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Abstract. We consider the hierarchical disordered pinning model studied in (J. Statist. Phys. 66 (1992) 1189–1213), which exhibits
a localization/delocalization phase transition. In the case where the disorder is i.i.d. (independent and identically distributed),
the question of relevance/irrelevance of disorder (i.e. whether disorder changes or not the critical properties with respect to the
homogeneous case) is by now mathematically rather well understood (Probab. Theory Related Fields 148 (2010) 159–175, Pure
Appl. Math. 63 (2010) 233–265). Here we consider the case where randomness is spatially correlated and correlations respect the
hierarchical structure of the model; in the non-hierarchical model our choice would correspond to a power-law decay of correlations.

In terms of the critical exponent of the homogeneous model and of the correlation decay exponent, we identify three regions. In
the first one (non-summable correlations) the phase transition disappears. In the second one (correlations decaying fast enough) the
system behaves essentially like in the i.i.d. setting and the relevance/irrelevance criterion is not modified. Finally, there is a region
where the presence of correlations changes the critical properties of the annealed system.

Résumé. Nous considérons le modèle hiérarchique d’accrochage sur une ligne de défaut inhomogène étudié dans (J. Statist.
Phys. 66 (1992) 1189–1213), qui possède une transition de phase de localisation/délocalisation. Dans le cas où le désordre est
i.i.d. (indépendant et identiquement distribué), la question de pertinence/non pertinence du désordre (i.e. de savoir si le désordre
change ou non les propriétés critiques du système par rapport au cas homogène) est maintenant bien comprise d’un point de vue
mathématique (Probab. Theory Related Fields 148 (2010) 159–175, Pure Appl. Math. 63 (2010) 233–265). Nous considérons ici
le cas où le désordre est corrélé spatialement, et où les corrélations respectent la structure hiérarchique du modèle; dans le cadre
non-hiérarchique, notre choix correspondrait à une décroissance en loi de puissance des corrélations.

En termes d’exposant critique du modèle homogène et d’exposant de décroissance des corrélations, nous identifions trois ré-
gions. Dans la première (corrélations non sommables), la transition de phase disparaît. Dans la deuxième (corrélations décroissant
suffisamment vite), le système se comporte essentiellement comme dans le cas i.i.d., et le critère de pertinence/non pertinence du
désordre n’est pas modifié. Enfin, il existe une région où le présence de corrélations change les propriétés critiques du système
annealed.
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1. Introduction

A fundamental problem in the study of disordered systems is to understand to what extent quenched (i.e. frozen) ran-
domness modifies the critical properties of a homogeneous (i.e. non-disordered) system. Basically, the first question
is whether the transition survives in presence of disorder that locally randomizes the thermodynamic parameter which
measures the distance from the critical point (e.g. for a ferromagnet T − Tc can be randomized by adding a random
component to the couplings Jij ). If yes, then one can ask whether the critical exponents are modified. The celebrated
Harris criterion [18] states that disorder is irrelevant (i.e. a sufficiently weak disorder does not change the critical
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exponents) if dν > 2, where d is the space dimension and ν is the correlation length critical exponent of the homoge-
neous model, while it is relevant if dν < 2. The case dν = 2 is called marginal and deciding between relevance and
irrelevance is a very model-dependent question.

Despite much effort, the Harris criterion is still far from having a mathematical justification. In the last few years,
the disordered pinning model [11,13] emerged as a case where the disorder relevance question can be attacked from
a rigorous point of view. This is a class of one-dimensional (d = 1) models, based on an underlying renewal process
with power-law inter-arrival distribution; the model lives in a random environment, such that the occurrence of a
renewal at step n is modified with respect to the law of the renewal by a factor exp(εn), where εn is a sequence of
i.i.d. random variables: if εn > 0 (resp. εn < 0) there is an energetic gain (resp. penalization) in having the renewal
at n. The pinning model exhibits a localization/delocalization phase transition when the average h := Eεn is varied,
and in the non-disordered case (β2 := Var(εn) = 0) the critical point hc and the critical exponent ν can be computed
exactly (ν depends only on the tail exponent of the renewal inter-arrival law). Thanks to a series of recent works,
the Harris criterion has been put on mathematical grounds on this case: it is now proven that, for β small, ν does
not change if it is larger than 2 [1,19,23] and it does change as soon as β �= 0 if ν < 2 [17]. For the pinning model,
the relevance/irrelevance question can be also asked in the following sense [9]: is the critical point of the disordered
model (quenched critical point) equal to the critical point of the annealed model, where the partition function is
replaced by its disorder average? It turns out that for β small the difference of the two critical points is zero if ν > 2
[1,23], while it behaves like β2/(2−ν) if ν < 2 [2,8]. In the marginal case ν = 2, relevance of disorder has also been
shown, though in the weaker sense that the difference between quenched and annealed critical points is non-zero (it
is essentially of order exp(−c/β2), as argued in [9] and proven in [15,16]). Recently, a variational approach to the
relevance/irrelevance question, based on a large deviation principle, has been proposed in [5].

Let us also add that, for the pinning model, the correlation length exponent ν should coincide with the exponent
governing the vanishing of the free energy at the critical point: F(h,β) � (h − hc(β))ν (this is proven in special
situations, e.g. [12,22], but it should be a rather general fact). In the rest of this work, ν will actually denote the free
energy critical exponent.

It is widely expected, on general grounds, that correlations in the environment may change qualitatively the Harris
criterion: in the case of a d-dimensional system where the correlation between the random potentials at i and j decays
as |i −j |−ξ , Weinrib and Halperin [24] predict that the Harris criterion is unchanged if ξ > d (summable correlations),
while for ξ < d the condition for disorder irrelevance should be ξν > 2.

The study of the random pinning model with correlated disorder is still in a rudimentary form. In [21] a case with
finite-range correlations was studied, and no modification of the Harris criterion was found. On the other extreme, in
the pinning model of [3] not only correlations decay in a power-law way, but potentials are so strongly correlated that
in a system of length N there are typically regions of size Nb , for some b > 0, where the εn take the same value. In
this case, the authors of [3] are able to compute the critical point and to give sharp estimates on the critical behavior
for β > 0. In particular, they find that an arbitrarily small amount of disorder does change the critical exponent,
irrespective of the value of the non-disordered critical exponent ν.

Hierarchical models on diamond lattices, homogeneous or disordered [4,6,7], are a powerful tool in the study of the
critical behavior of statistical mechanics models, especially because real-space renormalization group transformations
à la Migdal–Kadanoff are exact in this case. In this spirit, in the present work we consider the hierarchical version of
the pinning model introduced in the i.i.d. setting in [9] and later studied in [14,15]. The idea is to study a polymer
on a diamond hierarchical lattice, interacting with a one-dimensional defect line where the potentials εn are placed
(cf. [9], Sec. 4.2, and [14], Sec. 1.2, for more details on the relation with the non-hierarchical pinning model). Thanks
to the diamond structure, the partition function for a system of size 2n turns out to be expressed by a simple recursive
relation in terms of the partition functions of two systems of size 2n−1, cf. (2.1). At this point one can (as we will in
the following) forget about the polymer interpretation and just retain the recursion. As in the non-hierarchical case,
the system exhibits a localization/delocalization phase transition witnessed by the vanishing of the free energy when
h is smaller than a certain threshold value hc(β).

We consider the case where disorder is Gaussian and its correlation structure respects the hierarchical structure of
the model: the correlation between the potential at i and j is given by κd(i,j), where 0 < κ < 1 and d(i, j) is the tree
distance between i and j on a binary tree. The Weinrib–Halperin criterion in this context would say that disorder is
irrelevant if and only if ν log2(1/max(κ,1/2)) > 2 which for κ = 0 (no correlations) reduces to ν > 2 as for the i.i.d.
case. In terms of a parameter B ∈ (1,2) which defines the geometry of the diamond lattice, the criterion would read
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equivalently (cf. (2.21))

irrelevance ⇐⇒ max(κ,1/2) < B2/4. (1.1)

A closer inspection of the model, however, shows easily that the phase transition does not survive for κ > 1/2 (cf.
Section 4). When instead correlations are summable (which corresponds to κ < 1/2) we find, in agreement with (1.1),
irrelevance if B >

√
2 (see Theorem 3.3 and Proposition 6.1). As for B ≤ √

2, again we find agreement with the
Weinrib–Halperin criterion: disorder is relevant (see Proposition 3.5) and if in addition κ < B2/4, the model be-
haves like in the i.i.d. case as far as the difference between quenched and annealed critical points is concerned, see
Theorem 3.3. The crucial step (and the one which requires the most technical work) in proving Theorem 3.3 (and
Proposition 6.1) is to show that for κ < min(1/2,B2/4) the Gibbs measure of the annealed system near the annealed
critical point is close (in a suitable sense) to the Gibbs measure of the homogeneous system near its critical point (cf.
Theorem 3.1 and Proposition 3.2). This requires some work, in particular because the annealed critical point is not
known explicitly for κ �= 0. Once this is done, the proof of disorder relevance/irrelevance according to B ≶

√
2 can

be obtained generalizing the ideas that were developed for the i.i.d. model.
Finally, the region B2/4 < κ < 1/2,B <

√
2 reserves somewhat of a surprise: while we are not able to capture

sharply the behavior of the annealed model and of the difference between quenched and annealed critical points (as
we do for κ < min(1/2,B2/4), see Theorem 3.1, Proposition 3.2 and Theorem 3.3), we can prove that the annealed
model has a different critical behavior than the homogeneous model with the same value of B . In particular, the
contact fraction at the annealed critical point scales qualitatively differently (as a function of the system size) than
for the homogeneous model, see Equation (5.33). In view of Theorem 3.1 mentioned above, this means that if we fix
B <

√
2 and we increase κ starting from 0, at κ = B2/4 the annealed system has a “phase transition” where its critical

properties change. As we discuss in Section 4, this suggests that, while for κ < B2/4 the annealed free energy near
the annealed critical point ha

c(β) has a singularity of type (h − ha
c(β))ν and ν = log2 / log(2/B), for B2/4 < κ < 1/2

the annealed free energy should vanish as h ↘ ha
c(β) with a larger exponent.

Let us conclude by discussing how our results would presumably read for the correlated, non-hierarchical disor-
dered pinning model. If the disorder is Gaussian and correlations decay as |i − j |−ξ , then we should get the same
results as for the hierarchical model, provided that log2(1/κ) = ξ . In particular, if ξ < 1 (non-summable correlations)
there is no phase transition (the proof of Theorem 4.1 can actually be easily adapted), and the annealed system, well
defined if ξ > 1, would have a critical behavior different from the homogeneous one if 1 < ξ < 2/ν with ν the free
energy critical exponent of the homogeneous pinning model. As a side remark, let us recall that Dyson [10] used a
hierarchical ferromagnetic Ising model (which, at least formally, resembles very much our annealed pinning model,
cf. (3.2)) plus the Griffiths correlation inequalities, to derive criteria for existence of a ferromagnetic phase transition
for a non-hierarchical, one-dimensional Ising ferromagnet with couplings decaying as Ji−j ∼ |i − j |−ξ . We stress
that, in contrast, in our case there are no available correlation inequalities which would allow to infer directly results
on the non-hierarchical pinning model starting from the hierarchical one.

Let us now give an overview of the organization of the paper:

• In Section 2 we define the model and give preliminary results, in particular on the homogeneous case, and we state
our main results in Section 3;

• In Section 4 we discuss the case κ > 1/2, showing that the phase transition does not survive;
• In Section 5, we study in detail the annealed model, giving first some preliminary tools (Section 5.1), then looking

at the case κ < 1/2 ∧ B2/4 and proving Theorem 3.1 and Proposition 3.2 (Section 5.2), and finally focusing on the
case B2/4 < κ < 1/2 (Section 5.3);

• In Section 6 we prove disorder irrelevance for κ < 1/2,B >
√

2, and in Section 7 we prove disorder relevance for
κ < 1/2 ∧ B2/4,B ≤ √

2.
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2. Model and preliminaries

2.1. The hierarchical pinning model with hierarchically correlated disorder

Let 1 < B < 2. We consider the following iteration

Z
(i)
n+1 = Z

(2i−1)
n Z

(2i)
n + B − 1

B
(2.1)

for n ∈ N ∪ {0} and i ∈ N. We study the case in which the initial condition is random and given by Z
(i)
0 = eβωi+h,

with h ∈ R, β ≥ 0 and where ω := {ωi}i∈N is a sequence of centered Gaussian variables, whose law is denoted by P.
One defines the law P thanks to the correlations matrix K and note κij := E[ωiωj ]. We interpret Z

(i)
n as the partition

function on the ith block of size 2n.
In view of the recursive definition of the partition function, we make the very natural choice of restricting to a

correlation structure of hierarchical type. For p ∈ N ∪ {0} and k ∈ N, let

Ik,p := {(k − 1)2p + 1, . . . , k2p
}

(2.2)

be the kth block of size 2p . We define the hierarchical distance d(·, ·) on N by establishing that d(i, j) = p if i, j are
contained in the same block of size 2p but not in the same block of size 2p−1. In other words, d(i, j) is just the tree
distance between i and j , if N is seen as the set of the leaves of an infinite binary tree.

We assume that κij depends only on d(i, j) and for d(i, j) = p we write κij =: κp with κ0 = 1, κp ≥ 0 for every p.
Actually, we make the explicit choice

κp = κp for some 0 < κ < 1/2. (2.3)

We will see in Section 4 that the reason why we exclude the case κ ≥ 1/2 is that the model becomes less in-
teresting (there is no phase transition for the quenched model and the annealed model is not well defined). For
κ = 0, one recovers the model with i.i.d. disorder. We moreover stress that if κ > 0 such a Gaussian sequence is
not ergodic, actually its law is not even translation invariant. It has however the following property: if we define
ωIk,p

:= (ω(k−1)2p+1, . . . ,ωk2p ) (with Ik,p := {(k − 1)2p + 1, . . . , k2p}) we have that for all p ≥ 0, the variables
(ωIk,p

)k∈N have the same law.
It is standard that such a Gaussian law actually exists. An explicit construction can be obtained as follows. Let

I = {Ik,p,p ≥ 0, k ∈ N} and let {ω̂I }I∈I be a family of i.i.d. standard Gaussian N (0,1) variables, and note its law P̂.
Then one has the following equality in law:

ωi :=
∑

I∈I;i∈I

κ̂I ω̂I , (2.4)

where κ̂Ik,p
:= κ̂p := √

κp − κp+1 (just check that the Gaussian family thus constructed has the correct correlation
structure; the sum in the r.h.s. of (2.4) is well defined since

∑
p κ̂2

p = 1 < ∞).

