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We consider a flow-level model of a network operating under an α-fair
bandwidth sharing policy (with α > 0) proposed by Roberts and Massoulié
[Telecomunication Systems 15 (2000) 185–201]. This is a probabilistic model
that captures the long-term aspects of bandwidth sharing between users or
flows in a communication network.

We study the transient properties as well as the steady-state distribution
of the model. In particular, for α ≥ 1, we obtain bounds on the maximum
number of flows in the network over a given time horizon, by means of a
maximal inequality derived from the standard Lyapunov drift condition. As a
corollary, we establish the full state space collapse property for all α ≥ 1.

For the steady-state distribution, we obtain explicit exponential tail
bounds on the number of flows, for any α > 0, by relying on a norm-like
Lyapunov function. As a corollary, we establish the validity of the diffu-
sion approximation developed by Kang et al. [Ann. Appl. Probab. 19 (2009)
1719–1780], in steady state, for the case where α = 1 and under a local traffic
condition.

1. Introduction. We consider a flow-level model of a network that operates
under an α-fair bandwidth-sharing policy, and establish a variety of new results
on the resulting performance. These results include tail bounds on the size of a
maximal excursion during a finite time interval, finiteness of expected queue sizes,
exponential tail bounds under the steady-state distribution, and the validity of the
heavy-traffic diffusion approximation in steady state. We note that our results are
to a great extent parallel and complementary to our work on packet-switched net-
works, which was reported in [18].

In the remainder of this section, we put our results in perspective by comparing
them with earlier work, and conclude with some more details on the nature of our
contributions.
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1.1. Background. The flow-level network model that we consider was intro-
duced by Roberts and Massoulié [17] to study the dynamic behavior of Internet
flows. It builds on a static version of the model that was proposed earlier by Kelly,
Maulloo, and Tan [14], and subsequently generalized by Mo and Walrand [16] who
introduced a class of “fair” bandwidth-sharing policies parameterized by α > 0.

The most basic question regarding flow-level models concerns necessary and
sufficient conditions for stability, that is, for the existence of a steady-state distri-
bution for the associated Markov process. This question was answered by Bonald
and Massoulié [4] for the case of α-fair policies with α > 0, and by de Veciana
et al. [6] for the case of max-min fair policies (α → ∞) and proportionally fair
(α = 1) policies. In all cases, the stability conditions turned out to be the natural
deterministic conditions based on mean arrival and service rates.

Given these stability results, the natural next question is whether the steady-state
expectation of the number of flows in the system is finite and if so, to identify some
nontrivial upper bounds. When α ≥ 1, the finiteness question can be answered
in the affirmative, and explicit bounds can be obtained by exploiting the same
Lyapunov drift inequality that had been used in earlier work to establish stability.
However, this approach does not seem to apply to the case where α ∈ (0,1), which
remains an open problem; this is one of the problems that we settle in this paper.

A more refined analysis of the number of flows present in the system concerns
exponentially decaying bounds on the tail of its steady-state distribution. We pro-
vide results of this form, together with explicit bounds for the associated exponent.
While a result of this type was not previously available, we take note of related re-
cent results by Stolyar [20] and Venkataramanan and Lin [22] who provide a pre-
cise asymptotic characterization of the exponent of the tail probability, in steady
state, for the case of switched networks (as opposed to flow-level network models).
[To be precise, their results concern the (1 + α) norm of the vector of flow counts
under maximum weight or pressure policies parameterized by α > 0.] We believe
that their methods extend to the model considered here, without much difficulty.
However, their approach leads to a variational characterization that appears to be
difficult to evaluate (or even bound) explicitly. We also take note of work by Sub-
ramanian [21], who establishes a large deviations principle for a class of switched
network models under maximum weight or pressure policies with α = 1.

The analysis of the steady-state distribution for underloaded networks provides
only partial insights about the transient behavior of the associated Markov pro-
cess. As an alternative, the heavy-traffic (or diffusion) scaling of the network can
lead to parsimonious approximations for the transient behavior. A general two-
stage program for developing such diffusion approximations has been put forth by
Bramson [5] and Williams [23], and has been carried out in detail for certain par-
ticular classes of queuing network models. To carry out this program, one needs
to: (i) provide a detailed analysis of a related fluid model when the network is
critically loaded; and, (ii) identify a unique distributional limit of the associated
diffusion-scaled processes by studying a related Skorohod problem. The first stage
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of the program was carried out by Kelly and Williams [15] who identified the in-
variant manifold of the associated critically loaded fluid model. This further led
to the proof by Kang et al. [13] of a multiplicative state space collapse property,
similar to results by Bramson [5]. We note that the above summarized results hold
under α-fair policies with an arbitrary α > 0. The second stage of the program has
been carried out for the proportionally fair policy (α = 1) by Kang et al. [13], under
a technical local traffic condition, and more recently, by Ye and Yao [24], under a
somewhat less restrictive technical condition. We note, however, that when α �= 1,
a diffusion approximation has not been established. In this case, it is of interest
to see at least whether properties that are stronger than multiplicative state space
collapse can be derived, something that is accomplished in the present paper.

The above outlined diffusion approximation results involve rigorous statements
on the finite-time behavior of the original process. Kang et al. [13] further estab-
lished that for the particular setting that they consider, the resulting diffusion ap-
proximation has an elegant product-form steady-state distribution; this result gives
rise to an intuitively appealing interpretation of the relation between the conges-
tion control protocol utilized by the flows (the end-users) and the queues formed
inside the network. It is natural to expect that this product-form steady-state distri-
bution is the limit of the steady-state distributions in the original model under the
diffusion scaling. Results of this type are known for certain queueing systems such
as generalized Jackson networks; see the work by Gamarnik and Zeevi [10]. On
the other hand, the validity of such a steady-state diffusion approximation was not
known for the model considered in [13]; it will be established in the present paper.

1.2. Our contributions. In this paper, we advance the performance analysis of
flow-level models of networks operating under an α-fair policy, in both the steady-
state and the transient regimes.

For the transient regime, we obtain a probabilistic bound on the maximal (over
a finite time horizon) number of flows, when operating under an α-fair policy with
α ≥ 1. This result is obtained by combining a Lyapunov drift inequality with a
natural extension of Doob’s maximal inequality for nonnegative supermartingales.
Our probabilistic bound, together with prior results on multiplicative state space
collapse, leads immediately to a stronger property, namely, full state space col-
lapse, for the case where α ≥ 1.

For the steady-state regime, we obtain nonasymptotic and explicit bounds on
the tail of the distribution of the number of flows, for any α > 0. In the process,
we establish that, for any α > 0, all moments of the steady-state number of flows
are finite. These results are proved by working with a normed version of the Lya-
punov function that was used in prior work. Specifically, we establish that this
normed version is also a Lyapunov function for the system (i.e., it satisfies a drift
inequality). It also happens to be a Lipschitz continuous function and this helps
crucially in establishing exponential tail bounds, using results of Hajek [12] and
Bertsimas et al. [2].
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The exponent in the exponential tail bound that we establish for the distribution
of the number of flows is proportional to a suitably defined distance (“gap”) from
critical loading; this gap is of the same type as the familiar 1 − ρ term, where ρ is
the usual load factor in a queueing system. This particular dependence on the load
leads to the tightness of the steady-state distributions of the model under diffusion
scaling. It leads to one of our main results, namely, the validity of the diffusion
approximation, in steady state, when α = 1 and a local traffic condition holds.

1.3. Organization. The rest of the paper is organized as follows. In Section 2,
we define the notation and some of the terminology that we will employ. We also
describe the flow-level network model, as well as the weighted α-fair bandwidth-
sharing policies. In Section 3, we provide formal statements of our main results.
The transient analysis is presented in Section 4. We start with a general lemma,
and specialize it to obtain a maximal inequality under α-fair policies, when α ≥ 1.
We then apply the latter inequality to prove full state space collapse when α ≥ 1.

We then proceed to the steady-state analysis. In Section 5, we establish a drift
inequality for a suitable Lyapunov function, which is central to our proof of expo-
nential upper bounds on tail probabilities We prove the exponential upper bound on
tail probabilities in Section 6. The validity of the heavy-traffic steady-state approx-
imation is established in Section 7. We conclude the paper with a brief discussion
in Section 8.

2. Model and notation.

2.1. Notation. We introduce here the notation that will be employed through-
out the paper. We denote the real vector space of dimension M by RM , the set of
nonnegative M-tuples by RM+ and the set of positive M-tuples by RM

p . We write R

for R1, R+ for R1+ and Rp for R1
p . We let Z be the set of integers, Z+ the set of

nonnegative integers and N the set of positive integers. Throughout the paper, we
reserve bold letters for vectors and plain letters for scalars.

For any vector x ∈ RM , and any α > 0, we define

‖x‖α =
(

M∑
i=1

|xi |α
)1/α

,

and we define ‖x‖∞ = maxi∈{1,...,M} |xi |. For any two vectors x = (xi)
M
i=1 and

y = (yi)
M
i=1 of the same dimensions, we let 〈x,y〉 = ∑M

i=1 xiyi be the inner product
of x and y. We let ei be the ith unit vector in RM , and 1 the vector of all ones. For
a set S , we denote its cardinality by |S|, and its indicator function by IS . For a
matrix A, we let AT denote its transpose.
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2.2. Flow-level network model.

The model. We adopt the model and notation in [15]. As explained in detail
in [15], this model faithfully captures the long-term (or macro level) behavior of
congestion control in the current Internet.

Let time be continuous and indexed by t ∈ R+. Consider a network with a finite
set J of resources and a set I of routes, where a route is identified with a nonempty
subset of the resource set J . Let A be the |J |×|I| matrix with Aji = 1 if resource
j is used by route i, and Aji = 0 otherwise. Assume that A has rank |J |. Let
C = (Cj )j∈J be a capacity vector, where we assume that each entry Cj is a given
positive constant. Let the number of flows on route i at time t be denoted by
Ni(t), and define the flow vector at time t by N(t) = (Ni(t))i∈I . For each route i,
new flows arrive as an independent Poisson process of rate νi . Each arriving flow
brings an amount of work (data that it wishes to transfer) which is an exponentially
distributed random variable with mean 1/μi , independent of everything else. Each
flow gets service from the network according to a bandwidth-sharing policy. Once
a flow is served, it departs the network.

The α-fair bandwidth-sharing policy. A bandwidth sharing policy has to al-
locate rates to flows so that capacity constraints are satisfied at each time in-
stance. Here we discuss the popular α-fair bandwidth-sharing policy, where α > 0.
At any time, the bandwidth allocation depends on the current number of flows
n = (ni)i∈I . Let �i be the total bandwidth allocated to route i under the α-fair
policy: each flow of type i gets rate �i/ni if ni > 0, and �i = 0 if ni = 0. Un-
der an α-fair policy, the bandwidth vector �(n) = (�i(n))i∈I is determined as
follows.

