0.0% 1.980 98.9% (0.129) 99.1% (0.119)

(3000, 16) 0.5 60.3% 8.3% 31.4% 2.306 92.8% (0.814) 93.4% (0.776)
0.25 98.1% 1.9% 0.0% 1.980 99.3% (0.118) 98.7% (0.129)

(20,000, 20) 0.5 60.2% 6.3% 33.5% 2.343 94.3% (0.862) 94.8% (0.841)
0.25 99.3% 0.7% 0.0% 1.993 99.5% (0.139) 99.8% (0.108)

(160,000, 24) 0.5 49.5% 5.0% 45.5% 2.599 95.8% (0.877) 95.0% (1.013)
0.25 99.5% 0.5% 0.0% 1.995 99.8% (0.096) 99.7% (0.148)

one and median at zero. Even in the noisy case, the two points can be detected
with very high probabilities, and the number of the false discovered change-points
is very small, at most 1 in most cases. The simulation results match our theory
perfectly.

4.3. Simulation III: An example in Olshen et al. (2004). This simulation ex-
ample, adapted from [Olshen et al. (2004)], is more complex and realistic. The true
data generating process is as follows:

Yi = μi + 0.25σ sin(aπi) + εi, i = 1, . . . , n,(4.1)

where the error term ε follows Gaussian distribution N(0, σ 2). The total num-
ber of markers n equals 497. There are six change-points along μ with position
τ = (137,224,241,298,307,331), μ0 = −0.18, and δ = (0.26,0.99,−1.6,0.69,

−0.85,0.53). A sinusoidal trend was added to mimic the periodic trend found in
the a-CGH data. The noise parameter σ was set to be one of 0.1 or 0.2, and the
trend parameter a ∈ {0,0.01,0.025} corresponds to none, long and short trends,
respectively. A simulated data set with σ = 0.2 and a = 0 is illustrated in Figure 2.
Among the six change-points, the ones at 137, 298 and 307 are more difficult to
detect, since the jump size at 137 is small, and the length of CNV between 298 and
307 is quite short.

We applied a few methods to the 1000 simulated data sets of 497 points. The first
method is the fast CBS algorithm by package DNAcopy [Venkatraman and Olshen
(2007)]. Since CBS is quite sensitive and may lead to many false positives, we also
tried the two-stage procedure CBS-SS, which employs subset selection (SS) with
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FIG. 2. Above: example of one Monte Carlo sample of simulation model (4.1) with σ = 0.2, a = 0;
bottom: the local diagnostic functions with bandwidth h = 9, with noise (blue dashed line) and
without noise (red solid line).

modified BIC [Zhang and Siegmund (2007)] to delete false positives. The second
method is the SaRa. We tried a few different bandwidths (h = 9, 15 and 21) to test
its performance. The model size was determined by the modified BIC, described at
the end of Section 2.3. We also applied the multi-bandwidth SaRa (m-SaRa). For
the m-Sara, we first used three bandwidths h = 9, 15 and 21 and chose the thresh-
old λ = 2

√
2/h · σ̂ for each h to select candidates. Then we applied the backward

stepwise deletion to get our final estimate from the set of candidates. (Applying the
best subset selection would be better but a little slower. There are about 20 candi-
dates.) The results for the noisy case (σ = 0.2) are illustrated in Table 2, which lists
the number of change-points detected by these methods under different trends. We
did not assume the noise variance is known, so all the variances in different sce-
narios were estimated. To estimate the variance, we first estimated the mean μi for
each point using a local constant regression. Then the variance can be estimated by
the residual sum of squares divided by n. We omitted the less noisy case σ = 0.1
since all methods performed well except the fast CBS, which produced a few false
positives. For σ = 0.2, the SaRa may underestimate the number of change-points
when the bandwidth is too large or too small. The SaRa with bandwidth h = 15
is better than CBS. h = 9 or h = 21 is not optimal since it is hard to detect the
first change-point with small bandwidth and it is difficult to detect the CNV be-
tween 298 and 307 with too large bandwidth. However, large bandwidth helps a
lot for the first change-point and small bandwidth gives a more accurate estimate
for the fourth and fifth change-points. It is not surprising that the multi-bandwidth
SaRa, which combines the power of all bandwidths, performs best in this complex
and noisy example. We also observed that the two-stage procedure CBS-SS can
improve the CBS by deleting false positives. The performances of CBS-SS and
m-SaRa are comparable.

