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FIXATION IN THE ONE-DIMENSIONAL AXELROD MODEL

BY NICOLAS LANCHIER1 AND STYLIANOS SCARLATOS2

Arizona State University and University of Patras

The Axelrod model is a spatial stochastic model for the dynamics of
cultures which includes two important social factors: social influence, the
tendency of individuals to become more similar when they interact, and ho-
mophily, the tendency of individuals to interact more frequently with individ-
uals who are more similar. Each vertex of the interaction network is charac-
terized by its culture, a vector of F cultural features that can each assumes q

different states. Pairs of neighbors interact at a rate proportional to the number
of cultural features they have in common, which results in the interacting pair
having one more cultural feature in common. In this article, we continue the
analysis of the Axelrod model initiated by the first author by proving that the
one-dimensional system fixates when F ≤ cq where the slope satisfies the
equation e−c = c. In addition, we show that the two-feature model with at
least three states fixates. This last result is sharp since it is known from pre-
vious works that the one-dimensional two-feature two-state Axelrod model
clusters.

1. Introduction. The Axelrod model is one of the most popular agent-based
models of cultural dynamics. In addition to a spatial structure, which is modeled
through a graph in which vertices represent individuals and edges potential dyadic
interactions between two individuals, it includes two important social factors: so-
cial influence and homophily. The former is the tendency of individuals to become
more similar when they interact, while the latter is the tendency of individuals to
interact more frequently with individuals who are more similar. Note that the voter
model [5, 7] accounts for social influence since an interaction between two indi-
viduals results in a perfect agreement between them. The voter model, however,
excludes homophily. To also account for this factor, one needs to be able to define
a certain opinion or cultural distance between any two individuals through which
the frequency of the interactions between the two individuals can be measured.
In the model proposed by political scientist Robert Axelrod [1], each individual
is characterized by her opinions on F different cultural features, each of which
assumes q possible states. Homophily is modeled by assuming that pairs of neigh-
bors interact at a rate equal to the fraction of cultural features for which they agree,
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and social influence by assuming that, as a result of the interaction, one of the cul-
tural features for which members of the interacting pair disagree (if any) is chosen
uniformly at random, and the state of one of both individuals is set equal to the
state of the other individual for this cultural feature. More formally, the Axelrod
model on the one-dimensional lattice is the continuous-time Markov chain whose
state space consists of all spatial configurations

η : Z −→ {1,2, . . . , q}F
that map the vertex set viewed as the set of all individuals into the set of cultures.
To describe the dynamics of the Axelrod model, it is convenient to introduce

F(x, y) := 1

F

F∑
i=1

1
{
η(x, i) = η(y, i)

}
,

where η(x, i) refers to the ith coordinate of the vector η(x), which denotes the
fraction of cultural features the two vertices x and y share. To describe the el-
ementary transitions of the spatial configuration, we also introduce the operator
σx,y,i defined on the set of configurations by

(σx,y,iη)(z, j) :=
{

η(y, i), if z = x and j = i,

η(z, j), otherwise,

for x, y ∈ Z and i ∈ {1,2, . . . ,F }.
In other words, configuration σx,y,iη is obtained from configuration η by setting
the ith feature of the individual at vertex x equal to the ith feature of the individual
at vertex y and leaving the state of all the other features in the system unchanged.
The dynamics of the Axelrod model is then described by the Markov generator L

defined on the set of cylinder functions by

Lf (η) := ∑
|x−y|=1

F∑
i=1

1

2F

[
F(x, y)

1 − F(x, y)

]
1
{
η(x, i) �= η(y, i)

}[
f (σx,y,iη) − f (η)

]
.

The expression of the Markov generator indicates that the conditional rate at which
the ith feature of vertex x is set equal to the ith feature of vertex y given that these
two vertices are nearest neighbors that disagree on their ith feature can be written
as

1

2F

[
F(x, y)

1 − F(x, y)

]
= F(x, y) × 1

F(1 − F(x, y))
× 1

2
,

which, as required, is equal to the fraction of features both vertices have in com-
mon, which is the rate at which the vertices interact, times the reciprocal of the
number of features for which both vertices disagree, which is the probability that
any of these features is the one chosen for update, times the probability one half
that vertex x rather than vertex y is chosen to be updated. Note that, when the
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number of features F = 1, the system is static, while when the number of states
per feature q = 1 there is only one possible culture. Also, to avoid trivialities, we
assume from now on that the two parameters of the system are strictly larger than
one.

The main question about the Axelrod model is whether the system fluctuates and
evolves to a global consensus or gets trapped in a highly fragmented configuration.
To define this dichotomy rigorously, we say that the system fluctuates whenever

P
(
ηt (x, i) changes value at arbitrary large t

) = 1
(1)

for all x ∈ Z and i ∈ {1,2, . . . ,F }
and fixates if there exists a configuration η∞ such that

P
(
ηt (x, i) = η∞(x, i) eventually in t

) = 1
(2)

for all x ∈ Z and i ∈ {1,2, . . . ,F }.
In other words, fixation means that the culture of each individual is only updated
a finite number of times, so fluctuation (1) and fixation (2) exclude each other.
We define convergence to a global consensus mathematically as a clustering of the
system, that is,

lim
t→∞P

(
ηt (x, i) = ηt (y, i)

) = 1 for all x, y ∈ Z and i ∈ {1,2, . . . ,F }.(3)

