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COMPARISON INEQUALITIES AND FASTEST-MIXING
MARKOV CHAINS

BY JAMES ALLEN FILL1 AND JONAS KAHN

Johns Hopkins University and Université de Lille 1, CNRS

We introduce a new partial order on the class of stochastically monotone
Markov kernels having a given stationary distribution π on a given finite
partially ordered state space X . When K � L in this partial order we say
that K and L satisfy a comparison inequality. We establish that if K1, . . . ,Kt

and L1, . . . ,Lt are reversible and Ks � Ls for s = 1, . . . , t , then K1 · · ·Kt �
L1 · · ·Lt . In particular, in the time-homogeneous case we have Kt � Lt for
every t if K and L are reversible and K � L, and using this we show that
(for suitable common initial distributions) the Markov chain Y with kernel K

mixes faster than the chain Z with kernel L, in the strong sense that at every
time t the discrepancy—measured by total variation distance or separation or
L2-distance—between the law of Yt and π is smaller than that between the
law of Zt and π .

Using comparison inequalities together with specialized arguments to re-
move the stochastic monotonicity restriction, we answer a question of Persi
Diaconis by showing that, among all symmetric birth-and-death kernels on
the path X = {0, . . . , n}, the one (we call it the uniform chain) that produces
fastest convergence from initial state 0 to the uniform distribution has tran-
sition probability 1/2 in each direction along each edge of the path, with
holding probability 1/2 at each endpoint.

We also use comparison inequalities:

(i) to identify, when π is a given log-concave distribution on the path,
the fastest-mixing stochastically monotone birth-and-death chain started at 0,
and

(ii) to recover and extend a result of Peres and Winkler that extra updates
do not delay mixing for monotone spin systems.

Among the fastest-mixing chains in (i), we show that the chain for uniform π

is slowest in the sense of maximizing separation at every time.

1. Introduction and summary. A series of papers [4–6, 32] by Boyd, Dia-
conis, Xiao and coauthors considers the following “fastest-mixing Markov chain”
problem. A finite graph G = (V ,E) is given, together with a probability distribu-
tion π on V such that π(i) > 0 for every i; the goal is to find the fastest-mixing
reversible Markov chain (FMMC) with stationary distribution π and transitions
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allowed only along the edges in E. This is a very important problem because
of the use of Markov chains in Markov chain Monte Carlo (MCMC), where the
goal is to sample (at least approximately) from π and the Markov chain is con-
structed only to facilitate generation of such observations as efficiently as possible.
As their criterion for FMMC, the authors minimize SLEM (second-largest eigen-
value in modulus—sometimes also called the absolute value of the “largest small
eigenvalue”—defined as the absolute value of the eigenvalue of the one-step ker-
nel with largest absolute value strictly less than 1), and they find the FMMC using
semidefinite programming. (More precisely, the authors of [4–6] do this; the au-
thor of [32] similarly deals with continuous-time chains and minimizes relaxation
time. See these papers for further references; in particular, related work is found
in [27].)

While most of the results in the series are numerical, both [5] and [4] contain
analytical results. For the problem treated in [5] (which, as explained there, has an
application to load balancing for a network of processors [10]), the graph G is a
path (say, on V = {0, . . . , n}, with an edge joining each consecutively-numbered
pair of vertices) with a self-loop at each vertex, π is the uniform distribution, and it
is proved that the FMMC has transition probability p(i, i + 1) = p(i + 1, i) = 1/2
along each edge and p(i, i) ≡ 0 except that p(0,0) = 1/2 = p(n,n). [We will call
this the uniform chain U = (Ut )t=0,1,....]

The mixing time of a Markov chain can indeed be bounded using the SLEM,
which provides the asymptotic exponential rate of convergence to stationarity.
(See, e.g., [2] for background and standard Markov chain terminology used in
this paper.) But the SLEM provides only a surrogate for true measures of discrep-
ancy from stationarity, such as the standard total variation (TV) distance, separa-
tion (sep) and L2-distance. For the path problem, for example, Diaconis (personal
communication) has wondered whether the uniform chain might in fact minimize
such distances after any given number of steps (when, for definiteness, all chains
considered must start at 0). In this paper we show that this is indeed the case: the
uniform chain is truly fastest-mixing in a wide variety of senses. Consider any
t ≥ 0. What we show, precisely, is that, for any birth-and-death chain2 X having
symmetric transition kernel on the path and initial state 0, the probability mass
function (p.m.f.) πt of Xt majorizes the p.m.f. σt of Ut . (A definitive reference
on the theory of majorization is [21].) We will show using this that four examples
of discrepancy from uniformity that are larger for Xt than for Ut are (i) Lp(π)-
distance for any 1 ≤ p ≤ ∞ (including the standard TV and L2 distances); (ii) sep-
aration; (iii) Hellinger distance; and (iv) Kullback–Leibler divergence.

The technique we use to prove that πt majorizes σt is new and remarkably
simple, yet quite general. In Section 2 we describe our method of comparison
inequalities. We show (Corollary 2.5) that if two Markov semigroups satisfy a

2Arbitrary holding is allowed at each state.
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certain comparison inequality at time 1, then they satisfy the same comparison
inequality at all times t . We also show, in Section 3 (see especially Corollary 3.3),
how the comparison inequality can be used to compare mixing times—in a variety
of senses—for the chains with the given semigroups.

In Section 4 we show that, in the context of the above path-problem (of find-
ing the FMMC on a path), if one restricts either (i) to monotone chains, or (ii) to
even times, then the uniform chain satisfies a favorable comparison inequality in
comparison with any other chain in the class considered. Somewhat delicate ar-
guments (needed except in the case of L2-distance) specific to the path-problem
allow us to remove the parity restriction from the conclusion that the uniform chain
is fastest; see Theorem 4.3. Further, comparisons between chains—even time-
inhomogeneous ones—other than the fastest U can be carried out with our method
by limiting attention either to monotone kernels or to two-step kernels. Indeed,
our Proposition 2.4 rather generally provides a new tool for the notoriously diffi-
cult analysis of time-inhomogeneous chains, whose nascent quantitative theory has
been advanced impressively in recent work of Saloff-Coste and Zúñiga [28–31].

In Section 5 (see Theorem 5.1), we generalize our path-problem result as fol-
lows. Let π be a log-concave p.m.f. on X = {0, . . . , n}. Among all monotone birth-
and-death kernels K , the fastest to mix (again, in a variety of senses) is Kπ with
(death, hold, birth) probabilities given by

qi = πi−1

πi−1 + πi

, ri = π2
i − πi−1πi+1

(πi−1 + πi)(πi + πi+1)
, pi = πi+1

πi + πi+1
.

(This reduces to the uniform chain when π is uniform.)
In Section 6 we revisit the birth-and-death problems of Sections 4–5 in terms

of an alternative notion of mixing time employed by Lovász and Winkler [20].
Consider, for example, the path-problem of Section 4. For every even value of
n the uniform chain is fastest-mixing in their sense, too. But, perhaps somewhat
surprisingly, for every odd value of n the uniform chain is not fastest-mixing in
their sense; we identify the chain that is.

In Section 7 we discuss a simple “ladder” game, where the class of kernels is a
certain subclass of the symmetric birth-and-death kernels considered in Section 4.

In Section 8 we show how comparison inequalities can recover and ex-
tend (among other ways, to certain card-shuffling chains) a Peres–Winkler re-
sult about slowing down mixing by skipping (“censoring”) updates of monotone
spin systems. (This is an example of comparison inequalities applied to time-
inhomogeneous chains.)

2. Comparison inequalities. In this section we introduce our new concept of
comparison inequalities. Consider a p.m.f. π > 0 on a given finite partially ordered
state space X . We utilize the usual L2(π) inner product

〈f,g〉 ≡ 〈f,g〉π := ∑
i∈X

π(i)f (i)g(i);(2.1)
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if a matrix K is regarded in the usual fashion as an operator on L2(π) by re-
garding functions on X as column vectors, then the L2(π)-adjoint of K (also
known as the time-reversal of K , when K is a Markov kernel) is K∗ with
K∗(i, j) ≡ π(j)K(j, i)/π(i). Reversibility with respect to π for a Markov ker-
nel K is simply the condition that K is self-adjoint.

Let K, M and F denote the respective classes of (i) Markov kernels on X with
stationary distribution π , (ii) nonnegative nonincreasing functions on X and (iii)
kernels K from K that are stochastically monotone (meaning that Kf ∈ M for
every f ∈ M). Note for future reference that the identity kernel I always belongs
to F , regardless of π . Define a comparison inequality relation � on K by declaring
that K � L if 〈Kf,g〉 ≤ 〈Lf,g〉 for every f,g ∈ M, and observe that K � L if
and only if the time-reversals K∗ and L∗ satisfy K∗ � L∗.

REMARK 2.1. (a) Clearly:

(i) to verify a comparison inequality K � L by establishing 〈Kf,g〉 ≤
〈Lf,g〉, it is sufficient to take f and g to be indicator functions of down-
sets (i.e., sets D such that y ∈ D and x ≤ y implies x ∈ D) in the partial
order; and

(ii) if a comparison inequality holds, then the condition that f and g be non-
negative can be dropped, if desired.

(b) There is an important existing notion of stochastic ordering for Markov ker-
nels on X : we say that L ≤st K if Kf ≤ Lf entrywise for all f ∈ M. It is
clear that L ≤st K implies K � L when K and L belong to F . But in all the
examples in this paper where we prove a comparison inequality, we do not
have stochastic ordering. This will typically be the case for interesting exam-
ples, since the requirement for distinct K,L ∈ F to have the same stationary
distribution makes it difficult (though not impossible) to have L ≤st K .

REMARK 2.2. The relation � defines a partial order on K. Indeed, reflexivity
and transitivity are immediate, and antisymmetry follows because one can build a
basis for functions on X from elements f of M, namely, the indicators of principal
down-sets (i.e., down-sets of the form 〈x〉 := {y :y ≤ x} with x ∈ X ). A proof from
first principles is easy.3

We list next a few basic properties of the comparison relation � on K, showing
that the relation is preserved under passages to limits, mixtures, and direct sums.

3We need only show that the indicator function 1{x} of any singleton {x} can be written as a
linear combination of indicator functions of principal down-sets. But this can be done recursively by
starting with minimal elements x and then using the identity

1{x} = 1〈x〉 − ∑
y<x

1{y}, x ∈ X .
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The proofs are all very easy. Note also that the class F of stochastically mono-
tone kernels with stationary distribution π is closed under passages to limits and
mixtures, and also under (finite) products, but not under general direct sums as in
part (c).

PROPOSITION 2.3. (a) If Kt � Lt for every t and Kt → K and Lt → L, then
K � L.

(b) If Kt � Lt for t = 0,1 and 0 ≤ λ ≤ 1, then

(1 − λ)K0 + λK1 � (1 − λ)L0 + λL1.

