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DEGREE ASYMPTOTICS WITH RATES FOR PREFERENTIAL
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BY EROL A. PEKÖZ, ADRIAN RÖLLIN AND NATHAN ROSS

Boston University, National University of Singapore
and University of California, Berkeley

We provide optimal rates of convergence to the asymptotic distribution
of the (properly scaled) degree of a fixed vertex in two preferential attach-
ment random graph models. Our approach is to show that these distributions
are unique fixed points of certain distributional transformations which allows
us to obtain rates of convergence using a new variation of Stein’s method.
Despite the large literature on these models, there is surprisingly little known
about the limiting distributions so we also provide some properties and new
representations, including an explicit expression for the densities in terms of
the confluent hypergeometric function of the second kind.

1. Introduction. Preferential attachment random graphs are random graphs
that evolve by sequentially adding vertices and edges in a random way so that
connections to vertices with high degree are favored. Particular versions of these
models were proposed by Barabási and Albert (1999) as a mechanism to explain
the appearance of the so-called power law behavior observed in some real world
networks; for example, the graph derived from the world wide web by considering
webpages as vertices and hyperlinks between them as edges.

Following the publication of Barabási and Albert (1999), there has been an ex-
plosion of research surrounding these (and other) random growth models. This
work is largely motivated by the idea that many real world data structures can
be captured in the language of networks [see Newman (2003) for a wide survey
from this point of view]. However, much of this work is experimental or empirical
and, by comparison, the rigorous mathematical literature on these models is less
developed [see Durrett (2007) for a recent review].

For preferential attachment models, the seminal reference in the mathematics
literature is Bollobás et al. (2001), in which one of the main results is a rigorous
proof that the degree of a randomly chosen vertex in a particular family of prefer-
ential attachment random graph models converges to the Yule–Simon distribution.
Corresponding approximation results in total variation for this and related prefer-
ential attachment models can be found in Peköz, Röllin and Ross (2012) and Ford
(2009).
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Here we study the distribution of the degree of a fixed vertex in two preferential
attachment models. In model 1 we start with a graph G2 with two vertices labeled
one and two with an edge directed from vertex two to vertex one. Given graph
Gn, graph Gn+1 is obtained by adding a vertex labeled n + 1 and adding a single
directed edge from this new vertex to a vertex labeled from the set {1, . . . , n},
where the chance that n + 1 connects to vertex i is proportional to the degree of
vertex i in Gn (here and below degree means in-degree plus out-degree). Model 2
is one studied in Bollobás et al. (2001) and allows for self-connecting edges. There,
we start with a graph G1 with a single vertex labeled one and with an edge directed
from vertex one to itself. Given graph Gn, graph Gn+1 is obtained by adding a
vertex labeled n + 1 and adding a single directed edge from this new vertex to a
vertex labeled from the set {1, . . . , n + 1}, where the chance that n + 1 connects
to vertex i ∈ {1, . . . , n} is proportional to the degree of vertex i in Gn (a loop at a
vertex contributes two to its degree) and the chance that vertex n + 1 connects to
itself is 1/(2n + 1).

Let Wn,i be the degree of vertex i in Gn under either of the models above. Our
main result is a rate of convergence in the Kolmogorov metric (defined below) of
Wn,i/(EW 2

n,i)
1/2 to its distributional limit as n → ∞. Although the literature on

these models is large, there is surprisingly little known about these distributions.
The fact that these limits exist for the first model has been shown by Móri (2005)
and Backhausz (2011) and the same result for both models can be read from Janson
(2006) by relation to a generalized Pólya urn, although the existing descriptions of
the limits are not very explicit. A further related result from Peköz, Röllin and
Ross (2012) (and the only main result there having bearing on our work here) is
that for large i, the distribution of Wn,i is approximately geometric with parameter√

i/n, with the error in the approximation going to zero as i → ∞. Thus it can be
seen that if i/n → 0 and i → ∞, then the distribution of Wn,i/EWn,i converges to
a rate one exponential; cf. Proposition 2.5(iii) below.

The primary tool we use here to characterize the limits and obtain rates of con-
vergence is a new distributional transformation for which the limit distributions are
the unique fixed points. This transformation allows us to develop a new variation
of Stein’s method; we refer to Chen, Goldstein and Shao (2011), Ross (2011) and
Ross and Peköz (2007) for introductions to Stein’s method.