We point out that all our results can be easily extended to the case where κ := limp→∞ |κp|1/p exists and is in
(0,1/2).

The quenched free energy of the model is defined by

F(β,h) := lim
n→∞

1

2n
logZω

n,h

P-a.s.= lim
n→∞

1

2n
E
[
logZω

n,h

]
, (2.5)

where Zω
n,h denotes Z

(1)
n (it is helpful to indicate explicitly the dependence on h and on ω, the dependence on β being

implicit to get simpler notations). The above definition is justified by the following theorem:
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Theorem 2.1. The limit in (2.5) exists P-almost surely and in L1(dP), is almost surely constant and non-negative.
The function F is convex, and F(β, ·) is non-decreasing. These properties are inherited from

Fn(β,h) := 1

2n
E
[
logZω

n,h

]
. (2.6)

Fn(β,h) converges exponentially fast to F(β,h), and more precisely one has for all n ≥ 1

Fn(β,h) − 1

2n
logB ≤ F(β,h) ≤ Fn(β,h) + 1

2n
log

(
B2 + B − 1

B(B − 1)

)
. (2.7)

We define also the annealed partition function Za
n,h := E[Zω

n,h], and the annealed free energy:

Fa(β,h) := lim
n→∞

1

2n
logE

[
Zω

n,h

]
. (2.8)

Proposition 2.2. The limit in (2.8) exists, is non-negative and finite. The function Fa is convex and Fa(β, ·) is non-
decreasing. These properties are inherited from

Fa
n(β,h) := 1

2n
logE

[
Zω

n,h

]
. (2.9)

Fa
n(β,h) converges exponentially fast to Fa(β,h), and more precisely one has for all n ≥ 1

Fa
n(β,h) − 1

2n
logB ≤ Fa(β,h) ≤ Fa

n(β,h) + O
(
(2κ)n

)
. (2.10)

Note that the error terms in the upper bounds in (2.7)–(2.10) are not of the same order.
Finiteness of the annealed free energy would fail if the correlations where not summable, i.e. if

∑
j κij = ∞, which

would be the case for κ ≥ 1/2.
The proof of Theorem 2.1 uses the classical convergence of Fn(β,h), plus a concentration inequality of

2−n logZ
β,h
n,h around its mean (see the proof below). The fact that F(β,h) < ∞ is a trivial consequence of Zω

n,h ≤
exp(

∑2n

i=1(β|ωi | + h)). The proof of Proposition 2.2 is postponed to Section 5.1.

Proof of Theorem 2.1. The convergence of the average Fn(β,h) is classical, and the proof is similar to the one of
Theorem 1.1 in [14]. Then, for any ε > 0, we define

Ψn,ε := P
(∣∣ logZ

ω,β
n,h − E logZ

ω,β
n,h

∣∣≥ ε2n
)
,

and we show that
∑

n∈N
Ψn,ε < ∞, so that we are able to use Borel–Cantelli lemma to prove the almost-sure conver-

gence in (2.5).
Let us briefly estimate Ψn,ε , recalling the following inequality for functions of a Gaussian vector ω̂ ∈ R

m of i.i.d.
standard N (0,1) with law P̂. If f : Rm → R is a function with Lipschitz norm L, then P̂(|f (ω̂) − Ê[f (ω̂)]| ≥ ε) ≤
2e−t2/(4L2).

We adapt the construction (2.4) for the (finite) vector ω(n) := {ωi}1≤i≤2n . Set I (n) := {Ik,p,p ∈ {0, . . . , n}, k ∈
{1, . . . ,2n−p}} (the set of blocks in a system of size 2n), with Ik,p defined in (2.2), and let ω̂(n) = {ω̂I }I∈I (n) be a
Gaussian vector of i.i.d. standard N (0,1) variables. Then, one has the following equality in law

ωi =
∑

I∈I (n),I�i

κ̂I ω̂I for all i ∈ {1, . . . ,2n
}
, (2.11)

where κ̂Ik,p
= κ̂p , with κ̂n = √

κn and κ̂p = √
κp − κp+1 for p < n (one only has to check that the vector constructed

as above has the right correlation structure).
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From this construction, we set f (ω̂(n)) := 2−n logZ
ω,β
N,h, and we remark that f is a function of Lipschitz norm L,

with L2 being bounded from above by

sup
ω̂(n)

∥∥∇f
(
ω̂(n)

)∥∥2 := sup
ω̂(n)

∑
I∈I (n)

∣∣∣∣ ∂f

∂ω̂I

∣∣∣∣2

= sup
ω

n∑
p=0

2n−p∑
k=1

β2

22n
Eω,β

n,h

[̂
κp

∑
i∈Ik,p

δi

]2

≤ β2

2n

n∑
p=0

2pκp. (2.12)

Therefore, the inequality mentioned above leads to Ψn,ε ≤ 2e−cst.ε2β−2(2∧1/κ)n , which is summable for all ε > 0 if
κ < 1. �

We can compare the quenched and annealed free energies, with the Jensen inequality:

F(β,h) = lim
n→∞

1

2n
E
[
logZω

n,h

]≤ lim
n→∞

1

2n
logE

[
Zω

n,h

]= Fa(β,h). (2.13)

The properties of Fa are well known in the non-correlated case, since in this case the annealed model is just the
hierarchical homogeneous pinning model (see the Section 2.3). We also have the existence of critical points for both
quenched and annealed models, thanks to the convexity and the monotonicity of the free energies with respect to h:

Proposition 2.3 (Critical points). Let β > 0 being fixed. There exist critical values ha
c(β),hc(β) such that:

• Fa(β,h) = 0 if h ≤ ha
c(β) and Fa(β,h) > 0 if h > ha

c(β),
• F(β,h) = 0 if h ≤ hc(β) and F(β,h) > 0 if h > hc(β).

One has −cκβ2 ≤ ha
c(β) ≤ hc(β) ≤ 0 for some constant cκ < ∞.

The inequality ha
c(β) ≤ hc(β) is a direct consequence of (2.13). The fact that ha

c(β) ≥ −cκβ2 is discussed af-
ter (3.2). The bound hc(β) ≤ 0 follows from F(β,h) ≥ F(0, h), which is proven in [11], Prop. 5.1 (the proof is
given there for the i.i.d. disorder model but it works identically for the correlated case, since it simply requires that
E(ωi) = 0).

In the sequel, we often write ha
c instead of ha

c(β) for brevity.

2.2. Galton–Watson interpretation and polymer measure

Let us take 1 < B < 2, and set Pn the law of a Galton–Watson tree Tn of depth n + 1, where the offspring distribution
concentrates on 0 with probability B−1

B
and on 2 with probability 1

B
. Thus, the mean offspring size is 2/B > 1, and the

Galton–Watson process is supercritical. We then have a random binary tree with a random subset of descendants and
we define the set Rn ⊂ {1, . . . ,2n} of individuals that are present at the nth generation (which are the leaves of Tn).

Recall the definition (2.2) of Ik,p , the kth block of size 2p , and of the hierarchical (tree) distance d(·, ·) introduced
in Section 2.1.

One has the useful following proposition.

Proposition 2.4 ([15], Proposition 4.1). For any n ≥ 0 and given a subset I ⊂ {1, . . . ,2n}, one defines T (n)
I to be the

subtree of the standard binary tree of depth n + 1, obtained by deleting all the edges, except those which link leaves
i ∈ I to the root. We note v(n, I ) the number of nodes of T (n)

I , with the convention that leaves are not counted as
nodes, while the root is. Then one has

En[δI ] = B−v(n,I ), (2.14)

where δI := ∏i∈I δi and where δi = 1 if the individual i is present at generation n (i.e. if i ∈ Rn), and δi = 0
otherwise. In particular En[δi] = B−n for every i ∈ {1, . . . ,2n}.
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Using the recursive structure of the Galton–Watson tree Tn, one can rewrite the partition function as

Z(i)
n = En

[
exp

(
2n∑

k=1

(βω2n(i−1)+k + h)δk

)]
, (2.15)

since it satisfies the iteration (2.1) and the correct initial condition Z
(i)
0 = exp(βωi + h). It is convenient to define

H
ω,(i)
n,h =

∑
k∈Ii,n

(βωk + h)δk (2.16)

as the Hamiltonian on the ith block of size 2n (we also write Hω
n,h for H

ω,(1)
n,h if there is no ambiguity). This allows to

introduce the polymer measure

dPω
n,h

dPn

:= 1

Zω
n,h

exp
(
Hω

n,h

)
. (2.17)

Remark 2.5. As in the pinning model [11], the critical point hc(β) marks the transition from a delocalized to a
localized regime. We observe that thanks to the convexity of the free energy, for a fixed β

∂hF(β,h) = lim
n→∞ Eω

n,h

[
1

2n

2n∑
k=1

δk

]
, (2.18)

almost surely in ω, for every h such that F is differentiable at h. This is the so-called average “contact fraction” under
the measure Pω

n,h. If h < hc(β), F(β,h) = 0 and the density of contact goes to 0: we are in the delocalized regime.
On the other hand, if h > hc(β), we have F(β,h) > 0, and there is a positive density of contacts: this is the localized
regime.

Such a remark applies also naturally to the annealed model.

2.3. Critical behavior of the pure model

It is convenient to set

S(i)
n =

∑
k∈Ii,n

δk (2.19)

to be the number of contact points on the block Ii,n, and write Sn = S
(1)
n if there is no ambiguity. We then have of

course S
(i)
n = S

(2i−1)
n−1 + S

(2i)
n−1.

The pure model is the model in which β = 0: its partition function is Z
pure
n,h = En[exp(hSn)] and we let F(h) denote

its free energy. It is well known that the pure model exhibits a phase transition at the critical point hc(β = 0) = 0:

Theorem 2.6 ([14], Theorem 1.2). For every B ∈ (1,2), there exist two constants c0 := c0(B) > 0 and c′
0 :=

c′
0(B) > 0 such that for all 0 ≤ h ≤ 1, we have

c0h
ν ≤ F(h) ≤ c′

0h
ν (2.20)

with

ν = log 2

log(2/B)
> 1. (2.21)

The exponent ν is called the pure critical exponent. Note that ν is an increasing function of B , and that we have
ν = 2 for B = Bc := √

2. We give other useful estimates on the pure model in Appendix A.
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3. Main results

In this section we frequently write ha
c instead of ha

c(β).

It turns out that the effect of correlations is extremely different according to whether κ < B2

4 ∧ 1
2 or not. In the

former case, our first result says that, the correlations decaying fast enough, the critical properties of the annealed
model are very close to those of the pure one.

First, let us write down more explicitly what Za
n,h = E[Zω

n,h] is. Note that the Gaussian structure of the disorder
is very helpful, to be able to give an explicit formula for the annealed partition function, only in terms of two points
correlations. The computation gives

Za
n,h = En

[
exp

((
β2

2
+ h

) 2n∑
k=1

δk + β2/2
n∑

p=1

κp

∑
1≤i,j≤2n

d(i,j)=p

δiδj

)]
=: En

[
eH a

n,h
]
. (3.1)

One easily realizes that

H a
n,h = h

2n∑
k=1

δk + β2

2

2n∑
i,j=1

κij δiδj =
(

β2

2
+ h

)
Sn + β2

n∑
p=1

κp

2n−p∑
i=1

S
(2i−1)
p−1 S

(2i)
p−1. (3.2)

In particular note that

(
h + β2/2

) 2n∑
k=1

δk ≤ H a
n,h ≤ (h + cκβ2) 2n∑

k=1

δk :=
(

h + β2

2

∑
p≥0

2p−1κp

) 2n∑
k=1

δk,

which together with the fact that hc(β = 0) = 0, implies −cκβ2 ≤ ha
c(β) ≤ −β2/2.

We also use the notation H
a,(k)
n for the “annealed Hamiltonian” on the kth block of size 2n

H
a,(k)
n,h = h

∑
l∈Ik,n

δl + β2

2

∑
i,j∈Ik,n

κij δiδj

and the following relation holds:

H a
n+1,h = H

a,(1)
n,h + H

a,(2)
n,h + β2κn+1S

(1)
n S(2)

n . (3.3)

If we set h = ha
c + u, so that the phase transition is at u = 0, one has

Za
n,h = En

[
exp(uSn)e

H a
n,ha

c

]= Za
n,ha

c
Ea

n,ha
c

[
exp(uSn)

]
, (3.4)

where

dPa
n,ha

c

dPn

:= 1

Za
n,ha

c

exp
(
H a

n,ha
c

)
. (3.5)

The measure Pa
n,ha

c
is the annealed polymer measure at the critical point ha

c.
We can finally formulate our first result:

Theorem 3.1. Let κ < B2

4 ∧ 1
2 . There exist some β0 > 0 and constants c1, c2 > 0 such that for every β ≤ β0 and

u ∈ [0,1], one has

−c2β
2
(

4κ

B2

)n

+ En

[
exp
(
e−c1β

2
uSn

)]≤ En

[
exp(uSn)e

H a
n,ha

c

]≤ En

[
exp
(
ec1β

2
uSn

)]
(3.6)
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so that, for any u ∈ [0,1],
F
(
e−c1β

2
u
)≤ Fa(β,ha

c + u
)≤ F

(
ec1β

2
u
)
. (3.7)

Theorem 3.1 is saying that the critical behavior of the annealed free energy around ha
c is the same as that of the

pure model around h = 0 (in particular, same critical exponent ν).
The essential tool is to prove that the measures Pn and Pa

n,ha
c

are close. This is the contents of the following
proposition:

Proposition 3.2. If κ < B2

4 ∧ 1
2 , then there exist some β0 > 0 and a constant c1 > 0 such that, for every β ≤ β0, for

any non-empty subset I of {1, . . . ,2n} one has(
e−c1β

2)|I |En[δI ] ≤ En

[
δI e

H a
n,ha

c

]≤ (ec1β
2)|I |En[δI ], (3.8)

where δI :=∏i∈I δi . The case I = ∅ is dealt with by Lemma 5.1 below, that says that the partition function at the
critical point approaches 1 exponentially fast:

e−c2β
2(4κ/B2)n ≤ Za

n,ha
c
≤ 1. (3.9)

Observe that (3.9) says that if κ < B2

4 ∧ 1
2 the partition function of the annealed model at ha

c is very close to that
of the pure model at its critical point h = 0 (which equals identically 1). We will see in Theorem 3.6 that (3.8) fails,

even for β > 0 small, if κ > B2

4 ∧ 1
2 .