(c) Partition X arbitrarily into subsets X0 and X1, and let each Xi inherit its
partial order and stationary distribution from X . For i = 0,1, suppose Ki � Li

on Xi . Define the kernel K (resp., L) as the direct sum of K0 and K1 (resp., L0

and L1). Then K � L.

The following proposition, showing that � is preserved under product for
stochastically monotone reversible kernels, is the main result of this section.

PROPOSITION 2.4 (Comparison inequalities). Let K1, . . . ,Kt and L1, . . . ,Lt

be reversible [i.e., L2(π)-self-adjoint] kernels all belonging to F , and suppose that
Ks � Ls for s = 1, . . . , t . Then the product kernels K1 · · ·Kt and L1 · · ·Lt (and
their time-reversals) belong to F , and K1 · · ·Kt � L1 · · ·Lt .

The application to time-homogeneous chains is the following immediate corol-
lary.

COROLLARY 2.5. If K,L ∈ F are reversible and K � L, then for every t we
have Kt,Lt ∈ F and Kt � Lt .

REMARK 2.6. As we shall see from examples, the applicability of our new
technique of comparison inequalities is limited (i) by the monotonicity require-
ment for membership in F and (ii) by the extent to which F is ordered by �.
But restriction (i) in the choice of kernel has the payoff (among others) that the
perfect simulation algorithms (see [33] for background) Coupling From The Past
[24–26, 34] and FMMR (Fill–Machida–Murdoch–Rosenthal) [15, 16] can often
be run efficiently for monotone chains. Restriction (ii) needs to be explored thor-
oughly for interesting and important examples. This paper treats a few examples,
in Sections 4 (especially Section 4.1), 5 and 8. For discussion about the relation
between our comparison-inequalities technique and existing techniques for com-
paring mixing times of Markov chains, see Remark 3.5 below.
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The remainder of this section is devoted to the proof of Proposition 2.4, which
we will derive as a consequence of an extremely simple, but—as far as we know—
new, matrix-theoretic result, Proposition 2.7.

The general setting is this. We are given a positive vector π ∈ Rn and define the
L2(π) inner product as at (2.1). We are also given a set (not necessarily a subspace)
W ⊆ Rn. Let Mn(R) denote the collection of n-by-n real matrices. Define

F := {matrices A ∈ Mn(R) for which W is invariant
}
.

(This of course means that a real matrix A belongs to F if and only if Aw ∈ W for
every w ∈ W .) Define a (clearly reflexive and transitive) relation � on Mn(R) by
declaring that A � B if

〈Ax,y〉 ≤ 〈Bx,y〉 for every x, y ∈ W.

We observe in passing (i) that A � B if and only if A∗ � B∗ and (ii) that the
relation � may fail to be antisymmetric (but this will present no difficulty).

PROPOSITION 2.7. Let A1,A2,B1,B2 ∈ Mn(R). Suppose that A2 and B∗
1

both belong to F . If A1 � B1 and A2 � B2, then A1A2 � B1B2.

PROOF. Given x, y ∈ W , we observe

〈A1A2x, y〉 ≤ 〈B1A2x, y〉 because A2x, y ∈ W and A1 � B1

= 〈A2x,B∗
1 y
〉

≤ 〈B2x,B∗
1y
〉

because x,B∗
1 y ∈ W and A2 � B2

= 〈B1B2x, y〉
as desired. �

The third (Corollary 2.10) of the following four easy corollaries of Proposi-
tion 2.7 implies Proposition 2.4 immediately, by setting W = M and observing
that the set of Markov kernels with stationary distribution π > 0 is closed un-
der both multiplication and adjoint. (Similarly, Corollary 2.5 is a special case of
Corollary 2.11.)

COROLLARY 2.8. Let A1,A2,B1,B2 be matrices all belonging to F with
adjoints all belonging to F , and suppose that A1 � B1 and A2 � B2. Then the
matrices A1A2 and B1B2 and their adjoints all belong to F , and A1A2 � B1B2.

PROOF. This is immediate from the definition of F and Proposition 2.7. �

COROLLARY 2.9. Let A1, . . . ,At and B1, . . . ,Bt be matrices all belonging
to F with adjoints all belonging to F , and suppose that As � Bs for s = 1, . . . , t .
Then the matrices A1 · · ·At and B1 · · ·Bt and their adjoints all belong to F , and
A1 · · ·At � B1 · · ·Bt .
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PROOF. This follows by induction from Corollary 2.8. �

COROLLARY 2.10. Let A1, . . . ,At and B1, . . . ,Bt be self-adjoint matrices
all belonging to F , and suppose that As � Bs for s = 1, . . . , t . Then the matrices
A1 · · ·At and B1 · · ·Bt (and their adjoints) belong to F , and A1 · · ·At � B1 · · ·Bt .

PROOF. This is immediate from Corollary 2.9. �

COROLLARY 2.11. Let A and B be self-adjoint matrices both belonging to F ,
and suppose that A � B . Then, for every t = 0,1,2, . . . , the matrices At and Bt

(are self-adjoint and) belong to F and At � Bt .

PROOF. This is immediate from Corollary 2.10 by taking As ≡ A and Bs ≡ B .
�

3. Consequences of the comparison inequality, some via majorization. In
this section we focus on time-homogeneous chains and show how comparison
inequalities can be used to compare mixing times—in a variety of senses—for
chains with the given semigroups. As we shall see in Section 3.3, a useful tool in
moving from a comparison inequality to a comparison of mixing times will be the
use of basic results from the theory of majorization.

3.1. Comparison inequalities and domination. Recall from Section 2 that F
denotes the class of stochastically monotone Markov kernels on a given finite par-
tially ordered state space X that have a given π as stationary distribution. Our next
result (Proposition 3.2) gives conditions implying that if a comparison inequality
holds between reversible kernels K,L ∈ F , then the univariate distributions of the
corresponding Markov chains satisfy corresponding stochastic inequalities. The
proposition utilizes the following definition.

DEFINITION 3.1. Let (Yt ) and (Zt ) be stochastic processes with the same
finite partially ordered state space. If for every t we have Yt ≥ Zt stochastically,
that is,

P(Yt ∈ D) ≤ P(Zt ∈ D) for every down-set D in the partial order,(3.1)

then we say that Y dominates Z.

PROPOSITION 3.2. Suppose that K,L ∈ F are reversible and satisfy K � L.
If Y and Z are chains (i) started in a common p.m.f. π̂ such that π̂/π is nonin-
creasing and (ii) having respective kernels K and L, then Y dominates Z.

PROOF. By Corollary 2.5 for every t we have Kt,Lt ∈ F and Kt � Lt . The
desired result now follows easily. �
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3.2. TV, separation and L2-distance. Domination (recall Definition 3.1) is
quite useful for comparing mixing times in at least three standard senses.

If d is some measure of discrepancy from stationarity, then in the following
theorem we write “Y mixes faster in d than does Z” for the strong assertion that at
every time t we have d smaller for Y than for Z.

COROLLARY 3.3. Consider (not necessarily reversible) Markov chains Y and
Z with common finite partially ordered state space X , common initial distribution
π̂ and common stationary distribution π . Assume that π̂/π is nonincreasing.

(a) (total variation distance). Suppose that Y dominates Z and that the time-
reversal of Y is stochastically monotone. Then Y mixes faster in TV than does Z.

(b) (separation). Adopt the same hypotheses as in part (a). Then Y mixes faster
in separation than does Z; equivalently, any fastest strong stationary time for Y is
stochastically smaller (i.e., faster) than any strong stationary time for Z.

(c) (L2-distance). Assume that Y and Z are reversible. Suppose, moreover, that
the two-step chain (Y2t ) dominates (Z2t ) and is stochastically monotone. Then Y

mixes faster in L2 than does Z.

PROOF. All three results are simple applications of the domination inequal-
ity (3.1) [which, in the case of part (c), is guaranteed only for even values of t]
or its immediate extension to expectations of nonincreasing functions. We make
the preliminary observation that P(Yt = i)/π(i) is nonincreasing in i for each t ;
indeed, writing K for the kernel of Y we have

P(Yt = i)

π(i)
=∑

j

π̂(j)Kt(j, i)

π(i)
=∑

j

K∗t
(i, j)

π̂(j)

π(j)
,(3.2)

so the nonincreasingness claimed here follows from the monotonicity assumptions
about π̂/π and K∗.

(a) Choosing D in (3.1) to be the down-set D = {i : P(Yt = i)/π(i) > 1} we find

TVY (t) = P(Yt ∈ D) − π(D) ≤ P(Zt ∈ D) − π(D) ≤ TVZ(t).

(b) We first observe

sepY (t) = max
i

[
1 − P(Yt = i)

π(i)

]
= 1 − P(Yt = x1)

π(x1)

for some maximal element x1 in X . Therefore, choosing D = X \ {x1} we find

sepY (t) = 1 − P(Yt = x1)

π(x1)
≤ 1 − P(Zt = x1)

π(x1)

≤ max
i

[
1 − P(Zt = i)

π(i)

]
= sepZ(t).
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(c) Using routine calculations suppressed here, one finds that the squared
L2(π)-distance (of the density with respect to π ) from stationarity for Yt equals

∑
i

π(i)

[
P(Yt = i)

π(i)
− 1
]2

=∑
j ′

[∑
j

π̂(j)K2t (j, j ′)] π̂(j ′)
π(j ′)

− 1

=∑
j ′

P
(
Y2t = j ′) π̂(j ′)

π(j ′)
− 1.

But π̂/π is nonincreasing and Y2t ≥ Z2t stochastically; so this last expression does
not exceed ∑

j ′
P
(
Z2t = j ′) π̂(j ′)

π(j ′)
− 1 =∑

i

π(i)

[
P(Zt = i)

π(i)
− 1
]2

,

which is the desired conclusion. �

We remark in passing that a very similar proof as for Corollary 3.3(b) gives the
analogous result for the measure of discrepancy

max
i

[
P(Yt = i)

π(i)
− 1
]
,

and so we also have the analogous result for the two-sided measure

max
i

∣∣∣∣P(Yt = i)

π(i)
− 1
∣∣∣∣.(3.3)

REMARK 3.4 (L2-distance revisited). We have limited the statement of Corol-
lary 3.3(c) to reversible chains for simplicity. The same proof shows, more gen-
erally, for each t that if (i) K and L are (not necessarily reversible) kernels with
common stationary distribution π , (ii) π̂/π is nonincreasing, and (iii) π̂KtK∗t ≥
π̂LtL∗t stochastically, then the L2(π)-distance from stationarity for Yt does not
exceed that for Zt , where the chains Y and Z have respective kernels K and L and
common initial distribution π̂ . Assuming (i) and (ii), for the stochastic inequality
(iii) here it is sufficient that K and L and their time-reversals K∗ and L∗ are all
stochastically monotone and K � L.

