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ON THE CLOSURE IN THE EMERY TOPOLOGY OF
SEMIMARTINGALE WEALTH-PROCESS SETS1

BY CONSTANTINOS KARDARAS

London School of Economics and Political Science

A wealth-process set is abstractly defined to consist of nonnegative
càdlàg processes containing a strictly positive semimartingale and satisfying
an intuitive re-balancing property. Under the condition of absence of arbitrage
of the first kind, it is established that all wealth processes are semimartingales
and that the closure of the wealth-process set in the Emery topology contains
all “optimal” wealth processes.

Introduction. In financial modeling, it is customary to start by describing a
set of wealth processes that can be achieved in some elementary way. Concrete
examples include:

• wealth processes arising from finite combinations of buy-and-hold strategies;
• wealth processes resulting from taking positions on a finite number of invest-

ment assets, when there is an infinite number of such assets available in the
market. This is the case in the theoretical modeling of bond markets, where
there exist zero-coupon bonds with a continuum of maturities—see, for exam-
ple, [3] and [7]. Another case is the approximation of “large” financial markets,
as is discussed in [6].

Although such initial descriptions of available wealth processes are natural and
unquestionable, the thus-constructed classes are typically insufficient for analysis.
Indeed, important problems like portfolio optimization and hedging of contingent
claims might fail to have solutions within the class of wealth processes, if the latter
is lacking any reasonable closedness property. Therefore, the need arises to pass
to the closure, in some appropriate sense, of these elementary wealth-process sets.
Such passage is a rather subtle issue: although the closure should be large enough
to ensure that all “interesting” (or “optimal”) elements are there, the need to keep
a tight financial interpretation of the resulting enlarged wealth-process set dictates
that fine topologies are required.
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In the literature, a balance between the aforementioned opposing forces has
to be resolved individually for each problem-at-hand. For example, when wealth
processes are defined using simple integrands (i.e., finite combinations of buy-and-
hold strategies) against a finite-dimensional semimartingale integrator, the class of
all stochastic integrals using general predictable integrands turns out to be the ap-
propriate enlargement—indeed, this has been demonstrated in a number of papers,
with [8, 19] and [20] being the ones related to questions of market viability and
optimization that are close to the spirit of the present discussion. In fact, the class
of stochastic integrals using general predictable integrands coincides with the clo-
sure of the set of all simple integrals in the so-called Emery (or semimartingale)
topology, introduced in [11]. An enlargement of the initial wealth-process set us-
ing limits of semimartingales in the Emery topology is also utilized in [6] and [7],
when approximating stochastic integrals with respect to an infinite-dimensional
integrator via stochastic integrals with integrands having only a finite number of
nonzero coordinates.

The Emery topology is extremely strong and, at the same time, very natural
when dealing with semimartingales. The purpose of this paper is to show, in an ab-
stract and general setting, that it is the closure of wealth-process sets in the Emery
topology that is indeed appropriate if one wants to ensure that “optimal” elements
are contained in the enlarged class of wealth processes. For the sake of generality,
admissible wealth-process sets are defined in an abstract way, asking that they con-
sist of nonnegative adapted càdlàg processes containing one strictly positive semi-
martingale (which can be, e.g., the outcome of investing in a locally riskless asset)
and satisfying an intuitive re-balancing property, called fork-convexity in [27]. It
is first established that, under the mild condition of absence of arbitrage of the
first kind in the market, all wealth processes are semimartingales—because of this
fact, taking the closure of the wealth-process set in the Emery topology becomes
both relevant and possible. Following this preliminary result, the main message of
the paper is the following: the closure of wealth-process sets in the Emery topol-
ogy is rich enough in order to allow for solutions to expected utility maximization
problems. More precisely, even though an optimal wealth process might not ex-
ist in the original wealth-process set, one can find a sequence of “nearly-optimal”
wealth processes that has a limit in the Emery topology, and the latter limit is
indeed optimal in the enlarged wealth-process set.

The results of this paper serve as a guideline in efficiently defining enlargements
of wealth-process sets, after an elementary and acceptable initial description has
been carried out. The fineness of the Emery topology on semimartingales ensures
that the resulting enlarged wealth-process set will be quite close to the original one.
It is exactly the general and abstract nature of the definition of wealth-process sets
that makes the hereby presented results valuable. Needless to say, when faced with
a specific application one should aim for more “intrinsic” and elegant descriptions
of the closure of elementary wealth-process sets in the Emery topology.

The structure of the paper is simple. Section 1 contains all the set-up, discussion
and results. All proofs are deferred to Section 2.
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1. Results.

1.1. Preliminaries. Throughout, T ∈ (0,∞) will be denoting a fixed financial
planning horizon. We shall be working on a stochastic basis (�, F ,F,P), where
F = (Ft )t∈[0,T ] is a filtration satisfying the usual hypotheses of right-continuity
and saturation by P-null sets of F . Without loss of generality, we assume that
F0 is trivial modulo P and that F = FT . Random variables are identified modulo
P-a.s. equality. Stochastic processes that are indistinguishable modulo P are also
identified. A càdlàg (right-continuous with left limits) stochastic process X will
be called nonnegative (resp., strictly positive) if P[inft∈[0,T ] Xt ≥ 0] = 1 (resp., if
P[inft∈[0,T ] Xt > 0] = 1).

The class of semimartingales on (�, F ,F,P) is denoted by S . If X ∈ S and
η is a predictable and X-integrable process, η · X denotes the stochastic integral
of η with respect to X—by convention, (η · X)0 = η0X0. Let P1 be the set of
predictable processes η with |η| ≤ 1. For X ∈ S , define

�X�S := sup
η∈P1

E
[
1 ∧

(
sup

t∈[0,T ]
∣∣(η · X)t

∣∣)]
,

where “E” is used to denote expectation under P and “∧” is used to denote the
minimum operation. The metric S × S 	 (X,X′) �→ �X−X′�S induces the Emery
topology on S , introduced in [11]. Whenever limn→∞�Xn − X�S = 0, we write
S - limn→∞ Xn = X. Convergence in the Emery topology is extremely strong; for
example, it implies uniform convergence in probability and (as Proposition 2.10
later in the text shows) convergence of quadratic variations.

1.2. Financial set-up. The first line of business is to model the class of wealth
processes available to an investor with (normalized) unit initial capital. The wealth-
process set will be defined in a rather abstract and generally encompassing way:
any reasonable class of (potentially, constrained) nonnegative wealth processes
resulting from frictionless trading that has appeared in the literature falls within its
scope.

DEFINITION 1.1. A set X of stochastic processes will be called a wealth-
process set if:

(1) Each X ∈ X is a nonnegative càdlàg process with X0 = 1.
(2) There exists a strictly positive semimartingale in X .
(3) X is fork-convex: for any s ∈ [0, T ], X ∈ X , any strictly positive processes

X′ ∈ X and X′′ ∈ X , and any [0,1]-valued Fs -measurable random variable α, the
process

[0, T ] 	 t �→ XtI{t<s} + (
α

(
Xs/X′

s

)
X′

t + (1 − α)
(
Xs/X′′

s

)
X′′

t

)
I{s≤t}(1.1)

is also an element of X .
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In Definition 1.1 of a wealth-process set, fork-convexity corresponds to the pos-
sibility of re-balancing. In fact, (1.1) exactly describes the wealth generated when
a financial agent invests according to X up to time s, and then reinvests a fraction
α of the money in the wealth process described by X′ and the remaining fraction
(1 − α) in the wealth process described by X′′. On the other hand, condition (2)
is always true when a locally riskless investment opportunity exists leading to a
wealth process that is adapted, right-continuous and nondecreasing.

DEFINITION 1.2. Let X be a wealth-process set. For x ∈ (0,∞), define
X (x) := {xX | X ∈ X }. We say that there are opportunities for arbitrage of the
first kind in the market if there exists an FT -measurable random variable ξ such
that:

• P[ξ ≥ 0] = 1 and P[ξ > 0] > 0;
• for all x ∈ (0,∞) there exists X ∈ X (x), which may depend on x, with P[XT ≥

ξ ] = 1.