If n = 0, then � = 0. If n �= 0, then let I+(n) = {i ∈ I :ni > 0}. For i /∈ I+(n),
set �i(n) = 0. Let �+(n) = (�i(n))i∈I+(n). Then �+(n) is the unique maximizer
in the optimization problem

maximize Gn(�+) over � ∈ R
|I|
+(1)

subject to
∑

i∈I+(n)

Aji�i ≤ Cj ,∀j ∈ J ,(2)

where

Gn(�+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i∈I+(n)

κin
α
i

�1−α
i

1 − α
, if α ∈ (0,∞) \ {1},

∑
i∈I+(n)

κini log�i, if α = 1.

Here, for each i ∈ I , κi is a positive weight assigned to route i.
Some crucial properties of �(n) are as follows (see Appendix A of [15]):
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(i) �i(n) > 0 for every i ∈ I+(n);
(ii) �(rn) = �(n) for r > 0;

(iii) For every n and every i ∈ I+(n), the function �i(·) is continuous at n.

Flow dynamics. The flow dynamics are described by the evolution of the flow
vector N(t) = (Ni(t))i∈I , a Markov process with infinitesimal transition rate ma-
trix q given by

q(n,n + m) =
⎧⎨
⎩

νi, if m = ei ,

μi�i(n), if m = −ei and ni ≥ 1,

0, otherwise,
(3)

where for each i, νi > 0 and μi > 0 are the arrival and service rates defined earlier,
and ei is the ith unit vector.

Capacity region. Flows of type i bring to the system an average of ρi = νi/μi

units of work per unit time. Therefore, in order for the Markov process N(·) to be
positive recurrent, it is necessary that

Aρ < C componentwise.(4)

We note that under the α-fair bandwidth-sharing policy, condition (4) is also suffi-
cient for positive recurrence of the process N(·) [4, 6, 15].

2.3. A note on our use of constants. Our results and proofs involve various
constants; some are absolute constants, some depend only on the structure of the
network and some depend (smoothly) on the traffic parameters (the arrival and ser-
vice rates). It is convenient to distinguish between the different types of constants,
and we define here the terminology that we will be using.

The term absolute constant will be used to refer to a quantity that does not
depend on any of the model parameters. The term network-dependent constant
will be used to refer to quantities that are completely determined by the structure
of the underlying network and policy, namely, the incidence matrix A, the capacity
vector C, the weight vector κ and the policy parameter α.

Our analysis also involves certain quantities that depend on the traffic parame-
ters, namely, the arrival and service parameters μ and ν. These quantities are often
given by complicated expressions that would be inconvenient to carry through the
various arguments. It turns out that the only property of such quantities that is rel-
evant to our purposes is the fact they change continuously as μ and ν vary over the
open positive orthant. (This still allows these quantities to be undefined or discon-
tinuous on the boundary of the positive orthant.) We abstract this property by in-
troducing, in the definition that follows, the concept of a (positive) load-dependent
constant.
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DEFINITION 2.1. Consider a family of bandwidth-sharing networks with
common parameters (A,C,κ, α), but varying traffic parameters (μ, ν). A quan-
tity K will be called a (positive) load-dependent constant if for networks in that
family it is determined by a relation of the form K = f (μ, ν), where f : R|I|

p ×
R

|I|
p → Rp is a continuous function on the open positive orthant R

|I|
p × R

|I|
p .

A key property of a load-dependent constant, which will be used in some of the
subsequent proofs, is that it is by definition positive and furthermore (because of
continuity), bounded above and below by positive network-dependent constants if
we restrict μ and ν to a compact subset of the open positive orthant. A natural
example of a load-dependent constant is the load factor ρi = νi/μi . (Note that this
quantity diverges as μi → 0.)

We also define the gap of a underloaded bandwidth-sharing network.

DEFINITION 2.2. Consider a family of bandwidth-sharing networks with
common parameters (A,C,κ, α) and with varying traffic parameters (μ, ν) that
satisfy Aρ < C. The gap of a network with traffic parameters (μ, ν) in the family,
denoted by ε(ρ), is defined by

ε(ρ) � sup
{
ε̃ > 0 : (1 + ε̃)Aρ ≤ C

}
.

We sometimes write ε for ε(ρ) when there is no ambiguity. Note also that ε(ρ)

plays the same role as the term 1 − ρ in a queueing system with load ρ.

2.4. Uniformization. Uniformization is a well-known device which allows us
to study a continuous-time Markov process by considering an associated discrete-
time Markov chain with the same stationary distribution. We provide here some
details and the notation that we will be using.

Recall that the Markov process N(·) of interest has dynamics given by (3). Let
�(n) = ∑

ñ q(n, ñ) be the aggregate transition rate at state n. The embedded jump
chain of N(·) is a discrete-time Markov chain with the same state space Z

|I|
+ , and

with transition probability matrix P given by

P(n, ñ) = q(n, ñ)

�(n)
.

The so-called uniformized Markov chain is an alternative, more convenient,
discrete-time Markov chain, denoted (Ñ(τ ))τ∈Z+ , to be defined shortly.

We first introduce some more notation. Consider the aggregate transition rates
�(n) = ∑

ñ q(n, ñ). Since every route uses at least one resource, we have �i(n) ≤
maxj∈J Cj , for all i ∈ I . Then, by (3), we have

�(n) = ∑
ñ

q(n, ñ) ≤ ∑
i∈I

(
νi + μi�i(n)

) ≤ ∑
i∈I

(
νi + μi max

j∈J
Cj

)
.
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We define � � ∑
i∈I (νi + μi maxj∈J Cj), and modify the rates of self-transitions

(which were zero in the original model) to

q(n,n) := � − �(n).(5)

Note that � is a positive load-dependent constant. We define a transition probabil-
ity matrix P̃ by

P̃ (n, ñ) � q(n, ñ)

�
.

DEFINITION 2.3. The uniformized Markov chain (Ñ(τ ))τ∈Z+ associated with
the Markov process N(·) is a discrete-time Markov chain with the same state space
Z

|I|
+ , and with transition matrix P̃ defined as above.

As remarked earlier, the Markov process N(·) that describes a bandwidth-
sharing network operating under an α-fair policy is positive recurrent, as long as
the system is underloaded, that is, if Aρ < C. It is not hard to verify that N(·) is
also irreducible. Therefore, the Markov process N(·) has a unique stationary dis-
tribution. The chain Ñ(·) is also positive recurrent and irreducible because N(·) is,
and by suitably increasing � if necessary, it can be made aperiodic. Thus Ñ(·) has a
unique stationary distribution as well. A crucial property of the uniformized chain
Ñ(·) is that this unique stationary distribution is the same as that of the original
Markov process N(·); see, for example, [9].

2.5. A mean value theorem. We will be making extensive use of a second-
order mean value theorem [1], which we state below for easy reference.

PROPOSITION 2.4. Let g : RM → R be twice continuously differentiable over
an open sphere S centered at a vector x. Then, for any y such that x + y ∈ S, there
exists θ ∈ [0,1] such that

g(x + y) = g(x) + yT ∇g(x) + 1
2yT H(x + θy)y,(6)

where ∇g(x) � [ ∂g(x)
∂xi

]Mi=1 ∈ RM is the gradient of g at x, and

H(x) �
[

∂2g(x)

∂xi ∂xj

]M

i,j=1
∈ RM×M

is the Hessian of the function g at x.

3. Summary of results. In this section, we summarize our main results for
both the transient and the steady-state regime. The proofs are given in subsequent
sections.
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3.1. Transient regime. Here we provide a simple inequality on the maximal
excursion of the number of flows over a finite time interval, under an α-fair policy
with α ≥ 1.

THEOREM 3.1. Consider a bandwidth-sharing network operating under an
α-fair policy with α ≥ 1, and assume that Aρ < C. Suppose that N(0) = 0. Let
N∗(T ) = supt∈[0,T ],i∈I Ni(t), and let ε be the gap. Then, for any b > 0,

P
(
N∗(T ) ≥ b

) ≤ KT

εα−1bα+1(7)

for some positive load-dependent constant K .

As an important application, in Section 4.3, we will use Theorem 3.1 to prove a
full state space collapse result, when α ≥ 1. (As discussed in the Introduction, this
property is stronger than multiplicative state space collapse.) The precise statement
can be found in Theorem 4.10.

3.2. Stationary regime. As noted earlier, the Markov process N(·) has a unique
stationary distribution, which we will denote by π . We use Eπ and Pπ to denote
expectations and probabilities under π .

Exponential bound on tail probabilities. For an α-fair policy, and for any α ∈
(0,∞), we obtain an explicit exponential upper bound on the tail probabilities for
the number of flows, in steady state. This will be used to establish an “interchange
of limits” result in Section 7. See Theorem 7.6 for more details.

THEOREM 3.2. Consider a bandwidth-sharing network operating under an
α-fair policy with α > 0, and assume that Aρ < C. Let ε be the gap. There exist
positive constants B , K and ξ such that for all 
 ∈ Z+,

Pπ
(‖N‖∞ ≥ B + 2ξ


) ≤
(

ξ

ξ + εK

)
+1
.(8)

Here ξ and K are load-dependent constants, and B takes the form K ′/ε when
α ≥ 1, and K ′/min{ε1/α, ε} when α ∈ (0,1), with K ′ being a positive load-
dependent constant. In particular, all moments of ‖N‖∞ are finite under the sta-
tionary distribution π , that is, Eπ [‖N‖k∞] < ∞ for every k ∈ N.

Here we note that Theorem 3.2 implies the following. The system load L(ρ),
defined by L(ρ) � 1

1+ε(ρ)
, satisfies L(ρ) ≈ 1 − ε(ρ) when ε = ε(ρ) is small, that

is, when the system approaches criticality. Then, an immediate consequence of the
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bound (8) is that

lim sup
γ→∞

1

γ
log Pπ

(‖N‖∞ ≥ γ
)
� 1

2ξ
log

(
ξ

ξ + εK

)

≈ −Kε

2ξ2 ≈ − K

2ξ2

(
1 − L(ρ)

)
.

Note that K
2ξ2 is a load-dependent constant. Thus Theorem 3.2 shows that the

large-deviations exponent of the steady-state number of flows is upper bounded
by −(1 − L(ρ)), up to a multiplicative constant.

Interchange of limits (α = 1). As discussed in the Introduction, when α = 1,
Theorem 3.2 leads to the tightness (Lemma 7.7) of the steady-state distributions
of the model under diffusion scaling. This in turn leads to Theorem 7.6 and Corol-
lary 7.10, on the validity of the diffusion approximation in steady state. As the
statements of these results require a significant amount of preliminary notation and
background (which is introduced in Section 7), we give here an informal statement.