Note that whether the system fluctuates or fixates depends not only on the num-
ber of cultural features and the number of states per feature, but also on the initial
distribution. Indeed, regardless of the parameters, the system starting from a con-
figuration in which all the individuals agree for a given cultural feature while the
states at the other cultural features are independent and occur with the same proba-
bility always fluctuates. On the other hand, regardless of the parameters, the system
starting from a configuration in which all the even sites share the same culture and
all the odd sites share another culture which is incompatible with the one at even
sites always fixates. Also, we say that fluctuation/fixation occurs for a given pair of
parameters if the one-dimensional system with these parameters fluctuates/fixates
when starting from the distribution π0 in which the states of the cultural features
within each vertex and among different vertices are independent and uniformly
distributed. We also point out that neither fluctuation implies clustering nor fixa-
tion excludes clustering in general. Indeed, the voter model in dimensions larger
than or equal to three for which coexistence occurs is an example of spin system
that fluctuates but does not cluster while the biased voter model [2, 3] is an exam-
ple of spin system that fixates and clusters. In spite of these counter-examples, we
conjecture that fluctuation implies clustering and fixation excludes clustering for
the one-dimensional Axelrod model starting from the distribution π0.

We now give a brief review of the previous results about the one-dimensional
Axelrod model and state the new results proved in this article. Since two neighbors
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are more likely to interact as the number of cultural features increases and the
number of states per feature decreases, one expects the phase transition between
the fluctuation/clustering regime and the fixation/no clustering regime to be an
increasing function in the F -q plane. The numerical simulations together with the
mean-field approximation of [11] suggest that the system starting from π0:

• exhibits consensus (clustering) when q < F and
• gets trapped in a highly fragmented configuration (no clustering) when F < q .

Looking now at analytical results, the first result in [8] states that the one-
dimensional, two-feature, two-state Axelrod model clusters. The second result
deals with the system on a large but finite interval, and indicates that, for a cer-
tain subset of the parameter region, the system gets trapped in a random config-
uration in which the expected number of cultural domains scales like the number
of vertices. This strongly suggests fixation of the infinite system in this parameter
region, which we prove in this paper. Shortly after, Lanchier and Schweinsberg [9]
realized that the analysis of the Axelrod model can be greatly simplified using a
coupling to translate problems about the model into problems about a certain sys-
tem of random walks. To visualize this coupling, think of each spatial configuration
as a q-coloring of the set Z × {1,2, . . . ,F } and

put a particle at (u, i) whenever η(u − 1/2, i) �= η(u + 1/2, i)(4)

for all u ∈ Z+1/2 and all cultural features i. We call u a blockade when it contains
F particles, or equivalently when the two individuals on each side of u completely
disagree. When the number of states per feature q = 2, Lanchier and Schweins-
berg [9] proved that construction (4) induces a system of annihilating symmetric
random walks that has a certain site recurrence property, which is equivalent to
fluctuation of the Axelrod model, when starting from π0. From this property, they
also deduced extinction of the blockades and clustering, thus extending the first
result of [8] to the model with two states per feature and any number of features.
In contrast, the present paper deals with the fixation part of the conjecture and
extends the second result of [8] by again using the random walk representation
induced by (4). The first step is to prove that, for all values of the parameters,
construction (4) induces a system of random walks in which collisions result in-
dependently in either annihilation or coalescence with some specific probabilities.
Coalescing events only occur when the number of states q > 2. This is then com-
bined with large deviation estimates for the initial distribution of particles to obtain
survival of the blockades when starting from π0 in the parameter region described
in the second result of [8]. This not only implies fixation of the infinite system,
but also excludes clustering so the system gets trapped in a highly fragmented
configuration.
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THEOREM 1. Assume that

ω(q,F ) := q

(
1 − 1

q

)F

− F

(
1 − 1

q

)
> 0.(5)

Then, fixation (2) occurs and clustering (3) does not occur.

Interestingly, though the second result in [8] relies on a coupling between the
Axelrod model and a certain urn problem along with some combinatorial tech-
niques that strongly differ from the techniques in our proof, both approaches lead
to the same sufficient condition (5). The set of parameters described implicitly in
condition (5) corresponds to the triangular set of crosses in the two diagrams of
Figure 1, which we obtained using a computer program. The picture suggests that
this parameter region is (almost) equal to the set of parameters below a certain
straight line going through the origin. To find the asymptotic slope, observe that if
F = cq , then

lim
q→∞q−1ω(q,F ) = lim

q→∞

(
1 − 1

q

)cq

− c

(
1 − 1

q

)
= e−c − c.

FIG. 1. Phase diagram of the one-dimensional Axelrod model in the F -q plane. The diagram on
the left-hand side is simply an enlargement of the diagram on the right-hand side that focuses on
small parameters. The continuous straight line with equation F = q is the transition curve conjec-
tured in [11]. The set of crosses is the set of parameters for which the conjecture has been proved
analytically: the vertical line of crosses on the left-hand side of the diagrams is the set of parameters
for which fluctuation and clustering have been proved in [9] while the triangular set of crosses is the
set of parameters such that ω(q,F ) > 0 for which fixation is proved in Theorem 1. The dashed line
is the straight line with equation F = cq where the slope c is such that c = e−c .
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In other respects, if e−c = c, then we have

(cq − 1) ln
(

1 − 1

q

)
− ln(c) = (1 − cq)

∞∑
n=1

1

n

(
1

q

)n

+ c

=
∞∑

n=1

1

n

(
1

q

)n

−
∞∑

n=0

c

n + 1

(
1

q

)n

+ c

=
∞∑

n=1

(
1

n
− c

n + 1

)(
1

q

)n

> 0

from which we deduce that

cq ln
(

1 − 1

q

)
> ln(c) + ln

(
1 − 1

q

)
and

(
1 − 1

q

)cq

> c

(
1 − 1

q

)
.

This proves that the condition in the theorem holds for F = cq and so all F ≤ cq

since ω is decreasing with respect to its second variable. In particular, fixation
occurs whenever

F ≤ cq where c ≈ 0.567 satisfies e−c = c.