To formulate our main result we first define the family of densities

κs(x) = �(s)

√
2

sπ
exp

(−x2

2s

)
U

(
s − 1,

1

2
,
x2

2s

)
for x > 0, s ≥ 1/2,(1.1)

where �(s) denotes the gamma function and U(a, b, z) denotes the confluent hy-
pergeometric function of the second kind (also known as the Kummer U function)
[see Abramowitz and Stegun (1964), Chapter 13]. Propositions 2.3 and 2.5 below
imply that κs is indeed a density for s ≥ 1/2 and we denote by Ks the distribution
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function defined by the density κs . Define the Kolmogorov distance between two
cumulative distribution functions P and Q as

dK(P,Q) = sup
x

∣∣P(x) − Q(x)
∣∣.

THEOREM 1.1. Let Wn,i be the degree of vertex i in a preferential attachment
graph on n vertices defined above and let b2

n,i = EW 2
n,i . For model 1 with 2 ≤ i ≤ n

and some constants c,C > 0 independent of n,

c√
n

≤ dK
(
L (Wn,i/bn,i),Ki−1

) ≤ C√
n
.

For model 2 with 1 ≤ i ≤ n and some constants c,C > 0 independent of n,

c√
n

≤ dK
(
L (Wn,i/bn,i),Ki−1/2

) ≤ C√
n
.

REMARK 1.1. Using Proposition 2.5 below we see an interesting difference
in the behavior of the two models. In model 1 the limit distribution for the degree
of the first vertex (which by symmetry is the same as that for the second vertex)
is K1, the absolute value of a standard normal random variable, whereas in model 2
the limit distribution for the first vertex is K1/2, the square root of an exponential
random variable.

REMARK 1.2. To ease exposition we present our upper bounds as rates,
but the constants are recoverable (although probably not practical especially for
large i).

Theorem 1.1 will follow from a more general result derived by developing
Stein’s method for the distribution Ks . The key ingredient to our framework fol-
lows from observing that Ks is a fixed point of a certain distributional transfor-
mation which we will refer to as the “s-transformed double size bias” (s-TDSB)
transformation, which we now describe.

Recall for a nonnegative random variable W having finite mean we say W ′ has
the size bias distribution of W if

E
{
Wf (W)

} = EWEf
(
W ′)

for all f such that E|Wf (W)| < ∞ [see Brown (2006) and Arratia and Goldstein
(2010) for surveys and applications of size biasing]. If in addition W has finite
second moment, then we will write W ′′ to denote a random variable having the
size bias distribution of W ′. Alternatively we say W ′′ has the double size bias
distribution of W and it is straightforward to check that

E
{
W 2f (W)

} = EW 2
Ef

(
W ′′).(1.2)
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Although not used below, it is also appropriate to say that W ′′ has the square bias
distribution of W since (1.2) implies that we are biasing W against its square. This
terminology is used in Goldstein (2007) and Chen, Goldstein and Shao (2011)
albeit under a different notation. Now, we have the following key definition.

DEFINITION 1.3. For fixed s ≥ 1/2 let U1 and U2 be two independent random
variables uniformly distributed on the interval [0,1], and let Y be a Bernoulli ran-
dom variable with parameter (2s)−1 independent of U1 and U2. Define the random
variable

V := Y max(U1,U2) + (1 − Y)min(U1,U2).

We say that W ∗ has the s-transformed double size biased (s-TDSB) distribution
of W , if

L
(
W ∗) = L

(
V W ′′),

where W ′′, the double size bias of W , is assumed to be independent of V .

Our next result implies that the closer a distribution is to its s-TDSB transform,
the closer it is to the Ks distribution. Besides the Kolmogorov metric we also
consider the Wasserstein metric between two probability distribution functions P

and Q, defined as

dW(P,Q) = sup
h:‖h′‖=1

∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dQ(x)

∣∣∣∣.

THEOREM 1.2. Let W be a nonnegative random variable with EW 2 = 1 and
let s ≥ 1 or s = 1/2. Let W ∗ have the s-TDSB distribution of W and be defined on
the same probability space as W . Then if s ≥ 1,

dW
(
L (W),Ks

) ≤ 8s

(
s + 1

4
+

√
π

2

)
E

∣∣W − W ∗∣∣,(1.3)

and, for any β ≥ 0,

dK
(
L (W),Ks

) ≤ 53sβ + 34s3/2
P

[∣∣W − W ∗∣∣ > β
]
.(1.4)

If s = 1/2 then

dW
(
L (W),K1/2

) ≤ 2E
∣∣W − W ∗∣∣,

and, for any β ≥ 0,

dK
(
L (W),K1/2

) ≤ 26β + 8P
[∣∣W − W ∗∣∣ > β

]
.
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REMARK 1.4. As can easily be read from the work of Section 2 (in particular,
Propositions 2.3 and 2.5), the distributions Ks can roughly be partitioned into three
regions where similar behavior within the range can be expected: s = 1/2, 1/2 <

s < 1 and s ≥ 1. The theorem only covers the first and last cases as this is what
is needed to prove Theorem 1.1. Analogs of the results of the theorem hold in the
region 1/2 < s < 1, but we have omitted them for simplicity and brevity.