INTERCHANGE OF LIMITS THEOREM (informal statement). Consider a se-
quence of flow-level networks operating under the proportionally fair policy. Let
Nr (·) be the flow-vector Markov process associated with the r th network, let εr

be the corresponding gap, and let π̂ r be the stationary distribution of εrNr (·).
As εr → 0, and under certain technical conditions, π̂ r converges weakly to the
stationary distribution of an associated limiting process.

4. Transient analysis (α ≥ 1). In this section, we present a transient analysis
of the α-fair policies with α ≥ 1. First we present a general maximal lemma, which
we then specialize to our model. In particular, we prove a refined drift inequality
for the Lyapunov function given by

Fα(n) = 1

α + 1

∑
i∈I

νiκiμ
α−1
i

(
ni

νi

)α+1

.(9)

This Lyapunov function and associated drift inequalities have played an impor-
tant role in establishing positive recurrence (cf. [4, 6, 15]) and multiplicative state
space collapse (cf. [13]) for α-fair policies. We combine our drift inequality with
the maximal lemma to obtain a maximal inequality for bandwidth-sharing net-
works. We then apply the maximal inequality to prove full state space collapse
when α ≥ 1.

4.1. The key lemma. Our analysis relies on the following lemma.



86 D. SHAH, J. N. TSITSIKLIS AND Y. ZHONG

LEMMA 4.1. Let (Fn)n∈Z+ be a filtration on a probability space. Let
(Xn)n∈Z+ be a nonnegative Fn-adapted stochastic process that satisfies

E[Xn+1|Fn] ≤ Xn + Bn,(10)

where the Bn are nonnegative random variables (not necessarily Fn-adapted) with
finite means. Let X∗

n = max{X0, . . . ,Xn} and suppose that X0 = 0. Then, for any
a > 0 and any T ∈ Z+,

P
(
X∗

T ≥ a
) ≤

∑T −1
n=0 E[Bn]

a
.

This lemma is a simple consequence of the following standard maximal inequal-
ity for nonnegative supermartingales; see, for example, Exercise 4, Section 12.4,
of [11].

THEOREM 4.2. Let (Fn)n∈Z+ be a filtration on a probability space. Let
(Yn)n∈Z+ be a nonnegative Fn-adapted supermartingale; that is, for all n,

E[Yn+1|Fn] ≤ Yn.

Let Y ∗
T = max{Y0, . . . , YT }. Then,

P
(
Y ∗

T ≥ a
) ≤ E[Y0]

a
.

PROOF OF LEMMA 4.1. First note that if we take the conditional expectation
of both sides of (10), given Fn, we have

E[Xn+1|Fn] ≤ E[Xn|Fn] + E[Bn|Fn] = Xn + E[Bn|Fn].
Fix T ∈ Z+. For any n ≤ T , define

Yn = Xn + E

[
T −1∑
k=n

Bk

∣∣∣Fn

]
.

Then

E[Yn+1|Fn] = E[Xn+1|Fn] + E

[
E

[
T −1∑

k=n+1

Bk

∣∣∣Fn+1

]∣∣∣Fn

]

≤ Xn + E[Bn|Fn] + E

[
T −1∑

k=n+1

Bk

∣∣∣Fn

]
= Yn.

Thus, Yn is an Fn-adapted supermartingale; furthermore, by definition, Yn is non-
negative for all n. Therefore, by Theorem 4.2,

P
(
Y ∗

T ≥ a
) ≤ E[Y0]

a
= E[∑T −1

k=0 Bk]
a

.



QUALITATIVE PROPERTIES OF α-FAIR POLICIES 87

But Yn ≥ Xn for all n, since the Bk are nonnegative. Thus,

P
(
X∗

T ≥ a
) ≤ P

(
Y ∗

T ≥ a
) ≤ E[∑T −1

k=0 Bk]
a

. �

Since we are dealing with continuous-time Markov processes, the following
corollary of Lemma 4.1 will be useful for our analysis.

COROLLARY 4.3. Let (Ft )t≥0 be a filtration on a probability space. Let Zt

be a nonnegative, right-continuous Ft -adapted stochastic process that satisfies

E[Zs+t |Fs] ≤ Zs + Bt

for all s, t ≥ 0, where B is a nonnegative constant. Assume that Z0 ≡ 0. Denote
Z∗

T � sup0≤t≤T Zt (which can possibly be infinite). Then, for any a > 0, and for
any T ≥ 0,

P
(
Z∗

T ≥ a
) ≤ BT

a
.

PROOF. The proof is fairly standard. We fix T ≥ 0 and a > 0. Since Zt is
right-continuous, Z∗

T = supt∈[0,T ] Zt = supt∈([0,T ]∩Q)∪{T } Zt . Consider an increas-
ing sequence of finite sets In so that

⋃∞
n=1 In = ([0, T ] ∩ Q) ∪ {T }, and 0, T ∈ In

for all n. Define Z
(n)
T = supt∈In

Zt . Then (Z
(n)
T )∞n=1 is a nondecreasing sequence,

and Z
(n)
T → Z∗

T as n → ∞, almost surely. For each Z
(n)
T , we can apply Lemma 4.1,

and it is immediate that for any b > 0,

P
(
Z

(n)
T > b

) ≤ BT

b
,(11)

since each In includes both 0 and T . Since Z
(n)
T increases monotonically to Z∗

T ,

almost surely, we have that P(Z
(n)
T > b) ≤ P(Z

(n+1)
T > b) for all n, and P(Z

(n)
T >

b) → P(Z∗
T > b) as n → ∞. The right-hand side of (11) is fixed, so

P
(
Z∗

T > b
) ≤ BT

b
.

We now take an increasing sequence bn with limn→∞ bn = a, and obtain

P
(
Z∗

T ≥ a
) ≤ BT

a
. �

4.2. A maximal inequality for bandwidth-sharing networks. We employ the
Lyapunov function (9) to study α-fair policies. This is the Lyapunov function that
was used in [4, 6] and [15] to establish positive recurrence of the process N(·)
under an α-fair policy. Below we fine-tune the proof in [6] to obtain a more precise
bound on the Lyapunov drift. We note that a “fluid-model” version of the following
lemma appeared in the proof of Theorem 1 in [4]. For notational convenience, we
drop the subscript α from Fα and write F instead.
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LEMMA 4.4. Consider a bandwidth-sharing network with Aρ < C operating
under an α-fair policy with α > 0. Let ε be the gap. Then, for any nonzero flow
vector n, 〈∇F(n), ν − μ�(n)

〉 ≤ −ε
〈∇F(n), ν

〉
,

where 〈·, ·〉 denotes the standard inner product, ∇F(n) denotes the gradient of F ,
and μ�(n) is the vector (μi�i(n))i∈I .

PROOF. We have

〈∇F(n), ν − μ�(n)
〉 = ∑

i∈I

1

μi

κi

(
ni

ρi

)α(
νi − μi�i(n)

)

= ∑
i∈I

κi

(
ni

ρi

)α(
ρi − �i(n)

)

= 〈∇Gn(ρ+),ρ+ − �+(n)
〉
,

where ρ+ = (ρi)i∈I+(n). Similarly we can get 〈∇F(n), ν〉 = 〈∇Gn(ρ+),ρ+〉.
Now consider the function g : [0,1] → R defined by

g(θ) = Gn
(
θ(1 + ε)ρ+ + (1 − θ)�+(n)

)
.

Since (1 + ε)ρ+ satisfies the constraints in (2), and �+(n) maximizes the strictly
concave function Gn subject to the constraints in (2), we have

Gn
(
(1 + ε)ρ+

) ≤ Gn
(
�+(n)

)
that is g(1) ≤ g(0).

Furthermore, since Gn is a concave function, g is also concave in θ . Thus,

g(0) ≤ g(1) + (0 − 1)g′(1) ≤ g(0) + (0 − 1)g′(1).

Hence, g′(1) ≤ 0, that is,

dg

dθ

∣∣∣∣
θ=1

= 〈∇Gn
(
(1 + ε)ρ+

)
, (1 + ε)ρ+ − �+(n)

〉 ≤ 0.(12)

But it is easy to check that ∇Gn((1 + ε)ρ+) = (1 + ε)−α∇Gn(ρ+), so divid-
ing (12) by (1 + ε)−α , we have〈∇Gn(ρ+),ρ+ − �+(n)

〉 ≤ −ε
〈∇Gn(ρ+),ρ+

〉
.

This is the same as 〈∇F(n), ν − μ�(n)
〉 ≤ −ε

〈∇F(n), ν
〉
. �

Our next lemma provides a uniform upper bound on the expected change of
F(Ñ(·)) in one time step, where Ñ(·) is the uniformized chain associated with the
Markov process N(·); cf. Definition 2.3.
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LEMMA 4.5. Let α ≥ 1. As above, consider a bandwidth-sharing network
with Aρ < C operating under an α-fair policy. Let ε be the gap. Let (Ñ(τ ))τ∈Z+ be
the uniformized chain associated with the Markov process N(·). Then there exists
a positive load-dependent constant K̄ , such that for all τ ∈ Z+,

E
[
F
(
Ñ(τ + 1)

) − F(n)|Ñ(τ ) = n
] ≤ K̄ε1−α.

PROOF. By the mean value theorem (cf. Proposition 2.4), for n,m ∈ Z
|I|
+ , we

have

F(n + m) − F(n) = 〈∇F(n),m
〉 + 1

2mT ∇2F(n + θm)m(13)

for some θ ∈ [0,1]. We note that, for m = ±ei , we have

1

2
mT ∇2F(n + θm)m ≤ κiα

2μiρ
α
i

(ni ± θ)α−1

(14)
≤ κiα

2μiρ
α
i

(ni + 1)α−1,

since α ≥ 1, and θ ∈ [0,1].
As in [6], we define

QF(n) �
∑
m

q(n,n + m)
[
F(n + m) − F(n)

]
,

so that Q is the generator of the Markov process N(·). We now proceed to derive
an upper bound for QF(n). Using equation (13), we can rewrite QF(n) as

QF(n) = ∑
m

q(n,n + m)

[〈∇F(n),m
〉 + 1

2
mT ∇2F(n + θmm)m

]

= ∑
m

q(n,n + m)
〈∇F(n),m

〉

+ 1

2

∑
m

q(n,n + m)mT ∇2F(n + θmm)m

for some scalars θm ∈ [0,1], one such scalar for each m. From the definition of q,
we have

∑
m

q(n,n + m)
〈∇F(n),m

〉 = 〈
∇F(n),

∑
m

q(n,n + m)m
〉

= 〈∇F(n), ν − μ�(n)
〉
.