REMARK 3.5 (Concerning eigenvalues). (a) if K and L are ergodic reversible
kernels in F (with a common stationary distribution π ) and we have the compari-
son inequality K � L, then the SLEM for K is no larger than the SLEM for L. This
follows rather easily from Proposition 3.2 and Corollary 3.3(c) using the spectral
representations of the kernels and the ample freedom in choice of the common
initial distribution π̂ such that π̂/π is nonincreasing. We omit further details.
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(b) There are several existing standard techniques for comparing mixing times
of Markov chains, such as the celebrated eigenvalues-comparison technique of Di-
aconis and Saloff-Coste [9], but none give conclusions as strong as those available
from combining Proposition 3.2 and Corollary 3.3. On the other hand, comparison
of eigenvalues requires verifying far fewer assumptions than needed to establish
K,L ∈ F and a comparison inequality K � L, so our new technique is much less
generally applicable.

3.3. Other distances via majorization. We now utilize ideas from majoriza-
tion; see [21] for background on majorization and the concept of Schur-convexity
used below. For the reader’s convenience we recall that, given two vectors v and w

in RN (for some N ), we say that v majorizes w if (i) for each k = 1, . . . ,N the sum
of the k largest entries of w is at least the corresponding sum for v, and (ii) equality
holds when k = N . A function φ with domain D ⊆ RN is said to be Schur-convex
on D if φ(v) ≥ φ(w) whenever v,w ∈ D and v majorizes w. Thus, given any two
p.m.f.’s ρ1 and ρ2 on X , if ρ1 majorizes ρ2, then for any Schur-convex function φ

on the unit simplex (i.e., the space of p.m.f.’s) we have φ(ρ1) ≥ φ(ρ2). Examples
of Schur-convex functions are given in Example 3.8 below; for each of those ex-
amples, the inequality φ(ρ1) ≥ φ(ρ2) can be interpreted as “ρ2 is closer to π than
is ρ1.”

The next proposition describes one important case where we have majoriza-
tion and hence can extend the conclusions “Y mixes faster in d than does Z” of
Corollary 3.3 to other measures of discrepancy d . Note the additional hypothesis,
relative to Corollary 3.3, that π is nonincreasing.

PROPOSITION 3.6. Consider (not necessarily reversible) Markov chains Y

and Z with common finite partially ordered state space X , common initial distri-
bution π̂ , and common stationary distribution π . Suppose that both π and π̂/π are
nonincreasing. Suppose, moreover, that Y dominates Z and that the time-reversal
of Y is stochastically monotone. Then, for all t , the p.m.f. πt of Zt majorizes the
p.m.f. σt of Yt .

PROOF. As noted just above (3.2), the ratio P(Yt = i)/π(i) is nonincreasing
in i; since π(i) is also nonincreasing, so is the product P(Yt = i). Hence for each
k ≤ |X | there is a down-set Dk such that P(Yt ∈ Dk) equals the sum of the k largest
values of P(Yt = i). Since Y dominates Z, inequality (3.1) implies that, for all t ,
the p.m.f. πt of Zt majorizes the p.m.f. σt of Yt . (This can be equivalently restated
in language introduced in [13]: Zt is coarser than Yt , for all t .) �

COROLLARY 3.7. Suppose that K,L ∈ F are reversible and satisfy K � L,
and that their common stationary distribution π is nonincreasing. If Y and Z are
chains (i) started in a common p.m.f. π̂ such that π̂/π is nonincreasing and (ii)
having respective kernels K and L, then, for all t , the p.m.f. πt of Zt majorizes the
p.m.f. σt of Yt .
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PROOF. The desired conclusion follows immediately upon combining Propo-
sitions 3.2 and 3.6. �

EXAMPLE 3.8. In this example we show when π is uniform in Proposition 3.6
(or Corollary 3.7), then Y mixes faster than does Z in more senses than TV, sepa-
ration, and L2.

Write N for the size of the state space X . Then each of the following six func-
tions is Schur-convex on the unit simplex in RN :

φ1(v) :=
[
Np−1

∑
i

∣∣vi − N−1∣∣p]1/p

(for any 1 ≤ p < ∞),

φ2(v) := max
i

|Nvi − 1|,
φ3(v) := max

i
(1 − Nvi),

φ4(v) := 1

2

∑
i

(
v

1/2
i − N−1/2)2,

φ5(v) := N−1
∑
i

ln
(

1/N

vi

)
,

φ6(v) :=∑
i

vi ln(Nvi)

in [21], Chapter 3, see Sections I.1, I.1, A.2, I.1.b, D.5, and D.1, respectively.
Therefore, if ρ1 majorizes ρ2, then ρ2 is closer to π than is ρ1 in each of the
following six senses (where here π is uniform and we have written the discrepancy
from π for a generic p.m.f. ρ):

(i) Lp-distance [∑
i

π(i)

∣∣∣∣ρ(i)

π(i)
− 1
∣∣∣∣p]1/p

for any 1 ≤ p < ∞;
(ii) L∞-distance

max
i

∣∣∣∣ρ(i)

π(i)
− 1
∣∣∣∣,

also called relative pointwise distance;
(iii) separation

max
i

[
1 − ρ(i)

π(i)

]
;
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(iv) Hellinger distance

1

2

∑
i

π(i)

[√
ρ(i)

π(i)
− 1
]2

;

(v) the Kullback–Leibler divergence

DKL(π‖ρ) = −∑
i

π(i) ln
[
ρ(i)

π(i)

]
;

(vi) the Kullback–Leibler divergence

DKL(ρ‖π) =∑
i

ρ(i) ln
[
ρ(i)

π(i)

]
.

Of course, the L2-distance considered in Corollary 3.3(c) is the special case p = 2
of example (i) here, and the TV distance of Corollary 3.3(a) amounts to the special
case p = 1. Relative pointwise distance was also treated earlier without use of
majorization at (3.3).

4. Fastest mixing on a path. We now specialize to the path-problem. Let
K be any symmetric birth-and-death transition kernel on the path {0,1, . . . , n},
and denote K(i, i + 1) = K(i + 1, i) by pi [except that K(0,0) = 1 − p0 and
K(n,n) = 1 − pn−1]; for example, when n = 3 we have

K =

⎡⎢⎢⎣
1 − p0 p0 0 0

p0 1 − p0 − p1 p1 0
0 p1 1 − p1 − p2 p2
0 0 p2 1 − p2

⎤⎥⎥⎦ .

In this section we first show, in Sections 4.1–4.2, that if one restricts attention
either:

(i) to monotone chains, or
(ii) to even times,

then the uniform chain U with kernel K0 where pi ≡ 1/2 satisfies a favorable
comparison inequality in comparison with the general K-chain, and we can apply
all the results of Section 3. Then, in Section 4.3, we show that the parity restriction
in (ii) can be removed to conclude that the uniform chain is, among all symmetric
birth-and-death chains, closest to uniformity (in several senses) at all times. In this
section and the next we make use of the general observation that a discrete-time
birth-and-death chain with kernel K on X = {0,1, . . . , n} is monotone if and only
if

K(i, i + 1) + K(i + 1, i) ≤ 1 for i = 0, . . . , n − 1.(4.1)
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Before we separate into the two cases (i) and (ii) for the path-problem, let us
note that if f is the indicator of the down-set {0,1, . . . , �}, then Kf satisfies

(Kf )j =

⎧⎪⎪⎨⎪⎪⎩
1, if 0 ≤ j ≤ � − 1,
1 − p�, if j = �,
p�, if j = � + 1,
0, otherwise

(4.2)

(with pn = 0); hence if g is the indicator of the down-set {0,1, . . . ,m}, then

〈Kf,g〉 = 1

n + 1
×
⎧⎨⎩

m + 1, if 0 ≤ m ≤ � − 1,
� + 1 − p�, if m = �,
� + 1, if � + 1 ≤ m ≤ n.

(4.3)

4.1. Restriction to monotone chains. Applying (4.1), our symmetric kernel K

is monotone if and only if pi ≤ 1/2 for i = 0, . . . , n − 1. Among all such choices,
it is clear that (4.3) is minimized when K = K0. From Remark 2.1(i) it therefore
follows that K0 � K and hence from Section 3 (especially Corollary 3.7 and Ex-
ample 3.8) that K0 is fastest-mixing in several senses.

REMARK 4.1. In fact, from (4.3) we see that monotone symmetric birth-and-
death kernels K are monotonically decreasing in the partial order � with respect
to each pi .

4.2. Restriction to even times. In the present setting of symmetric birth-and-
death kernel, note that our restriction (simply to ensure that K is a kernel) on the
values pi > 0 is that pi + pi+1 ≤ 1 for i = 0, . . . , n − 1. It is then routine to check
that K2 is (like K) reversible and (perhaps unlike K) monotone. Indeed, if f is
the indicator of the down-set {0,1, . . . , �}, then K2f satisfies

(
K2f

)
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if 0 ≤ j ≤ � − 2,
1 − p�−1p�, if j = � − 1,
1 − 2p� + 2p2

� + p�−1p�, if j = �,
2p� − 2p2

� − p�p�+1, if j = � + 1,
p�p�+1, if j = � + 2,
0, otherwise,

(4.4)

which is easily checked to be nonincreasing in j .
Suppose now that g is the indicator of the down-set {0,1, . . . ,m}. Then using

(4.4) we can calculate, and subsequently minimize over the allowable choices of
p0, . . . , pn−1, the quantity 〈K2f,g〉 by considering three cases:

(a) Suppose m = �. Then

(n + 1)
〈
K2f,g

〉= � + (1 − p�)
2 + p2

�

is minimized (regardless of value �) when pi = 1/2 for i = 0, . . . , n − 1.
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(b) Suppose � and m differ by exactly 1, say, m = � + 1. Then

(n + 1)
〈
K2f,g

〉= � + (1 − p�) + p�(1 − p�+1) = � + 1 − p�p�+1

is minimized (regardless of �) when pi = 1/2 for i = 0, . . . , n − 1.
(c) Suppose � and m differ by at least 2, say, m ≥ � + 2. Then

(n + 1)
〈
K2f,g

〉= � + (1 − p�) + p� + 0 = � + 1

does not depend on the choice of the vector p.
From Remark 2.1(i) it therefore follows that K2

0 � K2 and hence (from Sec-
tion 3) that K2

0 is fastest-mixing in several senses. Specifically:

for all even t , the p.m.f. πt of Xt majorizes the p.m.f. σt of Ut ,(4.5)

if X and U have respective kernels K and K0 and common nonincreasing initial
p.m.f. π̂ . Further, when we consider all symmetric birth-and-death chains started
in state 0, it follows from Corollary 3.3(c) that the chain with kernel K0 is fastest-
mixing in L2 (without the need to restrict to even times, nor to monotone chains).

REMARK 4.2. From the above calculations we see more generally that if K

and K̃ are two symmetric birth-and-death kernels and for every i we have∣∣pi − 1
2

∣∣≥ ∣∣p̃i − 1
2

∣∣ and pipi+1 ≤ p̃i p̃i+1,

then K̃2 � K2.

4.3. Removal of parity restriction. Throughout this subsection all chains are
assumed to start at state 0, even when we do not explicitly declare so. The main
result of this section is the following theorem, which extends (4.5) to all times
t = 0,1,2, . . . and therefore demonstrates (by Example 3.8) that the uniform chain
is fastest to mix in a variety of senses.