With the crucial Proposition 3.2 in hand, it is not hard to prove that for κ < B2

4 ∧ 1
2 the Harris criterion for disorder

relevance is not modified by the presence of disorder correlations:

Theorem 3.3. Let κ < B2

4 ∧ 1
2 . Recall the value of the pure critical exponent ν = log 2/ log(2/B).

• If 1 < B ≤ Bc = √
2, then disorder is relevant: the quenched and annealed critical points differ for every β > 0,

and:
– if B < Bc , there exist a constant c3 > 0 such that for every 0 ≤ β ≤ 1

(c3)
−1β2/(2−ν) ≤ hc(β) − ha

c(β) ≤ c3β
2/(2−ν); (3.10)

– if B = Bc , there exist a constant c4 > 0 and some β0 > 0 such that for every 0 ≤ β ≤ β0

exp

(
− c4

β4

)
≤ hc(β) − ha

c(β) ≤ exp

(
− c−1

4

β2/3

)
. (3.11)

• If Bc < B < 2, then disorder is irrelevant: there exists some β0 > 0 such that hc(β) = ha
c(β) for any 0 < β ≤ β0.

More precisely, for every η > 0 and choosing u > 0 sufficiently small, F(β,ha
c(β) + u) ≥ (1 − η)Fa(β,ha

c(β) + u).

With some extra effort one can presumably improve the upper bound (3.11) to e−c−1
2 /β2

and the lower bound to
exp(−c2(ε)/β

2+ε) for every ε > 0, as is known for the uncorrelated case κ = 0 [15,16]. We will not pursue this line.

Remark 3.4. It is important to note that Theorems 3.1 and 3.3 do not require the knowledge of the value of ha
c (in

general there is no hope to compute it exactly). This makes the analysis of the quenched model considerably more
challenging than in the i.i.d. disorder case κ = 0, where it is immediate to see that ha

c(β) = −β2/2.

We mentioned in the Introduction that for the i.i.d. model one can prove that, when the free-energy critical exponent
ν of the homogeneous model is smaller than 2, such exponent is modified by an arbitrarily small amount of disorder
(more precisely, the result is that the exponent is at least 2 as soon as β > 0). The same holds for the model with
correlated disorder:
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Proposition 3.5. If κ < 1/2, for every B ∈ (1,2) there exists a constant c(B) < ∞ such that for all β > 0 and h ∈ R,
we have

F(β,h) ≤ c(B)

β2

(
h − hc(β)

)2
+. (3.12)

We restrict to κ < 1/2 since otherwise there is no phase transition.
We do not give here the proof of this proposition since, thanks to summability of the correlations, it is very similar

to the one for the i.i.d. hierarchical model [20].
In the case 1/2 > κ ≥ B2/4 correlations have a much more dramatic effect on critical properties and in particular

we expect them to change the value of the annealed critical exponent from the value ν = log 2/ log(2/B) to a larger
one. Partial results in this direction are collected in the following theorem, which shows that (some) critical properties
of the annealed model differ from those of the homogenous one.

Theorem 3.6. Let B2/4 < κ < 1/2 and β > 0. In contrast with (3.9), the partition function at the critical point does
not converge to 1. Rather, one has

n−1∏
p=0

Za
p,ha

c
≤ 1

β
√

κ

(
B

2
√

κ

)n

. (3.13)

Also, the average number of individuals at generation n at the critical point satisfies

Ea
n,ha

c
[Sn] = Ea

n,ha
c

[
2n∑
i=1

δi

]
≤ c(B)

β

1

κ(n+1)/2
. (3.14)

When proving Theorem 3.6 we will actually prove that the mth moment of Sn under Pa
n,ha

c
is at most of order

κ−mn/2. Therefore, with high probability Sn is much smaller than (2/B)n, which would be the order of magnitude of
Sn for κ < B2/4 ∧ 1/2, as can be deduced from Propositions 3.2 and 2.4.

In other words, if we fix B <
√

2 and we let κ grow but tuning h so that we are always at the annealed critical point,
there is a phase transition in the behavior of the finite-volume contact fraction when crossing the value κ = B2/4, cf.
also Fig. 1.

4. The case κ > 1/2

Restricting to the event where all the δn are equal to 1 and using Proposition 2.4, one sees that

Za
n,h ≥

(
1

B

)2n

exp

(((
h + β2/2

)+ β2/2
n∑

p=1

κp2p−1

)
2n

)
. (4.1)

Thus, we see that Fa(β,h) = ∞ unless

K∞ :=
∞∑

p=0

κp2p < +∞. (4.2)

For κ > 1/2, not only the annealed free energy is ill-defined. One can also prove that the quenched free energy is
strictly positive for every value of h ∈ R: the quenched system does not have a localization/delocalization phase
transition.

Theorem 4.1. If κ > 1/2, then F(β,h) > 0 for every β > 0, h ∈ R, so that hc(β) = −∞. There exists some constant
c5 > 0 such that for all h ≤ −1 and β > 0

F(β,h) ≥ exp
(−c5|h|(|h|/β2)log 2/ log(2κ))

. (4.3)
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Fig. 1. Overview of the qualitative behavior of the model. One takes κ < 1/2, otherwise neither annealed nor quenched model have any
phase transition. For κ < 1/2 ∧ B2/4 the annealed model exhibits the same critical behavior as the pure one, and so the critical exponent is
νa = ν = log 2/ log(2/B). Moreover, the measures Pn and Pa

n,ha
c

are similar (in the sense of Proposition 3.2) and the criterion relevance/irrelevance

of disorder is the same as in the i.i.d. disorder case: disorder is irrelevant for B > Bc := √
2, marginally relevant at B = Bc and relevant for B < Bc

(cf. Theorem 3.3). The region above the parabola κ = B2/4 remains to be understood, but partial results (Theorem 3.6) suggest that the critical
behavior of the annealed model is different from the one of the pure model, in particular the annealed critical exponent should be larger. Note that
disorder is proven to be relevant for all B < Bc , κ < 1/2 through the “smoothing result” of Proposition 3.5, showing that the quenched critical
exponent is strictly larger than the pure one.

The proof of hc(β) = −∞ can be presumably extended to the case κ = 1/2. To avoid technicalities, we do not
develop this case here.

Proof. In this proof (and in the sequel), we do not keep track of the constants c,C, . . . , and therefore they can change
from line to line.

The idea is to lower bound the partition function by choosing a suitable localization strategy for the polymer to
adopt, and to compute the contribution to the free energy of this strategy. This is inspired by what is done in [11],
Chapter 6, to bound the critical point of the random copolymer model. More precisely one gives a definition of a “good
block”, supposed to be favorable to localization in that the ωi are sufficiently positive, and analyses the contribution
of the strategy of aiming only at the good blocks. For κ > 1/2 (non-summable correlations), it is a lot easier to find
such large block (see Lemma 4.2 to be compared with the independent case). In this sense the behavior of the system
is qualitatively different from the κ < 1/2 case.

Clearly it is sufficient to prove the claim for h negative and large enough in absolute value. Let us fix some l ∈ N (to
be optimized later), take n > l and let I ⊂ {1, . . . ,2n−l}, which is supposed to denote the set of indices corresponding
to “good blocks” of size 2l . Then for any fixed ω, targeting only the blocks in I gives (a similar inequality was proven
in [20], see Eq. (3.7))

Zω
n,h ≥

(
B − 1

B2

)v(n−l,I)∏
k∈I

Z
ω,(k)
l,h , (4.4)

where v(n − l, In) is the number of nodes in the subtree T (n−l)

I defined in Proposition 2.4 and Z
ω,(i)
l,h is the partition

function on Ik,l , the ith block of size 2l , cf. (2.2). The term (B−1
B2 )v(n−l,I) is a lower bound on the probability that the

node 1 ≤ i ≤ 2n−l at generation n − l has at least one descendant at level n − l + 1 if and only if i ∈ I (see Fig. 2).
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Fig. 2. The strategy of aiming exactly at the good (colored) blocks is represented above. One first places the subtree T (n−l)
I , which is present with

probability (1/B)v(n−l,I) , and then forces all the leaves that do not lead to any good block (the hexagons in the figure) not to have any children,
which happens with probability larger than ((B − 1)/B)v(n−l,I) . The maximal amount of nodes that such a tree can contain is reached when all
the good blocks are all equally distant one from another, and is thus bounded as in (4.5).

It was shown in [20], Eq. (3.9), that

v(n, I) ≤ |I|(2 + n − l − ⌊ log2 |I|⌋) (4.5)

so that

1

2n
logZω

n,h ≥ 1

2n

∑
k∈I

logZ
ω,(k)
l,h − log

(
B2

B − 1

) |I|
2n

(
2 + n − l − ⌊ log2 |I|⌋). (4.6)

Let us fix h negative with |h| large and take l = l(h) ∈ N to be chosen later. Define then

A(k)
l := {for all i ∈ Ik,l, one has βωi + h ≥ |h|}, (4.7)

and

I(ω) = In(ω) := {1 ≤ k ≤ 2n−l : A(k)
l is verified

}
. (4.8)

One notices that for all k ∈ In one has Z
ω,(k)
l,h ≥ Z

pure
l,|h|, so that one gets from (4.6)

1

2n
logZω

n,h ≥ |In|
2n−l

1

2l
logZ

pure
l,|h| − log

(
B2

B − 1

) |In|
2n

(
2 + n − l − ⌊ log2 |In|

⌋)
. (4.9)

We also note pl := P(A(1)
l ), so that one has E|In| = 2n−lpl . Then, taking the expectation in (4.9), one has

1

2n
E logZω

n,h ≥ pl

1

2l
logZ

pure
l,|h| − c(B)pl2

−l (2 − log2 pl), (4.10)

where we applied Jensen’s inequality to E[|In| log2 |In|], since x �→ x logx is convex. Then, letting n go to infinity,
and provided that l is large enough so that 2−l logZ

pure
l,|h| ≥ 1

2F(|h|), one has P-a.s.

F(β,h) ≥ plF
(|h|)/2 − c(B)2−lpl(2 − log2 pl) ≥ pl

(
c|h| − c′2−l(2 − log2 pl)

)
, (4.11)

where we used that for |h| ≥ 1 one has F(|h|) ≥ const × |h|.
It then remains to estimate the probability pl .

Lemma 4.2. If κ > 1/2, there exist two constants c,C > 0 such that for every l ∈ N and A ≥ C
√

l one has

P
(∀i ∈ {1, . . . ,2l

}
,ωi ≥ A

)≥ c−1 exp
(−cA2(1/κ)l

)
. (4.12)
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From this lemma, and choosing l such that
√

l ≤ 2|h|/(Cβ), one gets that

pl = P
(∀i ∈ {1, . . . ,2l

}
,ωi ≥ 2|h|/β)≥ c−1 exp

(−cκ−lh2/β2). (4.13)

Then in view of (4.11) one chooses l = log(C̄|h|/β2)/ log(2κ) (this is compatible with
√

l ≤ 2|h|/(Cβ) if |h| is large
enough) so that c|h| − c′2−l(2 − log2 pl) ≥ c|h|/2 ≥ c/2 provided that C̄ is large enough. And (4.11) finally gives
with this choice of l

F(β,h) ≥ const × exp
(−cκ−lh2/β2)≥ const × exp

(−c′|h|(|h|/β2)log 2/ log(2κ))
. (4.14)

�

Proof of Lemma 4.2. First of all, note A = {∀i ∈ {1, . . . ,2l},ωi ≥ A}. We consider the measure P̄ on {ω1, . . . ,ω2l }
which is absolutely continuous with respect to P, and consists in translating the ωi ’s of 2A, without changing the
correlation matrix K . Then one uses the inequality

P(A) ≥ P̄(A) exp
(−P̄(A)−1(H(P̄|P) + e−1)), (4.15)

with H(P̄|P) the relative entropy of P̄ w.r.t. P. Note that P̄(A) = P(mini=1,...,2l ωi ≥ −A) = P(maxi=1,...,2l ωi ≤ A),
so that from the Claim 4.3 below, and using that A ≥ C

√
l, one has P̄(A) ≥ 1/2.