From (14), for m = ±ei , we also have

1
2mT ∇2F(n + θmm)m ≤ κiα(ni + 1)α−1/2μiρ

α
i .
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Thus

QF(n) ≤ 〈∇F(n), ν − μ�(n)
〉 + ∑

i∈I

κiα

2μiρ
α
i

(ni + 1)α−1(νi + μi�i(n)
)

≤ −ε
∑
i∈I

κi

(
ni

ρi

)α

ρi + ∑
i∈I

κiα

2ρα
i

(ni + 1)α−1(ρi + �i(n)
)

≤ −mε
∑
i∈I

nα
i + M

∑
i∈I

(ni + 1)α−1,

where the second inequality follows from Lemma 4.4, and the third by defining

m � min
i∈I

κiρ
1−α
i , M � max

i∈I

κiα

2ρα
i

(
ρi + max

j∈J
Cj

)
,

and noting the fact that since �i(n) ≤ maxj∈J Cj for all i, we have M ≥
maxi∈I

κiα
2ρα

i
(ρi +�i(n)). It is then a simple calculation to see that for every n ≥ 0,

we have

QF(n) ≤ −mε
∑
i∈I

nα
i + M

∑
i∈I

(ni + 1)α−1 ≤ K̃ε1−α

for some positive load-dependent constant K̃ . Now given Ñ(τ ) = n,

E
[
F
(
Ñ(τ + 1)

) − F(n)|Ñ(τ ) = n
] = QF(n)

�
≤ K̃ε1−α

�
.

By setting K̄ = K̃/�, we have proved the lemma. �

COROLLARY 4.6. Let α ≥ 1. As before, suppose that Aρ < C, and let ε be
the associated gap. Then, under the α-fair policy, the process N(·) satisfies

E
[
F
(
N(s + t)

) − F
(
N(s)

)|N(s)
] ≤ K̃tε1−α for all t ≥ 0

for some positive load-dependent constant K̃ .

PROOF. The idea of the proof is to show that the expected number of state
transitions of N(·) in the time interval [s, s + t] is of order O(t).

Consider the uniformized Markov chain Ñ(·) associated with the process N(·).
Denote the number of state transitions in the uniformized version of the process
N(·) in the time interval [s, s + t] by τ . By the Markov property, time-homogeneity
and the definition of Ñ(·), we have

E
[
F
(
N(s + t)

) − F
(
N(s)

)|N(s) = n
]

= E
[
F
(
Ñ(τ )

) − F
(
Ñ(0)

)|Ñ(0) = n
]
.
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Now, by the definition of the uniformized chain, τ and Ñ(·) are independent. Thus

E
[
F
(
Ñ(τ )

) − F
(
Ñ(0)

)|Ñ(0)
]

= E

[
τ−1∑
k=0

(
F
(
Ñ(k + 1)

) − F
(
Ñ(k)

))∣∣∣Ñ(0)

]

= E

[
E

[
τ−1∑
k=0

(
F
(
Ñ(k + 1)

) − F
(
Ñ(k)

))∣∣∣Ñ(0), τ

]∣∣∣Ñ(0)

]

= E

[
τ−1∑
k=0

E
[
F
(
Ñ(k + 1)

) − F
(
Ñ(k)

)|Ñ(0), τ
]∣∣∣Ñ(0)

]

= E

[
τ−1∑
k=0

E
[
F
(
Ñ(k + 1)

) − F
(
Ñ(k)

)|Ñ(0)
]∣∣∣Ñ(0)

]

≤ E

[
τ−1∑
k=0

K̄ε1−α

]
= K̄ε1−αE[τ ]

for some load-dependent constant K̄ . The fourth equality follows from the inde-
pendence of τ and Ñ(·), and the inequality follows from Lemma 4.5. Since the
counting process of the number of state transitions in the uniformized version
of the process N(·) is a time-homogeneous Poisson process of rate �, we have
E[τ ] = �t . This shows that

E
[
F
(
N(s + t)

) − F
(
N(s)

)|N(s)
] ≤ K̄�tε1−α.

The proof is completed by setting K̃ = K̄�. �

PROOF OF THEOREM 3.1. Let b > 0. Then

P
(
N∗(T ) ≥ b

) = P

(
1

α + 1

(
N∗(T )

)α+1 ≥ 1

α + 1
bα+1

)

≤ P

(
sup

t∈[0,T ]
F
(
N(t)

) ≥
(

min
i∈I

1

α + 1
κiμ

α−1
i ν−α

i

)
bα+1

)

≤ (α + 1)K ′T
(mini∈I κiμ

α−1
i ν−α

i )εα−1bα+1
= KT

εα−1bα+1 ,

where the second inequality follows from Corollaries 4.3 and 4.6, K ′ is as in Corol-
lary 4.6, and K = (α+1)K ′

mini∈I κiμ
α−1
i ν−α

i

. �



92 D. SHAH, J. N. TSITSIKLIS AND Y. ZHONG

4.3. Full state space collapse for α ≥ 1. Throughout this section, we assume
that we have fixed α ≥ 1, and correspondingly, the Lyapunov function (9). To state
the full state space collapse result for α ≥ 1, we need some preliminary definitions
and the statement of the multiplicative state space collapse result.

Consider a sequence of bandwidth-sharing networks indexed by r , where r is
to be thought of as increasing to infinity along a sequence. Suppose that the in-
cidence matrix A, the capacity vector C and the weights {κi : i ∈ I} do not vary
with r . Write Nr (t) for the flow-vector Markov process associated with the r th
network. Similarly, we write νr , μr , ρr , etc. We assume the following heavy-traffic
condition (cf. [13]):

ASSUMPTION 4.7. We assume that Aρr < C for all r . We also assume that
there exist ν,μ ∈ R

|I|
+ and θ > 0, such that νi > 0 and μi > 0 for all i ∈ I , νr → ν

and μr → μ as r → ∞, and r(C − Aρr ) → θ as r → ∞.

Note that our assumption differs from that in [13], which allows convergence
to the critical load from both overload and underload, whereas here we only allow
convergence to the critical load from underload.

To state the multiplicative state space collapse result, we also need to define a
workload process W(t) and a lifting map �.

DEFINITION 4.8. We first define the workload w : R|I|
+ → R

|J |
+ associated

with a flow-vector n by w = w(n) = AM−1n, where M = diag(μ) is the |I| × |I|
diagonal matrix with μ on its diagonal. The workload process W(t) is defined to
be W(t) � AM−1N(t), for all t ≥ 0. We also define the lifting map �. For each
w ∈ R

|J |
+ , define �(w) to be the unique value of n ∈ R

|I|
+ that solves the following

optimization problem:

minimize F(n)

subject to
∑
i∈I

Aji

ni

μi

≥ wj , j ∈ J , ni ≥ 0, i ∈ I.

For simplicity, suppose that all networks start with zero flows. We consider the
following diffusion scaling:

N̂r (t) = Nr (r2t)

r
and Ŵr (t) = Wr (r2t)

r
,(15)

where Wr (t) = A(Mr )−1Nr (t), and Mr = diag(μr ).
The following multiplicative state space collapse result is known to hold.

THEOREM 4.9 (Multiplicative state space collapse [13], Theorem 5.1). Fix
T > 0 and assume that α ≥ 1. Write ‖x(·)‖ = supt∈[0,T ],i∈I |xi(t)|. Then, under
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Assumption 4.7, and for any δ > 0,

lim
r→∞ P

(‖N̂r (·) − �(Ŵr (·))‖
‖N̂r (·)‖ > δ

)
= 0.

We can now state and prove a full state space collapse result:

THEOREM 4.10 (Full state space collapse). Under the same assumptions as
in Theorem 4.9, and for any δ > 0,

lim
r→∞ P

(∥∥N̂r (·) − �
(
Ŵr (·))∥∥ > δ

) = 0.

PROOF. Let εr = ε(ρr ) be the gap in the r th system. Then, under Assump-
tion 4.7, εr ≥ D/r for some network-dependent constant D > 0, and for r suffi-
ciently large. By Theorem 3.1, for any b > 0, and for sufficiently large r ,

P
(
Nr,∗(r2T

) ≥ b
) ≤ Krr

2T

εα−1
r bα+1

≤ Krr
1+αT

Dα−1bα+1 .

Here, Kr is a load-dependent constant associated with the r th system, as specified
in the proof of Theorem 3.1. From the proof of Theorem 3.1, note also that Kr =
f (μr , νr ), for a function f that is continuous on the open positive orthant R

|I|
p ×

R
|I|
p . Since μr → μ > 0, and νr → ν > 0, Kr → K � f (μ, ν) ∈ R. In particular,

the Kr are bounded, and for all sufficiently large r ,

P
(
Nr,∗(r2T

) ≥ b
) ≤ (K + 1)r1+αT

Dα−1bα+1 .

Then, with a = b/r and under the scaling in (15),

P
(∥∥N̂r (·)∥∥ ≥ a

) ≤ K + 1

Dα−1 · T

aα+1(16)

for any a > 0.
For notational convenience, we write

B(r) = ∥∥N̂r (·) − �
(
Wr (·))∥∥.

Then, for any a > 1, and for sufficiently large r ,

P
(
B(r) > δ

) ≤ P

(
B(r)

‖N̂r (·)‖ >
δ

a
or

∥∥N̂r (·)∥∥ ≥ a

)

≤ P

(
B(r)

‖N̂r (·)‖ >
δ

a

)
+ P

(∥∥N̂r (·)∥∥ ≥ a
)
.
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Note that by Theorem 4.9, the first term on the right-hand side goes to 0 as r → ∞,
for any a > 0. The second term on the right-hand side can be made smaller than
any, arbitrarily small, constant (uniformly, for all r), by taking a sufficiently large;
cf. equation (16). Thus, P(B(r) ≥ δ) → 0 as r → ∞. This completes the proof.

�

5. α-fair policies: A useful drift inequality. We now shift our focus to the
steady-state regime. The key to many of our results is a drift inequality that holds
for every α > 0 and every ρ > 0 with Aρ < C. In this section, we shall state and
prove this inequality. It will be used in Section 6 to prove Theorem 3.2.

We define the Lyapunov function that we will employ. For α ≥ 1, it will be sim-
ply the weighted (α +1)-norm Lα(n) = α+1

√
(α + 1)Fα(n) of a vector n, where Fα

was defined in (9). However, when α ∈ (0,1), this function has unbounded second
derivatives as we approach the boundary of R

|I|
+ . For this reason, our Lyapunov

function will be a suitably smoothed version of α+1
√

(α + 1)Fα(·).

DEFINITION 5.1. Define hα : R+ → R+ to be hα(r) = rα , when α ≥ 1, and

hα(r) =
{

rα, if r ≥ 1,

(α − 1)r3 + (1 − α)r2 + r, if r < 1,

when α ∈ (0,1). Let Hα : R+ → R+ be the antiderivative of hα , so that Hα(r) =∫ r
0 hα(s) ds. The Lyapunov function Lα : R|I|

+ → R+ is defined to be

Lα(n) =
[
(α + 1)

∑
i∈I

κiμ
α−1
i ν−α

i Hα(ni)

]1/(α+1)

.