In Table 3 we report the detection rate and average falsely discovered count
for the CBS-SS and m-SaRa. We use an aggressive criterion which considers the
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TABLE 2
Number of change-points detected by the CBS algorithm and SaRa

Number of change-points

σ Trend Method ≤5 6 7 8 >8

0.2 None fast CBS 0 872 88 39 1
0.2 None CBS-SS 2 998 0 0 0
0.2 None SaRa (h = 9) 166 639 150 36 9
0.2 None SaRa (h = 15) 42 901 51 6 0
0.2 None SaRa (h = 21) 157 833 10 0 0
0.2 None m-SaRa 0 998 2 0 0

0.2 Short fast CBS 0 678 194 101 27
0.2 Short CBS-SS 9 991 0 0 0
0.2 Short SaRa (h = 9) 220 584 156 37 3
0.2 Short SaRa (h = 15) 100 780 107 10 3
0.2 Short SaRa (h = 21) 350 586 60 4 0
0.2 Short m-SaRa 0 992 8 0 0

0.2 Long fast CBS 1 695 148 135 21
0.2 Long CBS-SS 6 991 3 0 0
0.2 Long SaRa (h = 9) 263 597 121 15 4
0.2 Long SaRa (h = 15) 101 840 53 6 0
0.2 Long SaRa (h = 21) 317 669 14 0 0
0.2 Long m-SaRa 0 960 40 0 0

change-point undetected if the estimation error is above 5. A location estimator
is falsely discovered if there is no true change-point within distance of 5. The
detection rates of two methods are similar. In the cases with trends, the multi-
bandwidth SaRa is slightly better.

4.4. Application to Coriel data. To test the performance of our algorithm, we
apply it to the Coriel data set which was originally studied by Snijders et al. (2001).

TABLE 3
Detection rates for each change-point and Average Falsely Discovered (AFD) Count

Trend Method CP1 CP2 CP3 CP4 CP5 CP6 AFD

None CBS-SS 92.8% 100% 100% 99.8% 99.8% 99.6% 0.076
None m-SaRa 90.6% 100% 100% 99.9% 100% 100% 0.097
Short CBS-SS 80.9% 100% 100% 99.1% 99.1% 100% 0.191
Short m-SaRa 83.0% 100% 100% 99.9% 100% 100% 0.179
Long CBS-SS 81.2% 100% 100% 99.7% 99.8% 97.1% 0.217
Long m-SaRa 87.1% 100% 100% 99.9% 100% 99.8% 0.172
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This is a typical aCGH data set, which consists of the log-ratios of normalized
intensities from the disease vs control samples, indexed by the physical location
of the probes on the genome. The goal is to identify segments of concentrated
high or low log-ratios. This well-known data set has been widely used to evaluate
CNV detection algorithms; see Olshen et al. (2004), Fridlyand et al. (2004), Huang
et al. (2005), Yin and Li (2010), among others. The Coriel data set consists of 15
fibroblast cell lines. Each array contains measurements for 2275 BACs spotted in
triplicates. There are 8 whole chromosomal alterations and 15 chromosomes with
partial alterations. All of these aberrations but one (Chromosome 15 on GM07801)
were confirmed by spectral karyotyping.