Claim 4.3. Let {ωi}i∈{1,...,2l} be a centered Gaussian vector of law P, with covariance matrix K such that all κij ≥ 0
and κii = 1. There exists a constant C > 0 such that

P

(
max

i=1,...,2l
ωi ≤ C

√
l
)

≥ 1/2. (4.16)

It follows from the classical Slepian’s lemma that if {ω̂i}i∈{1,...,2l} is a vector of i.i.d. standard Gaussian variables
(whose law is denoted P̂), then one has

E

[
max

i=1,...,2l
ωi

]
≤ Ê

[
max

i=1,...,2l
ω̂i

]
≤ c

√
l, (4.17)

where the second inequality is classical. Thus one gets

P

(
max

i=1,...,2l
ωi ≥ 2c

√
l
)

≤ 1

2c
√

l
E

[
max

i=1,...,2l
ωi

]
≤ 1/2. (4.18)

One is thus left with estimating the relative entropy H(P̄|P) in (4.15). A straightforward Gaussian computation
gives

H(P̄|P) = 2A2〈K−11,1
〉
,

where 1 is the vector whose 2l elements are all equal to 1. From Lemma B.1 one sees that 1 is an eigenvector of K ,
with eigenvalue λ := κ0 +∑l

p=1 2p−1κp ≥ const × (2κ)l , so that H(P̄|P) ≤ cA2(1/κ)l , which combined with (4.15)
gives the right bound. �

5. Study of the annealed model

Let us remark first of all that since κn ≥ 0, thanks to (3.3) one has H a
n+1,h ≥ H

a,(1)
n,h + H

a,(2)
n,h , and therefore

Za
n+1,h ≥ (Za

n,h)
2 + B − 1

B
. (5.1)

From this one deduces that Za
n,ha

c
≤ 1. Indeed, the map x �→ (x2 + (B − 1))/B has an unstable fixed point at 1, and

Za
n,ha

c
> 1 would imply that Fa(β,ha

c) > 0.
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5.1. An auxiliary partition function, proof of Proposition 2.2

It is very convenient for the following to introduce a modified partition function, both for the quenched case and for
the annealed one, defining

Z̄ω
n,h = En

[
exp
(
Hω

n,h + θβ2κn(Sn)
2)], with θ := κ

2(1 − 2κ)
(5.2)

and

Z̄a
n,h = E

[
Z̄ω

n,h

]= En

[
exp
(
H̄ a

n,h

)]
, (5.3)

with

H̄ a
n,h = H a

n,h + θβ2κn(Sn)
2. (5.4)

Note that θ vanishes for κ → 0 (no need of the auxiliary partition function for the non-correlated model) and that it
diverges for κ → 1/2, where the annealed model is not well-defined.

We also naturally define F̄a(β,h) := limn→∞ 2−n log Z̄a
n,h (the existence of the limit will be shown in the course of

the proof of Proposition 2.2) and, using δk ≤ 1, one gets that Za
n,h ≤ Z̄a

n,h ≤ eθβ2(4κ)nZa
n,h, so that F̄a(β,h) = Fa(β,h)

(recall we chose κ < 1/2). Similarly, if F̄(β,h) := limn→∞ 2−n log Z̄ω
n,h then F̄(β,h) = F(β,h).

Then, from (3.3), one gets that (recall κn = κn and (2.19))

H̄ a
n+1,h ≤ H

a,(1)
n,h + H

a,(2)
n,h + β2

2
κn+1(S(1)

n

)2 + β2

2
κn+1(S(2)

n

)2
+ 2θβ2κn+1(S(1)

n

)2 + 2θβ2κn+1(S(1)
n

)2
= H

a,(1)
n,h + θβ2κn

(
S(1)

n

)2 + H
a,(2)
n,h + θβ2κn

(
S(2)

n

)2 = H̄
a,(1)
n,h + H̄

a,(2)
n,h , (5.5)

where we used the self-explanatory notation H̄
a,(i)
n,h for the auxiliary Hamiltonian in the block Ii,n. We used the bounds

ab ≤ 1/2(a2 + b2) and (a + b)2 ≤ 2(a2 + b2) and then the definition of θ .
This gives in particular that

Z̄a
n+1,h ≤ (Z̄a

n,h)
2 + B − 1

B
, (5.6)

from which one deduces that Z̄a
n,ha

c
≥ 1 for all n ∈ N. Indeed, otherwise, for some n0 ∈ N one has Z̄a

n0,h
a
c
< 1, and

then one can find some h > ha
c such that Z̄a

n0,h
≤ 1, which combined with (5.6) gives that Z̄a

n,h ≤ 1 for all n ≥ n0.
Therefore one would have Fa(β,h) = F̄a(β,h) = 0, which is a contradiction with the definition of ha

c .

Proof of Proposition 2.2. One has from (5.1)

Za
n+1,h

B
≥
(

Za
n,h

B

)2

, (5.7)

and from (5.6) and the fact that Z̄a
n,h ≥ (B − 1)/B

KBZ̄a
n+1,h ≤ (KBZ̄a

n,h

)2 with KB = B2 + B − 1

B(B − 1)
. (5.8)

Therefore, the sequence {2−n log(Za
n,h/B)}n≥1 and {2−n log(KBZ̄a

n,h)}n≥1 are non-decreasing and non-increasing
respectively, so that both converge to a limit, Fa(β,h) and F̄a(β,h) respectively, but we have already remarked earlier
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in this section that Fa(β,h) = F̄a(β,h). One finally has

Fa(β,h) ≥ Fa
n(β,h) − 2−n logB,

(5.9)
Fa(β,h) = F̄a(β,h) ≤ F̄a

n(β,h) + 2−n logKB,

so that since F̄a
n(β,h) ≤ Fa

n(β,h) + θβ2(2κ)n, one gets the desired result. �

5.2. Proof of Theorem 3.1 and Proposition 3.2

The really crucial point is to prove that, provided that κ < B2

4 ∧ 1
2 , the annealed partition function (and the auxiliary

one Z̄a
n,h) at the annealed critical point converges exponentially fast to 1.

Lemma 5.1. If κ < B2

4 ∧ 1
2 then there exist some constant c2 > 0 and some β0 > 0 such that for any n ≥ 0 and every

β ≤ β0, one has

exp
(−c2β

2(4κ/B2)n)≤ Za
n,ha

c
≤ 1,

1 ≤ Z̄a
n,ha

c
≤ exp

(
c2β

2(4κ/B2)n).
Proof of Theorem 3.1 given Lemma 5.1 and Proposition 3.2 . We expand exp(uSn), to get

En

[
exp(uSn)e

H a
n,ha

c

]= ∞∑
k=0

uk

k! En

[
(Sn)

ke
H a

n,ha
c

]
. (5.10)

Thanks to Proposition 3.2, we have that for any k ≥ 1(
e−c1β

2)kEn

[
(Sn)

k
]≤ En

[
(Sn)

ke
H a

n,ha
c

]≤ (ec1β
2)kEn

[
(Sn)

k
]
, (5.11)

and with (5.10) we have then

En

[
exp(uSn)e

Hn,ha
c

]≤ Za
n,ha

c
+ En

[ ∞∑
k=1

(uec1β
2
)k

k! (Sn)
k

]
≤ En

[
exp
(
ec1β

2
uSn

)]
, (5.12)

where we used that Za
n,ha

c
≤ 1. We naturally get the other inequality in the same way

En

[
exp(uSn)e

Hn,ha
c

]≥ En

[
exp
(
e−c1β

2
uSn

)]− c2β
2
(

4κ

B2

)n

, (5.13)

where we used Lemma 5.1 to get that Za
n,ha

c
≥ 1 − c2β

2(4κ/B2)n. �

Remark 5.2. Using the same type of expansion, Proposition 3.2 gives more general results: for example, one can get

En

[
exp
(
e−pc1β

2
u(Sn)

p
)]− c2β

2
(

4κ

B2

)n

≤ En

[
e
H a

n,ha
c exp

(
u(Sn)

p
)]

,

En

[
e
H a

n,ha
c exp

(
u(Sn)

p
)]≤ En

[
exp
(
epc1β

2
u(Sn)

p
)]

. (5.14)

In the sequel, we refer to this remark to avoid repeating this kind of computation.

Before proving Proposition 3.2 and Lemma 5.1, we prove the following result, valid for any κ < 1/2. Given
I ⊂ {1, . . . ,2n} we say that I is complete if 2i − 1 ∈ I for some i ∈ N if and only if 2i ∈ I .
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Lemma 5.3. For every n ≥ 1, and any non-empty and complete subset I of {1, . . . ,2n}, one has(
n−1∏
p=0

Za
p,ha

c

)|I |
En[δI ] ≤ En

[
δI e

H a
n,ha

c

]
(5.15)

≤ En

[
δI e

H̄ a
n,ha

c

]≤ (n−1∏
p=0

Z̄a
p,ha

c

)|I |
En[δI ]. (5.16)

Note that if I = ∅, these inequalities are false, since Za
n,ha

c
≤ 1 ≤ Z̄a

n,ha
c
.

Proof of Lemma 5.3. As the two bounds rely on a similar argument, that is H a
n+1,ha

c
≥ H

a,(1)
n,ha

c
+ H

a,(2)
n,ha

c
in one case,

and H̄ a
n+1,ha

c
≤ H̄

a,(1)
n,ha

c
+ H̄

a,(2)
n,ha

c
in the other case, we focus only on the lower bound.

We prove it by iteration, the case n = 1 being trivial (the only non-empty complete subset is I = {1,2} and the
inequalities can be checked by hand). Now assume that the assumption is true for some n ≥ 1 and take I a non-empty
complete subset of {1, . . . ,2n+1}. We decompose I into two subsets I1 = I ∩ [1,2n] and I2 = I ∩ [2n + 1,2n+1] and
we define Ĩ2 to be the subset obtained by shifting I2 to the left by 2n. It is easy to realize that both I1 and Ĩ2 are
complete subsets of {1, . . . ,2n} and one has En+1[δI ] = 1

B
En[δI1]En[δĨ2

].
Now, using that H a

n+1,ha
c
≥ H

a,(1)
n,ha

c
+ H

a,(2)
n,ha

c
, one has

En+1
[
δI e

H a
n+1,ha

c

]≥ 1

B
En

[
δI1e

H a
n,ha

c

]
En

[
δĨ2

e
H a

n,ha
c

]
(5.17)

and two cases can occur.

(1) Ĩ2 = ∅, |I1| = |I | (or I1 = ∅, |Ĩ2| = |I |). Then, (5.17) plus the induction step gives

En+1
[
δI e

H a
n+1,ha

c

]≥ 1

B
En[δI1 ]En[δĨ2

]Za
n,ha

c

(
n−1∏
p=0

Za
p,ha

c

)|I |
. (5.18)

Since Za
n,ha

c
≤ 1, one has Za

n,ha
c
≥ (Za

n,ha
c
)|I |, and obtains the claim at level n + 1.

(2) I1, I2 �= ∅. In this case, from (5.17), the recurrence assumption directly gives

En+1
[
δI e

H a
n+1,ha

c

]≥ 1

B
En[δI1 ]En[δĨ2

]
(

n−1∏
p=0

Za
p,ha

c

)|I1|+|I2|
. (5.19)

This gives the result at level n + 1, using that |I | = |I1| + |I2|, and bounding again Za
n,ha

c
≤ 1. �

Proof of Proposition 3.2. Given I ⊂ {1, . . . ,2n}, let I ′ be the smallest complete subset of {1, . . . ,2n} that contains I ,
and note that |I ′| ≤ 2|I |. Note that

En

[
δI exp

(
H a

n,ha
c

)]= En

[
δI ′ exp

(
H a

n,ha
c

)]
, En[δI ] = En[δI ′ ],

simply because of the offspring distribution of the Galton–Watson tree: if the individual 2i − 1 is present at gener-
ation n, so is the individual 2i. This immediately implies that the statement of Lemma 5.3 holds for every I (not
necessarily complete), if |I | is replaced by 2|I |.

Then, Lemmas 5.3 and 5.1 imply Proposition 3.2 with c1 = 2c2
∑∞

p=0(
4κ

B2 )n = 2c2
B2

B2−4κ
. �
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Fig. 3. Decomposition of a non-empty complete set I into two subsets I1 and I2. If I is non empty, the first generation must be non-empty (this
has probability 1/B). Conditionally on this, the occurrence of I1 and I2 are independent events.

Proof of Lemma 5.1. One would like to use a result analogue to Proposition 3.2 to bound Z̄a
n,ha

c
= En[eH a

n,ha
c ×

exp(θκn(Sn)
2)]. So we first prove a weaker upper bound. The proof relies strongly on the pure model estimates

presented in Appendix A, which show that the term θκn(Sn)
2 in Z̄a

n,ha
c

has little effect if κ < B2

4 ∧ 1
2 .

Take ϕ := (2κ) ∨ 4κ

B2 < 1 and C the constant c associated to A = 1 in Corollary A.4, and fix some β ≤ β0, with

β0 := (
∏∞

p=0 eC(p+2)ϕp
)−2 ≤ 1. We prove iteratively on n that for all subsets I of {1, . . . ,2n} one has

En

[
δI e

H a
n,ha

c

]≤ (xn)
|I |En[δI ], with xn :=

n∏
p=0

eC(p+1)βϕp

. (5.20)

Note that with our choice of β0 one has (xn)
2 ≤ β−1

0 for all n ≥ 0.
The case n = 0 is trivial (just use that ha

c ≤ −β2/2, as discussed after (3.2)). Now assume that (5.20) is true for
some n ≥ 0 and take I a subset of {1, . . . ,2n+1}.

If I = ∅, then we simply use that Za
n,ha

c
≤ 1. If I �= ∅ decompose it as in the proof of Lemma 5.3 into two

subsets I1, I2 and let Ĩ2 be obtained by translating I2 to the left by 2n, so that En+1[δI ] = 1
B

En[δI1]En[δĨ2
] (see

Fig. 3). Then, from the iteration (3.3) on H a
n,h one has

H a
n+1,ha

c
≤ H

a,(1)
n,ha

c
+ β2

2
κn+1(S(1)

n

)2 + H
a,(1)
n,ha

c
+ β2

2
κn+1(S(2)

n

)2
, (5.21)

so that one gets

En+1
[
δI e

H a
n+1,ha

c

] ≤ 1

B
En

[
δI1e

H a
n,ha

c exp

(
β2

2
κn+1(Sn)

2
)]

× En

[
δĨ2

e
H a

n,ha
c exp

(
β2

2
κn+1(Sn)

2
)]

. (5.22)

Now one can use the inductive assumption to estimate each part of (5.22). Expanding the exponential term and
recalling that β0(xn)

2 ≤ 1, one has for instance

En

[
δI1e

H a
n,ha

c exp

(
β2

2
κn+1(Sn)

2
)]

=
∞∑

k=0

(β2κn+1/2)k

k! En

[
δI1e

H a
n,ha

c (Sn)
2k
]

≤
∞∑

k=0

(xn)
|I1|+2k (β2κn+1/2)k

k! En

[
δI1(Sn)

2k
]

(5.23)



798 Q. Berger and F. L. Toninelli

≤ (xn)
|I1|En

[
δI1e(xn)2(β2/2)κn+1(Sn)2]

≤ (xn)
|I1|En

[
δI1e(βκ/2)κn(Sn)2]

.