THEOREM 4.3. Let X be a birth-and-death chain with state space X =
{0,1, . . . , n} and symmetric kernel, and let U be the uniform chain. Suppose that
both chains start at 0, and let πt (resp., σt ) denote the probability mass function of
Xt (resp., Ut ). Then

πt majorizes σt for all t .

Let X have kernel K as described at the outset of Section 4. Let �t and 	t

denote the cumulative distribution functions (c.d.f.’s) corresponding to πt and σt ,
respectively: for example,

	t(j) :=
j∑

i=0

σt (i) = P(Ut ≤ j).
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From Section 4.2 we already know that if t is even, then

�t(i) ≥ 	t(i) for all i,(4.6)

because then πt majorizes σt and both p.m.f.’s are nonincreasing.
We build to the proof of Theorem 4.3 by means of a sequence of lemmas. We

start with a few results about the uniform chain.

LEMMA 4.4. (a) For every time t , the p.m.f. σt is nonincreasing on its domain
{0, . . . , n}.

(b) The distribution “evolves by steps of two,” depending on parity: for i =
0, . . . , n − 1 we have

σt (i) = σt (i + 1) if t + i is odd.

(c) For every time t , the c.d.f. 	t is concave (at integer arguments):

2	t(i) ≥ 	t(i + 1) + 	t(i − 1), i ≥ 0.(4.7)

(d) Inequality (4.7) is an equality if i ≥ 0 and t and i have opposite parity:

2	t(i) = 	t(i + 1) + 	t(i − 1) if t + i is odd.

PROOF. (a) This was proved in a more general setting just above (3.2).
(b) We use induction on t . The base case t = 0 is obvious (0 = 0).
Using the induction hypothesis at the second equality, we conclude, when t and

i ∈ {1, . . . , n − 1} have opposite parity, that

σt (i) = 1
2

[
σt−1(i − 1) + σt (i + 1)

]= 1
2

[
σt−1(i) + σt−1(i + 2)

]= σt (i + 1).

Similarly, when t is odd we have

σt (0) = 1
2

[
σt−1(0) + σt (1)

]= 1
2

[
σt−1(0) + σt−1(2)

]= σt (1).

(c) We first remark that it is well known that (4.7) is indeed equivalent to con-
cavity of 	t at integer arguments. We then need only note that (4.7) is merely a
rewriting of the monotonicity in part (a). Indeed,

2	t(i) = 	t(i + 1) + 	t(i − 1) + σt (i) − σt (i + 1)
(4.8)

≥ 	t(i + 1) + 	t(i − 1).

(d) Again using the equality at (4.8), this is merely a rewriting of the “steps of
two” evolution in part (b). �

LEMMA 4.5. For any time t and any state i, if �t(j) ≥ 	t(j) for all states j

in [i − 2, i + 2], then �t+2(i) ≥ 	t+2(i).
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PROOF. In the following calculations, we lean heavily on the fact that we are
dealing with birth-and-death chains. Utilizing natural notation such as K2(h,≤ i)

for
∑

j≤i K
2(h, j), we find using summation by parts that

�t+2(i) =
i+2∑
h=0

πt(h)K2(h,≤ i)

=
i+2∑
j=0

�t(j)
[
K2(j,≤ i) − K2(j + 1,≤ i)

]

=
i+2∑

j=i−2

�t(j)
[
K2(j,≤ i) − K2(j + 1,≤ i)

]
.

Recalling that K2 is monotone, the expression in square brackets here is nonneg-
ative, so first by hypothesis and then by reversing the above steps (now with 	 in
place of �) we have

�t+2(i) ≥
i+2∑

j=i−2

	t(j)
[
K2(j,≤ i) − K2(j + 1,≤ i)

]= i+2∑
h=0

σt (h)K2(h,≤ i).

But K2
0 � K2 (as noted in Section 4.2) and σt is nonincreasing [Lemma 4.4(a)], so

we finally conclude

�t+2(i) ≥
i+2∑
h=0

σt (h)K2
0 (h,≤ i) = 	t+2(i)

as desired. �

An immediate consequence is the following:

LEMMA 4.6. If p0 ≤ 1/2, then �t(i) ≥ 	t(i) for all times t and all states i.

PROOF. As previously discussed, we need only consider odd times, for which
the proof is immediate by induction using Lemma 4.5 once the basis t = 1 is
handled. But indeed

�1(0) = 1 − p0 ≥ 1
2 = 	1(0)

and �1(i) = 1 = 	1(i) for i ≥ 1. �

We can also prove that �t(i) ≥ 	t(i) for all t if the transition probability from
i to i + 1 is sufficiently low:

LEMMA 4.7. For any state i such that pi ≤ 1/2, we have �t(i) ≥ 	t(i) for
all times t .



1794 J. A. FILL AND J. KAHN

PROOF. We begin with the observation that, by last-step analysis,

�t(i) = �t−1(i − 1) + πt−1(i)(1 − pi) + πt−1(i + 1)pi,

which can be rewritten in terms of c.d.f.’s as

�t(i) = pi�t−1(i + 1) + (1 − 2pi)�t−1(i) + pi�t−1(i − 1)

in general and as

	t(i) = 1
2	t−1(i + 1) + 1

2	t−1(i − 1)

for the uniform chain.
Again we need only prove the lemma for odd times t , and then we find

�t(i) = pi�t−1(i + 1) + (1 − 2pi)�t−1(i) + pi�t−1(i − 1)

≥ pi	t−1(i + 1) + (1 − 2pi)	t−1(i) + pi	t−1(i − 1)

≥ 1
2	t−1(i + 1) + 1

2	t−1(i − 1)

= 	t(i),

where we know the first inequality holds because t − 1 is even (whence �t−1
dominates 	t−1) and pi ≤ 1/2, and the second inequality follows from concavity
of 	t−1 [Lemma 4.4(c)] again using pi ≤ 1/2. �

We can now combine Lemmas 4.5 and 4.7 to prove:

LEMMA 4.8. If pi ≤ 1/2 and pi+1 ≤ 1/2, then for all times t we have

�t(j) ≥ 	t(j) for all j ≥ i + 2.(4.9)

PROOF. We need only consider odd times, and we proceed by induction on t .
For t = 1 we have �1(j) = 1 = 	1(j) for all j ≥ 2; so we move on to the induc-
tion step.

Suppose that (4.9) holds with t replaced by t − 2. Use of Lemma 4.7 then en-
sures that we in fact have �t−2(j) ≥ 	t−2(j) for all j ≥ i. Hence for any j ≥ i +2
we have �t−2(�) ≥ 	t−2(�) for all � ∈ [j −2, j +2] and therefore, by Lemma 4.5,
�t(j) ≥ 	t(j). �

LEMMA 4.9. If t + i is even, then

�t(i) ≥ 	t(i).

PROOF. We may assume that t and i are odd. In light of Lemma 4.6, we may
also assume p0 > 1/2. Let 2� be the first state where the alternation of pi’s greater
than and no greater than 1/2 is broken:

p2� ≤ 1
2 ,

(4.10)
∀0 ≤ m < � p2m > 1

2 and p2m+1 ≤ 1
2 .
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(If there is no such break, we define 2� to be n + 1 or n + 2 according as n is
odd or even.) Notice that the break can happen only at an even state, since two
consecutive pi’s cannot both exceed 1/2.

Since i is odd, we have either i < 2� or i > 2�. In the former case, condition
(4.10) implies pi ≤ 1/2, and Lemma 4.7 proves that �t(i) ≥ 	t(i). In the latter
case, we must have 2� ≤ n − 1 in order for i to be a state; we then observe that
p2�−1 ≤ 1/2 and p2� ≤ 1/2, and then �t(i) ≥ 	t(i) by Lemma 4.8. �

We are now prepared to complete the proof of Theorem 4.3.

PROOF OF THEOREM 4.3. Because the c.d.f. inequality (4.6) holds when ei-
ther t is even or (by Lemma 4.9) when t + i is even, we need only establish
the asserted majorization when t is odd and i is even. Indeed, in that case using
Lemma 4.4(d) we have

	t(i) = 1
2

[
	t(i − 1) + 	t(i + 1)

]≤ 1
2

[
�t(i − 1) + �t(i + 1)

]
≤ �t(i − 1) + max

{
πt(i),πt (i + 1)

}
,

and so there exist i + 1 entries of the vector πt whose sum is at least 	t(i). We
conclude that πt majorizes σt , as asserted. �

REMARK 4.10. (a) The multiset of values {Pi (Ut = j) : j ∈ {0, . . . , n}} for the
uniform chain U started in state i does not depend on i ∈ {0, . . . , n}; therefore, the
uniform chain minimizes various distances from stationarity (including all those
listed in Example 3.8) not only when the starting state is 0 but in the worst case
over all starting states (and indeed over all starting distributions).

To see the asserted invariance in starting state, consider simple symmetric ran-
dom walk V on the cycle {0, . . . ,2n + 1}, with transition probability 1/2 in each
direction between adjacent states (modulo 2n+2). Then for every i, j ∈ {0, . . . , n}
we have (by regarding states n + 1, . . . ,2n + 1 as “mirror reflections” of the states
n, . . . ,0, resp.)

Pi (Ut = j) = Pi (Vt = j) + Pi (Vt = 2n + 1 − j),

where at most one of the two terms on the right—namely, the one with j − i ≡ t

(modulo 2)—is positive. Thus, as multisets of 2n + 2 elements each, we have the
equality{

Pi (Ut = j) : j ∈ {0, . . . , n}}∪ {0, . . . ,0} = {Pi (Vt = j) : j ∈ {0, . . . ,2n + 1}},
where the multiset {0, . . . ,0} on the left here has (of course) n+ 1 elements. Since
the multiset on the right clearly does not depend on i, neither does {Pi (Ut = j) :
j ∈ {0, . . . , n}}.

(b) The SLEM (second-largest eigenvalue in modulus) is an asymptotic measure
(in the worst case over starting states) of distance from stationarity. Accordingly,
by remark (a), the uniform chain minimizes SLEM among all symmetric birth-
and-death chains. Thus we recover the main result of [5].
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5. Fastest-mixing monotone birth-and-death chains. Let n be a positive
integer and consider the state space X = {0, . . . , n}. Let π be a log-concave dis-
tribution on X , and consider the class of discrete-time monotone birth-and-death
chains with state space X and stationary distribution π , started in state 0. In this
section we identify the fastest-mixing stochastically monotone chain in this class
as having kernel (call it Kπ ) with (death, hold, birth) probabilities (qi, ri, pi) given
for i ∈ X by

qi = πi−1

πi−1 + πi

, ri = π2
i − πi−1πi+1

(πi−1 + πi)(πi + πi+1)
, pi = πi+1

πi + πi+1
(5.1)

with π−1 := 0 and πn+1 := 0. In Section 5.1 we first find the FMMC when π is
held fixed; then in Section 5.2 we show that, when π is allowed to vary, taking it
to be uniform gives the slowest mixing in separation.