See Figure 1 for a picture of the straight line with equation F = cq . Finally, though
ω(3,2) = 0 and therefore Theorem 1 does not imply fixation for the two-feature
three-state Axelrod model, our approach can be improved to also obtain fixation in
this case.

THEOREM 2. The conclusion of Theorem 1 holds whenever F = 2 and q = 3.

Note that this fixation result is sharp since the first result in [8] gives fluctuation
and clustering of the two-feature two-state Axelrod model in one dimension. In
particular, the two-feature model fixates if and only if the number of states per fea-
ture q > 2. To conclude, we note that, in contrast with the techniques introduced
in [9] that heavily relies on the fact that the system starts from π0, our proof of The-
orem 1 easily extends to show that, starting from more general product measures,
the one-dimensional system fixates under a certain assumption stronger than (5).
However, the estimates of Lemmas 3 and 6, and consequently the condition for
fixation, in this more general context become very messy while the proof does not
bring any new interesting argument. Therefore, we focus for simplicity on the most
natural initial distribution π0.

2. Coupling with annihilating-coalescing random walks. As pointed out
in [8], one key to understanding the Axelrod model is to keep track of the dis-
agreements between neighbors rather than the actual set of opinions of each indi-
vidual. When the number of states per feature q = 2, this results in a collection of
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nonindependent systems of annihilating symmetric random walks. Lanchier and
Schweinsberg [9] have recently studied these systems of random walks in detail
and deduced from their analysis that the two-state Axelrod model clusters in one
dimension. When the number of states per feature is larger than two, these systems
are more complicated because each collision between two random walks can result
in either both random walks annihilating or both random walks coalescing. In this
section, we recall the connection between the Axelrod model and systems of sym-
metric random walks, and complete the construction given in [9] to also include
the case q > 2 in which coalescing events take place.

To begin with, we think of each edge of the graph as having F levels, and place
a particle on an edge at level i if and only if the two individuals that this edge
connects disagree on their ith feature. More precisely, we define the process

ξt (u, i) := 1
{
ηt (u − 1/2, i) �= ηt (u + 1/2, i)

}
for all u ∈ D := Z + 1/2

and place a particle at site u ∈ D at level i whenever ξt (u, i) = 1. To describe this
system, it is convenient to also introduce the process that keeps track of the number
of particles per site,

ζt (u) :=
F∑

i=1

ξt (u, i) for all u ∈ D,

and to call site u a j -site whenever it contains a total of j particles: ζt (u) = j . To
understand the dynamics of these particles, the first key is to observe that, since
each interaction between two individuals is equally likely to affect the culture of
any of these two individuals, each particle moves one unit to the right or one unit
to the left with equal probability one half. Because the rate at which two neighbors
interact is proportional to the number of cultural features they have in common,
a particle at (u, i) jumps at a rate that depends on the total number of particles lo-
cated at site u, which induces systems of particles which are not independent. More
precisely, since two adjacent vertices that disagree on exactly j of their features,
and therefore are connected by an edge that contains a pile of j particles, interact
at rate 1 − j/F , the fraction of features they share, conditional on the event that u

is a j -site, each particle at site u jumps at rate

r(j) :=
(

1 − j

F

)
1

j
= 1

j
− 1

F
for j �= 0,(6)

which represents the rate at which both vertices interact times the probability that
any of the j particles is the one selected to jump. Motivated by (6), the particles at
site u are said to be active if the site has less than F particles, and frozen if the site
has F particles, in which case we call u a blockade. To complete the construction
of these systems of random walks, the last step is to understand the outcome of a
collision between two particles. Assume that (u, i) and (u + 1, i) are occupied at
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FIG. 2. Coupling between the Axelrod model and annihilating-coalescing random walks.

time t− and that the particle at (u, i) jumps one unit to the right at time t , an event
that we call a collision and that we denote by

(u, i) −→ (u + 1, i) at time t.

This happens when the individual at x := u + 1/2 disagrees with her two near-
est neighbors on her ith feature at time t− and imitates the ith feature of her left
neighbor at time t . This collision results in two possible outcomes. If the individ-
uals at x and x + 1 agree on their ith feature just after the update, or equivalently
the individuals at x − 1 and x + 1 agree on their ith feature just before the update,
then (u + 1, i) becomes empty so both particles annihilate, which we write

(u, i)
a−→ (u + 1, i) at time t.

On the other hand, if the individuals at x and x +1 still disagree on their ith feature
after the update, then (u + 1, i) is occupied at time t so both particles coalesce,
which we write

(u, i)
c−→ (u + 1, i) at time t.

We refer to Figure 2 for an illustration of the coupling between the four-feature,
three-state Axelrod model and systems of annihilating-coalescing random walks.
Each particle is represented by a cross and the three possible states by the colors
black, grey and white. In our example, there are two jumps resulting in two col-
lisions: an annihilating event then a coalescing event. We also refer the reader to
Figure 3 for simulation pictures of the systems of random walks when F = 3.

Lanchier and Schweinsberg [9] observed that, when q = 2, random walks can
only annihilate, which was the key to proving clustering. This is due to the fact
that, in a simplistic world where there are only two possible alternatives for each
cultural feature, two individuals who disagree with a third one must agree. In our
context, the individuals at x − 1 and x + 1 must agree just before the update when
q = 2, which results in an annihilating event. In contrast, when the number of
states per feature is larger, the three consecutive vertices may have three different
views on their ith cultural feature, which results in a coalescing event. We point
out that, since the system of random walks collects all the times at which pairs
of neighbors interact, the knowledge of the initial configuration of the Axelrod
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FIG. 3. System of annihilating-coalescing random walks on the torus with 600 vertices.

model and the system of random walks up to time t allows us to re-construct the
Axelrod model up to time t regardless of the value of the parameters. There is,
however, a crucial difference depending on the number of states. When q = 2,
collisions always result in annihilating events, so knowing the configuration of the
Axelrod model is unimportant in determining the evolution of the random walks. In
contrast, when q > 2, whether a collision results in a coalescing or an annihilating
event depends on the configuration of the Axelrod model just before the time of the
collision. The key to all our results is that, in spite of this dependency, collisions
result independently in either an annihilating event or a coalescing event with some
fixed probabilities. In particular, the outcome of a collision is independent of the
past of the system of random walks though it is not independent of the past of the
Axelrod model itself.