If there are no opportunities for arbitrage of the first kind, we shall say that condi-
tion NA1 holds.

In the context of Definition 1.2, X (x) represents all wealth processes that are
available to an investor with initial capital x ∈ (0,∞). Keeping this in mind, the
definition of arbitrage of the first kind is very natural: regardless of how minuscule
the initial capital is, an investor is able to choose a wealth process that will result
in an outcome which dominates ξ , the latter being a nonnegative random variable
which is strictly positive on an event of strictly positive probability.

1.3. Results. We are ready to present the findings of the paper; proofs are
deferred to Section 2.

We start with a result stating that condition NA1 already enforces a semimartin-
gale structure on wealth-process sets. Similar results, in the case where the wealth-
process set is defined as nonnegative simple stochastic integrals (using linear com-
binations of buy-and-hold strategies) against a càdlàg adapted process have been
established in [8], Section 7, [18] and [2].

THEOREM 1.3. Let X be a wealth-process set, and assume condition NA1.
Then, every process in X is a semimartingale.

In view of Theorem 1.3, whenever X is a wealth-process set such that condition
NA1 is valid, we define X as the closure of X in the Emery topology. It follows
that X is also a wealth-process set that is further closed in the Emery topology.
Indeed, the only fact that is not trivial is that X is fork-convex. Fix s ∈ [0, T ],
X ∈ X , any strictly positive processes X′ ∈ X and X′′ ∈ X , and any [0,1]-
valued Fs-measurable random variable α. Pick X -valued sequences (Xn)n∈N,
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((X′)n)n∈N and ((X′′)n)n∈N such that S - limn→∞ Xn = X, S - limn→∞(X′)n = X′
and S - limn→∞(X′′)n = X′′. It can be assumed without loss of generality that the
sequences ((X′)n)n∈N and ((X′′)n)n∈N consist of strictly positive wealth processes
in X ; otherwise, with χ ∈ X being strictly positive, one may replace (X′)n with
(1 −n−1)(X′)n +n−1χ and (X′′)n with (1 −n−1)(X′′)n +n−1χ for all n ∈ N; the
previous are strictly positive wealth processes, and S - limn→∞((1 − n−1)(X′)n +
n−1χ) = X′ as well as S - limn→∞((1 − n−1)(X′′)n + n−1χ) = X′′ still hold. It
follows that the process ψn, defined via ψn

t := Xn
t I{t<s} + (α(Xn

s /(X′)ns )(X′)nt +
(1 − α)(Xn

s /(X′′)ns )(X′′)nt )I{s≤t} for t ∈ [0, T ] is an element of X for all n ∈ N.
Furthermore, it is straightforward from the definition of S -convergence that the
sequence (ψn)n∈N converges in the Emery topology to the process in (1.1). This
establishes the fork-convexity of X .

We proceed in giving justice to the claim (made in the Introduction) that X
already contains all interesting “optimal” elements, by examining the problem
of expected utility maximization. Let U : (0,∞) �→ R be a strictly increasing,
strictly concave and continuously differentiable function, satisfying the Inada con-
ditions limx↓0 U ′(x) = ∞ and limx↑∞ U ′(x) = 0. Also, set U(0) := limx↓0 U(x)

in order to accommodate possibly zero wealth. With X being a wealth-process
set such that 1 ∈ X , define the indirect utility function u : (0,∞) �→ R ∪ {∞}
via u(x) = supX∈X (x) E[U(XT )] for x ∈ (0,∞). (In order for an expression of
the form E[U(XT )], where X ∈ X (x) for some x ∈ (0,∞), to be well defined,
the usual convention E[U(XT )] = −∞ whenever E[0 ∧ U(XT )] = −∞ is used.
Also, note that u ≥ U follows from 1 ∈ X , which implies that u(x) > −∞ for all
x ∈ (0,∞).) In accordance with Definition 1.2, set X (x) := {xX | X ∈ X } for x ∈
(0,∞). It is not a priori clear that supX∈X (x) E[U(XT )] = supX∈X (x) E[U(XT )]
holds for x ∈ (0,∞); however, as Theorem 1.4 states, this is indeed true under as-
sumption NA1. What is clear is that, in general, maximal expected utility will not
be achieved by a wealth process in X (x) for x ∈ (0,∞); as it turns out, maximal
utility can be achieved by a process in X (x), at least under condition NA1 and the
validity of the following:

sup
x>0

{
u(x) − xy

}
< ∞ holds for all y ∈ (0,∞).(FIN-DUAL)

Furthermore, for all x ∈ (0,∞), the optimal wealth process in X (x) along with its
expected utility can be approximated arbitrarily by wealth processes in X (x). The
exact statement follows.

THEOREM 1.4. Let X be a wealth process set with 1 ∈ X , and suppose that
condition NA1 is valid.

(1) u(x) := supX∈X (x) E[U(XT )] = supX∈X (x) E[U(XT )] holds for all x ∈
(0,∞).
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(2) Suppose that (FIN-DUAL) is also valid. Then, for all x ∈ (0,∞), there ex-
ists X̂(x) ∈ X (x) satisfying E[U(X̂(x)T )] = u(x) < ∞; furthermore, there exists
an X (x)-valued sequence (Xn(x))n∈N such that both S - limn→∞ Xn(x) = X̂(x)

and limn→∞ E[U(Xn(x)T )] = E[U(X̂(x)T )] = u(x) hold.

REMARK 1.5. For U : (0,∞) �→ R as before, define U(∞) := limx↑∞ U(x).
When U(∞) = ∞ and condition NA1 fails for a wealth-process set X with

1 ∈ X , it is straightforward that u(x) = ∞ holds for all x ∈ (0,∞). On the other
hand, condition (FIN-DUAL) always implies that u is finitely-valued. It then fol-
lows that, when U(∞) = ∞ and X is a wealth process with 1 ∈ X , (FIN-DUAL)
is sufficient to have both statements of Theorem 1.4 valid, since condition NA1 is
indirectly forced.

Note also that when U(∞) < ∞ condition (FIN-DUAL) is always trivially
valid; therefore it does not have to be assumed in statement (2) of Theorem 1.4.

REMARK 1.6. The proof of the existence of optimal wealth processes in state-
ment (2) of Theorem 1.4 heavily depends on the two seminal papers of Kramkov
and Schachermayer [19, 20]. At first sight, the setting of the present paper does
not match the one of [19] and [20]—indeed, in the latter papers the wealth-
process sets are modeled via outcomes of stochastic integrals with respect to a
finite-dimensional semimartingale integrator. However, [19] and [20] contain cer-
tain “abstract results” that we shall be eventually able to use in order to show the
validity of Theorem 1.4.

In fact, there is an intermediate result used in order to establish Theorem 1.4,
which is in some sense more fundamental.

THEOREM 1.7. Let X be a wealth-process set, and assume condition NA1.
Then, for any Q ∼ P there exists a strictly positive X̂Q ∈ X such that X/X̂Q is a
Q-supermartingale for all X ∈ X .

REMARK 1.8. Theorem 1.7 is related to the idea of change of numéraire—
see [9]. Using notation from Theorem 1.7, the probability Q is an equivalent su-
permartingale measure in the market where wealth is denominated by X̂Q ∈ X . In
accordance to the terminology of [1, 23] and [14], one can call X̂Q the numéraire
portfolio in X under the probability Q.

REMARK 1.9. We elaborate on how Theorems 1.4 and 1.7 are connected.
Technicalities aside, the numéraire portfolio X̂Q in the notation of Theorem 1.7
corresponds to the optimal wealth process for the expected logarithmic utility max-
imization problem under the probability Q. (This follows by formally applying
first-order conditions for log-optimality and deriving the “numéraire property” of
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log-optimal portfolios—extensive discussion in the special case of financial mod-
els driven by a finite-dimensional semimartingale integrator can be found in [14].)
As can be seen from the proof of Theorem 1.4 in Section 2.7, any optimal process
stemming from utility maximization problems can be regarded as the log-optimal
wealth (more precisely, a multiple of the numéraire portfolio in X ) under an auxil-
iary probability measure that is equivalent to P. The idea is certainly not new—for
example, in the work of Kramkov and Sîrbu [21, 22], such changes of numéraire
and probability are utilized in questions related to sensitivity analysis of the ex-
pected utility maximization problem as well as utility indifference prices.