Throughout, we make heavy use of reversibility. Recall that any irreducible
birth-and-death chain on X is reversible with respect to its unique stationary dis-
tribution π .

5.1. The FMMC when π is fixed. The main result of this subsection is the
following comparison inequality; and then Proposition 3.2 and Corollary 3.3 es-
tablish three senses (TV, separation, and L2) in which the chain with kernel Kπ is
fastest-mixing.

THEOREM 5.1. Let π be log-concave on X = {0, . . . , n}. Let Kπ have (death,
hold, birth) probabilities (qi, ri, pi) given by (5.1). Then Kπ is a monotone birth-
and-death kernel with stationary distribution π , and Kπ � K for any such ker-
nel K .

PROOF. Since for each i the numbers qi, ri, pi are nonnegative (ri because of
the log-concavity of π ) and sum to unity, Kπ is indeed a birth-and-death kernel.
Since πipi ≡ πi+1qi+1, it is reversible with stationary distribution π . Since pi +
qi+1 ≡ 1, it satisfies the inequality (4.1) and so is monotone.

We now consider monotone birth-and-death kernels K with stationary distribu-
tion π and general (qi, ri, pi). We prove Kπ � K by extending the calculations
in Section 4 and in particular in Section 4.1. Note that if f is the indicator of the
down-set {0,1, . . . , �}, then Kf satisfies

(Kf )j =

⎧⎪⎪⎨⎪⎪⎩
1, if 0 ≤ j ≤ � − 1,
1 − p�, if j = �,
q�+1, if j = � + 1,
0, otherwise;

(5.2)
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hence if g is the indicator of the down-set {0,1, . . . ,m}, then

〈Kf,g〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=0

πj , if 0 ≤ m ≤ � − 1,

�∑
j=0

πj − π�p�, if m = �,

�∑
j=0

πj , if � + 1 ≤ m ≤ n.

(5.3)

Monotonicity (4.1) requires precisely that for each � = 0, . . . , n − 1 we have

p�

(
1 + π�

π�+1

)
= p� + q�+1 ≤ 1,

so clearly Kπ � K . �

REMARK 5.2. We see more generally that the kernels K ∈ F are nonincreas-
ing (in �) in each pi and that pi = πi+1/(πi + πi+1) maximizes pi subject to
the monotonicity constraint. (This remark generalizes Remark 4.1.) We observe
in passing that the identity kernel I is the top element (i.e., unique maximal ele-
ment) in the restriction of the comparison-inequality partial order � to monotone
birth-and-death chains.

EXAMPLE 5.3. Suppose that the stationary p.m.f. is proportional to πi ≡ ρi ,
that is, is either truncated geometric (if ρ < 1) or its reverse (if ρ > 1) or uniform
(if ρ = 1). Then the kernel Kπ corresponds to biased random walk,

qi ≡ q := 1

1 + ρ
, ri ≡ 0, pi ≡ p := ρ

1 + ρ
(5.4)

with the endpoint exceptions, of course, that q0 = 0, r0 = q , rn = p, pn = 0.

5.2. Slowest FMMC: The uniform chain. In this subsection we consider the
monotone FMMCs given by (5.1) for log-concave p.m.f.’s π and show (Theo-
rem 5.9) that the uniquely slowest to mix in separation (at every time t) is obtained
by setting π = uniform. Our first two results of this subsection consider ergodic
birth-and-death chains and their so-called strong stationary duals and do not need
any assumption about log-concavity of π . By “ergodic” we mean that the chain is
assumed to be aperiodic, irreducible, and positive recurrent (the third of which fol-
lows automatically from the first two since our state space is finite) and so settles
down to its unique stationary distribution.
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PROPOSITION 5.4. Let X be an ergodic monotone birth-and-death chain on
X = {0, . . . , n} with stationary p.m.f. π , (death, hold, birth) transition probabili-
ties (qi, ri, pi) satisfying

qi+1 + pi = 1 (i = 0, . . . , n − 1)(5.5)

and initial state 0. Let H denote the c.d.f. corresponding to π , with H−1 := 0, and
set

q∗
i = Hi−1

Hi

pi, r∗
i = 0, p∗

i = Hi+1

Hi

qi+1 (i = 0, . . . , n − 1).(5.6)

Then

sep(t) = P(T > t) (t = 0,1, . . .),

where the random variable T is the hitting time of state n for the birth-and-death
chain X∗ with initial state 0 and transition probabilities (5.6).

PROOF. The chain X∗ is called the strong stationary dual (SSD) of X, and the
proposition is an immediate consequence of SSD theory [8], Section 4.3. �

EXAMPLE 5.5. For a biased random walk as discussed in Example 5.3, the
dual kernel is

q∗
i = 1 − ρi

1 − ρi+1 × ρ

1 + ρ
, r∗

i = 0,

p∗
i = 1 − ρi+2

1 − ρi+1

1

1 + ρ
(i = 0, . . . , n − 1).

It is easy to check that we obtain the same dual kernel for ratio ρ−1 as for ρ. Thus
if q and p are interchanged in a biased random walk with no holding except at the
endpoints, then the two chains mix equally quickly in separation.

This can be seen another way: more generally, if the state space is a partially
ordered set possessing both bottom (0̂) and top (1̂) elements, then for any ergodic
kernel K such that both K and the time-reversal K̃ are stochastically monotone,
the chain K from 0̂ and the chain K̃ from 1̂ mix equally quickly in separation.
Indeed, it is easy to see that for every t we have, in obvious notation,

sep0̂(t) = 1 − Kt(0̂, 1̂)

π1̂

= 1 − K̃t (1̂, 0̂)

π0̂

= s̃ep1̂(t).

LEMMA 5.6. Let K and L be two ergodic monotone birth-and-death chains
on X = {0, . . . , n}, both started at 0, with possibly different stationary distribu-
tions. Suppose that K(i + 1, i) + K(i, i + 1) = 1 = L(i + 1, i) + L(i, i + 1). Con-
sider the notation of (5.6) and suppose also that p∗

i arising from Y is at least
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p∗
i arising from Z for all i = 0, . . . , n. Then Y mixes faster in separation4 than

does Z.

PROOF. Let Y ∗ and Z∗ be the corresponding SSDs, as in Proposition 5.4. An
obvious coupling gives Y ∗

t ≥ Z∗
t for every t , and the lemma follows. It is worth

pointing out that while the dual chains may not be monotone, this causes no prob-
lem with the coupling because Y ∗

t and Z∗
t must have the same parity for every t ;

that’s because the holding probabilities for both dual chains all vanish. �

Next, given a FMMC for log-concave π , we show that it mixes faster in separa-
tion than does a certain biased random walk.

THEOREM 5.7. Consider the fastest-mixing monotone birth-and-death chain
X with log-concave stationary p.m.f. π , kernel (5.1), and initial state 0. Define

ρi := πi+1/πi (i = 0, . . . , n − 1),

and suppose that i = i0 minimizes |lnρi |. Then X mixes faster in separation than
does the biased random walk (5.4) with ρ set to ρi0 .

PROOF. Log-concavity is precisely the condition that ρk is nonincreasing in k.
Hence p∗

i satisfies

p∗
i = Hi+1

Hi

πi

πi + πi+1

=
(

1 + ρi

πi

Hi

)
× 1

1 + ρi

=
(

1 + ρi∑i
j=0

∏i−1
k=j ρ−1

k

)
× 1

1 + ρi

(5.7)

≥
(

1 + ρi∑i
j=0 ρ

−(i−j)
i

)
× 1

1 + ρi

= fi(ρi),

where the function

fi(ρ) := 1 − ρi+2

1 − ρi+1

1

1 + ρ

[
with fi(1) := i + 2

2(i + 1)

]
(5.8)

satisfies fi(ρ
−1) ≡ fi(ρ) and can be shown by induction on i to be nonincreasing

in ρ ≤ 1 (and strictly so for i ≥ 1). The induction step uses the fact that

fi(ρ) = 1 − ρ

(1 + ρ)2fi−1(ρ)

together with the induction hypothesis and the (strict) increasingness of the func-
tion ρ �→ ρ/(1 + ρ)2 for ρ ≤ 1. Therefore

p∗
i ≥ fi(ρi0),

4Recall our terminological convention stated in the paragraph preceding Corollary 3.3.
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and this last expression is the dual birth probability from state i for the biased
random walk with ratio ρi0 . The conclusion of the theorem now follows from Lem-
ma 5.6. �

So the question as to which of the FMMCs (5.1) is slowest to mix is reduced to
finding the slowest biased random walk. But we have already done the calculations
needed to prove the following result:

THEOREM 5.8. Consider biased random walks as in Example 5.3, each
with initial state 0. The walks are monotonically slower to mix in separation as
min{p/q, q/p} increases.

PROOF. We have already noted at Example 5.5 that the speed of mixing is in-
variant under interchange of p and q . Moreover, as ρ = p/q increases over (0,1],
the chains are monotonically slower to mix in separation because we have equality
in (5.7) and hence

p∗
i = fi(ρ),

which (as shown in the proof of Theorem 5.7) is nonincreasing in ρ ≤ 1. �

The next theorem is the main result of the subsection and is an immediate corol-
lary of Theorems 5.7 and 5.8.

THEOREM 5.9. Among the fastest-mixing monotone birth-and-death chains
(5.1) with initial state 0 and log-concave stationary p.m.f. π , the uniform chain is
slowest to mix in separation.

REMARK 5.10. How fast does an ergodic monotone birth-and-death chain
mix in separation? We have addressed this question in general in Proposition 5.4
and in the last sentence of Example 5.5. The biased random walk (5.4) is treated
in some detail in [11], Section XVI.3. We note:

(a) The eigenvalues, listed in decreasing order, are 1 and

2
√

pq cos
πj

n + 1
(j = 1, . . . , n).

(b) Fix ρ and consider n → ∞. Let μ = |p − q| denote the size of the drift of
the walk. If μ �= 0 (i.e., ρ �= 1), there is a “cutoff phenomenon” for separation at
time t = μn + cρn1/2. This means (roughly put) that separation is small at that
time t when cρ is near −∞ and large when it is near +∞, with the subscript in cρ

indicating that the definition of “near” depends on ρ.
(c) If ρ = 1 (the uniform chain), it takes time of the larger order n2 for separation

to drop from near 1 to near 0, and in this case there is no cutoff phenomenon.
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6. Lovász–Winkler mixing times. In previous sections we have discussed
mixing in terms of TV, separation, L2 and other functions measuring discrepancy.
An alternative description of speed of convergence is provided by mixing times
as defined by Lovász and Winkler [20]; according to their definition (reviewed
below), and unlike for our previous notions of mixing, one number [“the mixing
time,” Tmix(X)] is assigned to each chain X.

In this section we compute Tmix(X) for any irreducible birth-and-death chain
X started at 0 and then revisit the FMMC problems of the preceding two sections
using Tmix as our criterion. One highlight is this: for the path-problem on X =
{0, . . . , n}, we show that the uniform chain is the fastest-mixing symmetric birth-
and-death chain in the sense of Lovász and Winkler [20] if and only if n is even,
and we identify the fastest chain when n is odd.