REMARK 1.5. From Lemma 3.8 below and the fact that for h with bounded
derivative

E
∣∣h(X) − h(Y )

∣∣ ≤ ∥∥h′∥∥dW
(
L (X),L (Y )

)
,

we see that for s ≥ 1 or s = 1/2 and all ε > 0,

dK
(
L (W),Ks

) ≤ dW(L (W),Ks)

ε
+ √

2ε.

Choosing ε = 2−3/4√dW(L (W),Ks) yields

dK
(
L (W),Ks

) ≤ 21/4
√

dW
(
L (W),Ks

)
.

Thus we can obtain bounds in the Kolmogorov metric if |W −W ∗| is appropriately
bounded with high probability or in expectation.

REMARK 1.6. It follows from Lemmas 3.1 and 3.11 below that L (W) =
L (W ∗) if and only if W ∼ Ks . In the case that s = 1, V is uniform on (0,1)

and Proposition 2.5 below implies that K1 is distributed as the absolute value
of a standard normal random variable. Thus we obtain the interesting fact that
L (W) = L (UW ′′) for U uniform (0,1) and independent of W ′′ if and only if
W is distributed as the absolute value of a standard normal variable. This fact can
also be read from its analog for the standard normal distribution [Chen, Goldstein
and Shao (2011), Proposition 2.3]: L (W) = L (U0|W |′′) for U0 uniform (−1,1)

and independent of |W |′′ if and only if W has the standard normal distribution [see
also Pitman and Ross (2012)].

Although there are general formulations for developing Stein’s method machin-
ery for a given distribution [see Reinert (2005)], our framework below does not
adhere to any of these directly since the characterizing operator we use is a second
order differential operator [see (3.1) and (3.3) below]. For the distribution Ks , the
usual first order Stein operator derived from the density approach of Reinert (2005)
[following Stein (1986)] is a complicated expression involving special functions.
However, by composing this more canonical operator with an appropriate first or-
der operator, we are able to derive a second order Stein operator (see Lemma 3.3
below) which has a form that is amenable to our analysis. This strategy may be
useful for other distributions which have first order operators that are difficult to
handle.

The usual approach to developing Stein’s method is to decide on the distribution
of interest, find a corresponding Stein operator and then derive couplings from it.
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The operator we use here was suggested by the s-TDSB transform which in turn
arose from the discovery of a close coupling in the preferential attachment appli-
cation. We believe this approach of using couplings to suggest a Stein operator is a
potentially fruitful new strategy for extending Stein’s method to new distributions
and applications.

There have been several previous developments of Stein’s method using fixed
points of distributional transformations. Goldstein and Reinert (1997) develop
Stein’s method using the zero-bias transformation for which the normal distribu-
tion is a fixed point. Letting U be a uniform (0,1) random variable independent of
all else, Goldstein (2009) and Peköz and Röllin (2011) develop Stein’s method for
the exponential distribution using the fact that W and UW ′ have the same distri-
bution if and only if W has an exponential distribution [Pakes and Khattree (1992)
and Lyons, Pemantle and Peres (1995) also use this property]. We will show be-
low that W and UW ′′ have the same distribution if and only if W is distributed
as the absolute value of a standard normal random variable (see also Remark 1.6
above). In this light this paper can be viewed as extending the use of these types of
distributional transformations in Stein’s method.

The layout of the remainder of the article is as follows. In Section 2 we discuss
various properties and alternative representations of Ks , in Section 3 we develop
Stein’s method for Ks and prove Theorem 1.2 and in Section 4 we prove Theo-
rem 1.1 by constructing the coupling needed to apply Theorem 1.2 and bounding
the appropriate terms.