REMARK 1.10. Suppose that X is a wealth-process set such that condition
NA1 holds. In view of Theorem 1.7, condition NA1 also holds for the wealth-
process set X . Indeed, the existence of a strictly positive X̂ ∈ X such that
E[XT /X̂T ] ≤ 1 holds for all X ∈ X can be easily seen to imply that no arbitrage
of the first kind can exist in the market with wealth-process set X .

REMARK 1.11. Suppose that X is the wealth-process set generated by non-
negative stochastic integrals with respect to a finite-dimensional semimartingale
integrator. Then, X is already closed in the Emery topology. (The ideas behind the
proof of the last claim are present in Mémin’s work [24]—see also [14], discussion
after Theorem 4.4, as well as [5].) In this special case, more elaborate versions of
Theorem 1.7 appear in [16] and [26]: condition NA1 implies that for any Q ∼ P

there exists a strictly positive X̂Q ∈ X such that X/X̂Q is a local Q-martingale
for all X ∈ X . Furthermore, the results of [9] imply that for each maximal strictly
positive wealth process X̂ ∈ X , there exists Q ∼ P such that X/X̂ is a local Q-
martingale for all X ∈ X .

REMARK 1.12. Theorem 1.7—which is the basis for proving Theorem 1.4—
underlies the need for assuming that wealth remains nonnegative; indeed, the
concept of numéraire portfolio is only available for collections of nonnegative
processes. The supermartingale property of properly discounted processes is not
suitable to describe optimality when wealth may become negative. It would be
interesting to explore whether a theory parallel to the one presented here can be de-
veloped for wealth-process sets when processes are not constrained to remain non-
negative. Naturally, different conditions will be required from a wealth-process set
in such case; for example, an additive analogue of the multiplicative fork-convexity
property of Definition 1.1 may be more appropriate. Such a project will certainly
require different tools than the ones used here and is beyond the scope of this paper.

2. Proofs.

2.1. Some modes of convergence. Let L0 be the space of F -measurable P-a.s.
finitely-valued random variables. For g ∈ L0, define �g�P := E[1∧|g|]. The metric
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(g, g′) �→ �g − g′�P on L0 induces the topology of convergence in P-measure. We
simply write P- limn→∞ gn = g whenever limn→∞�gn − g�P = 0. We use L0+ to
denote the set of g ∈ L0 with P[g ≥ 0] = 1.

For a càdlàg process X, define X∗ := supt∈[0,·] |Xt |; then, define �X�uP :=
�X∗

T �P. The metric (X,X′) �→ �X − X′�uP induces the topology of uniform (on
[0, T ]) convergence in P-measure on the space of càdlàg processes. We write
u P- limn→∞ Xn = X when limn→∞�Xn − X�uP = 0. With the previous notation,
note that �X�S = supη∈P1

�η ·X�uP holds for X ∈ S —in particular, since consider-
ing η ≡ 1 gives �X�uP ≤ �X�S for X ∈ S , S -convergence implies uP-convergence.

Finally, we introduce yet another mode of convergence. Say that a sequence of
nonnegative càdlàg processes (Xn)n∈N Fatou-converges to a nonnegative càdlàg
process X, and write F- limn→∞ Xn = X, if there exists a countably dense set
T ⊆ [0, T ] with T ∈ T such that, P-a.s.,

Xt = lim inf
T	s↓t

(
lim inf
n→∞ Xn

s

)
= lim sup

T	s↓t

(
lim sup
n→∞

Xn
s

)
for all t ∈ [0, T ].

(For t = T the last equality should be read as XT = lim infn→∞ Xn
T =

lim supn→∞ Xn
T .)

REMARK 2.1. Fatou-convergence certainly lacks elegance compared to the
previous modes of convergence. However, it proves extremely useful in the theory
of mathematical finance, as was made clear in [12, 19] and [27], to name a few.
The main reason for its usefulness is a “convex compactness” property that allows
to obtain existence of optimal wealth processes in the Fatou-closure (the set of
all possible limits in the Fatou sense) of a wealth-process set for concave max-
imization problems. Indeed, as stated in Lemma 2.14 (which follows from [12],
Lemma 5.2(1), and a change-of-numéraire argument), if X is a wealth-process set
such that NA1 holds, any X -valued sequence (Xn)n∈N has a sequence of forward
convex combinations that is Fatou-convergent. Although convenient, this ability
to easily find Fatou-convergent sequences in wealth-process sets has the undesir-
able implication that the Fatou-closure of a wealth-process set tends to be quite
large, making the corresponding limits difficult to justify from a financial view-
point. In fact, Fatou-closures contain “wealth processes” that fail to be maximal,
in the sense that they allow for free disposal of wealth—Section 2.6 offers a bet-
ter understanding of such issues. However, as it turns out, “optimal” elements in
the Fatou-closure, which are exactly the numéraires mentioned in Theorem 1.7,
can be approximated also in the Emery topology. As already mentioned in Re-
mark 1.11, when X is the wealth-process set generated by nonnegative stochastic
integrals with respect to a finite-dimensional semimartingale integrator, it is es-
tablished in [9] that all strictly positive maximal processes are actually numéraire
portfolios under a suitable equivalent change of probability. However, in the case
of possible constraints on investment, it may happen that maximal elements do not
correspond to numéraire portfolios—for an example in a one time-period model,
see [17], Section 1.3.
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2.2. Preliminaries toward proving Theorems 1.3 and 1.7. We start with an
auxiliary result.

LEMMA 2.2. Suppose that X is a wealth-process set. Then, condition NA1
holds if and only if lim�→∞(sup(X,t)∈X ×[0,T ] P[Xt > �]) = 0, that is, when the
collection {Xt | X ∈ X , t ∈ [0, T ]} of random variables is bounded in P-measure.

PROOF. The proof of the fact that condition NA1 holds if and only if {XT |
X ∈ X } is bounded in P-measure follows mutatis mutandis from [18], proof
of Proposition 1.1. It only remains to show that boundedness in P-measure of
{XT | X ∈ X } implies the stronger boundedness in P-measure of {Xt | X ∈

X , t ∈ [0, T ]}. Fix some strictly positive χ ∈ X , and define κ ∈ L0+ via κ :=
supt∈[0,T ] χt/χT . For (X, t) ∈ X × [0, T ], the fork-convexity of X implies that
Xt(χT /χt ) is equal to X′

T for some X′ ∈ X . It follows that for any (X, t) ∈
X × [0, T ] there exists X′ ∈ X such that Xt ≤ κX′

T . Since {XT | X ∈ X } is
bounded in P-measure and κ ∈ L0+, it follows that {Xt | X ∈ X , t ∈ [0, T ]} is
bounded in P-measure as well. �

For a wealth-process set X , let X F denote the set of all possible limits of Fatou-
convergent sequences of X . We state and prove a result that will help establish both
Theorems 1.3 and 1.7. (Note the similarity between the statements of Lemma 2.3
and Theorem 1.7.)

LEMMA 2.3. Suppose that X is a wealth-process set and that condition NA1
is in force. Then, for all Q ∼ P there exists a strictly positive X̂Q ∈ X F with
X̂

Q
0 ≥ 1, such that X/X̂Q is a Q-supermartingale for all X ∈ X F.

PROOF. We shall give the proof for the case Q = P and suppress the super-
script “P” from notation; the proof for the general case follows in exactly the same
way.

Let T be a countable dense subset of [0, T ] with {0, T } ⊆ T. Recalling Lem-
ma 2.2, it follows exactly as in [15], proof of Theorem 2.3, that there exists an
X -valued sequence (Xn)n∈N such that:

(a) X̃s := P- limn→∞ Xn
s exists and satisfies P[X̃s > 0] = 1 for all s ∈ T; and

(b) for all X ∈ X , (Xs/X̃s)s∈T is a P-supermartingale with respect to the filtra-
tion (Fs)s∈T.