We now use Corollary A.4 to get that

En

[
δI1e(βκ/2)κn(Sn)2]≤ exp

(
C

βκ

2
ϕ−1ϕn+1

)n|I1|+1

En[δI1]. (5.24)

Combining this with (5.22) and (5.23) and the definition of ϕ ≥ 2κ one gets

En+1
[
δI e

H a
n+1,ha

c

]≤ (xn)
|I |(eC(β/4)ϕn+1)n|I |+2 1

B
En[δI1]En[δĨ2

]. (5.25)

Using that n|I | + 2 ≤ (n + 2)|I | (because I �= ∅) and the definition of xn+1 = xneC(n+2)βϕn+1
, one gets equation

(5.20) at level n + 1.
We have performed a first crucial step: there exist some β0 > 0 and a constant x := limn→∞ xn, such that for every

n ∈ N and every β ≤ β0 one has

En

[
δI e

H a
n,ha

c

]≤ x|I |En[δI ] for every I ⊂ {1, . . . ,2n
}
. (5.26)

Then using the idea of Remark 5.2, one has from the definition of Z̄a
n,ha

c
(and expanding the exponential term)

Z̄a
n,ha

c
= En

[
eHn,ha

c

]+ ∞∑
k=1

(θβ2κn)k

k! En

[
eHn,ha

c (Sn)
2k
]

≤ Za
n,ha

c
+ En

[
exp
(
x2θβ2κn(Sn)

2)− 1
]

≤ Za
n,ha

c
+ exp

(
cβ2(4κ/B2)n)− 1, (5.27)

where we used (5.26) for the first inequality and Theorem A.3 for the second one. Then using that Za
n,ha

c
≤ 1, one has

the desired upper bound for Z̄a
n,ha

c
. On the other hand, with Z̄a

n,ha
c
≥ 1 one gets that Za

n,ha
c
≥ 1 − c′β2(4κ/B2)n, which

concludes the proof. �

Remark 5.4. Adapting the proof of Proposition 3.2 to the auxiliary partition function Z̄ω
n,h, one gets under the same

hypothesis that there exists a constant c′
1 such that for any non-empty subset I of {1, . . . ,2n} one has(

e−c′
1β

2)|I |En[δI ] ≤ En

[
δI e

H̄ a
n,ha

c

]≤ (ec′
1β

2)|I |En[δI ]. (5.28)

This implies, together with Lemma 5.1, an analog of Theorem 3.1: there exist some β0 > 0 and constants c′
1, c

′
2 > 0

such that for every β ≤ β0 and u ∈ [0,1], one has

En

[
exp
(
e−c′

1β
2
uSn

)]≤ En

[
exp(uSn)e

H̄ a
n,ha

c

]≤ En

[
exp
(
ec′

1β
2
uSn

)]+ c′
2β

2
(

4κ

B2

)n

. (5.29)

5.3. The case B2/4 < κ < 1/2

Proof of Theorem 3.6. Using the identity (3.3), one has for all n ∈ N and h ∈ R

Za
n+1,h = 1

B
E⊗2

n

[
eH

a,(1)
n,h eH

a,(2)
n,h exp

(
β2κn+1S(1)

n S(2)
n

)]+ B − 1

B
(5.30)

= 1

B

∞∑
m=0

(β2κn+1)m

m! En

[
eH a

n,h(Sn)
m
]2 + B − 1

B
. (5.31)
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If one takes h = ha
c and uses the bound Za

n+1,ha
c
≤ 1, one gets

∞∑
m=0

(β2κn+1)m

m! En

[
e
H a

n,ha
c (Sn)

m
]2 ≤ 1, (5.32)

so that bounding each term of the sum by 1, one gets that for all m ≥ 0

En

[
e
H a

n,ha
c (Sn)

m
]≤ √

m!
(

1

β

(
1√
κ

)n+1)m

. (5.33)

For m = 1 (using Za
n,h ≥ (B − 1)/B) we obtain (3.14), but also an estimate for all the moments of Sn.

Using Lemma 5.3 one has(
2

B

)n n−1∏
p=0

Za
p,ha

c
≤ En

[
e
H a

n,ha
c Sn

]≤ 1

β

(
1√
κ

)n+1

, (5.34)

which implies (3.13). �

Another observation is that, writing h = ha
c + u, one gets from (5.33) that

En

[
eH a

n,h
]= En

[
euSne

H a
n,ha

c

]≤ ∞∑
m=0

1√
m!
(

u

β

(
1√
κ

)n+1)m

. (5.35)

Thus if u ≤ (
√

κ)n, one has that Za
n,ha

c+u = En[eH a
n,h] does not grow with n. This is in contrast with the pure model

where

Z
pure
n,u = En

[
exp(uSn)

]≥ exp
(
uEn(Sn)

)= exp
(
u(2/B)n

)
which diverges with n if u = (

√
κ)n (recall we are considering κ > B2/4).

All these facts lead us to conjecture that the phase transition of the annealed model for B2/4 < κ < 1/2 is smoother
than that of the pure model.

6. Disorder irrelevance

To prove disorder irrelevance for B > Bc and the upper bounds on the difference between quenched and annealed
critical points in Theorem 3.3, we use the following proposition.

Proposition 6.1. Let κ < (B2/4 ∧ 1/2). If B > Bc, there exists a β0 > 0 such that for β ≤ β0 and for every η ∈ (0,1)

one can find ε > 0 such that for all u ∈ (0, ε)

F
(
β,ha

c + u
)≥ (1 − η)Fa(β,ha

c + u
)
. (6.1)

If B < Bc , then for every η ∈ (0,1) one can find constants c,β0, ε > 0 such that if β ≤ β0, for all u ∈
(cβ2/(2−ν), ε(η))

F
(
β,ha

c + u
)≥ (1 − η)Fa(β,ha

c + u
)

(6.2)

with ν as in (2.21).
If B = Bc , then for every η ∈ (0,1) one can find β0 > 0 and a constant c > 0 such that if β ≤ β0, for all u ∈

(c exp(−cβ−2/3),1)

F
(
β,ha

c + u
)≥ (1 − η)Fa(β,ha

c + u
)
. (6.3)
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Proof. This is based on the study of the variance Vn := E[(Z̄ω
n,h)

2] − E[Z̄ω
n,h]2.

Fix some B ∈ (1,2). One has

E
[(

Z̄ω
n,h

)2]= E⊗2
n

[
exp

(
H̄ a

n,h(δ) + H̄ a
n,h

(
δ′)+ β2

2n∑
i,j=1

κij δiδ
′
j

)]
(6.4)

with δ and δ′ two independent copies of the same Galton–Watson process. We also have E[Z̄ω
n,h]2 =

E⊗2
n [exp(H̄ a

n,h(δ) + H̄ a
n,h(δ

′))]. To simplify notations, we write h = ha
c + u and we define

Dn :=
2n∑

i,j=1

κij δiδ
′
j . (6.5)

Then,

Vn = E⊗2
n

[
euSneuS′

n
(
eβ2Dn − 1

)
e
H̄ a

n,ha
c
(δ)

e
H̄ a

n,ha
c
(δ′)]

≤ Ṽn := E⊗2
n

[
eCuSneCuS′

n
(
eCβ2Dn − 1

)]
, (6.6)

where we expanded the exponential and used Remark 5.2 and Eq. (5.28).
Using the Cauchy–Schwarz inequality in (6.6),

Ṽn ≤ En

[
e2CuSn

]√
E⊗2

n

[(
eCβ2Dn − 1

)2]≤ En

[
e2CuSn

]√
E⊗2

n

[
e2Cβ2Dn − 1

]
. (6.7)

We define Qn := Vn/E[Z̄ω
n,h]2 ≤ Vn (recall that h ≥ ha

c and that EZ̄ω
n,ha

c
≥ 1). Then one also uses Lemma A.1 to get

that En[e2CuSn ] ≤ c exp(c2nuν). Therefore, one has

Qn ≤ c exp
(
c2nuν

)√
E⊗2

n

[
e2Cβ2Dn − 1

]
. (6.8)

Defining

n1 = n1(u) := log(1/u)/ log(2/B) = ν log(1/u)/ log 2, (6.9)

which is the value of n at which En[exp(uSn)] starts getting large, one has for p ≥ 0

Qn1+p ≤ cec2p
√

E⊗2
n1+p

[
e2Cβ2Dn1+p − 1

]
. (6.10)

Thus it is left to estimate the last term, with Proposition A.5.
The case B > Bc. Thanks to Proposition A.5 there exists some β0 > 0 such that for β < β0 and for all n ∈ N

E⊗2
n

[
e2Cβ2Dn − 1

]≤ cβ2
0Φn (6.11)

for some Φ < 1. Choose p1 = p1(n1) such that ec2p1
√

Φn1 = 1 (note that p1 diverges with n1) and then

Qn1+p1 ≤ c′√Φp1
n1→∞−→ 0. (6.12)

Then we use that

E
[
log Z̄ω

n,h

]≥ log

(
E[Z̄ω

n,h]
2

)
P

(
Z̄ω

n,h ≥ E[Z̄ω
n,h]

2

)
+ log

(
B − 1

B

)
, (6.13)
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where P(Z̄ω
n,h ≥ E[Z̄ω

n,h]/2) ≥ 1 − 4Qn from the Tchebyshev inequality. We apply this with n = n1 + p1(n1) to get
(using also Theorem 2.1 and (5.9))

F(β,h) ≥ 1

2n
E
[
log Z̄ω

n,h

]− logB

2n
≥ (1 − 4η)

1

2n
log
(
E
[
Z̄ω

n,h

])− c

2n

≥ (1 − 4η)Fa(β,h) − c′

2p1(n1)
2−n1 ≥ (1 − 5η)Fa(β,h), (6.14)

provided that n1 is large enough to ensure both

Qn1+p1 ≤ c′Φp1(n1)/2 ≤ η and (6.15)

c′2−p1(n1)uν ≤ ηFa(β,h) for all u ∈ (0,1). (6.16)

Note that the requirement on n1 in (6.16) also depends only on η, cf. Theorem 3.1. Since n1 is related to u via (6.9),
one has actually to assume that u ≤ ε(η) with ε sufficiently small, as required in Proposition 6.1.

The case B < Bc . Given η > 0 and β ≤ 1, fix some p1 = p1(η) such that (6.16) holds and assume that c1β
2/(2−ν) ≤

u ≤ ε(η) with c1 = c1(η) to be chosen sufficiently large later (observe that if ε(η) is small one has that n1 and p1
are large, so the above requirement on p1 is coherent). The definition of n1(u) (which gives u = (B/2)n1 ) and of ν

(which gives (2/B)ν = 2) imply that

β2 ≤ c−1
1

(
2

B2

)p1(η)(
B2

2

)n1+p1(η)

≤ c2

(
B2

2

)n1+p1(η)

, (6.17)

where c2 = c2(η) can be made arbitrarily small by choosing c1 large. Then, again provided that c2 is small enough
(i.e. c1 large enough), we can apply Proposition A.5 to get from (6.10)

Qn1+p1(η) ≤ cec2p1(η)

√
cβ2

(
2

B2

)n1+p1(η)

≤ c′ec2p1(η)√
c2(η) ≤ η. (6.18)

From this point on, the proof proceeds like in the case B > Bc, starting from (6.13).
The case B = Bc . This is similar to the case B < Bc . The value of β0 has to be chosen small enough to guarantee

that Proposition A.5 is applicable. We skip details. �

7. Disorder relevance: critical point shift lower bounds

To prove disorder relevance, we give a finite size condition for delocalization, adapting the fractional moment method,
first used in [8], and then in [15,16] for the pinning model with i.i.d. disorder.

7.1. Fractional moment iteration

For γ < 1 let xγ to be the largest solution of

x = x2 + (B − 1)γ

Bγ
.

One can easily see that for γ sufficiently close to 1 (which we assume to be the case in the following) xγ actually
exists and is strictly less than 1. Moreover one has that xγ increases to 1 as γ increases to 1. Then we have:

Proposition 7.1. Take κ < 1/2. Then, setting An := E[(Z̄ω
n,h)

γ ] with Z̄ω
n,h defined in (5.2), one has

An+1 ≤ A2
n + (B − 1)γ

Bγ
. (7.1)

If there exists some n0 such that An0 ≤ xγ , then F(β,h) = 0.
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Proof. If for some n0 one has An0 ≤ xγ , then iterating (7.1) one gets An ≤ xγ ≤ 1 for all n ≥ n0. Using the Jensen’s
inequality one has

1

n
E
[
log Z̄ω

n,h

]= 1

γ n
E
[
log
(
Z̄ω

n,h

)γ ]≤ 1

γ n
logAn (7.2)

which gives F(β,h) = F̄(β,h) = 0 (equality of the two free energies was noted after (5.2)).
We now turn to the proof of (7.1). We define Z

μ
n,h = En[eHω

n,heμκnβ2(Sn)2] and use that (Sn+1)
2 ≤ 2(Sn)

2 + 2(Sn)
2

to get the iteration

Z
μ
n+1,h ≤ 1

B
Z

2κμ,(1)
n,h Z

2κμ,(2)
n,h + B − 1

B
, (7.3)

where as usual the two partition functions in the r.h.s. refer to the first and second sub-system of size 2n. From this,
and using the inequality (a + b)γ ≤ aγ + bγ for any a, b ≥ 0 and γ ≤ 1, one has

E
[(

Z
μ
n+1,h

)γ ]≤ 1

Bγ
E
[(

Z
2κμ,(1)
n,h Z

2κμ,(2)
n,h

)γ ]+ (B − 1)γ

Bγ
. (7.4)

One then shows the following lemma.