2. The distribution Ks . In this section we collect some facts about Ks . Recall
the notation and definitions associated to the formula (1.1) for the density κs(x).
From Abramowitz and Stegun [(1964), Chapter 13], the Kummer U function, de-
noted U(a, b, z), is the unique solution of the differential equation

z
d2U

dz2 + (b − z)
dU

dz
− aU = 0,

which satisfies (2.7) below. The following lemma collects some facts about
U(a, b, z); the right italic labeling of the formulas corresponds to the equation
numbers from Abramowitz and Stegun [(1964), Chapter 13], and the notation
U ′(a, b, z) refers to the derivative with respect to z.

LEMMA 2.1. Let a, b, z ∈ R;

if z > 0, U(a, b, z) = z1−bU(1 + a − b,2 − b, z), (13.1.29)(2.1)

if a, z > 0,
(13.2.5)(2.2)

U(a, b, z) = 1

�(a)

∫ ∞
0

e−zt ta−1(1 + t)b−a−1 dt,

U ′(a, b, z) = −aU(a + 1, b + 1, z), (13.4.21)(2.3)
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(1 + a − b)U(a, b − 1, z)
(13.4.24)(2.4)

= (1 − b)U(a, b, z) − zU ′(a, b, z),

U(a, b, z) − U ′(a, b, z) = U(a, b + 1, z), (13.4.25)(2.5)

U(a − 1, b − 1, z) = (1 − b + z)U(a, b, z) − zU ′(a, b, z), (13.4.27)(2.6)

U(a, b, z) ∼ z−a, (z → ∞), (13.5.2)(2.7)

for a > −1
2 , U

(
a, 1

2 ,0
) = �

(1
2

)
/�

(
a + 1

2

)
. (13.5.10)(2.8)

As a direct consequence of (2.5) we have

∂

∂z

(
e−zU(a, b, z)

) = −e−zU(a, b + 1, z),(2.9)

combining (2.3) and (2.7) with a = 0 we find

U(0, b, z) = 1,(2.10)

and using (2.1) with a = −1/2, b = 1/2 and (2.10) implies that for z > 0,

U
(−1

2 , 1
2 , z2) = z.(2.11)

By comparing integrands in (2.2), we also find the following fact.

LEMMA 2.2. Let 0 < a < a′, b < b′ and z > 0. Then

�(a)U(a, b, z) > �
(
a′)U (

a′, b, z
)

and U(a, b, z) < U
(
a, b′, z

)
.

The next results provide simpler representations for Ks .

PROPOSITION 2.3. If X and Y are two independent random variables having
distributions

X ∼
{

B(1, s − 1), if s > 1,
B(1/2, s − 1/2), if 1/2 < s ≤ 1,

where B(a, b) denotes the beta distribution, and

Y ∼
{

�(1/2,1), if s > 1,
Exp(1), if 1/2 < s ≤ 1,

where �(a, b) denotes the gamma distribution and Exp(λ) the exponential distri-
bution, then

√
2sXY ∼ Ks.
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PROOF. Let s > 1 and observe that by first conditioning on X, we can express
the density of

√
2sXY as

ps(x) :=
√

2(s − 1)√
sπ

∫ 1

0
exp

(−x2

2sy

)
y−1/2(1 − y)s−2 dy.(2.12)

After making the change of variable y = 1/(1 + t) in (2.12), we find

ps(x) =
√

2(s − 1)√
sπ

∫ ∞
0

exp
(−x2(t + 1)

2s

)
t s−2(1 + t)1/2−s dt,

and now using (2.2) with a = s −1 and b = 1/2 in the definition (1.1) of κs implies
that κs = ps .

Similarly, if 1/2 < s ≤ 1, then we can express the density of
√

2sXY as

qs(x) := �(s)x

s
√

π�(s − 1/2)

∫ 1

0
exp

(−x2

2sy

)
y−3/2(1 − y)s−3/2 dy,(2.13)

and after making the change of variable y = 1/(1 + t) in (2.13), we find

qs(x) = �(s)x

s
√

π�(s − 1/2)

∫ ∞
0

exp
(−x2(t + 1)

2s

)
t s−3/2(1 + t)1−s dt

= �(s)

√
2

sπ
exp

(−x2

2s

)
x√
2s

U

(
s − 1

2
,

3

2
,
x2

2s

)
,

where we have used (2.2) with a = s − 1/2 and b = 3/2 in the second equality.
Applying (2.1) with a = s − 1 and b = 1/2 to this last expression implies κs = qs .

�

The previous representations easily yield useful formulas for Mellin transforms.