According to the definition in [20], the mixing time for any irreducible (discrete-
time) finite-state Markov chain X having stationary distribution π is the (attained)
infimum of expectations of randomized stopping times for which π is the distribu-
tion of the stopping state. In symbols,

Tmix(X) := inf ES,(6.1)

where the infimum is taken over randomized stopping times S such that the distri-
bution of XS is π . For computing Tmix(X), a very useful theorem from [20] asserts
that a randomized stopping time S achieves the minimum in (6.1) if and only if it
has a halting state, that is, a state x such that if Xt = x then (almost surely) S ≤ t .
We will use this result to compute Tmix(X) for any irreducible birth-and-death
chain in Theorem 6.2, but first we state a lemma about expected hitting times for
birth-and-death chains.

LEMMA 6.1. For an irreducible birth-and-death chain on X = {0, . . . , n} (in
discrete or continuous time) with stationary distribution π and initial state 0, let
T denote the hitting time of state n.

(a) In discrete time, denote the birth probability from state i by pi . Then

ET =
n−1∑
i=0

1

πipi

i∑
k=0

πk.

(b) In continuous time, denote the birth rate from state i by λi . Then

ET =
n−1∑
i=0

1

πiλi

i∑
k=0

πk.

PROOF. Each assertion is easily established, and each follows immediately
from the other; for (b), see, for example, [18], Chapter 4, Problem 22. �



1802 J. A. FILL AND J. KAHN

THEOREM 6.2. Let X be an irreducible (discrete-time) birth-and-death chain
on X = {0, . . . , n} with stationary p.m.f. (resp., c.d.f.) π (resp., H ) and initial
state 0. Then

Tmix(X) =
n−1∑
i=0

Hi(1 − Hi)

πipi

.

PROOF. Let us use the naive rule S as our randomized stopping time: choose
j randomly according to π , and then let S be the hitting time of j . Obviously the
stopping distribution is π , as required. Moreover, the state j must be hit en route
to n; hence n is a halting state and S achieves the minimum at (6.1).

To compute Tmix(X) = ES, we first note that Lemma 6.1(a) yields (easily) cor-
responding formulas for the expected value of the hitting time Tj of each state j :

ETj =
j−1∑
i=0

Hi

πipi

.

Therefore

Tmix(X) =
n∑

j=0

πj ETj =
n∑

j=0

πj

j−1∑
i=0

Hi

πipi

=
n−1∑
i=0

Hi(1 − Hi)

πipi

as desired. �

REMARK 6.3. (a) The Lovász–Winkler theory of mixing times and the state-
ment and proof of Theorem 6.2 all carry over routinely to the “continuized” chain
which evolves in the same way as the given discrete-time chain but with indepen-
dent exponential random times with mean 1 replacing unit times. In particular,
the value of Tmix(X) remains unchanged under continuization of an irreducible
discrete-time birth-and-death chain X with initial state 0.

(b) By a theorem of Aldous and Diaconis [1], Proposition 3.2, in discrete time
and a theorem of Fill [14], Theorem 1.1, in continuous time, any ergodic finite-state
Markov chain X (regardless of initial distribution) has a fastest (i.e., stochastically
minimal) strong stationary time T satisfying P(T > t) = sep(t) for every t (re-
stricted to integer values for a discrete-time chain). If the state space is partially
ordered with bottom element 0̂ and top element 1̂ and the chain X starts in 0̂, and
if the time-reversed kernel K̃ is monotone, then 1̂ is a halting state for any such T ;
to see this, observe that

P(Xt = 1̂, T > t) = P(Xt = 1̂) − P(T ≤ t,Xt = 1̂)

= π1̂

[
Kt(0̂, 1̂)

π1̂

− (1 − sep(t)
)]

= π1̂

[
min

i

Kt (0̂, i)

πi

− (1 − sep(t)
)]= 0,
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where π is the stationary distribution and the penultimate equality follows from
the monotonicity of K̃t .

Now consider an ergodic birth-and-death chain X (in discrete or continuous
time) on X = {0, . . . , n} with stationary distribution π and initial state 0. In the
discrete-time case, assume that the chain is monotone; this is automatic in con-
tinuous time by a simple and standard coupling argument. Then a fastest (i.e.,
stochastically minimal) strong stationary time T exists, and n is a halting state for
any such T . It follows that Tmix(X) = ET and thus Theorem 6.2 also gives an
expression for ET , which equals

∞∑
t=0

P(T > t) =
∞∑
t=0

sep(t)

in discrete time and equals∫ ∞
0

P(T > t) dt =
∫ ∞

0
sep(t) dt

in continuous time. This remark gives added import to the value of Tmix(X) for
any irreducible discrete-time birth-and-death chain X (whether monotone or not)
with initial state 0: it equals the integral of separation for the continuized chain.

(c) Given a collection C of irreducible discrete-time birth-and-death chains Y

with initial state 0, suppose that X ∈ C satisfies X = arg minY∈C Tmix(Y ). In light
of remark (b), one might wonder whether the continuized chain corresponding
to X minimizes sep(t) at every time t over all continuizations of chains Y ∈ C .
Theorem 6.5(b) provides a counterexample. Indeed, it can be shown that if we
compare the chain of the form (6.4) but with θn changed to (n − 1)/(2n) with any
other birth-and-death chain having initial state 0 and symmetric kernel K , then
there exists t0 = t0(K) such that continuized separation at time t is strictly smaller
for the former chain than for the latter for all 0 < t ≤ t0.5 Likewise, in the “ladder
game” discussed in Section 7 it is the uniform chain, not the chain discussed there,
that is “best in separation for small t” in similar fashion.

We are now in position to determine, for given π , the birth-and-death chain X

that minimizes Tmix(X) among those having initial state 0, stationary distribution
π and no holding probability except at the endpoints of the state space. Unlike in
Section 5, we do not need to restrict to monotone kernels; and rather than assuming

5Indeed, if Y and Z are the discrete-time and continuized chain corresponding to K , then, with π

denoting the uniform p.m.f., as t → 0 we find

1 − sepZ(t) = P(Zt = n)

πn
= e−t tn

n!
P(Yn = n)

πn
+ o
(
tn+1)= tn

n! (n + 1)p0p1 · · ·pn−1 + o
(
tn+1),

and p0p1 · · ·pn−1 is uniquely maximized subject to pk−1 +pk ≤ 1 for k = 0, . . . , n−1 by choosing
pk = (n + 1)/(2n) if k is even and pk = (n − 1)/(2n) if k is odd.
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that π is log-concave, we assume instead that π is nondecreasing. For the case
that π is uniform, we will give later an argument that removes the restriction about
holding probabilities. [There are examples, such as π = 1

15(1,2,4,4,4), showing
that the restriction cannot be removed in general.]

THEOREM 6.4. Let X = {0, . . . , n}. Among all irreducible birth-and-death
chains X having a given positive nondecreasing stationary p.m.f. π , initial state 0
and no holding probability except at 0 and n, there is a unique chain Xπ minimiz-
ing Tmix(X). Moreover:

(a) Let ai :=∑i
j=1(−1)i−jπj for i = 0, . . . , n − 1. Define

f (w) :=
n−1∑
i=0

Hi(1 − Hi)

(−1)iw + ai

.

Then there exists a unique wπ minimizing f (w) over w ∈ [0, π0], and Tmix(Xπ) =
f (wπ).

(b) The optimal chain Xπ has transition probabilities

qi = ai−1 + (−1)i−1wπ

πi

, ri = 0, pi = ai + (−1)iwπ

πi

(i = 0, . . . , n)

with the exceptions q0 = 0, r0 = 1 − p0, rn = 1 − qn and pn = 0.

PROOF. We begin by noting that birth-and-death kernels with stationary
distribution π (in complete generality, irrespective of holding probabilities or
nondecreasingness of π ) are in one-to-one correspondence with nonnegative se-
quences w = (w−1,w0, . . . ,wn) satisfying w−1 = 0 = wn and

wi−1 + wi ≤ πi (i = 0, . . . , n),(6.2)

the correspondence being wi = πipi = πi+1qi+1, i = 0, . . . , n − 1. The proof is
easy, and the correspondence gives

ri = 1 − qi − pi = 1 − wi−1 + wi

πi

(i = 0, . . . , n)

for the holding probabilities. In this w-parameterization, Theorem 6.2 gives

Tmix =
n−1∑
i=0

Hi(1 − Hi)

wi

.(6.3)

The constraint ri = 0 for i = 0, . . . , n−1 is precisely the constraint that equality
holds in (6.2) for i = 1, . . . , n − 1. Then we must have w := w0 ∈ [0, π0] and

wi = (−1)iw + ai (i = 0, . . . , n − 1).
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It follows from the assumption that π is nondecreasing that these wi ’s are indeed
all nonnegative [and all positive if w ∈ (0, π0)]. This proves the theorem, because
f is continuous on [0, π0] and both finite and strictly convex6 on (0, π0). �

We now specialize to the case of uniform π , removing the restriction on holding
from Theorem 6.4 and solving explicitly for the value w in Theorem 6.4(a). We
find it somewhat surprising that the chain minimizing Tmix is not the uniform chain
whenever n ≥ 3 is odd.

THEOREM 6.5. Consider the problem of minimizing Tmix among all birth-
and-death chains on X = {0, . . . , n} with initial state 0 and symmetric kernel.

(a) If n ≥ 2 is even, then the uniform chain is the unique minimizing chain.
(b) If n is odd, then

pk =
{

1 − θn, if k is even
θn, if k is odd

(k = 0, . . . , n − 1)(6.4)

gives the unique minimizing chain, where for any m we define

θm−1 := 1
6

[√(
m2 + 2

)(
m2 − 4

)− (m2 − 4
)]

.(6.5)

We have written the formula for θm−1 rather than that for θn because it is simpler
to write.

REMARK 6.6. Although the uniform chain is not optimal when n is odd, it is
nearly optimal, since θn has the asymptotics

θn = 1
2 − 3

4n−2 + O
(
n−3) as n → ∞

and the value of Tmix (recall Theorem 6.2) for pk ≡ 1/2 is 1
3n2 + n + 2

3 , only
slightly larger than the optimal value 1

3n2 + n + 2
3 − 3

4n−2 + O(n−3).