To prove this result, we need to construct the one-dimensional process graph-
ically from a percolation structure and then define active paths which basically
keep track of the descendants of the initial opinions. First, we consider the follow-
ing collections of independent Poisson processes and random variables: for each
pair of vertex and feature (x, i) ∈ Z × {1,2, . . . ,F }:
• we let (Nx,i(t) : t ≥ 0) be a rate one Poisson process;
• we denote by Tx,i(n) its nth arrival time: Tx,i(n) := inf{t :Nx,i(t) = n};
• we let (Bx,i(n) :n ≥ 1) be a collection of independent Bernoulli variables with

P
(
Bx,i(n) = +1

) = P
(
Bx,i(n) = −1

) = 1/2;
• and we let (Ux,i(n) :n ≥ 1) be a collection of independent Uniform(0,1).

The Axelrod model is then constructed as follows. At time t = Tx,i(n), we draw
an arrow labeled i from vertex x to vertex y := x + Bx,i(n) to indicate that if

Ux,i(n) ≤ r
(
ζt−(u)

)
and ζt−(u) �= 0 where u = x + y

2
∈ D,(7)

then the individual at vertex y imitates the ith feature of the individual at vertex x.
In particular, as indicated in (6), the rate at which the imitation occurs is equal
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to one half times the fraction of cultural features both vertices have in common
divided by the number of features for which both vertices disagree, which indeed
produces the local transition rates of the Axelrod model. The graphical representa-
tion defines a random graph structure, also called percolation structure, from which
the process starting from any initial configuration can be constructed by induction
based on an argument due to Harris [6]. Each arrow in this percolation structure is
said to be active if condition (7) is satisfied. Note that whether an arrow is active
or not depends on the initial configuration, and that the fact that an i-arrow from
vertex x to vertex y at time t is active implies that the ith feature of y must be
equal to the ith feature of x at time t . We say that there is an active i-path from
(z, s) to (x, t) whenever there are sequences of times and vertices

s0 = s < s1 < · · · < sn+1 = t and x0 = z, x1, . . . , xn = x

such that the following two conditions hold:

(1) For j = 1,2, . . . , n, there is an active i-arrow from xj−1 to xj at time sj .
(2) For j = 0,1, . . . , n, there is no active i-arrow that points at {xj } ×

(sj , sj+1).

We say that there is a generalized active path from (z, s) to (x, t) whenever

(3) for j = 1,2, . . . , n, there is an active arrow from xj−1 to xj at time sj .

Later, we will use the notation
i� and � to indicate the existence of an active

i-path and a generalized active path, respectively. Conditions 1 and 2 above imply
that

for all (x, t) ∈ Z × R+ and all i, there is a unique z ∈ Z such that (z,0)
i� (x, t).

Moreover, because of the definition of active arrows and simple induction, the ith
cultural feature of vertex x at time t is equal to the initial value of the ith cultural
feature of z, so we call vertex z the ancestor of vertex x at time t for the ith feature.
In contrast, generalized active paths, which can be seen as concatenations of active
i-paths for possibly different values of i, do not have such an interpretation, but
the concept will be useful later to prove fixation.

LEMMA 3. Conditional on the realization of the system of random walks until
time t− and the event that (u, i) −→ (u + 1, i) at time t , we have

(u, i)
a−→ (u + 1, i) at time t with probability (q − 1)−1

(u, i)
c−→ (u + 1, i) at time t with probability (q − 2) · (q − 1)−1.

PROOF. Let x := u + 1/2 ∈ Z. Due to one-dimensional nearest neighbor in-
teractions, active i-paths cannot cross each other, from which we deduce that

as(x − 1, i) ≤ as(x, i) ≤ as(x + 1, i) for all s ≥ 0,(8)
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where as(·, i) denotes the ancestor at time s for the ith feature, that is,(
as(y, i),0

) i� (y, s) for y ∈ {x − 1, x, x + 1} and all s ≥ 0.

Moreover, conditional on the event of a collision (u, i) −→ (u + 1, i) at time t ,
there is a particle at (u, i) and a particle at (u + 1, i) at time t−, therefore

η0
(
at−(x ± 1, i)

) = ηt−(x ± 1, i) �= ηt−(x, i) = η0
(
at−(x, i)

)
.(9)

From (8) and (9), we deduce that, conditional on (u, i) −→ (u + 1, i) at time t ,

as(x − 1, i) < as(x, i) < as(x + 1, i) for all s < t.

In other respects, we have

(u, i)
a−→ (u + 1, i) at time t

if and only if (u, i) −→ (u + 1, i) at time t and

ηt−(x − 1, i) = ηt−(x + 1, i),

if and only if (u, i) −→ (u + 1, i) at time t and

η0
(
at−(x − 1, i)

) = η0
(
at−(x + 1, i)

)
.