PROPOSITION 2.4. If Z ∼ Ks with s ≥ 1/2, then for all r > −1,

EZr =
(

s

2

)r/2 �(s)�(r + 1)

�(r/2 + s)
.(2.14)

PROOF. For s > 1/2, we use Proposition 2.3 and well-known formulas for the
Mellin transforms of the beta and gamma distributions to find

EZr = (2s)r/2 �(s)�(r/2 + 1)�(r/2 + 1/2)

�(r/2 + s)�(1/2)
.(2.15)

An application of the gamma duplication formula yields

�

(
r

2
+ 1

)
�

(
r

2
+ 1

2

)
= �

(
1

2

)
2−r�(r + 1),

which combined with (2.15) implies (2.14) for the case s > 1/2.
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The case s = 1/2 follows from Proposition 2.5(i) below which implies that

if L (Y ) = Exp(1), then Z
D= √

Y . Now (2.15) easily follows from well-known
Mellin transform formulas and thus (2.14) also follows. �

In a few special cases we can simplify and extend Proposition 2.3. Below Ks(x)

denotes the distribution function of Ks .

PROPOSITION 2.5. We have the following special cases of Ks :

(i) κ1/2(x) = 2xe−x2
,

(ii) κ1(x) = (2/π)1/2e−x2/2,

(iii) lim
s→∞Ks(x) = 1 − e−√

2x.

PROOF. The identities (i) and (ii) are immediate from (2.11) and (2.10), re-
spectively. Using Stirling’s formula for the gamma function to take the limit as
s → ∞ for fixed r in (2.14) yields the moments of Exp(

√
2) which proves (iii).

�

REMARK 2.1. As discussed below, the preferential attachment model we
study is a special case of a generalized Pólya triangular urn scheme as studied
by Janson (2006). The limiting distributions in his Theorem 1.3(v) with α = 2 and
δ = γ = 1 include Ks . In fact, Janson (2006), Example 3.1, discusses these limits,
but, with the exception of the case s = 1, it does not appear that the decomposition
of Proposition 2.3 has previously been exposed. On the other hand, up to a scal-
ing factor, the moment formula of Janson (2006), Theorem 1.7, simplifies to that
of Proposition 2.4 for Ks . The distribution Ks also appears in this urn context in
Section 9 of the survey article Janson (2010).

Additionally, if Z ∼ Ks , then Z2/(2s) ∼ D(1,1/2; s) for s ≥ 1/2, where
D(a,b; c) is a Dufresne law as defined in Chamayou and Letac (1999). Dufresne
laws are essentially a generalization of products of independent beta and gamma
random variables.

We now collect one more fact about Ks , which will also prove useful in devel-
oping the Stein’s method framework below.

LEMMA 2.6 (Mills ratio for Ks). For every x ≥ 0 and s ≥ 1,

1

κs(x)

∫ ∞
x

κs(y) dy ≤ min
{√

π

2
,
s

x

}
.
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PROOF. Using the definition (1.1) of κs , making the change of variable y2

2s
= z

and then applying (2.1) with a = s − 1 and b = 1/2, (2.9) with a = s − 1/2 and
b = 1/2 and then (2.7) with a = s − 1/2, we find∫ ∞

x
κs(y) dy = �(s)√

π

∫ ∞
x2/(2s)

z−1/2 exp(−z)U

(
s − 1,

1

2
, z

)
dz

= �(s)√
π

∫ ∞
x2/(2s)

exp(−z)U

(
s − 1

2
,

3

2
, z

)
dz

= �(s)√
π

exp
(−x2

2s

)
U

(
s − 1

2
,

1

2
,
x2

2s

)
,

so that

1

κs(x)

∫ ∞
x

κs(y) dy =
√

s

2

U(s − 1/2,1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))
.(2.16)

First note that by applying (2.1) with a = s − 1 and b = 1/2 in the denominator of
the final expression of (2.16) we have

1

κs(x)

∫ ∞
x

κs(y) dy = s

x

U(s − 1/2,1/2, x2/(2s))

U(s − 1/2,3/2, x2/(2s))
≤ s

x
,(2.17)

where the inequality follows by Lemma 2.2.
Now applying (2.1) to (2.16) both in the denominator as before and in the nu-

merator with a = s − 1/2 and b = 1/2, we find

1

κs(x)

∫ ∞
x

κs(y) dy =
√

s

2

U(s,3/2, x2/(2s))

U(s − 1/2,3/2, x2/(2s))
≤

√
s

2

�(s − 1/2)

�(s)
,

where again the inequality follows by Lemma 2.2. Now applying Lemma 2.7 be-
low to this last expression and combining with (2.17) yields the lemma. �

LEMMA 2.7. If s ≥ 1, then

1 <

√
s�(s − 1/2)

�(s)
≤ √

π.