PROOF OF THEOREM 6.5. Recall Theorem 6.2; thus the goal is to minimize

f (p) :=
n−1∑
k=0

(k + 1)(n − k)

pk

over vectors p = (p0, . . . , pn−1) that are nonnegative (we will not repeat this non-
negativity condition below) and satisfy

pk−1 + pk ≤ 1 for k = 0, . . . , n,(6.6)

6In the general setting of (6.3), Tmix is a strictly convex function on a nonempty convex domain
(an intersection of half-spaces) of arguments w and so has a unique minimum. The optimal w is on
the boundary of the domain; more specifically, for every i = 0, . . . , n − 1, if the optimal w does not
lie on the hyperplane delimiting the ith half-space (6.2), then it lies on the (i + 1)st such hyperplane.
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where p−1 = 0 = pn. The objective function f (p) is strictly convex in p (by
strict convexity of x �→ x−1). Hence there is a unique minimizer, and because
(pn−1, . . . , p0) is clearly a minimizer if (p0, . . . , pn−1) is, the unique minimizer is
of the form

(p0, . . . , p(n/2)−1,p(n/2)−1, . . . , p0),

if n is even and of the form

(p0, . . . , p(n−3)/2,p(n−1)/2,p(n−3)/2, . . . , p0),

if n is odd. We now break into the two cases.

(a) For n even, we seek equivalently to minimize

f (p) = 2
(n/2)−1∑

k=0

(k + 1)(n − k)

pk

subject to

pk−1 + pk ≤ 1 for k = 0, . . . , (n/2).

(Note that the last of these conditions is p(n/2)−1 ≤ 1/2.)
We claim (by induction on K) for 1 ≤ K ≤ (n/2) − 1 that the minimizer of∑K
k=0

(k+1)(n−k)
pk

subject to (nonnegativity and) pk−1 + pk ≤ 1 for k = 0, . . . ,K

and pK ≤ 1/2 is pk ≡ 1/2.
For the basis K = 1 of the induction, we seek to minimize

n

p0
+ 2(n − 1)

p1

subject to p0 +p1 ≤ 1 and p1 ≤ 1/2. Clearly we should take p0 = 1 −p1 (regard-
less of p1), and then we need to minimize

n

1 − p1
+ 2(n − 1)

p1

subject to p1 ≤ 1/2. Because 2(n − 1) ≥ n (i.e., n ≥ 2), the minimizer is p1 = 1/2
(and then p0 = 1/2).

We now proceed to the induction step to move from K − 1 to K . To minimize,
clearly we should take pK = min{1/2,1 − pK−1}. The remainder of the proof for
n even then breaks into two cases.

CASE 1. If pK−1 ≥ 1/2, then we take pK = 1 − pK−1 and our goal is to mini-
mize

K−2∑
k=0

(k + 1)(n − k)

pk

+ K(n − (K − 1))

pK−1
+ (K + 1)(n − K)

1 − pK−1

subject to pk−1 + pk ≤ 1 for 0 ≤ k ≤ K − 1 and (because this is case 1) pK−1 ≥
1/2. Because (K + 1)(n − K) ≥ K(n − (K − 1)) and we have the restriction
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pK−1 ≥ 1/2, we should set pK−1 as small as possible, namely, pK−1 = 1/2, and
then we seek to minimize

K−2∑
k=0

(k + 1)(n − k)

pk

+ K(n − (K − 1))

pK−1
+ (K + 1)(n − K)

1/2

subject to pk−1 +pk ≤ 1 for 0 ≤ k ≤ K −1 and pK−1 = 1/2. Clearly the minimum
value here is at least as large as the minimum value if we relax the last constraint
to pK−1 ≤ 1/2. But then by induction the minimum value is achieved by setting
pk ≡ 1/2. This completes the proof in case 1.

CASE 2. If pK−1 ≤ 1/2, then we set pK = 1/2 and the goal is to minimize

K−1∑
k=0

(k + 1)(n − k)

pk

+ (K + 1)(n − K)

1/2

subject to pk−1 + pk ≤ 1 for 0 ≤ k ≤ K and pK−1 ≤ 1/2. But then again by
induction the minimum value is achieved by setting pk ≡ 1/2. This completes the
proof in case 2, and thereby completes the proof of part (a).

(b) For n odd, suppose without loss of generality that n ≥ 3. We first prove that
the optimum is again attained for a chain that satisfies equality in condition (6.6)
at interior points k of the state space:

pk−1 + pk = 1 for k = 1, . . . , n − 1.(6.7)

Recall that the minimizing p is unique and symmetric. Hence, considering the
holding probability rk := 1 − pk−1 − pk at state k, it suffices to show that there is
an optimizing chain with rk = 0 for 1 ≤ k ≤ (n − 1)/2.

We proceed by contradiction. We show that there exists p′ satisfying (6.6)
and f (p′) < f (p) in each of the following three cases which, allowing arbitrary
k ∈ {1, . . . , (n − 1)/2}, exhaust all possibilities where rk > 0 for some 1 ≤ k ≤
(n − 1)/2:

(i) rk > 0 and rk−1 > 0;
(ii) rk > 0 and rk−1 = 0 and pk ≥ 1/2;

(iii) pk < 1/2, and k is the largest value j in {1, . . . , (n−1)/2} such that rj > 0.

In case (i), let

p′
k−1 := pk−1 + min{rk−1, rk}

and p′
j := pj otherwise.

In case (ii), first note that k ≥ 2; indeed, were we to have k = 1, then (by our
assumption) r0 = 0 and so p0 = 1; but then p1 = 0, and such a p clearly does
not minimize f (p). Next, because pk ≥ 1/2 we must have pk−1 < 1/2 (because
rk > 0) and thus pk−2 > 1/2 (because rk−1 = 0). We can then let

p′
k−1 := pk−1 + ε, p′

k−2 := pk−2 − ε
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for suitably small ε > 0, and p′
j := pj otherwise. Since k ≤ (n − 1)/2, we know

k(n + 1 − k) > (k − 1)(n + 2 − k), so the derivative of f (p) in the direction of the
vector δk−1 − δk−2 is negative and f (p′) < f (p).

In case (iii) we have pk+2i = pk for 0 ≤ i ≤ n−1
2 − k, and pk+2i−1 = 1 − pk

for 1 ≤ i ≤ n−1
2 − k. We form p′ by changing these values to p′

k+2i := pk + ε and
p′

k+2i−1 := 1 − pk − ε for suitably small ε > 0 and setting p′
j := pj otherwise.

We see that f (p′) < f (p) if the derivative with respect to pk of the following
expression is negative for all pk < 1/2:

1

pk

(n−1)/2−k∑
i=0

(k + 2i + 1)(n− k − 2i)+ 1

1 − pk

(n−1)/2−k∑
i=1

(k + 2i)(n+ 1 − k − 2i);

and that is true if (and only if) the first sum is at least as large as the second. Indeed,
the first sum is larger than the second:

(n−1)/2−k∑
i=0

(k + 2i + 1)(n − k − 2i) −
(n−1)/2−k∑

i=1

(k + 2i)(n + 1 − k − 2i)

= (k + 1)(n − k) +
(n−1)/2−k∑

i=1

(n − 2k − 4i)

= k(n − k) + 1

2
(n + 1) > 0.

Since we have established constraint (6.7), every feasible vector p is of the form

pk ≡
{

1 − θ, if k is even,
θ, if k is odd,

so we need only verify that the choice θ = θn as defined at (6.5) is optimal. Indeed,
writing r = (n − 1)/2 we have

an := ∑
0≤j≤r

(2j + 1)(n − 2j) = 1

12
(n + 1)

(
n2 + 2n + 3

)
,

bn := ∑
1≤j≤r

(2j)(n − 2j + 1) = 1

12
(n + 1)(n − 1)(n + 3),

and then the optimal choice of θ , minimizing an

1−θ
+ bn

θ
, is θn given by

θn = (1 +√an/bn)
−1.

After a little bit of computation, we find that θn is given in accordance with equa-
tion (6.5). �
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7. A “ladder” game. In this section we discuss a simple “ladder” game,
where the class of kernels considered is a certain subclass of the symmetric birth-
and-death kernels considered in Section 4. Our treatment involves finding the ker-
nel that minimizes the Lovász–Winkler mixing time Tmix. This particular kernel is
not one that had previously been considered as a candidate for “fastest.”

Lange and Miller [19] discusses a “ladder” game and several contexts, includ-
ing an old Japanese scheme for choosing a spouse’s Christmas gift from a list of
desired items, in which it arises. We refer the reader to [19] for details. A class of
Markov chains that arise in modeling the ladder game (see “Model One” in [19],
Section 5) have the permutation group on {0, . . . , n} as state space and moves that
transpose items in adjacent positions; write pi for the probability that the positions
chosen are i and i + 1, so that

p0 + p1 + · · · + pn−1 = 1.(7.1)

We will refer to (7.1) as the “ladder condition.” If we follow the movement of only
a single item (this is “Model Two: The path of a single marcher as a random walk
among the columns of the ladder” in [19], Section 7, esp. Figure 9), then we have
precisely the class of symmetric birth-and-death kernels considered in our path-
problem of Section 4, but now subject to the ladder condition. From [19] (Sec-
tion 8: How many rungs is enough?) we have the following quote (with notation
adjusted slightly to match that of Section 4):

We suspect (but have not shown) that for any n, the rate of convergence is maximized
when rung placement is uniform. That is, the absolute value of the largest small eigen-
value is minimized when pi = 1/n for i = 0,1, . . . , n − 1.

(Here “largest small eigenvalue” means the eigenvalue of the kernel with largest
absolute value strictly less than 1—what is called “SLEM” in [4–6].) The authors
of [19] base their suspicion on calculations for n = 2, for which their conjecture is
indeed true.

The corresponding continuous-time problem has been studied by Fiedler [12]
and, in a somewhat more general setting, by Sun et al. in [32], Example 5.2.
The result is that, among all continuous-time symmetric birth-and-death chains on
{0, . . . , n}, started from 0, with birth rates pi satisfying the ladder condition (7.1),
the one which is fastest-mixing in the sense of minimizing relaxation time has
pi proportional to (i + 1)(n − i). It can be shown that these weights also uniquely
minimize SLEM in discrete time, so the conjecture in [19] is false for every n ≥ 3.7

One might now suspect that these parabolic weights provide a FMMC (subject
to the ladder condition) in a variety of senses, at least for chains (as henceforth

7At the end of their Section 8, the authors of [19] also wonder, based on results for n = 2, whether
it might be the case for all n that, except for multiplicities, the eigenvalues are the same for the
permutation chain as for the single-marcher chain. This is seen to be false by the discussion in [7],
Section 1.4. But the main theorem of [7] does establish that the second-largest eigenvalues of the two
chains agree.
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assumed) starting in state 0. However, working in discrete time, it is clear (a) from
reviewing the discussion in Section 4.1 that there is no bottom element with respect
to � for monotone chains satisfying the ladder condition and (b) from Remark 4.2
that there is no bottom element in � for squares of ladder-condition birth-and-
death kernels. Further, it can be shown, switching to continuous time to match the
setting of [32] and in order to bring standard techniques to bear (it is well known
that all birth and death chains in continuous time are monotone), that there is no
ladder-condition birth-and-death chain minimizing separation at every time. The-
orem 7.1 implies that the integral of separation over all times is minimized by
weights pi proportional to the square roots

√
(i + 1)(n − i) of the weights mini-

mizing SLEM.