Lemma 7.2. If μ ≥ θ with θ = κ
2(1−2κ)

as in (5.2),

E
[(

Z
2μκ,(1)
n,h Z

2μκ,(2)
n,h

)γ ]≤ E
[(

Z
μ
n,h

)γ ]2
. (7.5)

This gives directly (7.1), taking μ = θ so that Z
μ
n,h = Z̄ω

n,h. �

Proof of Lemma 7.2. One sets

Φ(t,μ) := log Et

[(
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ ]
, (7.6)

where one defines Pt to be the law of a Gaussian vector (ω1, . . . ,ω2n+1) with correlations κij (t) = κp if d(i, j) =
p ≤ n, and κij (t) = tκn+1 if d(i, j) = n + 1. Then one can compute the derivatives of Φ . Using the definition of Z

μ
n,h

one has for t ≥ 0, μ ∈ R

∂Φ

∂μ
(t,μ) = γ κnβ

2

Et [(Zμ,(1)
n,h Z

μ,(2)
n,h )γ ]

× Et

[
E⊗2

n

[((
S(1)

n

)2 + (S(2)
n

)2)eH
ω,(1)
n,h +H

ω,(2)
n,h eμκn((S

(1)
n )2+(S

(2)
n )2)

](
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ−1]
. (7.7)

Thanks to Proposition B.3 one gets

∂Φ

∂t
(t,μ) = κn+1

Et [(Zμ,(1)
n,h Z

μ,(2)
n,h )γ ]

2n∑
i=1

2n+1∑
j=2n+1

Et

[
∂2

∂ωi∂ωj

(
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ ]
. (7.8)

For the values of i, j under consideration one has

∂

∂ωi ∂ωj

(
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ
= γ 2β2E⊗2

n

[
δiδj eH

ω,(1)
n,h +H

ω,(2)
n,h eμκn((S

(1)
n )2+(S

(2)
n )2)

](
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ−1
. (7.9)
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Therefore,

2n∑
i=1

2n+1∑
j=2n+1

∂2

∂ωi∂ωj

(
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ
≤ γ 2β2

2
E⊗2

n

[((
S(1)

n

)2 + (S(2)
n

)2)eH
ω,(1)
n,h +H

ω,(2)
n,h eμκn((S

(1)
n )2+(S

(2)
n )2)

](
Z

μ,(1)
n,h Z

μ,(2)
n,h

)γ−1
, (7.10)

and as a consequence, since we chose κn = κn

∂Φ

∂t
(t,μ) ≤ κ

2

∂Φ

∂μ
(t,μ). (7.11)

Thus, the function t �→ Φ(t,μ − κt/2) is non-increasing and

logE
[(

Z
μ−κ/2,(1)
n,h Z

μ−κ/2,(2)
n,h

)γ ]= Φ(1,μ − κ/2) ≤ Φ(0,μ) = 2 logEt

[(
Z

μ
n,h

)γ ]
. (7.12)

Then, one uses that for μ ≥ κ
2(1−2κ)

one has 2μκ ≤ μ − κ/2, which allows us to conclude. �

7.2. Change of measure

In this section we prove the lower bounds of Theorem 3.3 on the critical point shift for B ≤ Bc .
One fixes γ close to 1 such that xγ is also close to 1, and proves that if h = ha

c + u with u > 0 small enough, one
has An0 := E[(Z̄ω

n0,h
)] ≤ xγ for some n0 ∈ N. To this purpose, we introduce a change of measure in the spirit of [16].

Define

g(ω) := 1{F(ω)≤R} + εR1{F(ω)>R},
(7.13)

F(ω) := 〈V ω,ω〉 − E
[〈V ω,ω〉],

where the choices of the symmetric 2n × 2n matrix V , of R ∈ R and εR > 0 will be made later. Note that we have
chosen F to be centered. Then using the Hölder inequality, one has

E
[(

Z̄ω
n,h

)γ ]= E
[
g(ω)−γ

(
g(ω)Z̄ω

n,h

)γ ]≤ E
[(

g(ω)
)−γ /(1−γ )]1−γ

E
[
g(ω)Z̄ω

n,h

]γ
. (7.14)

Remark 7.3. The original idea [15] is to take g(ω) = dP̌

dP
where P̌ is a new probability measure on {ω1, . . . ,ω2n}

such that P̌ and P are mutually absolutely continuous. Then, to control both terms in (7.14), one has to choose P̌ in
a certain sense close enough to P, such that the first term is close to 1, but also such that under the measure P̌ the
annealed partition function E[g(ω)Z̄n,ha

c
] = Ě[Z̄n,ha

c
] is small.

The choice of g and F in (7.13) has the same effect of the change of measure in [15], that is inducing negative
correlations between different ωi , and the specific form (7.13) is chosen for technical reasons, to deal more easily with
the case in which 〈V ω,ω〉 is large.

Let us first deal with the Radon–Nikodym part of (7.14): we make here the choice εR := P(F (ω) ≥ R)1−γ . Then
one has

E
[(

g(ω)
)−γ /(1−γ )]≤ 1 + (εR)−γ /(1−γ )

P
(
F(ω) ≥ R

)= 1 + P
(
F(ω) ≥ R

)1−γ = 1 + εR. (7.15)

We now use the following lemma to estimate εR in terms of R. We let ‖V ‖2 =∑i,j V 2
ij and K denote the covari-

ance matrix (κij )1≤i,j≤2n .
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Lemma 7.4. If V is such that Vij depends only on d(i, j) and ‖V ‖2 = 1, then one has Var(F ) < 2K2∞ with K∞
defined in (4.2), so that

P
(
F(ω) ≥ R

)≤ 2K∞
R2

R→∞−→ 0. (7.16)

Thus one gets that εR ≤ const × R−2(1−γ ), which can be made arbitrarily small choosing R large.

Proof. We have that Var(F ) = E[〈V ω,ω〉2] − E[〈V ω,ω〉]2, and we can compute

E
[〈V ω,ω〉2] =

2n∑
i,j=1

2n∑
k,l=1

VijVklE[ωiωjωkωl]

=
2n∑

i,j=1

2n∑
k,l=1

VijVkl(κij κkl + κikκjl + κilκjk)

= E
[〈V ω,ω〉]2 + 2 Tr

(
(V K)2). (7.17)

We now use Lemma B.1, which says that V and K can be codiagonalized, and that the eigenvalues of K are bounded
by K∞, to get that Tr((V K)2) ≤ K2∞ Tr(V 2) = K2∞ (recall that Tr(V 2) = ‖V ‖2 = 1, as V is symmetric). One finally
gets that Var(F ) ≤ 2K2∞, and as F is centered, using Tchebyshev’s inequality gives the result. �

Next, we study the second factor in the r.h.s. of (7.14):

E
[
g(ω)Z̄ω

n,h

]≤ E
[
1{F(ω)≤R}Z̄ω

n,h

]+ εRE
[
Z̄ω

n,h

]
. (7.18)

To study the first term we define the measure P̃ on {ω1, . . . ,ω2n} to be absolutely continuous with respect to P, with

Radon–Nikodym derivative given by dP̃

dP
= Z̄ω

n,h

Z̄a
n,h

. One then has

E
[
1{F(ω)≤R}Z̄β,ω

n,h

]= Z̄a
n,hP̃

(
F(ω) ≤ R

)
. (7.19)

We are now ready to choose V = Vn, and we do so as in [15]. We take V to be zero on the diagonal (Vii = 0), and
for i, j ∈ {1, . . . ,2n}

Vij := En[δiδj ]
Yn

, if i �= j, (7.20)

where

Yn :=
( 2n∑

i,j=1
i �=j

En[δiδj ]2
)1/2

(7.21)

is used to normalize V . We stress that V satisfy the conditions of Lemma 7.4.
One can compute easily Yn, since from Proposition 2.4 we have En[δiδj ] = B−n−d(i,j)+1, and one finds (cf. [15],

Eq. (8.23))

Yn =
⎧⎨⎩

√
n if B = Bc := √

2,

Θ

((
2

B2

)n)
if B < Bc ,

(7.22)

where X = Θ(Y) means that X ≥ cY for some positive constant c.
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Proposition 7.5. We choose V = Vn as in (7.20) and (7.21), and R = Rn := 1
2 Ẽ[F(ω)]. Then there exists some δ > 0

small such that, if u(2/B)n ≤ δ, one has

R := 1

2
Ẽ
[
F(ω)

]≥ cβ2Yn. (7.23)

Therefore, from (7.22), R can be made arbitrarily large with n. Moreover there exists a constant ζ > 0 which does
not depend on n, such that

P̃
(
F(ω) ≥ R

)= P̃

(
F(ω) ≥ 1

2
Ẽ
[
F(ω)

])≥ ζ. (7.24)

Combining this proposition to (7.18) and (7.19), one gets that

E
[
g(ω)Z̄ω

n,h

]≤ Z̄a
n,h(1 − ζ + εR). (7.25)

Recalling the equality (5.29) (which is the analog of Theorem 3.1 for the alternative partition function Z̄a
n,h), one

has for κ < B2/4 ∧ 1/2

Z̄a
n,h ≤ En

[
ec′

1uSn
]+ c′

2β
2
(

4κ

B2

)n

≤ ecδ + δ, (7.26)

provided that u ≤ δ(B/2)n with δ small (to be able to apply Lemma A.1 to En[ec′
1uSn ]), and that n ≥ nδ to deal with

the term (4κ/B2)n. Therefore, if δ and εR was chosen small enough (that is smaller than some constant c = c(ζ )),
one has for n ≥ nδ that E[g(ω)Z̄

β,ω
n,h ] ≤ 1 − ζ/2 for all u ≤ δ(B/2)n. This and (7.15) bound the two terms in (7.14),

so that one has

An := E
[(

Z̄ω
n,h

)γ ]≤ (1 + εR)(1 − ζ/2)γ ≤ 1 − ζ/3 ≤ xγ , (7.27)

where the two last inequalities hold if εR is small and γ close to 1. To sum up, for δ,β small and R large enough, one
has that An ≤ xγ for all u ≤ δ(B/2)n, and so F(β,ha

c + u) = 0.
Then, let us check how large has to be n so that our choice of R := 1

2 Ẽ[F(ω)] becomes large. From Proposition 7.5
one has that R ≥ cβ2Yn so that one has to take β2Yn ≥ C for some constant C large enough. From (7.22), in order to
have β2Yn ≥ C,

• if B < Bc , it is enough to take n larger than n0 := log(C′β−2)/ log(2/B2);
• if B = Bc , one has to take n larger than n0 := c′β−4.

Then for n = n0 one gets that R is large, but one also needs to take u ≤ δ(2/B)n0 to ensure that An0∨nδ ≤ xγ .
Notice that from the choice of n0 above, the condition on u translates into

u ≤
{

c′β2 log(2/B)/ log(2/B2) = c′β2/(2−ν) if B < Bc,
e−cβ−4

if B = Bc,
(7.28)

where we also used that ν = log 2/ log(2/B). One then gets the desired bounds (3.10) and (3.11) on the difference
between quenched and annealed critical points.

7.3. Proof of Proposition 7.5

To compute Ẽ[F(ω)], we define for any 1 ≤ i, j ≤ 2n

Uij := Ẽ[ωiωj ] = 1

Z̄a
n,h

EnE
[
ωiωj eH̄ω

n,h
]
. (7.29)
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A Gaussian integration by parts gives easily

Uij = κik + uij := κij + β2
2n∑

k,l=1

κikκjlĒa
n,h[δkδl], (7.30)

where Ēa
n,h denotes expectation w.r.t. the measure whose density with respect to Pn is exp(H̄ a

n,h)/Z̄
a
n,h. We then

compare Ēa
n,h[δkδl] with En[δkδl], using that h = ha

c + u, 0 ≤ u ≤ δ(B/2)n:

Ēa
n,h[δkδl] = 1

Z̄a
n,h

En

[
δkδle

H̄ a
n,ha

c euSn
]≤ e2c1β

2
En

[
δkδle

ec1β2
uSn
]≤ c′En[δkδl], (7.31)

where in the first inequality we used Remark 5.4 and also the fact that Z̄a
n,h ≥ Z̄a

n,ha
c
≥ 1, and in the second inequality

we used that u(2/B)n ≤ δ to apply Corollary A.2. The same argument easily gives Ēa
n,h[δkδl] ≥ cEn[δkδl] in the range

of u considered, so that cβ2aij ≤ uij ≤ c′β2aij , where

aij :=
2n∑

k,l=1

κikκjlEn[δkδl] ≥ Yn(KV K)ij (7.32)

(the inequality is due to the fact that V is zero on the diagonal). We finally get

Ẽ
[
F(ω)

]= Ẽ
[〈V ω,ω〉]− E

[〈V ω,ω〉]= 2n∑
i,j=1

Vij (κij + uij ) − E
[〈V ω,ω〉]= 2n∑

i,j=1

Vijuij , (7.33)

so that we only have to compute
∑2n

i,j=1 Vij aij ≥ Yn Tr(V KV K). Since ‖V ‖2 = 1 and all eigenvalues of K are

between 1 and K∞, one has Tr((V K)2) = Θ(1). Altogether, we get (7.23).
We now prove (7.24). Using the Paley–Zygmund inequality, we get that

P̃
(
F(ω) ≥ R

)= P̃

(
F(ω) ≥ 1

2
Ẽ
[
F(ω)

])≥ Ẽ[F(ω)]2

4Ẽ[F(ω)2] , (7.34)

so that we only have to prove the following:

Ṽar
(
F(ω)

)= Ẽ
[〈V ω,ω〉2]− Ẽ

[〈V ω,ω〉]2 = O
(
Ẽ
[
F(ω)

]2)
. (7.35)

Indeed from this it follows immediately that there exists some constant ζ > 0 such that Ẽ[F(ω)]2/Ẽ[F(ω)2] ≥ ζ .
We now prove (7.35), studying Ẽ[〈V ω,ω〉2] =∑2n

i,j,k,l=1 VijVklẼ[ωiωjωkωl], starting with the computation, for
any 1 ≤ i, j, k, l ≤ 2n, of

Ẽ[ωiωjωkωl] = 1

Z̄a
n,h

EnE
[
ωiωjωkωle

H̄ω
n,h
]
. (7.36)

Again, a Gaussian integration by parts gives, after elementary computations,

Ẽ[ωiωjωkωl] = Aijkl + Bijkl

:= [κijUkl + κikUjl + κilUjk + κjkuil + κjluik + κkluij ]

+ β4
2n∑

r,s,t,v=1

κirκjsκkt κlvĒa
n,h[δrδsδt δv]. (7.37)

We estimate Ẽ[〈V ω,ω〉2] by analyzing separately Aijkl and Bijkl .
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Contribution from Bijkl : we have

Bijkl ≤ cβ4
2n∑

r,s,t,v=1

κirκjsκkt κlvEn[δrδsδt δv], (7.38)

where we used again Proposition 3.2 and Corollary A.2 as in (7.31) (recall that we consider u ≤ δ(B/2)n). Then
defining

Wij := En[δiδj ]
Yn

= Vij + 1{i=j}
YnBn

(7.39)

we get

2n∑
i,j,k,l=1

VijVklBijkl ≤ cβ4
2n∑

r,s,t,v=1

(KWK)rs(KWK)tvEn[δrδsδt δv]

≤ c′β4
2n∑

r,s,t,v=1
r �=s,t �=v

WrsWtvEn[δrδsδt δv] + c′′β4
2n∑

r,t,v=1

WrrWtvEn[δrδt δv], (7.40)

where we used the following claim:

Claim 7.6. There exists a constant c′ > 0 such that for every 1 ≤ i, j ≤ 2n, (WK)ij ≤ c′Wij and (KW)ij ≤ c′Wij .