PROOF. Bustoz and Ismail (1986), Theorem 1, implies that
√

s�(s − 1/2)

�(s)
(2.18)

is a decreasing function on (1/2,∞), so that for s ≥ 1, (2.18) is bounded above by√
π . Moreover, Stirling’s formula implies

lim
s→∞

�(s)√
s�(s − 1/2)

= 1. �
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3. Stein’s method for Ks . In this section we develop Stein’s method for Ks

and prove Theorem 1.2.

LEMMA 3.1 (Characterizing Stein operator). If Z ∼ Ks for s ≥ 1/2, then
for every twice differentiable function f with f (0) = f ′(0) = 0 and such that
E|f ′′(Z)|, E|Zf ′(Z)| and E|f (Z)| are finite, we have

E
{
sf ′′(Z) − Zf ′(Z) − 2(s − 1)f (Z)

} = 0.(3.1)

PROOF. Let Cs := √
2�(s)/

√
sπ . First note that

E
{
sf ′′(Z)

} = Cs

∫ ∞
0

sf ′′(x) exp
(−x2

2s

)
U

(
s − 1,

1

2
,
x2

2s

)
dx.(3.2)

Using (2.7) and (2.3) with a = s − 1 and b = 1/2 we find that (3.2) equals

Cs

∫ ∞
0

f ′′(x)

∫ ∞
x

t exp
(−t2

2s

)(
U

(
s − 1,

1

2
,
t2

2s

)
+ (s − 1)U

(
s,

3

2
,
t2

2s

))
dt dx

= Cs

∫ ∞
0

f ′(t)t exp
(−t2

2s

)(
U

(
s − 1,

1

2
,
t2

2s

)
+ (s − 1)U

(
s,

3

2
,
t2

2s

))
dt

= E
{
Zf ′(Z)

} + Cs

∫ ∞
0

f ′(t) · (s − 1)t exp
(−t2

2s

)
U

(
s,

3

2
,
t2

2s

)
dt,

where in the first equality we have used Fubini’s theorem [justified by E|f ′′(Z)| <
∞] and the fact that f ′(0) = 0.

We also have

Cs

∫ ∞
0

f ′(t) · t exp
(−t2

2s

)
(s − 1)U

(
s,

3

2
,
t2

2s

)
dt

= Cs

∫ ∞
0

f ′(t)
∫ ∞
t

2(s − 1) exp
(−x2

2s

)

×
((

−1

2
+ x2

2s

)
U

(
s,

3

2
,
x2

2s

)
− x2

2s
U ′

(
s,

3

2
,
x2

2s

))
dx dt

= Cs

∫ ∞
0

f (x) · 2(s − 1) exp
(−x2

2s

)

×
((

−1

2
+ x2

2s

)
U

(
s,

3

2
,
x2

2s

)
− x2

2s
U ′

(
s,

3

2
,
x2

2s

))
dx

= Cs

∫ ∞
0

f (x) · 2(s − 1) exp
(−x2

2s

)
U

(
s − 1,

1

2
,
x2

2s

)
dx

= E
{
2(s − 1)f (Z)

}
,
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where in the second equality we have used Fubini’s theorem [justified by
E|Zf ′(Z)| < ∞] and the fact that f (0) = 0, and in the third we have used (2.6)
with a = s and b = 3/2. Hence,

E
{
sf ′′(Z)

} = E
{
Zf ′(Z)

} + E
{
2(s − 1)f (Z)

}
,

which proves the claim. �

For the sake of brevity, let Vs(x) := U(s − 1, 1
2 , x2

2s
).

LEMMA 3.2. For all functions h such that Eh(Z) exists, the second order
differential equation

sf ′′(x) − xf ′(x) − 2(s − 1)f (x) = h(x) − Eh(Z)(3.3)

with initial conditions f (0) = f ′(0) = 0 has solution

f (x) = 1

s
Vs(x)

∫ x

0

1

Vs(y)κs(y)

∫ y

0
h̃(z)κs(z) dz dy

(3.4)

= −1

s
Vs(x)

∫ x

0

1

Vs(y)κs(y)

∫ ∞
y

h̃(z)κs(z) dz dy,

where h̃ = h − Eh(Z).

In order to prove Lemma 3.2, we use the following intermediate result.