Using a diagonalization argument and passing to a subsequence if necessary, we
may strengthen X̃s = P- limn→∞ Xn

s for all s ∈ T into that P[limn→∞ Xn
s = X̃s ,

for all s ∈ T] = 1. Furthermore, the fact that X0 = 1 for all X ∈ X coupled with
property (b) above gives that E[Xs/X̃s] ≤ 1 holds for all X ∈ X and s ∈ T.

Fix a strictly positive semimartingale X ∈ X . Since the process (Xs/X̃s)s∈T is
a nonnegative P-supermartingale with respect to the filtration (Fs)s∈T, it follows
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that P[infs∈T X̃s > 0] = 1. For each t ∈ [0, T ], define X̂t := limT	s↓t X̃s ; the P-a.s.
existence of this limit is ensured by the nonnegative supermartingale convergence
theorem. (Note that P[X̂t < ∞] = 1 holds since Lemma 2.2 implies that the clo-
sure in P-measure of {Xs | X ∈ X , s ∈ [0, T ]}, to which X̂t belongs, is bounded
in P-measure.) Since the filtration F satisfies the usual hypotheses, it follows that
X̂ (viewed as a process) has an adapted càdlàg version, which we shall be us-
ing from now on; then, F- limn→∞ Xn = X̂. Furthermore, P[infs∈T X̃s > 0] = 1
implies that P[inft∈[0,T ] X̂t > 0] = 1, that is, that X̂ is strictly positive. The fact
that E[Xs/X̃s] ≤ 1, for all s ∈ T and Fatou’s lemma give E[Xt/X̂t ] ≤ 1 for all
t ∈ [0, T ]. In particular, 1/X̂0 = E[X0/X̂0] ≤ 1, that is, X̂0 ≥ 1.

It only remains to show that X/X̂ is a P-supermartingale for all X ∈ X F. In
view of the conditional version of Fatou’s lemma, it suffices to show that X/X̂

is a P-supermartingale for all X ∈ X . Initially fix X being strictly positive. Let
t ∈ [0, T ], s ∈ [0, t] and A ∈ Fs . Consider two T-valued sequences (sn)n∈N and
(tn)n∈N such that ↓ limn→∞ sn = s, ↓ limn→∞ tn = t , and sn ≤ tn for all n ∈ N.
Since A ∈ Fsn for all n ∈ N, property (b) above gives

E

[
X̃snXtn

XsnX̃tn

IA

]
≤ P[A]

for all n ∈ N. Taking n → ∞ and using Fatou’s lemma, we obtain

E

[
X̂sXt

XsX̂t

IA

]
≤ P[A].

As t ∈ [0, T ], s ∈ [0, t] and A ∈ Fs are arbitrary, the last inequality shows that
X/X̂ is a P-supermartingale. The final step is to remove the assumption that X

is strictly positive. Pick any X ∈ X and a strictly positive X′ ∈ X . For all n ∈ N,
define the strictly positive process Xn := (1 − n−1)X + n−1X′, which is a wealth
process in X . It follows that Xn/X̂ is a nonnegative P-supermartingale for all
n ∈ N. Using the conditional version of Fatou’s lemma, it follows that X/X̂ is a
nonnegative P-supermartingale, which concludes the argument. �

2.3. Proof of Theorem 1.3. Fix a strictly positive semimartingale X′ ∈ X
and (in view of Lemma 2.3) a strictly positive X̂ ∈ X F such that X/X̂ is a P-
supermartingale for all X ∈ X . Pick any X ∈ X and write X = (X/X̂)(X̂/X′)X′.
The process X/X̂ is a càdlàg supermartingale, therefore a semimartingale. As
X′ ∈ S , X ∈ S will follow as soon as (X̂/X′) ∈ S is established. The last follows
upon noticing that X̂/X′ = 1/(X′/X̂) and using Itô’s formula with the function
(0,∞) 	 x �→ 1/x ∈ (0,∞) on the strictly positive semimartingale X′/X̂.

2.4. Convergence in the Emery topology. Below, we collect the essential re-
sults regarding convergence in the Emery topology that shall be needed for the
proof of Theorem 1.7. We provide full details for the convenience of the reader;
however, versions of some of them have appeared previously—for example, see
the original paper [11].
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CONVENTION 2.4. In several occasions until the end of Section 2.5, we define
stopping times as first passage times of processes in certain sets. On the event that
the process never enters the specific set up to time T , the stopping time is defined
by convention equal to ∞.

The first result contains a convenient necessary and sufficient condition for S -
convergence.

LEMMA 2.5. Let (Xn)n∈N be a sequence in S . Then, S - limn→∞ Xn = 0 holds
if and only if for all P1-valued sequences (ηn)n∈N, P- limn→∞(ηn · Xn)T = 0
holds.

PROOF. By definition, S - limn→∞ Xn = 0 implies P- limn→∞(ηn · Xn)T = 0
whenever (ηn)n∈N is a P1-valued sequence. Now, assume the latter condition and,
by way of contradiction, that S - limn→∞ Xn = 0 fails. Passing to a subsequence if
necessary, one can find ε > 0 and a P1-valued sequence (θn)n∈N such that P[(θn ·
Xn)∗T > ε] > ε for all n ∈ N. For each n ∈ N, define the stopping time τn := inf{t ∈
[0, T ] | |θn · Xn|t > ε}. With ηn := θnI[[0,τn∧T ]], (ηn)n∈N is P1-valued sequence,
and P- limn→∞(ηn ·Xn)T = 0 fails. We reached a contradiction, which means that
S - limn→∞ Xn = 0 holds. �

We introduce some notation that will be used in all that follows. For X ∈ S ,
X− denotes its left-continuous version, with the understanding that X0− = 0. We
define X := X −X−. The quadratic covariation process between X ∈ S and Y ∈
S is [X,Y ] := XY − X− · Y − Y− · X. (Note that [X,Y ]0 = X0Y0.) Furthermore,
Var(X) denotes the first-variation process of X ∈ S .

REMARK 2.6. During the remainder of Section 2.4, some proofs make use of
the following double subsequence trick. Suppose that any subsequence of a given
a sequence of random variables has a further subsequence that converges in P-
measure to zero. As convergence in P-measure comes from a metric topology, it
follows that the whole sequence has to converge to zero in P-measure.

The next result discusses sufficient conditions for S -convergence that will be
used in the main text.

PROPOSITION 2.7. If (Xn)n∈N is a sequence of semimartingales,

S - lim
n→∞Xn = 0

holds in all of the following three cases:

• limn→∞ P[(Xn)∗T > 0] = 0.
• Each Xn is a process of finite variation, and P- limn→∞ Var(Xn)T = 0.
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• Each Xn is a local martingale with |Xn| ≤ C, where C ∈ R+ does not depend
on n ∈ N, and P- limn→∞[Xn,Xn]T = 0.

PROOF. We treat each case separately below.
First, assume that limn→∞ P[(Xn)∗T > 0] = 0. On the event {(Xn)∗T = 0} we

have ηn · Xn = 0 for all ηn ∈ P1 in view of [25], Chapter IV, Theorem 26. Then
the result follows from Lemma 2.5.

Now, assume that each Xn is a process of finite variation, and

P- lim
n→∞ Var

(
Xn)

T = 0

holds. For ηn ∈ P1 we have |(ηn ·Xn)T | ≤ Var(Xn)T —then, Lemma 2.5 allows us
to conclude.