In particular, the outcome—either an annihilating event or a coalescing event—
of a collision at time t is independent of the realization of the system of random
walks up to time t−. Moreover, since the initial states are independent and uni-
formly distributed, the conditional probability of an annihilating event is equal to
the conditional probability

P(X = Z|X �= Y and Z �= Y),(10)

where X,Y,Z are independent uniform random variables over {1,2, . . . , q}. By
conditioning on the possible values of Y , we obtain that (10) is equal to

q∑
j=1

P(X = Z|X �= j and Z �= j)P (Y = j) =
q∑

j=1

(
(q − 1)q

)−1 = (q − 1)−1.

Finally, since each collision results in either an annihilating event or a coalesc-
ing event, the conditional probability of a coalescing event directly follows. This
completes the proof. �

3. Sufficient condition for fixation. The main objective of this section is to
extend a result of [4] to the Axelrod model, and obtain a sufficient condition for
fixation which is based on certain properties of the active i-paths.

LEMMA 4. For all (z, i) ∈ Z × {1,2, . . . ,F }, let

T (z, i) := inf
{
t : (z,0)

i� (0, t)
}
.
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Then, the Axelrod model fixates whenever

lim
N→∞P

(
T (z, i) < ∞ for some z < −N and some i = 1,2, . . . ,F

) = 0.(11)

PROOF. Extending an idea of Bramson and Griffeath [4] and generalizing the
technique in [10], we set τi,0 := 0 for every cultural feature i and define recursively
the sequence of stopping times

τi,j := inf
{
t > τi,j−1 :ηt (0, i) �= ητi,j−1(0, i)

}
for j ≥ 1.

In other words, the stopping time τi,j is the j th time the individual at the origin
changes the state of her ith cultural feature. Also, for each cultural feature i, we
define the random variables

ai,j := the ancestor of vertex 0 at time τi,j for the ith feature

as well as the collection of events

Bi := {τi,j < ∞ for all j} and Gi,N := {|ai,j | < N for all j
}
.

See the left-hand side of Figure 4 for a schematic illustration of the stopping times
τi,j and the corresponding vertices ai,j . Assumption (11) together with reflection
symmetry implies that, for each cultural feature i, the event Gi,N occurs almost
surely for some N . It follows that

P

(
F⋃

i=1

Bi

)
≤

F∑
i=1

P(Bi) =
F∑

i=1

P

(
Bi ∩

(⋃
N

Gi,N

))
=

F∑
i=1

P

(⋃
N

(Bi ∩ Gi,N)

)
.

Since the event that the individual at the origin changes her culture infinitely often
is also the event that at least one of the events Bi occurs, in view of the previous
inequality, in order to establish fixation, it suffices to prove that

P(Bi ∩ Gi,N) = 0 for all i ∈ {1,2, . . . ,F } and all N ≥ 1.(12)

FIG. 4. Picture related to the proof of Lemma 4. Dashed lines represent active i-paths for some i

whereas the continuous thick line on the right-hand side is a generalized active path as defined in
Section 2.
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Our proof of (12) relies on some symmetry properties of the Axelrod model that
do not hold for the cyclic particle systems considered in [4]. First, we let

It (x, i) := {
z ∈ Z : (x, i) is the ancestor of (z, i) at time t

}
be the set of descendants of (x, i) at time t , and denote by Mt(x, i) its cardinality.
Since each interaction between two individuals is equally likely to affect the cul-
ture of each of these two individuals, the number of descendants of any given site
is a martingale whose expected value is constantly equal to one. In particular, the
martingale convergence theorem implies that

lim
t→∞Mt(x, i) = M∞(x, i) with probability 1 where E

∣∣M∞(x, i)
∣∣ < ∞.

Therefore, for almost all realizations of the process, the number of descendants of
(x, i) converges to a finite value. Since in addition the number of descendants is
an integer-valued process,

σ(x, i) := inf
{
t > 0 :Mt(x, i) = M∞(x, i)

}
< ∞ with probability 1.

Using that simultaneous updates occur with probability zero, we deduce that the
set of descendants inherits the properties of its cardinality in the sense that, with
probability one,

lim
t→∞ It (x, i) = I∞(x, i) and

(13)
ρ(x, i) := inf

{
t > 0 : It (x, i) = I∞(x, i)

}
< ∞,

where, due to one-dimensional nearest neighbor interactions, I∞(x, i) is a random
interval which is almost surely finite. To conclude, we simply observe that, con-
ditional on Gi,N , the last time the individual at the origin changes the state of her
ith cultural feature is at most equal to the largest of the stopping times ρ(x, i) for
x ∈ (−N,N) from which it follows that

P(Bi ∩ Gi,N) = P
(
ρ(x, i) = ∞ for some − N < x < N

) = 0

according to (13). This proves (12) and therefore the lemma. �

4. Proof of Theorem 1. In view of Lemma 4, in order to prove fixation, it
suffices to show that the probability of the event in equation (11), that we de-
note by HN , tends to zero as N → ∞. The first step is to extend the construction
proposed by Bramson and Griffeath [4] to the Axelrod model, the main difficulty
being that two active paths at different levels can cross each other. Let τ be the first
time an active i-path for some i = 1,2, . . . ,F that originates from (−∞,−N) hits
the origin, and observe that

τ = inf
{
T (z, i) : z ∈ (−∞,−N) and i = 1,2, . . . ,F

}
from which it follows that

HN := {
T (z, i) < ∞ for some (z, i) ∈ (−∞,−N) × {1,2, . . . ,F }} = {τ < ∞}.
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Denote by z
 < −N the initial position of this active path. Also, we set

z− := min
{
z ∈ Z : (z,0) � (0, τ )