The outcome variable used for the SaRa algorithm was the normalized average
of the log2 ratio of test over reference. Note that in this data set there are only
three possible mean values corresponding to loss (monosomy), neutral and gain
(trisomy). However, we did not assume we know this fact in advance. We applied
the multi-bandwidth SaRa with h = 9, 15 and 21 directly to the data set, and used
the backward stepwise deletion with modified BIC to select change-points from
all candidates suggested by the SaRa. As a result, the multi-bandwidth SaRa iden-
tified all but two alterations (Chromosome 12 on GM01535 and Chromosome 15
on GM07081). For Chromosome 12 on GM01535, the region of alteration is rep-
resented by only one point and was hence difficult to detect. For Chromosome 15
on GM07081, our result agrees with Snijders et al. (2001) that there is no evi-
dence of an alteration from the data set. Our method also found a few alterations
that were not detected by spectral karyotyping. The multi-bandwidth SaRa sug-
gests that there might be CNVs on chromosomes 7, 11, 21 for GM00143, chro-
mosome 8 for GM03134, chromosomes 7, 21 for GM02948, and chromosome 11
for GM10315 (see Figure 3). And most of these additional CNVs are short aberra-
tions. They may be false positives or true ones that cannot be confirmed by spectral
karyotyping due to its low resolution. We also tried fast CBS to analyze this data
set and found that CBS selected more than 100 change-points. The result has been
listed in Yin and Li (2010), so we omit it here.

4.5. Application to SNP genotyping data. Due to the low resolution, aCGH
techniques are effective to detect only long CNVs of tens or hundreds of kilobases.
By recent studies [Conrad et al. (2006), McCarroll et al. (2006)], it has been shown
that short CNVs are common in the human genome. The genome-wide SNP geno-
typing arrays, which are able to assay half a million SNPs, improve the resolution
greatly and offer a more sensitive approach to CNV detection.

We illustrate the SaRa using SNP genotying data for a father–mother-offspring
trio produced by the Illumina 550K platform. The data set can be downloaded
along with the PennCNV package. The data consist of the measurements of a nor-
malized total signal intensity ratio called the Log R ratio, that is, calculated by
log2(Robs/Rexp), where Robs is the observed total intensity of the two alleles for
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FIG. 3. Estimated mean functions by the multi-bandwidth SaRa on four cell lines.

a given SNP, and Rexp is the expected intensity computed from linear interpola-
tion of the observed allelic ratio with respect to the canonical genotype clusters
[Peiffer et al. (2006)]. For each subject, the Log R ratios along Chromosomes 3,
11 and 20 are included in the data set. There are 37,768, 27,272 and 14,296 SNPs
in Chromosomes 3, 11 and 20, respectively. Similar to the aCGH data, the seg-
ments with concentrated high or low Log R ratios correspond to gains or losses of
copy numbers.

We employed the SaRa, multi-bandwidth SaRa, CBS, the fused lasso (FL) and
PennCNV to detect CNVs in this data set. We used R packages DNAcopy (version
1.14.0), cghFLasso (version 0.2-1) and free software PennCNV for the last three
algorithms. The SaRa and m-SaRa were implemented by the R program. For the
SaRa, we took h = 10 and λ = 2

√
logn ·√2/h · σ̂ . For the m-SaRa, we used three

bandwidths h = 10, 20 and 30 and the threshold λ = 3
√

2/h · σ̂ in the first step.
The backward stepwise selection with modified BIC was employed in the second
step.

The result for the offspring is listed in Table 4. The fused lasso and CBS de-
tected too many change-points, most of which are most likely to be false positives.
The performance of the SaRa and PennCNV are similar. In particular, the SaRa can
identify all 4 CNVs found by PennCNV as well as an additional one on Chromo-
some 20 from position 5,851,323 to 5,863,922 kilobase. It seems that the m-SaRa
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TABLE 4
Number of change-points detected for the offspring by different methods

SaRa m-SaRa CBS FL PennCNV

Chromosome 3 2 19 46 511 2
Chromosome 11 4 2 29 345 4
Chromosome 20 4 7 16 143 2

did not perform as well as the SaRa in this example. The reason is two-fold. First
of all, the signal to noise ratio (i.e., jump size to standard deviation ratio) is large
for this data set. Therefore, the simple SaRa works very well. Second, in the sec-
ond step of the m-SaRa, the modified BIC was employed for model selection. The
modified BIC assumes a uniform prior over the parameter space [Zhang and Sieg-
mund (2007)], which may not be satisfied since the CNVs are very short in this
example.