Finally, assume that each Xn is a local martingale with |Xn| ≤ C for C ∈ R+,
and that P- limn→∞[Xn,Xn]T = 0. Let (ηn)n∈N be a P1-valued sequence and
set Mn = ηn · Xn for n ∈ N. We need to show that P- limn→∞ Mn

T = 0. Note
that |Mn| = |ηnXn| ≤ C and [Mn,Mn] = |ηn|2 · [Xn,Xn] ≤ [Xn,Xn] so
that P- limn→∞[Mn,Mn]T = 0. Let (Mnk)k∈N be a subsequence of (Mn)n∈N

such that P[[Mnk,Mnk ]T > 1/2k] ≤ 1/2k holds for all k ∈ N; then, by the first
Borel–Cantelli lemma it follows that A := ∑

k∈N[Mnk,Mnk ] is a finite nonde-
creasing adapted process. For m ∈ N, define τm := inf{t ∈ [0, T ] | At ≥ m}. Then,
[Mnk,Mnk ]τm ≤ Aτm− + (Mnk)2

τm
≤ m + C2 holds for all k ∈ N and m ∈ N.

Therefore, using the well-known L2-isometry for square-integrable martingales
and the dominated convergence theorem, we obtain

lim
k→∞E

[∣∣Mnk

τm∧T

∣∣2] = lim
k→∞E

[[
Mnk,Mnk

]
τm∧T

] = 0.

This implies that

P- lim
k→∞M

nk

τm∧T = 0

and, in turn, that P- limk→∞(M
nk

T I{τm=∞}) = 0. The fact that P[⋃m∈N{τm =
∞}] = 1 implies that P- limk→∞ M

nk

T = 0. Up to now we have shown that there
exists a subsequence of (Mn

T )n∈N that converges in P-measure to zero. The same
argument shows that any subsequence of (Mn

T )n∈N has a further subsequence that
converges in P-measure to zero. By the double subsequence trick mentioned in
Remark 2.6, it follows that P- limn→∞ Mn

T = 0, which concludes the argument.
�

REMARK 2.8. Let (Xn)n∈N be a sequence of local martingales such that
P- limn→∞[Xn,Xn]T = 0 holds. In the case where there does not exist any C ∈
R+ with |Xn| ≤ C holding for all n ∈ N, S - limn→∞ Xn = 0 may fail. For ex-
ample, consider a probability space (�, F ,P) that affords a collection {τn | n ∈ N}
of independent (under P) random variables such that P[τn > t] = exp(−t/n) for
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t ∈ R+. Define (Ft )t∈[0,T ] as (the restriction on [0, T ] of) the usual augmen-
tation of the smallest filtration that makes all random times in the collection
{τn | n ∈ N} stopping times. Then, for each n ∈ N, define a martingale Xn via the
formula Xn

t = nI{τn≤t} − τn ∧ t for t ∈ [0, T ]. [It is straightforward to check that
each Xn, n ∈ N, is a martingale in its own filtration; then, the independence of
the random variables in {τn | n ∈ N} implies that Xn is also a martingale in the
larger filtration (Ft )t∈[0,T ], for all n ∈ N.] In this case, [Xn,Xn]T = n2I{τn≤T } for
all n ∈ N; as limn→∞ P[τn ≤ T ] = 0, P- limn→∞[Xn,Xn]T = 0 holds. However,
P- limn→∞ Xn

T = −T , which of course implies that S - limn→∞ Xn = 0 fails.

The two last results of Section 2.4 concern stability of S -convergence.

LEMMA 2.9. Let S - limn→∞ Xn = X and (Y n) be a sequence of adapted
càdlàg processes such that u P- limn→∞ Yn = Y . Then, S - limn→∞(Y n− · Xn) =
Y− · X.

PROOF. Upon writing Yn− · Xn − Y− · X = Y− · (Xn − X) + (Y n − Y)− · X +
(Y n − Y)− · (Xn − X), it suffices to treat three special cases: (i) when Yn = Y for
all n ∈ N and S - limn→∞ Xn = 0, (ii) when u P- limn→∞ Yn = 0 and Xn = X for
all n ∈ N and (iii) when u P- limn→∞ Yn = 0 and S - limn→∞ Xn = 0 both hold.

First, assume case (i): Yn = Y for all n ∈ N and S - limn→∞ Xn = 0. For k ∈ N,
define τk := inf{t ∈ [0, T ] | |Yt | > k}. Let (ηn)n∈N be a P1-valued sequence and set
θk,n := ηn(Y−/k)I[[0,τk∧T ]]. Noting that (θk,n)n∈N is a P1-valued sequence, it fol-
lows that P- limn→∞(ηn · (Y− · Xn))τk∧T = k P- limn→∞(θk,n · Xn)T = 0. There-
fore, P- limn→∞(ηn · (Y− · Xn))T I{τk=∞} = 0. Since it holds that P[⋃k∈N{τk =
∞}] = 1, we obtain P- limn→∞(ηn · (Y− · Xn))T = 0. As the P1-valued sequence
(ηn)n∈N was arbitrary, Lemma 2.5 implies that S - limn→∞(Y− · Xn) = 0.

Now, assume case (ii): u P- limn→∞ Yn = 0 and Xn = X for all n ∈ N. For
an arbitrary P1-valued sequence (ηn)n∈N, we shall show that P- limn→∞(ηn ·
(Y n− · X))T = 0. Pick a subsequence (Y nk )k∈N such that ξ := ∑

k∈N |Ynk | is a
real-valued càdlàg process. The facts that P- limk→∞(ηnkY

nk− )∗ = 0, ξ− is X-
integrable (since ξ− is locally bounded) and |ηnkY

nk− | ≤ ξ− for all k ∈ N, cou-
pled with the dominated convergence theorem for stochastic integrals, imply that
P- limk→∞((ηnkY

nk− ) · X)T = 0, that is, P- limk→∞(ηnk · (Y
nk− · X))T = 0. Up to

now we have shown that there exists a subsequence of ((ηn · (Y n− · X))T )n∈N that
converges in P-measure to zero. The same argument shows that any subsequence
of ((ηn · (Y n− · X))T )n∈N has a further subsequence that converges in P-measure
to zero. The double subsequence trick of Remark 2.6 allows us to conclude that
P- limn→∞(ηn ·(Y n− ·X))T = 0. As the sequence (ηn)n∈N was arbitrary, Lemma 2.5
implies that S - limn→∞ Yn · X = 0.

Finally, assume case (iii): u P- limn→∞ Yn = 0 and S - limn→∞ Xn = 0 for
all n ∈ N. In view of Lemma 2.5, we only need to show that P- limn→∞(ηn ·
(Y n− · Xn))T = 0 for an arbitrary P1-valued sequence (ηn)n∈N. Similarly to
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case (ii), pick a subsequence (Y nk )k∈N such that ξ := ∑
k∈N |Ynk | is a real-

valued càdlàg process. For m ∈ N, define τm := inf{t ∈ [0, T ] | |ξt | > m}. For
m ∈ N and k ∈ N, set θm,k := ηnk (Y

nk− /m)I[[0,τm∧T ]]. As (θm,k)k∈N is P1-valued,
we have P- limk→∞(ηnk · (Y

nk− · Xnk))τm∧T = mP- limk→∞(θm,k · Xnk)T = 0.
Therefore, for all m ∈ N, P- limk→∞(ηnk · (Y

nk− · Xnk))T I{τm=∞} = 0 holds.
Since P[⋃m∈N{τm = ∞}] = 1, we obtain that P- limk→∞(ηnk · (Y− · Xnk))T = 0.
We have shown that there exists a subsequence of ((ηn · (Y n− · Xn))T )n∈N that
converges in P-measure to zero. The same argument shows that any subse-
quence of ((ηn · (Y n− · Xn))T )n∈N has a further subsequence that converges in P-
measure to zero. By the double subsequence trick of Remark 2.6, it follows that
P- limn→∞(ηn · (Y n− · Xn))T = 0. Then, another invocation of Lemma 2.5 implies
that S - limn→∞(Y n− · Xn) = 0. �

PROPOSITION 2.10. Let S - limn→∞ Xn = X and S - limn→∞ Yn = Y . Then,
it further holds that S - limn→∞[Xn,Y n] = [X,Y ] and S - limn→∞(XnYn) = XY .