} ≤ z
 < −N,
(14)

z+ := max
{
z ∈ Z : (z,0) � (0, σ ) for some σ < τ

} ≥ 0

and define I = (z−, z+). We point out that z− < z
 in general since vertex z
 is de-
fined from the set of active i-paths whereas vertex z− is defined from generalized
active paths that are concatenations of active i-paths with different values of i. See
the right-hand side of Figure 4 for an illustration where the two vertices are differ-
ent. Now, note that each blockade which is initially in the interval I must have been
destroyed, that is, turned into a set of F − 1 active particles through the annihila-
tion of one of the particles that constitute the blockade, by time τ . Moreover, active
particles initially outside the interval I cannot jump inside the space–time region
delimited by the two generalized active paths implicitly defined in (14). Indeed,
assuming that such particles exist would contradict either the minimality of z− or
the maximality of z+. In particular, on the event HN , all the blockades initially in I

must have been destroyed before time τ by either active particles initially in I or
active particles that result from these blockade destructions. To estimate the proba-
bility of this last event, we first give a weight of −1 to each particle initially active
by setting

φ(u) := −ζ0(u) = −i whenever ζ0(u) = i �= F.

To define φ(u) when u is initially occupied by a blockade, we observe that by
Lemma 3 the number of collisions required to break a blockade is geometric with
mean q − 1. Moreover, each blockade destruction results in a total of F − 1 active
particles. Therefore, we set

φ(u) := ψ(u) − (F − 1) whenever ζ0(u) = F,

where ψ(u) are independent geometric random variables with mean q − 1. The
fact that HN occurs only if all the blockades initially in I are destroyed by active
particles initially in I or active particles resulting from these blockade destructions,
can then be written as

HN ⊂
{∑

u∈I

φ(u) ≤ 0
}

(15)

⊂
{

r∑
u=l

φ(u) ≤ 0 for some l < −N and some r ≥ 0

}
.

To understand the first inclusion, simply observe that the sum of the φ(u) is equal
to the number of collisions required to break all the blockades minus the total num-
ber of active particles initially in the interval I or created from the destruction of
blockades initially in I . Since the number of collisions is bounded by the number
of such active particles, all the blockades initially in I can only be destroyed if the
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number of such active particles exceeds the number of collisions required, which
gives the first inclusion. The second inclusion simply follows from the fact that

(−N,0) ⊂ (z−, z+) = I since z− < −N and z+ ≥ 0.

The expression of ω(q,F ) can be understood heuristically as follows: since the
φ(u) are independent, one expects that fixation occurs if Eφ(u) > 0. But

Eφ(u) = (
Eψ(u) − (F − 1)

)
P

(
ζ0(u) = F

) −
F−1∑
i=0

iP
(
ζ0(u) = i

)

= (
Eψ(u) + 1

)
P

(
ζ0(u) = F

) −
F∑

i=0

iP
(
ζ0(u) = i

)

= qP
(
ζ0(u) = F

) − Eζ0(u),

which, since ζ0(u) = Binomial(F,1 − 1/q), is precisely equal to ω(q,F ). To de-
duce rigorously fixation from the positiveness of the expected value, which is done
in the next two lemmas, we now prove large deviation estimates for HN . The first
of these two lemmas will be used in the proof of the second one to show that the
total number of collisions required to break all the blockades in a large interval
does not deviate too much from its expected value.

LEMMA 5. Let X1,X2, . . . be an infinite sequence of independent geometric
random variables with the same parameter p. Then, for all ε > 0, there exists
γ1 > 0 such that

P
(
X1 + X2 + · · · + XK ≤ (1/p − ε)K

) ≤ exp(−γ1K)

for all K sufficiently large.

PROOF. Let Zn = Binomial(n,p) for all n ≥ 1. Since, in a sequence of inde-
pendent Bernoulli trials with success probability p, the event that the K th success
occurs at step n is included in the event that K successes occur in the first n steps,
we have

P(X1 + X2 + · · · + XK = n) ≤ P(Zn = K).

Letting M denote the integer part of (1/p − ε)K , we deduce that

P
(
X1 + X2 + · · · + XK ≤ (1/p − ε)K

)

=
M∑

n=K

P (X1 + X2 + · · · + XK = n)

≤
M∑

n=K

P (Zn = K) ≤
M∑

n=K

P (Zn ≥ K) ≤
M∑

n=K

P (ZM ≥ K)

≤ M × P(ZM ≥ K).
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Since large deviation estimates for the binomial distribution imply that

P(ZM ≥ K) ≤ P
(
ZM ≥ (1 − εp)−1Mp

)
≤ exp(−γ2M) ≤ exp

(−γ2
(
(1/p − ε)K − 1

))
for a suitable constant γ2 > 0, the result follows. �

LEMMA 6. Let IN := (−N,0) ∩ D and assume that ω(q,F ) > 0. Then

P

( ∑
u∈IN

φ(u) ≤ 0
)

≤ exp(−γ3N)

for a suitable constant γ3 > 0 and all N sufficiently large.

PROOF. To begin with, we define

Ni := card
{
u ∈ IN : ζ0(u) = i

}
for i = 0,1, . . . ,F.

Since the random variables ζ0(u), u ∈ D, are independent, standard large deviation
estimates for the binomial distribution imply that for all ε > 0 there exists γ4 > 0
such that

P
(
Ni /∈ (

(μi − ε)N, (μi + ε)N
)) ≤ exp(−γ4N)

(16)
for all i = 0,1, . . . ,F,

where μi := P(X = i) with X = Binomial(F,1 − 1/q). The expression for μi

follows from the fact that initially each level of each site is independently occupied
with probability 1 − 1/q , which implies that the ζ0(u) are independent binomial
random variables. Let � be the event that

(μi − ε)N < Ni < (μi + ε)Na for all i = 0,1, . . . ,F.