All computations were done on a 3.33 GHz Intel(R) Core(TM)2 Duo PC run-
ning the Windows XP operating system. It took about 16 s for the PennCNV to
show the result for all 3 subjects. So the computation time for each subject is about
5 s. All other algorithms were operated in R software. The computation time for
each algorithm is listed in Table 5. All algorithms are fast and practical. In partic-
ular, the SaRa is one of the fastest. Moreover, we observed that the computation
time for the SaRa increases linearly with the sample size.

Overall, the SaRa and PennCNV are the best among all algorithms. The fused
lasso and CBS mainly target on the aCGH data and may not be suitable for the SNP
genotyping data. The m-SaRa equipped with a proper Bayesian-type information
criterion is potentially useful. In the SaRa, we used h = 10 since it is known that
the CNVs are quite short. The thresholds were chosen by asymptotic analysis of
the extremal values of D(x). In fact, it was quite obvious when the local maximiz-
ers were ranked. For the offspring, there were only 10 local maximizers at which
the values of |D(x)| were larger than 0.57. The values of |D(x)| at other local
maximizers were less than 0.26.

It is surprising that the SaRa and PennCNV can give similar results since they
are based on different models. The advantage of PennCNV is that it can utilize

TABLE 5
Computation time (in seconds) for different methods

Number of SNPs SaRa m-SaRa CBS FL

Chromosome 3 37,768 1.63 8.93 63.28 3.10
Chromosome 11 27,272 1.16 2.64 34.05 1.79
Chromosome 20 14,296 0.61 1.67 17.37 0.66
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more information, that is, the finite states of copy numbers and the B Allele Fre-
quency (BAF) besides the Log R ratio. The value of the SaRa is its simplicity and
generality. The SaRa can be implemented easily and is potentially useful in other
multiple change-points problems.

5. Discussion. Motivated by copy number variation detection, many multiple
change-point detection tools have been invented and developed recently. However,
faster and more efficient tools are needed to deal with the high dimensionality of
modern data sets. Different from other approaches, we propose a screening and
ranking algorithm, which focuses on the local information. It is an extremely effi-
cient method with computational complexity down to O(n) and suitable for huge
data sets. Moreover, it is very accurate and satisfies the sure coverage property.
Note that, as far as we know, very few theoretical results have been developed for
multiple change-points detection tools. Besides the efficiency and accuracy, the
SaRa is easily implementable and extendable. For example, since only local infor-
mation is involved in the computation, it is easy to extend it to an on-line version,
which may be useful for financial data. In addition, we may use the SaRa for the
heteroscedastic Gaussian model when the variance is not constant. We can estimate
the variance using local information and take it into account when calculating lo-
cal statistics D(x,h). We should note, however, that both the implementation and
theory for the heteroscedastic variances will be more complicated and will require
further extensive effort. In the SaRa procedure, the choices of bandwidth h and
threshold λ are important. In applications, optimal choices of these parameters
may depend on the positions and jump-sizes of change-points. In this case, the
multi-bandwidth SaRa, which selects parameter implicitly and data-adaptively, is
practically useful. Knowledge about the data can be particularly useful in deter-
mining reasonable or meaningful gaps between change-points and and jump-sizes
at change points, which can prevent us from using poor choices of bandwidth h

and threshold λ.
The SaRa is a useful method for solving change-points problems for a high

dimensional sparse model such as (1.1) and can be generalized to solve more gen-
eral change-point problems. However, we should point out that the SaRa can be
improved for CNV detection since model (1.1) may not capture all the character-
istics of the CNV problem. For example, CNVs can be short. Then, it is better to
modify the SaRa accordingly to improve its power.

SUPPLEMENTARY MATERIAL

A description of general weight functions and technical proofs. (DOI:
10.1214/12-AOAS539SUPP; .pdf). The pdf file contains a description of general
weight functions and the proof of Theorem 1.

http://dx.doi.org/10.1214/12-AOAS539SUPP
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