Proof. We write q = d(i, j), so Wij =: Wq , and

(WK)ij =
2n∑
l=1

Wilκlj =
q−1∑
p=0

2p−1Wpκq +
q−1∑
p=0

2p−1Wqκp +
n∑

p=q+1

2p−1Wpκp, (7.41)

where we decomposed the sum according to the positions of l (d(i, l) = p < q , d(i, l) = q or d(i, l) > q). Using that
Wp is decreasing with p, we get that the second and the third term are both smaller than (

∑
2pκp)Wq . We only have

to deal with the first term, using the explicit expression of Wp , together with Proposition 2.4:

q−1∑
p=0

2p−1Wp = 1

Yn

B−n

q−1∑
p=0

(
2

B

)p−1

≤ c
1

Yn

B−n

(
2

B

)q

= c2qWq, (7.42)

so that the first term in (7.41) is smaller than c2qκqWq . One then has that (WK)ij ≤ c′Wij , and the same computations
also gives that (KW)ij ≤ c′Wij . �

The main term in the r.h.s. of (7.40) is the first one, for which we have

Lemma 7.7. Let B ≤ Bc. There exists a constant c > 0 such that

2n∑
r,s,t,v=1
r �=s,t �=v

VrsVtvEn[δrδsδt δv] = 1

Y 2
n

2n∑
r,s,t,v=1
r �=s,t �=v

En[δrδs]En[δt δv]En[δrδsδt δv] ≤ cY 2
n . (7.43)

This can be found in the proof of Lemma 4.4 of [15] for B = Bc; the proof is easily extended to the case B < Bc .
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As for the remaining terms in (7.40), it is not hard to see, using repeatedly Proposition 2.4, that they give a contri-
bution of order o(Y 2

n ). For instance, one has

β4
2n∑

r,t,v=1
t �=v

WrrWtvEn[δrδt δv] ≤ cβ4 2n

BnY 2
n

n∑
p=0

2pB−n−p
n∑

q=0

2qB−n−p−q = β4o
(
Y 2

n

)
. (7.44)

Altogether one has∑
i,j,k,l=1

2n

VijVklBijkl = β4O
(
Y 2

n

)= O
(
Ẽ
[
F(ω)

]2)
, (7.45)

cf. (7.23).
Contribution of Aijkl : recalling that Uij = κij + uij , we have κijUkl + κkluij ≤ UijUkl . Thus, we get

2n∑
i,j,k,l=1

VijVkl(κijUkl + κkluij ) ≤
(

2n∑
i,j=1

VijUij

)2

= Ẽ
[〈V ω,ω〉]2, (7.46)

that we recall is not O(Ẽ[F(ω)]2), but will be canceled in the variance. The other contributions are, thanks to symmetry
of V , all equal to (or smaller than)

2n∑
i,j,k,l=1

VijVklκikUjl =
2n∑

i,j,k,l=1

VijVklκikκjl +
2n∑

i,j,k,l=1

VijVklκikujl, (7.47)

where the first term is Tr((V K)2) which is bounded as remarked before. Thanks to the estimate ujl ≤ c′β2ajl =
c′β2Yn(KWK)jl , the second term is bounded above by a constant times

β2Yn

2n∑
i,j,k,l=1

VijVklκik(KWK)jl ≤ β2Yn Tr
(
(WK)3)

≤ cβ2Yn Tr
(
W 2)≤ 2cβ2Yn = O

(
Ẽ
[
F(ω)

])
. (7.48)

We used Lemma B.1 to codiagonalize W and K and to bound the eigenvalues of K by a constant, and then the fact
that the eigenvalues λi of W are also bounded, so that

∑ |λi |3 ≤ c
∑ |λi |2 = c Tr(W 2) = O(1). Indeed, Tr(W 2) =

Tr(V 2) +∑i W
2
ii = 1 + (2/B2)nY−2

n = 1 + o(1). Putting together (7.37) with the estimates (7.45), (7.46) and (7.48)
we have

Ṽar
(
F(ω)

) = Ẽ
(〈V ω,ω〉2)− (Ẽ〈V ω,ω〉)2

=
∑
ijkl

(Aijkl + Bijkl)VijVkl − (Ẽ〈V ω,ω〉)2
= O

(
Ẽ
[
F(ω)

]2) (7.49)

and (7.35) is proven.

Appendix A: Pure model estimates

We first give some estimates on the partition function of a system of size n.
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Lemma A.1.

(1) There exist constants a0 > 0 and c0 > 0 such that for any n ≥ 0, if u ≤ a0(B/2)n one has

En

[
exp(uSn)

]≤ exp
(
c0u(2/B)n

)
. (A.1)

(2) There exists a constant c > 0 such that for any n ≥ 0 and u ≥ 0 one has

En

[
exp(uSn)

]≤ c exp
(
cuν2n

)
, (A.2)

where ν is as in (2.21).

Proof. For the first inequality, the same type of computation was already done in [14], and we give here only an
outline of the proof. The partition function Rk of the pure model satisfies the iteration{

R0 = eu,

Rk+1 = R2
k + B − 1

B
.

(A.3)

Defining Pk := Rk − 1 it is easy to show by recurrence that Pk ≤ c0u( 2
B

)k for every k ≤ n (because we stay in the
linear regime for the chosen value of u), so that for k = n we get the result.

For the second inequality, we use that for any n ≥ 0 and u ≥ 0,

1

2n
log En

[
exp(uSn)

]≤ F(u) + c(B)

2n
, (A.4)

from [14], Theorem 1.1, and this gives immediately the result, using (2.20). �

Defining for any subset I ⊂ {1, . . . ,2n} δI :=∏i∈I δi , and δI = 1 if I = ∅, one wants to compare En[δI euSn] and
En[δI ] when the partition function Z

pure
n,h is still in the linear regime 0 ≤ u ≤ a0(B/2)n, the bound En[δI euSn] ≥ En[δI ]

being trivial.

Corollary A.2. There exist constants a0 > 0 and c′ > 0 such that for any n ≥ 0 and any non-empty subset I ⊂
{1, . . . ,2n}, if 0 ≤ u ≤ a0(B/2)n one has

En

[
δI exp(uSn)

]≤ exp

(
c′u
(

2

B

)n)|I |
En[δI ]. (A.5)

Proof. We prove by iteration on n that for all non-empty subsets I ⊂ {1, . . . ,2n}, if u ≤ a0(B/2)n one has

En

[
δI exp(uSn)

]≤ exp

(
c0u

n∑
k=0

(
2

B

)k
)|I |

En[δI ], (A.6)

where c0 is the constant obtained in Lemma A.1.
The case n = 0 is trivial. Let us assume that we have the assumption for n ≥ 0 and prove it for n + 1. Take I a

non-empty subset of {1, . . . ,2n+1}. As in the proof of Lemma 5.3, one decomposes I into its “left” and “right” part
and writes En+1[δI ] = 1

B
En[δI1]En[δĨ2

] and |I | = |I1| + |Ĩ2|.
If I1, Ĩ2 �= ∅, using the induction hypothesis, one easily has

En+1
[
δI exp(uSn+1)

] = 1

B
En

[
δI1 exp(uSn)

]
En

[
δĨ2

exp(uSn)
]

≤ exp

(
c0u

n∑
k=0

(
2

B

)k
)|I1|+|Ĩ2|

1

B
En[δI1 ]En[δĨ2

], (A.7)
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which gives the right bound.
If I1 = ∅ (or analogously if Ĩ2 = ∅), one has En+1[δI ] = 1

B
En[δĨ2

] and

En+1
[
δI exp(uSn+1)

] = 1

B
En

[
exp(uSn)

]
En

[
δĨ2

exp(uSn)
]

≤ ec0u(2/B)n+1
exp

(
c0u

n∑
k=0

(
2

B

)k
)|Ĩ2|

1

B
En[δĨ2

], (A.8)

where the first part is dealt with Lemma A.1, and the second one with the induction hypothesis. �

Theorem A.3. Let B ∈ (1,2). Let (bn)n≥0 be a sequence that goes to 0 as n goes to infinity. There exists a constant

cb > 0 such that for all n ≥ 0 and every 0 ≤ u ≤ bn(
B2

4 ∧ 1
2 )n one has

En

[
exp
(
u(Sn)

2)]≤ exp

(
cbu

(
4

B2

)n)
. (A.9)

Corollary A.4. Let B ∈ (1,2), κ < B2

4 ∧ 1
2 and note ϕ := (2κ)∨ 4κ

B2 < 1. Then for every A > 0 there exists a constant
cA > 0 such that for any n ≥ 0, any u ∈ [0,A] and any subset I of {1, . . . ,2n}, one has

En

[
δI exp

(
uκn(Sn)

2)]≤ (ecAuϕn)n|I |+1En[δI ]. (A.10)

Note that if I = ∅, the statement is implied by Theorem A.3.

Proof of Theorem A.3. The proof relies on Lemma A.1. Consider u ≤ bn(
B2

4 ∧ 1
2 )n. One writes

J := En

[
exp

(
1

2
u(Sn)

2
)]

= 1√
2π

∫ +∞

−∞
e−z2/2En

[
exp(z

√
uSn)

]
dz. (A.11)

One sets Δ := a√
u
(B

2 )n, where a is a constant that will be chosen small. Note that thanks to our choice of u, one has

Δ ≥ ab
−1/2
n that goes to infinity as n grows to infinity. Then one decomposes the integral J according to the values

of z, and writes J = J1 + J2, where

J1 := 1√
2π

∫
z≤Δ

e−z2/2En

[
exp(z

√
uSn)

]
dz,

(A.12)

J2 := 1√
2π

∫
z≥Δ

e−z2/2En

[
exp(z

√
uSn)

]
dz.

To bound J1, one chooses a ≤ a0 with a0 as in Lemma A.1, such that for the values of z considered one has z
√

u ≤
a0(B/2)n and then one applies Lemma A.1(1) to get

J1 ≤ 1√
2π

∫
z≤Δ

e−z2/2 exp
(
cz

√
u(2/B)n

)
dz ≤ exp

(
c2

2
u
(
4/B2)n). (A.13)

We deal with the term J2, decomposing again according to the values of z. Let us first introduce some notations:
we define the sequence (Δk)k≥0 by the iteration{

Δ0 = Δ,

Δk+1 = Δ(Δk)
2/ν(> Δk > 1)

(A.14)

and define also m = inf{k,Δk ≥ A
√

u2n}, for some A chosen large enough later. We point out that m is finite. Indeed
for a fixed large n, if ν ≤ 2, then Δk ≥ Δk+1 and goes to infinity as k goes to infinity. Otherwise, if ν > 2, Δk goes
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to Δν/(ν−2) as k goes to infinity. Then, we just need to check that Δν/(ν−2) ≥ A
√

u2n if n is large. Using the value of
ν = log 2/ log(2/B) one has 21/ν = 2/B , so that Δν = aνu−ν/22−n. Then

Δν

(
√

u2n)ν−2
= aν u−ν/22−n

uν/2−12n(ν−2)
= aν

(
u2n
)−(ν−1) ≥ aνb1−ν

n , (A.15)

where we used that u2n ≤ bn. As ν > 1, it remains only to take n large.
One decomposes J2 as follows:

J2 =
m−1∑
k=0

1√
2π

∫ Δk+1

Δk

e−z2/2En

[
exp(z

√
uSn)

]
dz

+ 1√
2π

∫ +∞

Δm

e−z2/2En

[
exp(z

√
uSn)

]
dz. (A.16)

Each term of the sum in (A.16) can be dealt with Lemma A.1(2). One gets

1√
2π

∫ Δk+1

Δk

e−z2/2En

[
exp(z

√
uSn)

]
dz

≤ En

[
exp(Δk+1

√
uSn)

]
P(N ≥ Δk)

≤ c1 exp
(
c22nuν/2(Δk+1)

ν
)

exp
(−c(Δk)

2), (A.17)

where N stands for a standard centered Gaussian. Now recall the definition of Δk and Δ, that gives (Δk+1)
ν =

Δν(Δk)
2 = aνu−ν/22−n(Δk)

2, so that one can bound the term in (A.17) by

c1 exp
((

c2a
ν − c

)
(Δk)

2)≤ c1 exp
(−c(Δk)

2/2
)
, (A.18)

where the inequality is valid provided one has chosen a sufficiently small.
Let us now deal with the last term in (A.16), trivially bounding Sn ≤ 2n:

1√
2π

∫ ∞

Δm

e−z2/2En

[
exp(z

√
uSn)

]
dz

≤ 1√
2π

∫ ∞

Δm

e−z2/2ez
√

u2n

dz

= eu4n/2P
(

N ≥ Δm − √
u2n
)

≤ eA−2(Δm)2
e−c(1−A−1)2(Δm)2 ≤ e−c(Δm)2/2, (A.19)

where we used that
√

u2n ≤ A−1Δm, and supposed that A was chosen large enough for the last inequality.
We finally get that for n large one has