THEOREM 7.1. For each discrete-time symmetric birth-and-death chain with
state space {0, . . . , n}, initial state 0 and birth probabilities p = (pi) satisfying the
ladder condition (7.1), let f (p) denote its Lovász–Winkler mixing time Tmix. Then
the uniquely optimal (i.e., minimizing) choice of p is to take pi proportional to√

(i + 1)(n − i).

Theorem 7.1 is an immediate consequence of the following corollary to the
proof of Theorem 6.4, taking π to be uniform and c to be 1/n.

COROLLARY 7.2. Over all discrete-time birth-and-death chains on {0, . . . , n}
(started at 0) with given stationary distribution π (having c.d.f. H ) and

n−1∑
k=0

πkpk = c ∈
(
0,min

i
πi

]
,

the mixing time Tmix of the chain is minimized by the choice

qk ≡ c
√

Hk−1(1 − Hk−1)

πk

∑
j

√
Hj(1 − Hj)

, pk ≡ c
√

Hk(1 − Hk)

πk

∑
j

√
Hj(1 − Hj)

,

rk ≡ 1 − qk − pk,

and the minimized value is

Tmix = c−1

[
n−1∑
k=0

√
Hk(1 − Hk)

]2

.

PROOF. As demonstrated in the proof of Theorem 6.4, the goal is to minimize

Tmix =
n−1∑
i=0

Hi(1 − Hi)

wi
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over nonnegative sequences (w−1,w0, . . . ,wn) satisfying w−1 = 0 = wn and

wi−1 + wi ≤ πi (i = 0, . . . , n)(7.2)

and
∑n−1

k=0 wk = c. Ignoring the constraint (7.2), the optimal choice of the weights
wi is clear, namely, wi ≡ πipi with pi as asserted in the statement of the theorem.
But then (7.2) is automatically satisfied because we assume c ∈ (0,mini πi]. Eval-
uation of the objective function at the optimizing kernel gives the optimized value
of Tmix. �

REMARK 7.3. Let n → ∞. For the optimal kernel of Theorem 7.1 we have
Tmix ∼ π2

64 n3, whereas for both pi ≡ 1/n (the guess for optimality in [19]) and the
choice pi ∝ (i + 1)(n− i) minimizing SLEM we have Tmix = 1

6n(n+ 1)(n+ 2) ∼
1
6n3.

8. Can extra updates delay mixing? (No, subject to positive correlations.)
Can extra updates delay mixing? This question is the title of a paper [23] by Yuval
Peres and Peter Winkler; see also Holroyd [17] for counterexamples. Peres and
Winkler show that the answer is no, for total variation distance, in the setting of
monotone spin systems, generalized by replacing the set of spins {0,1} by any
linearly ordered set. (We review relevant terminology below.) In Theorem 8.3 we
recapture and extend their result using comparison inequalities by showing that
Kv � I for any kernel Kv that updates a single site v, that is, that the identity
kernel [as for the monotone birth-and-death example, see Remark 5.2(a)] only
slows mixing (when the initial p.m.f. has nonincreasing ratio with respect to the
stationary p.m.f.)—because then, noting reversibility and stochastic monotonicity
of each Kv and applying Proposition 2.4, for any v1, . . . , vt the product Kv1 · · ·Kvt

increases in � by deletion of any Kvi
. The comparison inequality Kv � I holds

in the more general setting of a partially ordered set of “spins,” subject to the
following restriction: starting with distribution π and a site v and conditioning on
the spins at all sites other than v, the conditional law of the spin at v should have
positive correlations (as, of course, does any distribution on a linearly ordered set).

8.1. Positive correlations. Recall that a p.m.f. π on a finite partially ordered
set X is said to have positive correlations if (in the notation of Section 2)

〈f,g〉 ≥ 〈f,1〉〈g,1〉
for every f,g ∈ M, and that if S is linearly ordered then (by “Chebyshev’s other
inequality;” see, e.g., [22], Lemma 16.2) all probability measures have positive
correlations. The connection with comparison inequalities is the following simple
lemma, in relation to which we note that both Kπ and I are stochastically mono-
tone kernels possessing stationary distribution π .
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LEMMA 8.1. A p.m.f. π on a finite partially ordered set X has positive corre-
lations if and only if Kπ � I , where Kπ is the trivial kernel that jumps in one step
to π and I is the identity kernel.

PROOF. Since for any f and g we have

〈Kπf,g〉 = 〈〈f,1〉, g〉= 〈f,1〉〈g,1〉
and 〈If, g〉 = 〈f,g〉, the lemma is proved. �

PROPOSITION 8.2. Let π be a p.m.f. on a finite partially ordered set. Par-
tition X , suppose that a given kernel K on X is a direct sum [as in Proposi-
tion 2.3(c)] of trivial kernels Ki (as in Lemma 8.1) on the cells of the partition, and
suppose that π conditioned to each cell has positive correlations. Then K � I .

PROOF. Simply combine Lemma 8.1 and Proposition 2.3(c). �

8.2. Monotone spin systems. Our setting is the following. We are given a finite
graph G = (V ,E) and a finite partially ordered set S of “spin values.” A spin
configuration is an assignment of spins to vertices (sites), and our state space is
the set X of all configurations. We are given a p.m.f. π on X that is monotone
in the sense that, when we start with π and any site v and condition on the spins
at all sites other than v, the conditional law of the spin at v is monotone in the
conditioning spins. We recover and (modestly) extend the Peres–Winkler result
by means of the following theorem, which (i) allows somewhat more general S

and (ii) encompasses—by means of Proposition 3.2, Corollary 3.3(a) and (b), and
Remark 3.4—separation and L2-distance as well as TV.

THEOREM 8.3. Fix a site v, and suppose that the conditional distributions
discussed in the preceding paragraph all have positive correlations. Let Kv be the
(stochastically monotone) Markov kernel for update at site v according to the con-
ditional distributions discussed. Then we have the comparison inequality Kv � I .

PROOF. Say that two configurations are equivalent if they differ at most in
their spin at v, and let [x] denote the equivalence class containing a given config-
uration x. Then Kv is given by

Kv(x, y) = 1
(
y ∈ [x]) π(y)

π([x]) .
This Kv is the direct sum of the trivial kernels (as in Lemma 8.1) on each equiva-
lence class. Further, each class is naturally isomorphic as a partially ordered set to
S and so has positive correlations. It is well known and easily checked that Kv is
stochastically monotone, so the theorem is an immediate consequence of Proposi-
tion 8.2. �
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REMARK 8.4 (Random vs. systematic site updates). It follows [from The-
orem 8.3 and Proposition 2.3(b)] for monotone spin systems with (say) lin-
early ordered S that, when the chains start from a common p.m.f. having non-
increasing ratio relative to π , the “systematic site updates” chain with kernel
Ksyst := Kv1 · · ·Kvν (for any ordering v1, . . . , vν of the sites v ∈ V ) mixes faster
in TV, sep, and L2 than does the “random site updates” chain with kernel Krand :=∑

v∈V pvKv [for any p.m.f. p = (pv)v∈V on V ]. This is because (recalling the
paragraph preceding Proposition 2.3) the reversible kernel Krand is stochastically
monotone, as are Ksyst and its time-reversal, and Ksyst � Krand. (The explanation
for the comparison here is that (as noted in the first paragraph of this section)
Ksyst � Kv for each v ∈ V and [by Proposition 2.3(b)] the relation � on K is pre-
served under mixtures.) It is important to keep in mind here that one “sweep” of
the sites using Ksyst is counted as only one Markov-chain step.

There is a very weak ordering in the opposite direction: Kν
rand � pKsyst +

(1 − p)I , with p :=∏v∈V pv .

8.3. Extra updates do not delay mixing: Card-shuffling. The following card-
shuffling Markov chain, which has been studied quite a bit (see [3] and references
therein) in the time-homogeneous “random updates” case where update positions
are chosen independently and uniformly, is another example where comparison
inequalities can be used to show that extra updates do not delay mixing.

Our state space is the set X of all permutations of {1, . . . , n}, and there is a
parameter p ∈ (0,1). Given i ∈ {1, . . . , n − 1}, we can update adjacent positions
i and i + 1 by sorting (i.e., putting into natural order) the two cards (numbers)
in those positions with probability p and “anti-sorting” them with the remaining
probability. Call the update kernel Ki . It is straightforward to check that each Ki

is (i) reversible with respect to π , where inv(x) is the number of inversions in the
permutation x and π(x) is proportional to [(1 −p)/p]inv(x) [indeed, Ki(x, ·) is the
law of a permutation drawn from π but conditioned to agree with x at all positions
other than i and i + 1], and (ii) stochastically monotone with respect to the Bruhat
order on X (defined so that x ≤ y if y can be obtained from x by a sequence of
anti-sorts of not necessarily adjacent cards).8

THEOREM 8.5. Fix a position i ∈ {1, . . . , n − 1}, and let Ki be the Markov
kernel for update of positions i and i + 1 as discussed in the preceding paragraph.
Then we have the comparison inequality Ki � I .

8To establish the monotonicity of Ki , it is sufficient to consider initial states x and y where y is
obtained from x by a single anti-sort of two not necessarily adjacent cards and couple transitions
from these states so that the corresponding terminal states, call them X1 and Y1, satisfy X1 ≤ Y1.
A coupling that one can check works (by considering various cases) is to make the same decision,
for x and for y, to sort or to anti-sort the cards in positions i and i + 1.
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The proof of Theorem 8.5 is essentially the same as for Theorem 8.3 and there-
fore is omitted. The key is that the relevant equivalence classes now consist of only
two permutations each and are linearly ordered, therefore having positive correla-
tions.

8.4. A final example. In a specific setting (linearly ordered state space and
uniform stationary distribution) we have K � I quite generally:

THEOREM 8.6. Let X be a linearly ordered state space. If K is doubly
stochastic, then K � I (with respect to uniform π ).

REMARK 8.7. (a) When π is uniform, to say that a kernel K is doubly
stochastic is precisely to say that π is stationary for K . If K is symmetric, then
Theorem 8.6 applies. Thus inserting a monotone symmetric kernel (or, more gen-
erally, a monotone doubly stochastic kernel whose transpose is also monotone) in
a list of such kernels to be applied never slows mixing (by Proposition 2.4, or the
more general Corollary 2.8, and the results of Section 3) when the initial p.m.f. is
nonincreasing.

(b) If “linearly ordered” is relaxed to “partially ordered” in Theorem 8.6, the
result is not generally true, even for monotone K . This follows from Lemma 8.1,
since there are partially ordered sets for which the uniform distribution does not
have positive correlations.

PROOF OF THEOREM 8.6. We must show that 〈Kf,g〉 ≤ 〈f,g〉 when f and
g are nonnegative and belong to M (i.e., are nonincreasing) and (without loss of
generality) f sums to 1. It is a fundamental result in the theory of majorization [21]
that f majorizes Kf if K is doubly stochastic. Since X is linearly ordered and f

belongs to M, it follows that, regarded as p.m.f.’s, f and Kf satisfy Kf ≥ f

stochastically. Therefore, for g ∈ M we have 〈Kf,g〉 ≤ 〈f,g〉, as desired. �
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