PROOF. We shall establish below that S - limn→∞[Xn,Y n] = [X,Y ]; then,
S - limn→∞(XnYn) = XY follows from Lemma 2.9 and a use of the integration-
by-parts formula.

Using the identity 4[Xn,Y n] = [Xn + Yn,Xn + Yn] − [Xn − Yn,Xn − Yn], it
follows that it suffices to show that S - limn→∞ Xn = X implies S - limn→∞[Xn,

Xn] = [X,X]. Furthermore, since quadratic variation processes of semimartin-
gales are of finite variation, the estimate

Var
([

Xn,Xn] − [X,X])T = Var
([

Xn − X,Xn − X
] + 2

[
X,Xn − X

])
T

≤ [
Xn − X,Xn − X

]
T

+ 2
√[X,X]T

√[
Xn − X,Xn − X

]
T

implies that we only have to establish that, whenever S - limn→∞ Xn = 0,
S - limn→∞[Xn,Xn] = 0 holds. In view of Proposition 2.7, S - limn→∞[Xn,Xn] =
0 is equivalent to P- limn→∞[Xn,Xn]T = 0. Using [Xn,Xn] = |Xn|2 − 2Xn− · Xn

as well as that u P- limn→∞ Xn = 0 and u P- limn→∞(Xn− · Xn) = 0, the latter
holding in view of Lemma 2.9, we obtain the result. �

2.5. Proof of Theorem 1.7. In the course of the proof of Theorem 1.7, we shall
actually assume that Q = P and use “P” in what follows for notational simplicity.
Of course, this does not entail any loss of generality whatsoever. (Note that the
Emery topology depends on the probability measure only through its equivalence
class.)

Suppose that X is a wealth-process set and that condition NA1 is valid. Keep-
ing the notation of Lemma 2.3, consider the strictly positive X̂ ≡ X̂P ∈ X F

with X̂0 ≥ 1 and such that X/X̂ is a P-supermartingale for all X ∈ X F ⊇ X .
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Pick an X -valued sequence (Xn)n∈N such that F- limn→∞ Xn = X̂; in partic-
ular, P- limn→∞ Xn

T = X̂T . Define Zn := Xn/X̂, which is a nonnegative P-
supermartingale with Zn

0 ≤ 1 for all n ∈ N. The convergence P- limn→∞ Xn
T = X̂T

translates to P- limn→∞ Zn
T = 1. If one can show that S - limn→∞ Zn = 1, an appli-

cation of Proposition 2.10 shows that S - limn→∞ Xn = X̂, which will complete the
argument. Therefore, we shall prove below that if a sequence (Zn)n∈N of nonneg-
ative P-supermartingales with Zn

0 ≤ 1 for all n ∈ N satisfies P- limn→∞ Zn
T = 1,

then S - limn→∞ Zn = 1. We prepare the ground with the following result, which
establishes uP-convergence. In the course of the proofs below, Convention 2.4 will
be used.

LEMMA 2.11. Suppose that (Zn)n∈N is a sequence of nonnegative P-
supermartingales such that Zn

0 ≤ 1 for all n ∈ N, as well as P- limn→∞ Zn
T = 1.

Then, in fact, u P- limn→∞ Zn = 1.

PROOF. Since E[Zn
T ] ≤ 1 for all n ∈ N, limn→∞ E[Zn

T ] = 1 holds by Fatou’s
lemma. Then, [10], Theorem 5.5.2, implies the uniform integrability of (Zn

T )n∈N;
therefore, limn→∞ E[|Zn

T − 1|] = 0.
We shall now show that P- limn→∞ supt∈[0,T ] Zn

t = 1. Fix ε ∈ (0,∞) and de-
fine the stopping time τn := inf{t ∈ [0, T ] | Zn

t > 1 + ε} for all n ∈ N. Show-
ing that limn→∞ P[τn = ∞] = 1 will imply that P- limn→∞ supt∈[0,T ] Zn

t = 1,
since ε ∈ (0,∞) is arbitrary. Suppose on the contrary (passing to a subse-
quence if necessary) that limn→∞ P[τn = ∞] = 1 − p, where p > 0. Then, since
|E[Zn

T I{τn=∞}]−P[τn = ∞]| = |E[(Zn
T −1)I{τn=∞}]| ≤ E[|Zn

T −1|], and the last
quantity converges to zero as n → ∞, we obtain limn→∞ E[Zn

T I{τn=∞}] = 1 − p.
In turn, this implies

1 ≥ lim sup
n→∞

E
[
Zn

0
] ≥ lim sup

n→∞
E

[
Zn

τn∧T

]
≥ lim inf

n→∞ E
[
Zn

τnI{τn≤T }
] + lim

n→∞ E
[
Zn

T I{τn=∞}
]

≥ (1 + ε)p + (1 − p) = 1 + εp,

which contradicts the fact that p > 0. Thus, P- limn→∞ supt∈[0,T ] Zn
t = 1 has been

shown.
We shall now establish that P- limn→∞ inft∈[0,T ] Zn

t = 1. Fix ε ∈ (0,∞), and
for each n ∈ N redefine τn := inf{t ∈ [0, T ] | Zn

t < 1 − ε}—we only need to show
that limn→∞ P[τn = ∞] = 1. The nonnegative supermartingale property of Zn

gives that, on {τn ≤ T }, where in particular Zτn ≤ 1 − ε holds, we have P[Zn
T >

1 − ε2 | Fτn] ≤ (1 − ε)/(1 − ε2) = 1/(1 + ε) for all n ∈ N. Then,

P
[
Zn

T > 1 − ε2] = E
[
P

[
Zn

T > 1 − ε2 | Fτn

]] ≤ P
[
τn = ∞] + P

[
τn ≤ T

] 1

1 + ε
.

Using P[τn = ∞] = 1 − P[τn ≤ T ], rearranging and taking the inferior limit
as n → ∞, we obtain lim infn→∞ P[τn = ∞] ≥ (1 + ε−1) lim infn→∞ P[Zn

T >
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1 − ε2] − ε−1 = 1, which shows that P- limn→∞ inft∈[0,T ] Zn
t = 1. Together with

P- limn→∞ supt∈[0,T ] Zn
t = 1 that was proved above, the proof of Lemma 2.11 is

complete. �

Theorem 1.7 immediately follows from Propositions 2.7, 2.10, and the follow-
ing result.

LEMMA 2.12. Under the assumptions of Lemma 2.11, one can write Zn =
1 + An − Bn + Ln for each n ∈ N, where:

• Each An is a semimartingale, and limn→∞ P[(An)∗T > 0] = 0.
• Each Bn is a predictable, nonnegative and nondecreasing process, and

P- limn→∞ Bn
T = 0.

• Each Ln is a local martingale with |Ln| ≤ 4 and P- limn→∞[Ln,Ln]T = 0.

PROOF. For n ∈ N, define the stopping time τn := inf{t ∈ [0, T ] | Zn
t >

2}. Furthermore, for n ∈ N define processes ζ n and An via ζ n
t = Zn

t∧τn −
Zn

τnI{τn≤t} and An
t = (Zn

t − Zn
τn−)I{τn≤t} for t ∈ [0, T ]. In other words, ζ n

is the process Zn stopped just before time τn, while An is defined so that
Zn = An + ζ n. Since Zn

τn ≥ 0, ζ n is a supermartingale and 0 ≤ ζ n ≤ 2 holds
for all n ∈ N. Now, limn→∞ P[τn = ∞] = 1 holds in view of Lemma 2.11;
therefore, limn→∞ P[(An)∗T > 0] = 0, as required. Since u P- limn→∞ Zn = 1
and u P- limn→∞ An = 0, we obtain u P- limn→∞ ζ n = 1. For each n ∈ N, write
ζ n = −Bn + Mn for the Doob–Meyer decomposition of ζ n, where Bn is pre-
dictable, nonnegative and nondecreasing process and such that Bn

0 = 0, and Mn

is a nonnegative local martingale with Mn
0 = ζ n

0 = Zn
0 ≤ 1. Since Mn ≥ ζ n

and P- limn→∞ ζ n
T = 1, it necessarily holds that P- limn→∞ Mn

T = 1; otherwise
lim supn→∞ E[Mn

T ] > 1, which is impossible in view of the fact that Mn
0 ≤ 1 and

Mn is a nonnegative local P-martingale for all n ∈ N. Using P- limn→∞ ζ n
T = 1

and P- limn→∞ Mn
T = 1, we obtain P- limn→∞ Bn

T = 0, which completes the re-
quirements for the sequence (Bn)n∈N.