Then, there exists a constant C > 0 such that, on the event �,

1

N

F−1∑
i=0

iNi ≤
F−1∑
i=0

i(μi + ε) ≤
F∑

i=0

iμi − FμF + Cε = Eζ0(u) − FμF + Cε.

In particular, letting K be the integer part of (μF − ε)N , we have

P

( ∑
u∈IN

φ(u) ≤ 0
∣∣∣�)

≤ P

( ∑
u∈IK

(
ψ(u) − (F − 1)

) ≤ (
Eζ0(u) − FμF + Cε

)
N

)
(17)

≤ P

( ∑
u∈IK

ψ(u) ≤ (
Eζ0(u) − μF + (C − F + 1)ε

)
N

)
.
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Now, since ω(q,F ) > 0, there exists ε > 0 small such that

Eζ0(u) − μF + (C − F + 1)ε = (q − 1)μF + Eζ0(u) − qμF + (C − F + 1)ε

= (q − 1)μF − ω(q,F ) + (C − F + 1)ε

≤ (q − 1 − ε)(μF − ε)

from which we deduce, also using (17) and Lemma 5, that

P

( ∑
u∈IN

φ(u) ≤ 0
∣∣∣�)

≤ P

( ∑
u∈IK

ψ(u) ≤ (q − 1 − ε)K

)
≤ exp(−γ1K)(18)

for all K sufficiently large. Combining (16) and (18), we obtain

P

( ∑
u∈IN

φ(u) ≤ 0
)

≤ exp
(−γ1(μF − ε)N

) + (F + 1) exp(−γ4N)

for all N sufficiently large. �

Using the inclusion in (15) and Lemma 6, we deduce

lim
N→∞P(HN) ≤ lim

N→∞P

(
r∑

u=l

φ(u) ≤ 0 for some l < −N and some r ≥ 0

)

≤ lim
N→∞

∑
l<−N

∑
r≥0

P

(
r∑

u=l

φ(u) ≤ 0

)

≤ lim
N→∞

∑
l<−N

∑
r≥0

exp
(−γ3(r − l)

) = 0.

This, together with Lemma 4, implies fixation whenever ω(q,F ) > 0.

5. Fixation when F = 2 and q = 3. To begin with, note that, when F = 2
and q = 3, we have Eφ(u) = ω(3,2) = 0 for the comparison function φ(u) de-
fined in the previous section. In particular, to find a good enough upper bound for
the probability of HN in the case F = 2 and q = 3, one needs to define a new
comparison function that also takes into account additional events that promote
fixation, such as collisions between active particles and blockade formations. Re-
call that in the comparison function of Section 4, each particle which is initially
active is assigned a weight of −1, which corresponds to the worst case scenario in
which the active particle hits a blockade. However, each active particle can also hit
another active particle or form a new blockade with another active particle. More
precisely, there are four possible outcomes for each active particle:

(1) If the active particle hits a blockade, it is assigned a weight of −1.
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(2) If the active particle coalesces with another active particle, then at most
one collision with a blockade can result from this pair of particles so the pair
is assigned a total weight of −1; that is, each particle of the pair is individually
assigned a weight of −1/2.

(3) If the active particle annihilates with another active particle, then no colli-
sion with a blockade can result from this pair so each active particle that annihilates
with another active particle is assigned a weight of 0.

(4) If the active particle forms a blockade with another active particle, then
following the same approach as in the previous section the pair is assigned a total
weight equal to −1 plus a geometric random variable with mean q − 1.

In view of cases 2–4 above, the weight of an active particle that either collides with
another active particle or forms a blockade with another active particle is at least
−1/2, and therefore we define a new comparison function, again denoted by φ, as
follows:

φ(u) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(u) − 1, if ζ0(u) = 2,

0, if ζ0(u) = 0,

−1/2, if ζ0(u) = 1 and the active particle initially at u either
collides with another active particle or forms
a blockade with another active particle,

−1, if ζ0(u) = 1 and the active particle initially at u

collides with a blockade,

where the random variables ψ(u) are again independent geometric random vari-
ables with the same expected value q − 1 = 2. The value of φ(u) when ζ0(u) �= 1
is the same as in the previous section whereas we distinguish between active par-
ticles that satisfy case 1 or cases 2–4 above. The same reasoning and construction
as in Section 4 again imply that

HN ⊂
{

r∑
u=l

φ(u) ≤ 0 for some l < −N and some r ≥ 0

}
(19)

for this new comparison function. To prove that the probability of the event on the
right-hand side converges to zero as N → ∞, we follow the same strategy as for
Lemma 6 but also find a lower bound for the probability that a particle initially
active either collides with another active particle or forms a blockade with another
active particle, which is done in the next lemma.

LEMMA 7. Assume that F = 2 and q ≥ 3. Then, there exists γ5 > 0 such that

P

( ∑
u∈IN

φ(u) ≤ 0
)

≤ exp(−γ5N) for all N sufficiently large,

where IN := (−N,0) ∩ D as in Lemma 6.
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PROOF. The first step is to find a lower bound for the initial number of active
particles that will either collide or form a blockade with another active particle.
To do so, we introduce the following definition: an active particle initially at site
u ∈ D is said to be a good particle if

ζ0(u) = ζ0(v) = 1
(20)

where {u, v} = {2n − 1/2,2n + 1/2} for some n ∈ Z.

In other words, we partition the lattice D into countably many pairs of adjacent
sites, and call an active particle at time 0 a good particle if the other site of the pair
is initially occupied by an active particle as well. An active particle which is not
good is called a bad particle. Since initially each level of each site is independently
occupied with probability 1 − 1/q , the variables ζ0(u) are independent binomial
random variables, so for u, v as in (20) we have

P
({u, v} is occupied by a pair of good particles at time 0

) = ν0 = P(X = 1)2,

where X = Binomial(2,1 − 1/q). Similarly, we have

P(u is occupied by a bad particle at time 0) = ν1 = P(X = 1) × P(X �= 1),

P (u is occupied by two particles at time 0) = ν2 = P(X = 2).