J2 ≤ c1

m∑
k=0

e−c(Δk)
2/2 ≤

{
Ce−cΔ2/2 if ν ≤ 2,
Cme−cΔ2/2 if ν > 2,

(A.20)

where in the case ν ≤ 2 we used that Δk ≥ Δk+1. Note that for ν > 2, using (A.15), one also can bound m from above
as follows: since Δk = Δ(1−(2/ν)k+1)/(1−2/ν),

Δk√
u2n

= Δν/(ν−2)

√
u2n

Δ−ν/(ν−2)(2/ν)k+1 ≥ aν/(ν−2)b
(1−ν)/(ν−2)
n Δ−c′(2/ν)k . (A.21)

So if one takes k ≥ − log logΔ/ log(2/ν) one gets that Δk ≥ aν/(ν−2)b
(1−ν)/(ν−2)
n e−c′√

u2n. If n is large enough this
implies that m ≤ const × log logΔ.
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Then one easily gets that J2 = o(Δ−2), with Δ−2 = O(u(4/B2)n), so that combining with the bound on J1 one has

J ≤ exp

(
c2

0

2
u
(
4/B2)n)+ o

(
u
(
4/B2)n). (A.22)

�

Proof of Corollary A.4. We proceed by induction. Fix A > 0 and u ≤ A, and take the constant cA obtained in
Theorem A.3 for the sequence bn = A( 4κ

B2 ∧ 2κ)n. The case n = 0 is trivial. Suppose now that the assumption is true

for some n, and take I a subset of {1, . . . ,2n+1}.
Suppose I �= ∅ (otherwise one already has the result from Theorem A.3). As in the proof of Lemma 5.3, one

decomposes I into its “left” and “right” part and En+1[δI ] = 1
B

En[δI1]En[δĨ2
]. Using that (Sn+1)

2 ≤ 2(S
(1)
n )2 +

2(S
(2)
n )2 one gets

En+1
[
δI exp

(
uκn+1(Sn+1)

2)]
≤ 1

B
En

[
δI1 exp

(
(2κ)uκn(Sn)

2)]En

[
δĨ2

exp
(
(2κ)uκn(Sn)

2)]
≤ 1

B
En[δI1]En[δĨ2

](ecAu(2κ)ϕn)n|I1|+n|Ĩ2|+2 ≤ En+1[δI ]
(
ecAu2κϕn)(n+1)|I |+1

, (A.23)

where for the second inequality we used the recursion assumption and for the last one the assumption |I | ≥ 1. Now
one just uses that 2κ ≤ ϕ to conclude. �

From Corollary A.4 one can deduce the following proposition, useful to control the variance of the partition func-
tion (see Section 6). Define as in (6.5) Dn :=∑2n

i,j=1 κij δiδ
′
j , where δ and δ′ are the populations at generation n of

two independent GW trees.

Proposition A.5. Let B ∈ (1,2), κ < 1
2 ∧ B2

4 and set ϕ = (2κ) ∧ (4κ/B2) < 1.

• If B > Bc , then for every Φ ∈ ( 2
B2 ∨ ϕ,1) there exist some u0 > 0 and some constant c > 0, such that for every

n ∈ N, u ∈ [0, u0] one has

E⊗2
n

[
exp(uDn)

]≤ 1 + cuΦn. (A.24)

• If B < Bc there exist some a1 > 0 and some constant c > 0, such that for every n ∈ N, if u ≤ a1(
B2

2 )n one has

E⊗2
n

[
exp(uDn)

]≤ 1 + cu

(
2

B2

)n

. (A.25)

• If B = Bc , there exists some u0 such that if u ≤ u0 then for all n ≤ 1
2u−1/3 one has

E⊗2
n

[
exp(uDn)

]≤ 1 + 2u1/3. (A.26)

Proof. One has

Dn+1 = D(1)
n + D(2)

n + κn+1
(
S(1)

n S′(2)
n + S′(1)

n S′(2)
n

)
≤ D(1)

n + D(2)
n + κn

2

((
S(1)

n

)2 + (S′(2)
n

)2 + (S(2)
n

)2 + (S′(1)
n

)2)
. (A.27)

Since clearly Dn+1 vanishes when either of the two GW trees is empty, one has for every v ∈ [0,1]

E⊗2
n+1

[
evDn+1

] ≤ 1

B2
E⊗2

n

[
evDn exp

(
v

2
κn

(
(Sn)

2 + (S′
n

)2))]2

+ B2 − 1

B2

≤ 1

B2
ec0vϕn

E⊗2
n

[
exp
(
vec0v(ϕ′)nDn

)]2 + B2 − 1

B2
, (A.28)
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where in the second inequality we expanded evDn as in Remark 5.2 and used Corollary A.4 to get the constant c0 > 0
for ϕ := (2κ) ∨ 4κ

B2 and some ϕ′ ∈ (ϕ,1). Then we set v0 ≤ 1 and for n ≥ 0 define vn+1 := vne−c0vn(ϕ′)n ≤ v0. Define

Xn := E⊗2
n [exp(vnDn)] − 1, so that using the previous inequality one has

Xn+1 ≤ 1

B2
ec0vnϕn

(Xn + 1)2 − 1

B2
≤ 2ec0v0ϕ

n

B2
Xn

(
1 + Xn

2

)
+ cv0ϕ

n. (A.29)

We consider the different cases B < Bc , B = Bc and B > Bc separately, but each time we estimate from above
E⊗2

n [evnDn]. One then easily deduces Proposition A.5 using that there exists a constant c1 such that vn ≥ c1v0, and
then E⊗2

n [ec1v0Dn] ≤ 1 + Xn. One concludes taking u := c1v0.
In the sequel we actually study the iteration

X̂n+1 = 2ewn

B2
X̂n

(
1 + X̂n

2

)
+ (c/c0)wn, X̂0 = X0, (A.30)

where we defined wn := c0v0ϕ
n. Clearly, Xn ≤ X̂n for every n.

– Take B > Bc := √
2. Let us fix some Φ ∈ ( 2

B2 ∨ϕ,1). One has that X0 ≤ C0v0 and one shows easily by iteration,

using (A.30) and the definition of wn, that X̂n ≤ CnΦ
nv0, with (Cn)n∈N an increasing sequence satisfying

Cn+1 = Cnewn

(
1 + 1

2
Cnv0Φ

n

)
+ c′ϕnΦ−(n+1) (A.31)

(use that Φ > (2/B2)). Then we show that provided that v0 has been chosen small enough, (Cn)n∈N is a bounded
sequence. Indeed, using that Cn ≥ C0 one has

Cn+1 ≤ Cnewn

(
1 + 1

2
Cnv0Φ

n + c′Φ−1C−1
n (ϕ/Φ)n

)

≤ Cnewn exp

(
1

2
Cnv0Φ

n

)
exp
(
c′′(ϕ/Φ)n

)≤ A exp

(
1

2
v0

n∑
k=0

CkΦ
k

)
, (A.32)

where we noted A :=∏∞
n=0 ewnec′′(ϕ/Φ)n , with A < +∞ thanks to the definition of wn and using that Φ > ϕ. It is

then not difficult to see that if v0 is chosen small enough, more precisely such that A exp(v0C0
∑n

k=0 Φk) ≤ 2C0, then
Cn remains smaller than 2C0 for every n ∈ N. From this, one gets that Xn ≤ 2C0Φ

nv0 for every n.
– Take B < Bc . The idea is that if X0 is small enough, (A.30) can be approximated by the iteration Xn+1 ≤ 2

B2 Xn

while Xn remains small. For any fixed n ≥ 0, one chooses v0 = a(B2/2)n with a small (chosen in a moment), and

one has X0 ≤ C0a(B2

2 )n. Then one shows by iteration that

X̂k ≤ Cka
(
B2/2

)n−k (A.33)

for some increasing sequence (Ck)k∈N verifying

Ck+1 = ewkCk

(
1 + Ck

2
a

(
B2

2

)n−k)
+ a−1

(
B2

2

)k+1−n

wk. (A.34)

One then shows with the same method as in the case B > Bc that Cn is bounded by some constant C uniformly in n,
provided that a had been chosen small enough. Thus taking k = n one has Xn ≤ ca = cv0(2/B2)n.

– Take B = Bc = √
2. The iteration (A.30) gives

Xn+1 ≤ ewnXn

(
1 + Xn

2

)
+ (c/c0)wn (A.35)
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and we recall that wn = c0v0ϕ
n. Take v0 = ε3, so that X0 ≤ ε for ε small. We now show that if ε ≤ ε0 with ε0 chosen

small enough, one has for all n ≤ 1
2ε−1 that Xn ≤ ε(1 +nε). We prove this by induction. For n = 0 this is just because

one chose X0 ≤ ε. If Xn ≤ ε(1 + nε) and nε ≤ 1/2, one has (note that wn ≤ c0ε
3 for all n)

Xn+1 ≤ ec0ε
3
ε(1 + nε)

(
1 + 1

2
ε(1 + nε)

)
+ cε3,

≤ ε
[(

1 + c′
0ε

3)(1 + nε)(1 + 3ε/4) + cε2]
≤ ε
[
1 + ε

(
n + 3/4 + c′

0ε
2 + cε

)]≤ ε
(
1 + (n + 1)ε

)
, (A.36)

provided that ε ≤ ε0 with ε0 small enough. This concludes the induction step. Thus one has that for all n ≤ 1
2ε−1,

Xn ≤ 2ε, with ε = v
1/3
0 . �

Appendix B: Hierachically correlated Gaussian vectors

Lemma B.1. Let m(·) be a function from N to R and for n ∈ N let Let M := M(n) = (Mij )1≤i,j≤2n be the 2n × 2n

matrix with entries Mij := m(d(i, j)). Then, the eigenvectors of such a matrix do not depend on the function m(·),
and the eigenvalues are

λ0 = m(0) +
n∑

k=1

2k−1m(k), with multiplicity 1,

λp = m(0) +
n−p∑
k=1

2k−1m(k) − 2n−pm(n + 1 − p), with multiplicity 2p−1, for 1 ≤ p ≤ n. (B.1)

This comes directly from the fact that

M(n) =

⎛⎜⎜⎜⎜⎜⎜⎝
M(n−1)

m(n) · · · m(n)
...

...

m(n) · · · m(n)
m(n) · · · m(n)

...
...

m(n) · · · m(n)

M(n−1)

⎞⎟⎟⎟⎟⎟⎟⎠ , (B.2)

where each block is of size 2n−1. One computes the eigenvalues: the eigenvector (1, . . . ,1) gives λ0, the eigenvector
(1, . . . ,1,−1, . . . ,−1) gives λ1. Then the eigenvectors (X,0) and (0,X) with X �= (1, . . . ,1) being an eigenvector of
M(n−1) give all the others eigenvalues, which are the eigenvalue associated to X with M(n−1), but with multiplicity
multiplied by 2.

Remark B.2. Lemma B.1 shows that the spectral radius of M(n) is upper bounded by
∑∞

p=0 2p|m(p)|. Also, two
matrices with entries depending only on the distances d(i, j) can be codiagonalized, as the eigenvectors do not
depend on the values of the entries, and one can describe the diagonalizing orthogonal matrix Ω

Ω = 1√
2n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

2 0
...

...
...

... · · ·
1 1 −√

2 0
1 −1 0

√
2

...
...

...
... · · ·

1 −1 0 −√
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.3)

such that ΩtKΩ = Diag(λ0, λ1, λ2, λ2, . . .) with λi given in Lemma B.1.
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Let ω = {ωi}i∈N be the centered Gaussian family with correlation structure E[ωiωj ] = κd(i,j). The following
Proposition gives the dependence on κn of a smooth function of ω1, . . . ,ω2n :

Proposition B.3. If f : R2n �→ R is twice differentiable and grows at most polynomially at infinity, one has

∂

∂κn

E
[
f (ω1, . . . ,ω2n)

]= 2n−1∑
i=1

2n∑
j=2n−1+1

E

[
∂2f

∂ωi∂ωj

(ω)

]
. (B.4)

Proof. Thanks to Remark B.3, one has

E
[
f (ω1, . . . ,ω2n)

]= Ẽ
[
f (Ωω)

]
, (B.5)

with Ω defined in (B.3), and where P̃ stands for the law of a centered Gaussian vector of covariance matrix Δ :=
Diag(λ0, λ1, λ2, λ2, . . .). The eigenvalues λi and their multiplicity are given in Lemma B.1. Then, as only λ0 = κ0 +∑n

k=1 2k−1κk and λ1 = κ0 +∑n−1
k=1 2k−1κk − 2n−1κn depend on κn one gets

∂

∂κn

E
[
f (ω)

]= 2n−1 ∂

∂λ0
Ẽ
[
f (Ωω)

]− 2n−1 ∂

∂λ1
Ẽ
[
f (Ωω)

]
. (B.6)

Then one uses the classical Gaussian fact that if ω is a centered Gaussian variable of variance σ 2 and g is a differen-
tiable function which grows at most polynomially at infinity,

∂

∂σ 2
E
[
g(ω)

]= 1

2
E

[
∂2g

∂ω2
(ω)

]
. (B.7)

Plugging this result in (B.6) one gets

1

2n−1

∂

∂κn

E
[
f (ω1, . . . ,ω2n)

]
= 1

2

2n∑
i,j=1

Ωi1Ωj1Ẽ

[
∂2f

∂xi ∂xj

∣∣∣∣
x=Ωω

]
− 1

2

2n∑
i,j=1

Ωi2Ωj2Ẽ

[
∂2f

∂xi ∂xj

∣∣∣∣
x=Ωω

]

= 1

2n

2n∑
i,j=1

d(i,j)=n

E

[
∂2f

∂ωi ∂ωj

(ω)

]
, (B.8)

where in the second equality we used the values of Ωk1 and Ωk2. �

Remark B.4. With the same type of computations, since Ω is explicit, one can also compute the derivative with respect
to κp for p ≤ n, and after some computations, one gets

∂

∂κp

E
[
f (ω1, . . . ,ω2n)

]= 1

2

2n∑
i,j=1

d(i,j)=p

E

[
∂2f

∂ωi ∂ωj

(ω)

]
. (B.9)
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