For notational convenience, define

wi = κiμ
α−1
i ν−α

i for each i ∈ I,(17)

so that more compactly, we have

Fα(n) = 1

α + 1

∑
i∈I

win
α+1
i and Lα(n) =

[
(α + 1)

∑
i∈I

wiHα(ni)

]1/(α+1)

.

We will make heavy use of various properties of the functions hα , Hα and Lα ,
which we summarize in the following lemma. The proof is elementary and is omit-
ted.

LEMMA 5.2. Let α ∈ (0,1). The function hα has the following properties:

(i) it is continuously differentiable with hα(0) = 0, hα(1) = 1, h′
α(0) = 1 and

h′
α(1) = α;

(ii) it is increasing and, in particular, hα(r) ≥ 0 for all r ≥ 0;
(iii) we have rα − 1 ≤ hα(r) ≤ rα + 1, for all r ∈ [0,1];
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(iv) h′
α(r) ≤ 2, for all r ≥ 0.

Furthermore, from (iii), we also have the following property of Hα :

(iii′) rα+1 − 2 ≤ (α + 1)Hα(r) ≤ rα+1 + 2 for all r ≥ 0.

We are now ready to state the drift inequality. Here we consider the uniformized
chain (Ñ(τ ))τ∈Z+ associated with N(·), and the corresponding drift.

THEOREM 5.3. Consider a bandwidth-sharing network operating under an
α-fair policy with α > 0, and assume that Aρ < C. Let ε be the gap. Then, there
exists a positive constant B and a positive load-dependent constant K , such that if
Lα(Ñ(τ )) > B , then

E
[
Lα

(
Ñ(τ + 1)

) − Lα

(
Ñ(τ )

)|Ñ(τ )
] ≤ −εK.(18)

Furthermore, B takes the form K ′/ε when α ≥ 1, and K ′/min{ε1/α, ε} when α ∈
(0,1), with K ′ being a positive load-dependent constant.

As there is a marked difference between the form of Lα for the two cases α ≥ 1
and α ∈ (0,1), the proof of the drift inequality is split into two parts. We first prove
the drift inequality when α ≥ 1, in which case Lα takes a nicer form, and we can
apply results on Fα from previous sections. The proof for the case α ∈ (0,1) is
similar but more tedious. We note that such a qualitative difference between the
two cases, α < 1 and α ≥ 1, has also been observed in other works, such as, for
example, [19].

We wish to draw attention here to the main difference from related drift in-
equalities in the literature. The usual proof of stability involves the Lyapunov func-
tion (9); for instance, for the α-fair policy with α = 1 (the proportionally fair pol-
icy), it involves a weighted quadratic Lyapunov function. In contrast, we use Lα ,
a weighted norm function (or its smoothed version), which scales linearly along
radial directions. In this sense, our approach is similar in spirit to [2], which em-
ployed piecewise linear Lyapunov functions to derive drift inequalities and then
moment and tail bounds. The use of normed Lyapunov functions to establish sta-
bility and performance bounds has also been considered in other works; see, for
example, [22] and [7].

5.1. Proof of Theorem 5.3: α ≥ 1. We wish to decompose the drift term in (18)
into the sum of a first-order term and a second-order term, and we accomplish this
by using the second-order mean value theorem; cf. Proposition 2.4. Throughout
this proof, we drop the subscript α from Lα and Fα , and write L and F , respec-
tively.

Consider the function L(n) = (
∑

i∈I win
α+1
i )1/(α+1) = [(α + 1)F (n)]1/(α+1).

The first derivative of L with respect to n is ∇L(n) = ∇F(n)/Lα(n) by the chain
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rule and the definition of L. The second derivative is

∇2L(n) = ∇2F(n)

Lα(n)
− ∇F(n)∇Lα(n)T

L2α(n)
= ∇2F(n)

Lα(n)
− α

∇F(n)∇F(n)T

L2α+1(n)
,

by the quotient rule and the chain rule.
Write n for Ñ(τ ) and n + m for Ñ(τ + 1), so that m = Ñ(τ + 1) − Ñ(τ ). By

Proposition 2.4, for some θ ∈ [0,1], we have

L(n + m) − L(n) = mT ∇L(n) + 1

2
mT ∇2L(n + θm)m(19)

= mT ∇F(n)

Lα(n)
+ 1

2

mT ∇2F(n + θm)m
Lα(n + θm)

(20)

− α

2

mT ∇F(n + θm)∇F(n + θm)T m
L2α+1(n + θm)

(21)

≤ mT ∇F(n)

Lα(n)
+ 1

2
mT ∇2F(n + θm)

Lα(n + θm)
m,(22)

since the term mT ∇F(n + θm)∇F(n + θm)T m is nonnegative. We now consider
the two terms in (22) separately. Recall from the proof of Lemma 4.5 that

E
[
mT ∇F(n)|n] = 〈∇F(n), ν − μ�(n)〉

�
≤ −ε

〈∇F(n), ν〉
�

.

But 〈∇F(n), ν〉 = ∑
i∈I wiνin

α
i , so

E
[
mT ∇F(n)|n] ≤ −ε

∑
i∈I wiνin

α
i

�
,(23)

and so

E

[
mT ∇F(n)

Lα(n)

∣∣∣n] ≤ −ε

∑
i∈I wiνin

α
i

�(
∑

i∈I win
α+1
i )α/(α+1)

= −ε

∑
i∈I wiνin

α
i

�(
∑

i∈I (w
1/(α+1)
i ni)α+1)α/(α+1)

≤ −ε

∑
i∈I wiνin

α
i

� · ∑i∈I w
α/(α+1)
i nα

i
(24)

≤ −ε
maxi∈I w

1/(α+1)
i νi

�

= −ε
maxi∈I κ1/(α+1)μ

(α−1)/(α+1)
i ν

1/(α+1)
i

�

= −εK,
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where

K = K(α,κ,μ, ν) � maxi∈I κ1/(α+1)μ
(α−1)/(α+1)
i ν

1/(α+1)
i

�
(25)

is a positive load-dependent constant. The second inequality follows from the fact
that for any vector x, and for any α > 0, ‖x‖α+1 ≤ ‖x‖α . The second to last equal-
ity follows from the definition of the wi ; cf. equation (17).

For the second term in (22), we wish to show that if L(n) is sufficiently large,
then

1

2
mT ∇2F(n + θm)

Lα(n + θm)
m ≤ ε

2
K.

Note that with probability 1, either m = 0 or m = ±ei for some i ∈ I . Thus

1

2
mT ∇2F(n + θm)

Lα(n + θm)
m ≤ 1

2

maxi∈I [∇2F(n + θm)]ii
Lα(n + θm)

= α

2

maxi∈I wi(ni + θmi)
α−1

[∑i∈I wi(ni + θmi)α+1]α/(α+1)

≤ α

2

maxi∈I wi(ni + θmi)
α−1

w
α/(α+1)
i0

(ni0 + θmi0)
α

≤ α

2
w

1/(α+1)
i0

(ni0 + θmi0)
−1

≤ α

2
max
i∈I

w
1/(α+1)
i (ni0 + θmi0)

−1,

where i0 ∈ I is such that wi0(ni0 + θmi0)
α−1 = maxi∈I wi(ni + θmi)

α−1.
Now note that

α

2
max
i∈I

w
1/(α+1)
i (ni0 + θmi0)

−1 ≤ ε

2
K

[where K is defined in (25)] if and only if

ni0 + θmi0 ≥ α maxi∈I w
1/(α+1)
i

K
· 1

ε
,

which holds if L(n) ≥ K ′/ε for some appropriately defined load-dependent con-
stant K ′. Thus, if L(n) ≥ K ′/ε, then

1

2
mT ∇2F(n + θm)

Lα(n + θm)
m ≤ ε

2
K.(26)

By adding (24) and (26), we conclude that

E
[
L(n + m) − L(n)|n] ≤ −ε

2
K,

when L(n) ≥ K ′/ε. �
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5.2. Proof of Theorem 5.3: α ∈ (0,1). The proof in this section is similar to
that for the case α ≥ 1. We invoke Proposition 2.4 to write the drift term as a sum
of terms, which we bound separately. As in the previous section, we drop the sub-
script α from Lα , Fα , Hα and hα , and write instead L, F , H , and h, respectively.
Note that to use Proposition 2.4, we need L to be twice continuously differentiable.
Indeed, by Lemma 5.2(i), h is continuously differentiable, so its antiderivative H

is twice continuously differentiable, and so is L. Thus, by the second order mean
value theorem, we obtain an equation similar to equation (22),

L(n + m) − L(n) = mT ∇L(n) + 1

2
mT ∇2L(n + θm)m(27)

≤
∑

i∈I miwih(ni)

Lα(n)
+ 1

2

∑
i∈I m2

i wih
′(ni + θmi)

Lα(n + θm)
(28)

≤
∑

i∈I miwih(ni)

Lα(n)
+ 1

2

maxi∈I wih
′(ni + θmi)

Lα(n + θm)
(29)

for some constant θ ∈ [0,1], and where, as before, Ñ(τ ) = n and Ñ(τ + 1) =
n + m, and the last inequality follows from the fact that with probability 1, either
m = 0, or m = ±ei , for some i ∈ I , and that h′ is nonnegative.

We now bound the two terms in (29) separately. Let us first concentrate on the
term ∑

i∈I miwih(ni)

Lα(n)
.

By Lemma 5.2(iii),∑
i∈I

miwih(ni) ≤ ∑
i∈I

miwi

(
nα

i + 1
) ≤ ∑

i∈I

miwin
α
i + ∑

i∈I

miwi,

so ∑
i∈I miwih(ni)

Lα(n)
≤

∑
i∈I miwin

α
i

Lα(n)
+

∑
i∈I miwi

Lα(n)
.

First consider the term
∑

i∈I miwin
α
i

Lα(n)
. Note that

∑
i∈I miwin

α
i = mT ∇F(n). We also

recall from the proof of Lemma 4.4 that

E
[
mT ∇F(n)|n] = 〈∇F(n), ν − μ�(n)〉

�
≤ −ε

〈∇F(n), ν〉
�

.

We then proceed along the same lines as in the case α ≥ 1, and obtain that if
L(n) ≥ K2/ε for some positive load-dependent constant K2, then

E

[∑
i∈I miwin

α
i

Lα(n)

∣∣∣n]

≤ −3

4
ε

maxi∈I w
1/(α+1)
i νi

�
(30)
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= −3

4
ε

maxi∈I κ1/(α+1)μ
(α−1)/(α+1)
i ν

1/(α+1)
i

�

= −3

4
εK.