Since in addition the events that nonoverlapping pairs of adjacent sites are initially
occupied by two good particles, or one bad particle, or one blockade, or one bad
particle and one blockade, or two blockades are independent, standard large de-
viation estimates for the binomial distribution imply that there exists a positive
constant γ6 > 0 such that

P
(
Ni /∈ (

(νi − ε)N, (νi + ε)N
)) ≤ exp(−γ6N) for i = 0,1,2,(21)

where N0,N1 and N2 denote respectively the initial number of good particles, the
initial number of bad particles and the initial number of blockades in the inter-
val IN . To estimate the probability that a pair of good particles collide or form a
blockade, we first observe that, when there are only two features, the graphical rep-
resentation of the Axelrod model simplifies as follows: For each pair of neighbors
(x, y) ∈ Z

2, draw an arrow x → y at the times of a Poisson process with intensity
one fourth, which is equal to half of the rate at which neighbors who agree on one
cultural feature interact. If the two neighbors agree on exactly one cultural feature
at the time of the interaction then the culture of the individual at vertex y becomes
the same as the culture of the individual at vertex x. In this graphical representa-
tion, there are exactly six possible arrows that may affect the system of random
walks at the pair of sites {u,u + 1} ⊂ D, namely

u − 1/2 → u + 1/2, u + 3/2 → u + 1/2,

u + 1/2 → u − 1/2, u + 1/2 → u + 3/2,(22)

u − 3/2 → u − 1/2, u + 5/2 → u + 3/2.
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The event that one of the two arrows in the first line of (22) appears before any of
the four other ones occurs with probability two (arrows) over six (arrows) = 1/3,
and on the intersection of this event and the event that there is initially a pair of
good particles at {u,u + 1}, the two particles either collide or form a blockade.
Moreover, the event that one of the two arrows in the first line appears first only
depends on the realization of the graphical representation in

(u − 3/2, u + 5/2) × [0,∞).

In particular, parts of the graphical representation associated with nonadjacent
pairs do not intersect which, by independence of the Poisson processes, implies
that the events that the two arrows in the first line of (22) appears before any of the
other ones are independent for nonadjacent pairs. It follows that the initial num-
ber J of good particles in IN that either collide or form a blockade is stochastically
larger than a binomial random variable with Nν0/2 trials and success probability
one third. Large deviation estimates for the binomial distribution then imply that

P
(
J ≤ (1/6 − ε)(ν0 − ε)N |N0 > (ν0 − ε)N

) ≤ exp(−γ7N)(23)

for a suitable constant γ7 > 0. Now, let � be the event that

(νi − ε)N < Ni < (νi + ε)N for i = 0,1,2 and J > (1/6 − ε)(ν0 − ε)N,

and observe that there exists a constant C > 0 such that, on the event �,

(1/2)J + (N0 + N1 − J ) = N0 + N1 − (1/2)J

< (ν0 + ν1 + 2ε)N − (1/2)(1/6 − ε)(ν0 − ε)N

= (11ν0/12 + ν1 + Cε)N.

In particular, letting K be the integer part of (ν2 − ε)N , we have

P

( ∑
u∈IN

φ(u) ≤ 0
∣∣∣�)

≤ P

( ∑
u∈IK

(
ψ(u) − 1

) ≤ (11ν0/12 + ν1 + Cε)N

)
(24)

≤ P

( ∑
u∈IK

ψ(u) ≤ (
11ν0/12 + ν1 + ν2 + (C − 1)ε

)
N

)
.

In other respects, recalling the definition of νi for i = 0,1,2, we have

(q − 2)ν2 − ν1 − 11ν0/12

= (q − 2)P (X = 2) − P(X = 1)P (X �= 1) − (11/12)P (X = 1)2

= (q − 2)P (X = 2) − P(X = 1) + (1/12)P (X = 1)2,
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which, recalling the definition of X, is equal to

(q − 2)

(
1 − 1

q

)2

− 2

q

(
1 − 1

q

)
+ 1

12

(
2

q

(
1 − 1

q

))2

= (q − 3)

(
1 − 1

q

)
+ 1

3

(
1

q

(
1 − 1

q

))2

≥ 1

3

(
1

3

(
1 − 1

3

))2

= 4

243
> 0

for all q ≥ 3. In particular, there exists ε > 0 small such that

11ν0/12 + ν1 + ν2 + (C − 1)ε

= (q − 1)ν2 − (
(q − 2)ν2 − ν1 − 11ν0/12

) + (C − 1)ε

= (q − 1)ν2 − (ν2 + q − 1)ε ≤ (q − 1 − ε)(ν2 − ε).

Since Eψ(u) = q − 1, the previous estimate, (24) and Lemma 5 imply that

P

( ∑
u∈IN

φ(u) ≤ 0
∣∣∣�)

≤ P

( ∑
u∈IK

ψ(u) ≤ (q − 1 − ε)K

)
≤ exp(−γ1K)(25)

for all K sufficiently large. Combining (21), (23) and (25), we obtain

P

( ∑
u∈IN

φ(u) ≤ 0
)

≤ exp
(−γ1(ν2 − ε)N

) + 3 exp(−γ6N) + exp(−γ7N)

for all N sufficiently large, which completes the proof. �

As in the previous section, (19) and Lemma 7 imply that

lim
N→∞P(HN) ≤ lim

N→∞
∑

l<−N

∑
r≥0

exp
(−γ5(r − l)

) = 0,

which, together with Lemma 4, implies fixation when F = 2 and q = 3.
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