LEMMA 3.3. If g and f are functions such that g(0) = f (0) = 0 and for
x > 0,

sg′(x) − s

(
x

s
− d(x)

)
g(x) = h̃(x), f ′(x) − d(x)f (x) = g(x),(3.5)

where

d(x) = ∂

∂x
logVs(x) = V ′

s (x)

Vs(x)
,(3.6)

then f solves (3.3) and f ′(0) = 0.
Conversely, if f is a solution to (3.3) with f (0) = f ′(0) = 0 and g(x) = f ′(x)−

d(x)f (x), then g(0) = 0 and f and g satisfy (3.5).

PROOF. Assume f and g satisfy (3.5) and f (0) = g(0) = 0. The fact that
f ′(0) = 0 follows easily from the second equation of (3.5). To show that (3.5)
yields a solution to (3.3), differentiate the second equality in (3.5) and combine
the resulting equations to obtain

sf ′′(x) − xf ′(x) − (
sd ′(x) + sd(x)2 − xd(x)

)
f (x) = h̃(x).
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Hence, we only need to show that

sd ′(x) + sd(x)2 − xd(x) = 2(s − 1).(3.7)

In order to simplify the calculations, let us introduce

D(z) = ∂

∂z
logU

(
s − 1,

1

2
, z

)
= U ′(s − 1,1/2, z)

U(s − 1,1/2, z)
;

note that d(x) = x
s
D(x2

2s
). With this and z = x2

2s
, (3.7) becomes(1

2 − z
)
D(z) + zD′(z) + zD(z)2 = s − 1.(3.8)

The left-hand side of (3.8) is equal to

(1/2 − z)U ′(s − 1,1/2, z) + zU ′′(s − 1,1/2, z)

U(s − 1,1/2, z)

= (s − 1)
(−1/2 + z)U(s,3/2, z) − zU ′(s,3/2, z)

U(s − 1,1/2, z)
= s − 1,

where we have used (2.3) with a = s − 1 and b = 1/2 to handle the derivatives in
the first equality and then (2.6) with a = s and b = 3/2 in the second. Hence, (3.7)
holds, as desired.

If f is a solution to (3.3) with f (0) = f ′(0) = 0 and g(x) = f ′(x)− d(x)f (x),
then obviously g(0) = 0 and the second assertion of the lemma follows from the
previous calculations. �

PROOF OF LEMMA 3.2. Lemma 3.3 implies that we only need to solve (3.5).
Note first that the general differential equation

F ′(x) − A′(x)F (x) = H(x), x > 0,F (0) = 0,

has solution

F(x) = eA(x)
∫ x

0
H(z)e−A(z) dz.

Hence, noticing that

x

s
− d(x) = − ∂

∂x
logκs(x),

the solution to the first equation in (3.5) is

g(y) = 1

κs(y)

∫ y

0

h̃(z)

s
κs(z) dz,(3.9)

whereas the solution to the second equation in (3.5) is

f (x) = Vs(x)

∫ x

0

g(y)

Vs(y)
dy,
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which is the first identity of (3.4); the second follows by observing that∫ ∞
0 h̃(x)κs(x) dx = 0. �

Before developing the Stein’s method machinery further we need two more lem-
mas, the first of which is well known and easily read from Gordon (1941).

LEMMA 3.4 (Gaussian Mills ratio). For x, s > 0,

exp
(

x2

2s

)∫ ∞
x

exp
(−t2

2s

)
dt ≤ min

{√
sπ

2
,
s

x

}
.

LEMMA 3.5. If d(x) is defined by (3.6), then for s ≥ 1 and x > 0

0 ≤ −d(x) ≤
√

2�(s)√
s�(s − 1/2)

<
√

2,

0 ≤ −xd(x) ≤ 2(s − 1).

PROOF. To prove the first assertion note that (2.3) with a = s − 1 and b = 1/2
followed by (2.1) with a = s − 1/2 and b = 1/2 and Lemma 2.2 imply

−d(x) = −x

s

U ′(s − 1,1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))

=
√

2(s − 1)√
s

U(s − 1/2,1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))
(3.10)

≤
√

2(s − 1)�(s − 1)√
s�(s − 1/2)

.

The claimed upper bound now follows from Lemma 2.7. The lower bound follows
from the final expression of (3.10), since for s > 1, the integral representation (2.2)
implies all terms in the quotient are nonnegative, and for s = 1, (2.10) implies
d(x) = 0.

For the second assertion, we use (2.5) with a = s − 1 and b = 1/2 in the second
equality below to find

−xd(x) = −x2

s

U ′(s − 1,1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))
(3.11)

= 2
(
s − 1

2

)
U(s − 1,−1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))
− 1.