Continuing, a use of Lemma 2.11 with (Mn)n∈N in place of (Zn)n∈N, gives
u P- limn→∞ Mn = 1. We define Ln in the obvious way: Ln = Mn − 1; it remains
to show that the requirements for the sequence (Ln)n∈N are fulfilled. First, note
that 0 ≤ ζ n ≤ 2 implies that |ζn| ≤ 2; therefore, 0 ≤ Bn ≤ 2, since Bn

τ =
−E[ζn

τ | Fτ ] + [Mn
τ | Fτ ] = −E[ζn

τ | Fτ ] holds for all predictable times τ .
This implies that |Ln| = |Mn| ≤ |ζn| + Bn ≤ 4. It only remains to show
that P- limn→∞[Ln,Ln]T = 0. Fix ε ∈ (0,∞) and redefine, for each n ∈ N, the
stopping time τn := inf{t ∈ [0, T ] | Mn

t > 1/ε}. Since Mn
0 ≤ 1 and each Mn is

a nonnegative local P-martingale, we obtain that P[τn = ∞] ≥ 1 − ε. Also, note
that supt∈[0,T ] |Lτn∧t | ≤ 1 + supt∈[0,T ] Mτn∧t ≤ 5 + 1/ε for all n ∈ N. Coupled
with the fact that P- limn→∞ Mn

τn∧T = 1 (recall that u P- limn→∞ Mn = 1) and the
L2-isometry for square-integrable martingales, we obtain

lim
n→∞ E

[[
Ln,Ln]

τn∧T

] = lim
n→∞E

[∣∣Ln
τn∧T

∣∣2] = lim
n→∞E

[∣∣Mn
τn∧T − 1

∣∣2] = 0.
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It follows that lim supn→∞ P[[Ln,Ln]T > ε] ≤ ε holds for all ε ∈ (0,∞). There-
fore, we obtain that P- limn→∞[Ln,Ln]T = 0, which completes the proof. �

2.6. Preliminaries toward proving Theorem 1.4. Consider a wealth-process
set X . Define X ◦, the process-polar of X , as the set of all nonnegative càdlàg
adapted processes Y such that Y0 ≤ 1 and YX is a P-supermartingale for all
X ∈ X . Similarly, define X ◦◦, the process-bipolar of X , as the set of all nonnega-
tive càdlàg adapted processes X such that X0 ≤ 1 and YX is a P-supermartingale
for all Y ∈ X ◦. (The terminology of the process-polar and the process-bipolar was
introduced in [27].)

By definition, it is clear that X ⊆ X ◦◦ holds for any wealth-process set X —
actually, one can provide a very concrete description of the structure of X ◦◦. Sup-
pose that X is a wealth-process set and that condition NA1 holds—in particular, by
Theorem 1.3, X ⊆ S . In [27], and using the terminology of that paper, it is shown
that X ◦◦ is the smallest set of nonnegative càdlàg adapted processes that includes
X and is fork-convex, process-solid and Fatou-closed. The following statement re-
peats this structural result for the process-bipolar, in a slightly altered way to be
useful later in the paper.

THEOREM 2.13 (Žitković [27]). Let X be a wealth-process set such that NA1
holds. Then, X ∈ X ◦◦ if and only if there exists an X -valued sequence (Xn)n∈N and
a sequence (An)n∈N of nondecreasing adapted càdlàg processes with 0 ≤ An ≤ 1
for each n ∈ N such that F- limn→∞ Xn(1 − An) = X.

If follows from Theorem 2.13 above that, if condition NA1 is valid for a wealth-
process set X , the set inclusions X ⊆ X ⊆ X F ⊆ X ◦◦ hold.

The following result regarding “forward convex convergence” will be used
twice in the sequel.

LEMMA 2.14. Let X be a wealth-process set such that NA1 holds. Con-
sider any X -valued sequence (Xn)n∈N. Then, there exists an X -valued sequence
(χn)n∈N, with each χn belonging in the convex hull of {Xk | k ≥ n}, as well as
some χ ∈ X F ⊆ X ◦◦ such that F- limn→∞ χn = χ .

PROOF. In the notation of Theorem 1.7, consider the strictly positive process
X̂ ≡ X̂P ∈ X and define X̃ := {X/X̂ | X ∈ X }. It is straightforward to check that
X̃ is also a wealth-process set in the sense of Definition 1.1. All elements of X̃
are nonnegative càdlàg P-supermartingales starting from unit value. For the given
X -valued sequence (Xn)n∈N, consider the X̃-valued sequence (X̃n)n∈N defined
via X̃n := Xn/X̂ for all n ∈ N. Then, [12], Lemma 5.2(1), implies that there ex-
ists an X -valued sequence (χ̃n)n∈N, with each χ̃n being in the convex hull of
{X̃k | k ≥ n}, as well as some nonnegative càdlàg P-supermartingale χ̃ such that
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F- limn→∞ χ̃n = χ̃ . Defining χn := X̂χ̃n for all n ∈ N and χ := X̂χ̃ , the statement
of Lemma 2.14 immediately follows. �

We pause for an interesting remark that will be soon useful. Assuming con-
dition NA1 on a wealth-process set X , note that Ŷ := 1/X̂P (in the notation of
Theorem 1.7) is a strictly positive process in X ◦—in fact, it is easy to show that
the converse also holds: existence of a strictly positive process in X ◦ implies con-
dition NA1.

Proposition 2.15 that follows (a static version of “bipolarity,” a topic taken up in
a general L0+ setting in [4]) is exactly the result that will allow us to use the abstract
formulation of results on expected utility maximization from [19] and [20].

PROPOSITION 2.15. Suppose that X is a wealth-process set and that condi-
tion NA1 is in force. Define C := {XT | X ∈ X ◦◦} and D := {YT | Y ∈ X ◦}. Then,
we have the following:

• for g ∈ L0+, g ∈ C holds if and only if E[hg] ≤ 1 holds for all h ∈ D;
• for h ∈ L0+, h ∈ D holds if and only if E[hg] ≤ 1 holds for all g ∈ C .

PROOF. If g ∈ C and h ∈ D, E[hg] ≤ 1 trivially holds.
Let g ∈ L0+ be such that suph∈D E[hg] ≤ 1. We shall show that there exists

X ∈ X ◦◦ such that XT = g. As mentioned before the statement of Proposition 2.15,
under condition NA1 there exists a strictly positive Ŷ ∈ X ◦; replacing, in obvi-
ous notation, X and X ◦◦ by Ŷ X and Ŷ X ◦◦ and X ◦ by (1/Ŷ )X ◦, we may (and
shall) assume that 1 ∈ X ◦. Let X ◦++ be the set of all strictly positive processes in
X ◦. For all t ∈ [0, T ], define the (a priori, possibly infinite-valued) Ft -measurable
random variable X0

t := ess supY∈X ◦++ E[(YT /Yt )g | Ft ]. As X ◦++ is easily seen to
be fork-convex, the class of random variables {E[(YT /Yt )g | Ft ] | Y ∈ X ◦++} is
upwards directed. (For the definition of upwards directed collections of random
variables and their connection with the notion of essential supremum, see [13],
Theorem A.32 in Appendix A.5.) Furthermore, the fork-convexity of X ◦++ com-
bined with the fact that 1 ∈ X ◦++ implies that (YT /Yt ) ∈ D holds for all Y ∈ X ◦++
and t ∈ [0, T ]; therefore, E[E[(YT /Yt )g | Ft ]] = E[(YT /Yt )g] ≤ 1 holds for all
Y ∈ X ◦++. It follows that E[X0

t ] ≤ 1 for all t ∈ [0, T ]; in particular, X0
t ∈ L0+

for all t ∈ [0, T ]. It is straightforward to check that YX0 is a nonnegative super-
martingale for all Y ∈ X ◦++. In particular, there exists a càdlàg process X that
coincides with the right-continuous version of X0 (for the terminal value, this
means XT = X0