Here as in the proof for the case α ≥ 1,

K = K(α,κ,μ, ν) � maxi∈I κ1/(α+1)μ
(α−1)/(α+1)
i ν

1/(α+1)
i∑

i∈I νi

is a positive load-dependent constant.
Now consider the term

∑
i∈I miwi

Lα(n)
. With probability 1, either m = 0 or m = ±ei

for some i ∈ I , and therefore
∑

i∈I miwi ≤ maxi∈I wi . Thus,

E

[∑
i∈I miwih(ni)

Lα(n)

∣∣∣n] ≤ −3

4
εK + maxi∈I wi

Lα(n)
.

For the second term in (29), note that with α ∈ (0,1), Lemma 5.2(iv) implies
that h′ ≤ 2, and therefore,

1

2

maxi∈I wih
′(ni + θmi)

Lα(n + θm)
≤ maxi∈I wi

Lα(n + θm)
.

Note that Lα(n + θm) and Lα(n) differ only by a load-dependent constant, since
with probability 1, either m = 0 or m = ±ei for some i ∈ I . Thus, if Lα(n) ≥
K3/ε for some positive load-dependent constant K3, then

maxi∈I wi

Lα(n)
+ maxi∈I wi

Lα(n + θm)
≤ 1

4
εK.(31)

Putting (30) and (31) together, we get that if L(n) ≥ K ′/min{ε1/α, ε}, where K ′ =
max{K1/α

3 ,K2}, then

E
[
L(n + m) − L(n)|n] ≤ −ε

2
K. �

6. Exponential tail bound under α-fair policies. In this section, we derive
an exponential upper bound on the tail probability of the stationary distribution
of the flow sizes, under an α-fair policy with α > 0. We will use the following
theorem, a modification of Theorem 1 from [2].

THEOREM 6.1. Let X(·) be an irreducible and aperiodic discrete-time
Markov chain with a countable state space X . Suppose that there exists a Lya-
punov function � :X → R+ with the following properties:

(a) � has bounded increments: there exists ξ > 0 such that for all τ , we have∣∣�(
X(τ + 1)

) − �
(
X(τ )

)∣∣ ≤ ξ almost surely;
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(b) Negative drift: there exist B > 0 and γ > 0 such that whenever �(X(τ )) >

B ,

E
[
�
(
X(τ + 1)

) − �
(
X(τ )

)|X(τ )
] ≤ −γ.

Then, a stationary probability distribution π exists, and we have an exponential
upper bound on the tail probability of � under π : for any 
 ∈ Z+,

Pπ

(
�(X) > B + 2ξ


) ≤
(

ξ

ξ + γ

)
+1

.(32)

In particular, in steady state, all moments of � are finite, that is, for every k ∈ N,

Eπ

[
�k(X)

]
< ∞.

Theorem 6.1 is identical to Theorem 1 in [2], except that [2] imposed the ad-
ditional condition Eπ [�(X)] < ∞. However, the latter condition is redundant. In-
deed, using Foster–Lyapunov criteria (see [8], e.g.), conditions (a) and (b) in The-
orem 6.1 imply that the Markov chain X has a unique stationary distribution π .
Furthermore, Theorem 2.3 in [12] establishes that under conditions (a) and (b),
all moments of �(X) are finite in steady state. We note that Theorem 2.3 in [12]
and Theorem 1 of [2] provide the same qualitative information [exponential tail
bounds for �(X)]. However, [2] contains the more precise bound (32), which we
will use to prove Theorem 7.6 in Section 7.

PROOF OF THEOREM 3.2. The finiteness of the moments follows immedi-
ately from the bound in (32), so we only prove the exponential bound (32). We
apply Theorem 6.1 to the Lyapunov function Lα and the uniformized chain Ñ(·).
Again, denote the stationary distribution of Ñ(·) by π , and note that this is also
the unique stationary distribution of N(·). The proof consists of verifying condi-
tions (a) and (b).

(a) Bounded increments. We wish to show that with probability 1, there exists ξ

such that ∣∣Lα

(
Ñ(τ + 1)

) − Lα

(
Ñ(τ )

)∣∣ ≤ ξ.

As usual, write n = Ñ(τ ) and n + m = Ñ(τ + 1), then m = 0 or m = ±ei for some
i ∈ I with probability 1. For α ≥ 1,

Lα(n) =
[∑

i∈I
win

α+1
i

]1/(α+1)

,

and for α ∈ (0,1), by Lemma 5.2(iii′), we have∑
i∈I

win
α+1
i − 2

∑
i∈I

wi ≤ (α + 1)
∑
i∈I

wiHα(ni) ≤ ∑
i∈I

win
α+1
i + 2

∑
i∈I

wi.



QUALITATIVE PROPERTIES OF α-FAIR POLICIES 101

In general, for r, s ≥ 0 and β ∈ [0,1],
(r + s)β ≤ rβ + sβ.(33)

Thus, by inequality (33),[∑
i∈I

win
α+1
i

]1/(α+1)

−
[
2
∑
i∈I

wi

]1/(α+1)

≤ Lα(n) ≤
[∑

i∈I
win

α+1
i

]1/(α+1)

+
[
2
∑
i∈I

wi

]1/(α+1)

.

Hence, for any α > 0,

∣∣Lα(n + m) − Lα(n)
∣∣ ≤ ∣∣∣∣

[∑
i∈I

wi(ni + mi)
α+1

]1/(α+1)

−
[∑

i∈I
win

α+1
i

]1/(α+1)∣∣∣∣
+ 2

[
2
∑
i∈I

wi

]1/(α+1)

≤
[∑

i∈I
wi |mi |α+1

]1/(α+1)

+ 2
[
2
∑
i∈I

wi

]1/(α+1)

≤ max
i∈I

w
1/(α+1)
i + 2

[
2
∑
i∈I

wi

]1/(α+1)

,

where the second last inequality follows from the triangle inequality. Thus we
can take ξ = maxi∈I w

1/(α+1)
i + 2[2∑

i∈I wi]1/(α+1), which is a load-dependent
constant.

(b) Negative drift. The negative drift condition is established in Theorem 5.3,
with γ = εK , for some positive load-dependent constant K .

Note that we have verified conditions (a) and (b) for the Lyapunov func-
tion Lα . To show the actual exponential probability tail bound for ‖N‖∞, note
that Lα(N) ≥ K ′′‖N‖∞, for some load-dependent constant K ′′. By suitably re-
defining the constants B , ξ and K , the same form of exponential probability tail
bound is established for ‖N‖∞. �

7. An important application: Interchange of limits (α = 1). In this section,
we assume throughout that α = 1 (the proportionally-fair policy), and establish
the validity of the heavy-traffic approximation for networks in steady state. We
first provide the necessary preliminaries to state our main theorem, Theorem 7.6.
In Section 7.2, we state and prove Theorem 7.6, which is a consequence of Lem-
mas 7.7 and 7.8. Further definitions and background are provided in Section 7.3,
along with the proofs of Lemmas 7.7 and 7.8. All definitions and background stated
in this section are taken from [15] and [13].
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7.1. Preliminaries. We give a preview of the preliminaries that we will intro-
duce before stating Theorem 7.6. The goal of this subsection is to provide just
enough background to be able to state Theorem 7.5, the diffusion approximation
result from [13]. To do this, we need a precise description of the process obtained
in the limit, under the diffusion scaling. This limiting process is a diffusion pro-
cess, called semimartingale reflecting Brownian motion (SRBM) (Definition 7.3),
with support on a polyhedral cone. This polyhedral cone is defined through the
concept of an invariant manifold (Definition 7.2).

As in Section 4.3, we consider a sequence of networks indexed by r , where r is
to be thought of as increasing to infinity along a sequence. The incidence matrix A,
the capacity vector C, and the weight vector κ do not vary with r . Recall the
heavy-traffic condition—Assumption 4.7, and the definitions of the workload w,
the workload process W and the lifting map � from Definition 4.8. We carry
the notation from Section 4.3, so that θ > 0, and νr → ν > 0, μr → μ > 0 and
r(C − Aρr ) → θ as r → ∞. Recall that Aρ = C. Let N̂r and Ŵr be as in (15).

The continuity of the lifting map � will be useful in the sequel.

PROPOSITION 7.1 (Proposition 4.1 in [13]). The function � : R|J |
+ → R

|I|
+ is

continuous. Furthermore, for each w ∈ R
|J |
+ and c > 0,

�(cw) = c�(w).(34)

DEFINITION 7.2 (Invariant manifold). A state n ∈ R
|I|
+ is called invariant if

n = �(w), where w = AM−1n is the workload, and � the lifting map defined in
Definition 4.8. The set of all invariant states is called the invariant manifold, and
we denote it by M . We also define the workload cone W by W = AM−1M ,
where M = diag(μ) is as defined in Definition 4.8.

The invariant manifold M is a polyhedral cone and admits an explicit charac-
terization: we can write it as

M =
{

n ∈ R
|I|
+ :ni = ρi(qT A)i

κi

for all i ∈ I, for some q ∈ R
|J |
+

}
.

Denote the j th face of M by M j , which can be written as

M j �
{

n ∈ R
|I|
+ :ni = ρi(qT A)i

κi

for all i ∈ I,

for some q ∈ R
|J |
+ satisfying qj = 0

}
.

Similarly, denote the j th face of W by W j , which can be written as

W j � AM−1M j .
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Semimartingale reflecting Brownian motion (SRBM).

DEFINITION 7.3. Define the covariance matrix

	 = 2AM−1 diag(ν)M−1AT .

An SRBM that lives in the cone W , has direction of reflection ej (the j th unit
vector) on the boundary W j for each j ∈ J , has drift θ and covariance 	 and has
initial distribution η0 on W is an adapted, |J |-dimensional process Ŵ(·) defined
on some filtered probability space (�,F , {Ft },P) such that:

(i) P-a.s., Ŵ(t) = Ŵ(0) + X̂(t) + Û(t) for all t ≥ 0;
(ii) P-a.s., Ŵ(·) has continuous sample paths, Ŵ(t) ∈ W for all t ≥ 0, and Ŵ(0)

has initial distribution η0;
(iii) under P, X̂(·) is a |J |-dimensional Brownian motion starting at the origin

with drift θ and covariance matrix 	;
(iv) for each j ∈ J , Ûj (·) is an adapted, one-dimensional process such that

P-a.s.,
(a) Ûj (0) = 0;
(b) Ûj is continuous and nondecreasing;
(c) Ûj (t) = ∫ t

0 I{Ŵ(s)∈W j } dÛj (s) for all t ≥ 0.

The process Ŵ(·) is called an SRBM with the data (W , θ,	, {ej : j ∈ J },η0).

Diffusion approximation for α = 1.

ASSUMPTION 7.4 (Local traffic). For each j ∈ J , there exists at least one
i ∈ I such that Aji > 0 and Aki = 0 for all k �= j .

Under the local traffic condition, a diffusion approximation holds.

THEOREM 7.5 (Theorem 5.2 in [13]). Assume that α = 1 and that the lo-
cal traffic condition, Assumption 7.4, holds. Suppose that the limit distribution of
Ŵr (0) as r → ∞ is η0 (a probability measure on W ) and that

∥∥N̂r (0) − �
(
Ŵr (0)

)∥∥∞ → 0 in probability, as r → ∞.(35)

Then, the distribution of (Ŵr (·), N̂r (·)) converges weakly (on compact time inter-
vals) as r → ∞ to a continuous process (Ŵ(·), N̂(·)), where Ŵ(·) is an SRBM
with data (W , θ,	, {ej , j ∈ J },η0) and N̂(t) = �(Ŵ(t)) for all t .
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7.2. Interchange of limits. We now know that for α = 1, under the local
traffic condition, the diffusion approximation holds. That is, the scaled process
(Ŵr (·), N̂r (·)) converges in distribution to (Ŵ(·), N̂(·)), with Ŵ(·) being an
SRBM. For any r , the scaled processes N̂r (·) also have stationary distributions π r ,
since they are all positive recurrent. These results can be summarized in the dia-
gram that follows.

N̂r (·)|[0,T ]

T →∞

r→∞

Theorem 7.5
N̂(·)|[0,T ]

T →∞ ?

π r
r→∞

?
π̂

As can be seen from the diagram, two natural questions to ask are:

(1) Does the diffusion process N̂(·) have a stationary probability distribution,
π̂?

(2) If π̂ exists and is unique, do the distributions π r converge to π̂?

Our contribution here is a positive answer to question (2). More specifically,
if N̂(·) has a unique stationary probability distribution π̂ , then π r converges in
distribution to π̂ .

THEOREM 7.6. Suppose that α = 1 and that the local traffic condition, As-
sumption 7.4, holds. Suppose further that N̂(·) has a unique stationary probability
distribution π̂ . For each r , let π r be the unique stationary probability distribution
of N̂r . Then,

π r → π̂ in distribution, as r → ∞.

The line of proof of Theorem 7.6 is fairly standard. We first establish tight-
ness of the set of distributions {π r} in Lemma 7.7. Letting the processes N̂r (·)
be initially distributed as {π r}, we translate this tightness condition into an initial
condition similar to (35), in Lemma 7.8. We then apply Theorem 7.5 to deduce the
convergence of the processes N̂r (·), which by stationarity, leads to the convergence
of the distributions π r . We state Lemmas 7.7 and 7.8 below, and defer their proofs
to the next section.

LEMMA 7.7. Suppose that α = 1. The set of probability distributions {π r} is
tight.

LEMMA 7.8. Consider the stationary probability distributions π r of N̂r (·),
and let {π rk } be any convergent subsequence of {π r}. Let N̂r (0) be distributed as
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π r for each r . Then there exists a subsequence r
 of rk such that
∥∥N̂r
(0) − �

(
Ŵr
(0)

)∥∥∞ → 0(36)

in probability as 
 → ∞, that is, such that condition (35) holds for the subsequence
{(Ŵr
(·), N̂r
(·))}.

PROOF OF THEOREM 7.6. Since {π r} is tight by Lemma 7.7, Prohorov’s the-
orem implies that {π r} is relatively compact in the weak topology. Let {π rk } be a
convergent subsequence of the set of probability distributions {π r}, and suppose
that π rk → π as k → ∞, in distribution.

Let N̂r (0) be distributed as π r for each r . Then by Lemma 7.8, there exists a
subsequence r
 of rk such that

∥∥N̂r
(0) − �
(
Ŵr
(0)

)∥∥∞ → 0

in probability as 
 → ∞. Denote the distribution of Ŵr (0) by ηr . Since π rk →
π as k → ∞, π r
 → π as 
 → ∞ as well, and ηr
 → η as 
 → ∞, for some
probability distribution η.

We now wish to apply Theorem 7.5 to the sequence {N̂r
(·)}. The only con-
dition that needs to be verified is that η has support on W . This can be argued
as follows. Let N̂(0) have distribution π , and let Ŵ(0) = AM−1N̂(0) be the
corresponding workload. Then Ŵr
(0) → Ŵ(0) in distribution as r → ∞, and
Ŵ(0) has distribution η. The lifting map � is continuous by Proposition 7.1, so
�(Ŵr
(0)) → �(Ŵ(0)) in distribution as r → ∞. This convergence, together
with (36) and the fact that N̂r
(0) → N̂(0) in distribution, implies that N̂(0) and
�(Ŵ(0)) are identically distributed. Now �(Ŵ(0)) has support on M , so N̂(0) is
supported on M as well, and so Ŵ(0), hence η, is supported on W .

By Theorem 7.5, (Ŵr
(·), N̂r
(·)) converges in distribution to a continuous
process (Ŵ(·), N̂(·)). Suppose that Ŵ(·) and N̂(·) have unique stationary distri-
butions η̂ and π̂ , respectively. The processes (Ŵr
(·), N̂r
(·)) are stationary, so
(Ŵ(·), N̂(·)) is stationary as well. Therefore, Ŵ(0) and N̂(0) are distributed as η̂

and π̂ , respectively. Since (Ŵr
(0), N̂r
(0)) → (Ŵ(0), N̂(0)) in distribution, we
have that ηr
 → η̂ and π r
 → π̂ weakly as 
 → ∞. This shows that π = π̂ and
η = η̂. Since {π rk } is an arbitrary convergent subsequence, π̂ is the unique weak
limit point of {π r}, and this shows that π r → π̂ in distribution. �

For Theorem 7.6 to apply, we need to verify that N̂(·) [or equivalently, Ŵ(·)]
has a unique stationary distribution. The following theorem states that when κi = 1
for all i ∈ I , this condition holds; more specifically, the SRBM Ŵ(·) has a unique
stationary distribution, which turns out to have a product form.
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THEOREM 7.9 (Theorem 5.3 in [13]). Suppose that α = 1 and κi = 1 for all
i ∈ I . Let η̂ be the measure on W that is absolutely continuous with respect to
Lebesgue measure with density given by

p(w) = exp
(〈v,w〉), w ∈ W ,(37)

where

v = 2	−1θ .(38)

The product measure η̂ is an invariant measure for the SRBM with state space W ,
directions of reflection {ej , j ∈ J }, drift θ and covariance matrix 	. After normal-
ization, it defines the unique stationary distribution for the SRBM.

By Theorems 7.6 and 7.9, the following corollary is immediate.

COROLLARY 7.10. Suppose that α = 1 and κi = 1 for all i ∈ I . Suppose fur-
ther that the local traffic condition, Assumption 7.4, holds. Let π̂ be the unique
stationary probability distribution of N̂(·). For each r , let π r be the unique sta-
tionary probability distribution of N̂r . Then,

π r → π̂ in distribution, as r → ∞.

7.3. Proof of Lemmas 7.7 and 7.8.

PROOF OF LEMMA 7.7. To establish tightness, it suffices to show that for
every y > 0 there exists a compact set Ky ⊂ R

|I|
+ such that

lim sup
r→∞

π r(R|I|
+ \ Ky

) ≤ e−y.(39)

We now proceed to define the compact sets Ky . As in the proof of Theorem 4.10,
let εr = ε(ρr ) be the gap in the r th system. Then, under Assumption 4.7, for suf-
ficiently large r , εr ≥ D/r for some network-dependent constant D > 0. Since
α = 1, Theorem 3.2 implies that for the r th system, there exist load-dependent
constants Kr > 0 and ξr > 0 such that for every 
 ∈ Z+,

Pπ r

(∥∥Nr
∥∥∞ ≥ Kr

εr

+ 2ξr


)
≤

(
ξr

ξr + εr

)
+1

.(40)

By the definition of a positive load-dependent constant, there exist continuous
functions f1 and f2 on the open positive orthant such that for all r , Kr =
f1(μ

r , νr ) and ξr = f2(μ
r , νr ). Since μr → μ > 0 and νr → ν > 0, we have

Kr → K � f1(μ, ν) > 0 and ξr → ξ � f2(μ, ν) > 0. Define

Ky �
{

v ∈ R
|I|
+ :‖v‖∞ ≤ (K + 1) + 4(ξ + 1)2 · y

D

}
.
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We now show that (39) holds, or equivalently, by the definition of Ky , we show
that for every y > 0,

lim sup
r→∞

Pπ r

(
1

r

∥∥Nr
∥∥∞ >

(K + 1) + 4(ξ + 1)2y

D

)
≤ e−y.(41)

Let 
r � �2ξry/εr�, where for z ∈ R, �z� is the largest integer not exceeding z.
By (40), we have

Pπ r

(
1

r

∥∥Nr
∥∥∞ ≥ Kr

rεr

+ 2ξr
r

r

)
≤

(
1

1 + εr/ξr

)
r+1

.

Taking logarithms on both sides, we have

log Pπ r

(
1

r

∥∥Nr
∥∥∞ ≥ Kr

rεr

+ 2ξr
r

r

)
≤ −(
r + 1) log

(
1 + εr

ξr

)
.

Since εr → 0 and ξr → ξ > 0 as r → ∞, εr
ξr

< 1 for sufficiently large r . Since
log(1 + t) ≥ t/2 for t ∈ [0,1], we have

−(
r + 1) log
(

1 + εr

ξr

)
≤ −(
r + 1)

εr

2ξr

,

when r is sufficiently large. By definition, 
r = �2ξry/εr�, so 
r + 1 ≥ 2ξrx/εr ,
or equivalently, −(
r + 1) εr

2ξr
≤ −y. Thus, when r is sufficiently large,

log Pπ r

(
1

r

∥∥Nr
∥∥∞ ≥ Kr

rεr

+ 2ξr
r

r

)
≤ −y.

Consider the term Kr
rεr

+ 2ξr
r

r
. When r is sufficiently large, rεr ≥ D, Kr ≤ K + 1,

and ξr ≤ ξ + 1, and so

Kr

rεr

+ 2ξr
r

r
≤ Kr

rεr

+ 2ξr(2ξry)

rεr

≤ K + 1

D
+ 4(ξ + 1)2y

D
.

Thus, for sufficiently large r ,

log Pπ r

(
1

r

∥∥Nr
∥∥∞ >

(K + 1) + 4(ξ + 1)2y

D

)

≤ log Pπ r

(
1

r

∥∥Nr
∥∥∞ ≥ Kr

rεr

+ 2ξr
r

r

)
≤ −y.