T = g); then, the conditional version of Fatou’s lemma implies
again that YX is a a nonnegative supermartingale for all Y ∈ X ◦++. For any fixed
Y ∈ X ◦, Yn := (n−1 + (1 − n−1)Y ) ∈ X ◦++ for all n ∈ N. Therefore, YnX is a su-
permartingale for all n ∈ N; sending n → ∞ and using the conditional version of
Fatou’s lemma, we conclude that YX is a supermartingale for all Y ∈ X ◦. Also,
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X0 ≤ lim inft↓0 E[X0
t ] ≤ 1. By the definition of the process-bipolar, it follows that

X ∈ X ◦◦; since XT = g, we conclude.
In a completely similar way, it can be shown that if h ∈ L0+ is such that

supg∈C E[hg] ≤ 1, then there exists Y ∈ Y such that YT = h. One needs to use the
fork-convexity of X ◦◦ as well as the fact that X ◦ is the set of all càdlàg adapted
processes Y with Y0 ≤ 1 and such that YX is a nonnegative supermartingale for
all X ∈ X ◦◦. Indeed, this last fact follows from the filtered bipolar theorem and
Lemma 1 (with G = F0) in [27], since the process-bipolar of X ◦ coincides with
X ◦ itself. �

2.7. Proof of Theorem 1.4. We retain all notation from Section 2.6. In accor-
dance with the definition of u from Section 1.3, for x ∈ (0,∞) define X ◦◦(x) :=
{xX | X ∈ X ◦◦} and u◦◦(x) = supX∈X ◦◦(x) E[U(XT )]. The first thing to settle is
that the functions u and u◦◦ coincide.

LEMMA 2.16. Let X be a wealth process set with 1 ∈ X , such that NA1 holds.
Then, u = u◦◦.

PROOF. Of course, u ≤ u◦◦ always holds; by way of contradiction, assume
that u(x) < u◦◦(x) for some x ∈ (0,∞). Pick X ∈ X ◦◦(x) such that E[U(XT )] >

u(x). Recalling Theorem 2.13, consider an X (x)-valued sequence (Xn)n∈N and
a sequence (An)n∈N of nondecreasing adapted càdlàg processes with 0 ≤ An ≤ 1
for each n ∈ N such that F- limn→∞ Xn(1 − An) = X. By Lemma 2.14, there ex-
ists an X (x)-valued sequence (χn)n∈N, with each χn being in the convex hull of
{Xk | k ≥ n}, as well as some χ ∈ X ◦◦(x) such that F- limn→∞ χn = χ . It is clear
that XT ≤ χT holds—therefore, E[U(χT )] ≥ E[U(XT )] > u(x). It follows that we
may (and shall) assume that there exists X ∈ X ◦◦(x) such that E[U(XT )] > u(x),
as well as an X (x)-valued sequence (Xn)n∈N such that F- limn→∞ Xn = X. For
k ∈ N, define the process X̃k := (1/k)x + (1 − 1/k)X; then X̃k ∈ X ◦◦(x) for all
k ∈ N. Since E[0 ∧ U(XT )] > −∞, the monotone convergence theorem implies
that there exists K ∈ N such that, with ψ := X̃K , E[U(ψT )] > u(x) holds. Now,
for all n ∈ N, define ψn := (1/K)x + (1 − 1/K)Xn, so that ψn ∈ X (x). Note that
F- limn→∞ ψn = ψ ; in particular, P[limn→∞ ψn

T = ψT ] = 1. Since ψn
T ≥ x/K

holds for all n ∈ N, using Fatou’s lemma we obtain lim infn→∞ E[U(ψn
T )] ≥

E[U(ψT )] > u(x), which contradicts the definition of u. �

According to Lemma 2.16, (FIN-DUAL) holds with u◦◦ replacing u there. Fix
x ∈ (0,∞). In view of Proposition 2.15, under the assumptions of Theorem 1.7
one can use the abstract results of the utility maximization problem in [19] and the
results of [20] on the existence of the optimal wealth process, to show the exis-
tence of a strictly positive X̂ ∈ X ◦◦ with X̂0 = 1 such that E[U(xX̂T )] = u◦◦(x) =
u(x) < ∞, as well as the existence of a strictly positive Ŷ ∈ X ◦ such that Ŷ0 = 1
and Ŷ X̂ is a uniformly integrable martingale under P. Define a probability Q ∼ P
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via dQ = (ŶT X̂T )dP. Pick X ∈ X , t ∈ [0, T ] and s ∈ [0, t]. With “EQ” denoting
expectation under Q,

EQ

[
Xt

X̂t

∣∣∣ Fs

]
= 1

ŶsX̂s

E

[
Ŷt X̂t

Xt

X̂t

∣∣∣ Fs

]
= 1

ŶsX̂s

E[ŶtXt | Fs] ≤ 1

ŶsX̂s

ŶsXs = Xs

X̂s

,

that is, X/X̂ is a Q-supermartingale. Using the conditional version of Fatou’s
lemma, we can further deduce that X/X̂ is a Q-supermartingale for all X ∈ X F.

We shall show now that X̂ ∈ X , which will establish both statement (1) of The-
orem 1.4 and the part of statement (2) of Theorem 1.4 regarding existence of op-
timal wealth processes. First, we show that X̂ ∈ X F. Since X̂ ∈ X ◦◦, in view of
Theorem 2.13 consider an X -valued sequence (Xn)n∈N and a sequence of non-
decreasing adapted càdlàg processes with 0 ≤ An ≤ 1 for each n ∈ N such that
F- limn→∞ Xn(1 − An) = X̂. By Lemma 2.14, consider an X -valued sequence
(χn)n∈N, with each χn being in the convex hull of {Xk | k ≥ n}, as well as some
χ ∈ X F such that F- limn→∞ χn = χ . From the two limiting relationships, one
can deduce that X̂ ≤ χ . According to the preceding paragraph, χ/X̂ is a nonneg-
ative Q-supermartingale with χ0/X̂0 ≤ 1. This last fact combined with χ/X̂ ≥ 1
is easily seen to imply that χ = X̂—in other words, that X̂ ∈ X F. In order to
actually show that X̂ ∈ X , note that (χn/X̂)n∈N is a sequence of nonnegative Q-
supermartingales with χn

0 /X̂0 = 1 and Q[limn→∞(χn
T /X̂T ) = 1] = 1. Recalling

the arguments of Section 2.5, we deduce that S - limn→∞ χn = X̂, which implies
that X̂ ∈ X .

We now move to establish the existence of an approximating sequence as
required in statement (2) of Theorem 1.4, which will complete the proof. Fix
x ∈ (0,∞). Let X̂ ≡ X̂(x) be the optimizer in X (x) of the utility maximization
problem. We know that there exists an X (x)-valued sequence (X̃k)k∈N such that
S - limk→∞ X̃k = X̂. However, it might not hold that limk→∞ E[U(X̃k

T )] = u(x).
To circumvent this issue, set X̂n := (1/n)x + (1 − 1/n)X̂ for n ∈ N. Note that
S - limn→∞ X̂n = X̂ and limn→∞ E[U(X̂n

T )] = E[U(X̂T )] hold. For each n ∈ N,
pick kn ∈ N such that, with Xn := (1/n)x + (1−1/n)X̃kn , we have �Xn − X̂n�S ≤
n−1 and E[U(Xn

T )] ≥ E[U(X̂n
T )] − n−1, the latter being feasible in view of Fa-

tou’s lemma. As S - limn→∞ X̂n = X̂ and limn→∞ E[U(X̂n
T )] = E[U(X̂T )], we

conclude that the sequence (Xn)n∈N satisfies the requirements of statement (2) of
Theorem 1.4.
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