This establishes (41), and also the tightness of {π r}. �

Next, we prove Lemma 7.8. To this end, we need some definitions and back-
ground. In particular, we need the concept and properties of fluid model solutions.
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DEFINITION 7.11. A fluid model solution (FMS) is an absolutely continuous
function n : [0,∞) → R

|I|
+ such that at each regular point2 t > 0 of n(·), we have,

for each i ∈ I ,

d

dt
ni(t) =

{
νi − μi�i

(
n(t)

)
, if ni(t) > 0,

0, if ni(t) = 0,
(42)

and for each j ∈ J , ∑
i∈I+(n(t))

Aji�i

(
n(t)

) + ∑
i∈I0(n(t))

Ajiρi ≤ Cj ,(43)

where I+(n(t)) = {i ∈ I :ni(t) > 0} and I0(n(t)) = {i ∈ I :ni(t) = 0}. Note that
here Aρ = C.

We now collect some properties of a FMS. The following proposition states that
the invariant manifold M consists exactly of the stationary points of a FMS.

PROPOSITION 7.12 (Theorem 4.1 in [13]). A vector n0 is an invariant state,
that is, n0 ∈ M , if and only if for every fluid model solution n(·) with n(0) = n0,
we have n(t) = n0 for all t > 0.

The following theorem states that starting from any initial condition, a FMS will
eventually be close to the invariant manifold M .

THEOREM 7.13 (Theorem 5.2 in [15]). Fix R ∈ (0,∞) and δ > 0. There
is a constant TR,δ < ∞ such that for every fluid model solution n(·) satisfying
‖n(0)‖∞ ≤ R, we have

d
(
n(t),M

)
< δ for all t > TR,δ,

where d(n(t),M ) � infn∈M ‖n − n(t)‖∞ is the distance from n(t) to the mani-
fold M .

Proposition 7.14 states that the value of the Lyapunov function F1 defined in (9)
decreases along the path of any FMS.

PROPOSITION 7.14 (Corollary 6.1 in [15]). At any regular point t of a fluid
model solution n(·), we have

d

dt
F1

(
n(t)

) ≤ 0,

and the inequality is strict if n(t) /∈ M .

2A point t ∈ (0,∞) is a regular point of an absolutely continuous function f : [0,∞) → R
|I|
+

if each component of f is differentiable at t . Since n is absolutely continuous, almost every time
t ∈ (0,∞) is a regular point for n.
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Using Proposition 7.14 and the continuity of the lifting map �, we can translate
Theorem 7.13 into the following version, which will be used to prove Lemma 7.8.

LEMMA 7.15. Fix R ∈ (0,∞) and δ > 0. There is a constant TR,δ < ∞ such
that for every fluid model solution n(·) satisfying ‖n(0)‖∞ ≤ R we have∥∥n(t) − �

(
w(t)

)∥∥∞ < δ for all t > TR,δ,

where w(t) = w(n(t)) is the workload corresponding to n(t); see Definition 4.8.

PROOF. Fix R > 0 and δ > 0. Let ‖n(0)‖∞ ≤ R. Then

F1
(
n(0)

) = 1

2

∑
i∈I

ν−1
i κin

2
i (0) ≤ R′,

where R′ depends on R and the system parameters. Since n(·) is absolutely con-
tinuous, by Proposition 7.14 and the fundamental theorem of calculus, we have
that F1(n(t)) ≤ R′ for all t ≥ 0. Define the set

S �
{
n ∈ R

|I|
+ :F1(n) ≤ R′},

and its δ-fattening

Sδ �
{
n ∈ R

|I|
+ :

∥∥n − n′∥∥ ≤ δ for some n′ ∈ S
}
.

Note that both S and Sδ are compact sets, and n(t) ∈ S ⊂ Sδ for all t ≥ 0.
Now consider the workload w defined in Definition 4.8. Define the set w(Sδ) =

{v ∈ R
|J |
+ : v = w(n) for some n ∈ Sδ}. Since w is a linear map, there exists a load-

dependent constant H such that∥∥w(n) − w
(
n′)∥∥∞ ≤ H

∥∥n − n′∥∥∞
for any n,n′ ∈ R

|I|
+ . Thus w(Sδ) is also a compact set. Since n(t) ∈ Sδ for all

t ≥ 0, w(t) ∈ w(Sδ) for all t ≥ 0. By Proposition 7.1, � is a continuous map, so
� is uniformly continuous when restricted to w(Sδ). Therefore, there exists δ′ > 0
such that for any w′,w ∈ w(Sδ) with ‖w′ − w‖∞ < δ′, ‖�(w′) − �(w)‖∞ < δ

2 .
Thus for any n,n′ ∈ Sδ with ‖n − n′‖∞ < δ′/H , we have ‖w(n) − w(n′)‖ ≤ δ′,
and ∥∥�(

w(n)
) − �

(
w
(
n′))∥∥∞ <

δ

2
.

Let δ′′ = min{δ/2, δ′/H }. By Theorem 7.13, there exists TR,δ′′ such that for all
t ≥ TR,δ′′ ,

d
(
M ,n(t)

)
< δ′′.

In particular, there exists n ∈ M [which may depend on n(t)] such that ‖n −
n(t)‖∞ < δ′′ < δ′/H . Since n(t) ∈ S and δ′′ < δ, n ∈ Sδ as well. Thus

∥∥�(
w(n)

) − �
(
w
(
n(t)

))∥∥∞ <
δ

2
.
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By Proposition 7.12, since n ∈ M , we have n = �(w(n)), and hence

∥∥n − �
(
w
(
n(t)

))∥∥∞ <
δ

2
.

Thus for all t ≥ TR,δ′′ ,∥∥n(t) − �
(
w(t)

)∥∥∞ ≤ ∥∥n − n(t)
∥∥∞ + ∥∥n − �

(
w(t)

)∥∥∞

< δ′′ + δ

2
≤ δ

2
+ δ

2
= δ.

Note that δ′′ depends on R, δ, and the system parameters. Thus we can rewrite
TR,δ′′ as TR,δ . This concludes the proof of the lemma. �

The last property of a FMS that we need is the tightness of the fluid-scaled
processes N̄r and W̄r , defined by

N̄r (t) = Nr (rt)/r and W̄r (t) = Wr (rt)/r.(44)

THEOREM 7.16 (Theorem B.1 in [15]). Suppose that {N̄r (0)} converges in
distribution as r → ∞ to a random variable taking values in R

|I|
+ . Then the se-

quence {N̄r (·)} is C-tight,3 and any weak limit point N̄(·) of this sequence almost
surely satisfies the fluid model equations (42) and (43).

PROOF OF LEMMA 7.8. Consider the unique stationary distributions π r of
N̂r (·), and ηr of Ŵr (·). Let π rk be a convergent subsequence, and suppose that
π rk → π in distribution, as k → ∞. Suppose that at time 0, 1

rk
Nrk (0) is distributed

as π rk . Then 1
rk

Wrk (0) is distributed as ηr
k , which converges in distribution as well,

say to η.
We now use the earlier stated FMS properties to prove the lemma. Note that for

all r ,

1

r
Nr (0) = N̄r (0) = N̂r (0) and

1

r
Wr (0) = W̄r (0) = Ŵr (0),

and consider the fluid-scaled processes N̄rk (·) and W̄rk (·). Since {N̄rk (0)} con-
verges in distribution to π , Theorem 7.16 implies that the sequence {N̄rk (·)} is C-
tight, and any weak limit N̄(·) almost surely satisfies the fluid model equations. Let
N̄(·) be a weak limit point of {N̄rk (·)}, and suppose that the subsequence {N̄r
(·)}
of {N̄rk (·)} converges weakly to N̄(·).

3Consider the space D|I| of functions f : [0,∞) → R|I| that are right-continuous on [0,∞) and
have finite limits from the left on (0,∞). Let this space be endowed with the usual Skorohod topol-
ogy; cf. Section 12 of [3]. The sequence {N̄r (·)} is tight if the probability measures induced on D|I|
are tight. The sequence is C-tight if it is tight and any weak limit point is a measure supported on the
set of continuous sample paths.
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Let δ > 0. We will show that we can find r(δ) such that for r
 > r(δ),

P
(∥∥N̄r
(0) − �

(
W̄r
(0)

)∥∥∞ > δ
)
< δ.

Since N̄(0) is a well-defined random variable, there exists Rδ > 0 such that

P
(∥∥N̄(0)

∥∥∞ > Rδ

)
<

δ

2
.

Now, for all sample paths ω such that ‖N̄(0)(ω)‖∞ ≤ Rδ , and such that N̄(·)(ω)

satisfies the fluid model equations, Lemma 7.15 implies that there exists T � TRδ,δ

such that ∥∥N̄(T )(ω) − �
(
W̄(T )

)
(ω)

∥∥∞ < δ.

Since N̄(·) satisfies the fluid model equations almost surely, we have

P
(∥∥N̄(T ) − �

(
W̄(T )

)∥∥∞ < δ
)
> 1 − δ

2
.

Now for each r , N̄r (0) is distributed according to the stationary distribution π r , so
N̄r (·) is a stationary process. Since N̄r
(·) → N̄(·) weakly as 
 → ∞, N̄ is also a
stationary process. Thus, N̄(T ) and N̄(0) are both distributed according to π . This
implies that

P
(∥∥N̄(0) − �

(
W̄(0)

)∥∥∞ < δ
)
> 1 − δ

2
.

Furthermore, since N̄r
(0) → N̄(0) in distribution,

P
(∥∥N̄r
(0) − �

(
W̄r
(0)

)∥∥∞ < δ
) → P

(∥∥N̄(0) − �
(
W̄(0)

)∥∥∞ < δ
)

as 
 → ∞. Thus there exists r(δ) such that for all r
 > r(δ),

P
(∥∥N̄r
(0) − �

(
W̄r
(0)

)∥∥∞ < δ
)
> 1 − δ.

Since δ > 0 is arbitrary,∥∥N̂r
(0) − �
(
Ŵr
(0)

)∥∥∞ = ∥∥N̄r
(0) − �
(
W̄r
(0)

)∥∥∞ → 0,

in probability. �

8. Conclusion. The results in this paper can be viewed from two different per-
spectives. On the one hand, they provide much new information on the qualitative
behavior (e.g., finiteness of the expected number of flows, bounds on steady-state
tail probabilities and finite-horizon maximum excursion probabilities, etc.) of the
α-fair policies for bandwidth-sharing network models. At an abstract level, our re-
sults highlight the importance of relying on a suitable Lyapunov function. Even if
a network is shown to be stable by using a particular Lyapunov function, different
choices and more detailed analysis may lead to more powerful bounds. At a more
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concrete level, we presented a generic method for deriving full state space collapse
from multiplicative state space collapse, and another for deriving steady-state ex-
ponential tail bounds. The methods and results in this paper can be extended to
general switched network models. Parallel results for a packet level model are de-
tailed in [18].
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