Applying Lemma 2.2 to (3.11) proves the remaining upper bound. The second
lower bound follows from the first. �
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LEMMA 3.6. If g satisfies the first equation of (3.5) with g(0) = 0, then

g(x) = 1

sκs(x)

∫ x

0
κs(y)h̃(y) dy = − 1

sκs(x)

∫ ∞
x

κs(y)h̃(y) dy.

• If h is nonnegative and bounded, then for all x > 0 and s ≥ 1,

∣∣g(x)
∣∣ ≤ ‖h‖min

{
1

s

√
π

2
,

1

x

}
.(3.12)

• If h is absolutely continuous with bounded derivative, then for all s ≥ 1

‖g‖ ≤ ∥∥h′∥∥(
1 + 1

s

√
π

2

)
.(3.13)

PROOF. The first assertion is a restatement of (3.9), recorded in this lemma
for convenient future reference.

If h(x) ≥ 0 for x ≥ 0 with ‖h‖ < ∞, then for all s ≥ 1 and x > 0,

∣∣g(x)
∣∣ ≤ ‖h̃‖

sκs(x)

∫ ∞
x

κs(y) dy ≤ min
{√

π

2
,
s

x

}‖h‖
s

,

where we have used Lemma 2.6; this shows (3.12).
Let h be absolutely continuous with ‖h′‖ < ∞, and without loss of generality

assume that h(0) = 0 so that for x ≥ 0, |h(x)| ≤ ‖h′‖x. In particular, if Zs ∼ Ks ,

then h̃(x) ≤ (x + EZs)‖h′‖ and noting that EZs ≤
√

EZ2
s = 1 (using Proposi-

tion 2.4), we can apply Lemma 2.6 to find that for x > 0,

∣∣g(x)
∣∣ ≤ ‖h′‖

sκs(x)

∫ ∞
x

(y + 1)κs(y) dy ≤ ‖h′‖
s

(∫ ∞
x yκs(y) dy

κs(x)
+

√
π

2

)
.

To bound the integral in this last expression, we make the change of variable y2

2s
= z

and apply (2.9) with a = s − 1, b = −1/2 and (2.7) with a = s − 1 to find∫ ∞
x yκs(y) dy

κs(x)
= s

κs(x)

∫ ∞
x2/(2s)

e−zU

(
s − 1,

1

2
, z

)
dz

= s
U(s − 1,−1/2, x2/(2s))

U(s − 1,1/2, x2/(2s))
≤ s,

where the last inequality follows from Lemma 2.2. �

LEMMA 3.7. Let f be defined as in (3.4) with f (0) = f ′(0) = 0.

• If h is nonnegative and bounded and s ≥ 1, then∥∥f ′∥∥ ≤ √
2π‖h‖.(3.14)
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• If h is nonnegative, bounded and absolutely continuous with bounded derivative
and s ≥ 1, then

∥∥f ′′∥∥ ≤ 2
(
π

√
s + 1

s

)
‖h‖.(3.15)

If s = 1/2, then ∥∥f ′′∥∥ ≤ 4‖h‖.(3.16)

• If h is absolutely continuous with bounded derivative and s ≥ 1, then

∥∥f ′′′∥∥ ≤ 8
(
s + 1

4
+

√
π

2

)∥∥h′∥∥.(3.17)

If s = 1/2, then ∥∥f ′′′∥∥ ≤ 4
∥∥h′∥∥.(3.18)

PROOF. From (3.4) of Lemma 3.2 we have that

f (x) = Vs(x)

∫ x

0

g(y)

Vs(y)
dy,

where g is as in Lemma 3.6. If either h is bounded or absolutely continuous with
bounded derivative, then recall that Lemma 3.6 implies g is bounded. If s ≥ 1,

then (2.3) and (2.7) with a = s −1 and b = 1/2 imply that Vs(x) = U(s −1, 1
2 , x2

2s
)

is nonincreasing and positive for positive x, so that∣∣f (x)
∣∣ ≤ x‖g‖.(3.19)

Now, again by (3.5), we have∣∣f ′(x)
∣∣ ≤ ∣∣d(x)f (x)

∣∣ + ‖g‖ ≤ ‖g‖(∣∣xd(x)
∣∣ + 1

) ≤ ‖g‖(2s − 1),(3.20)

where we have used (3.19) in the first inequality and Lemma 3.5 in the second.
Applying the bound (3.12) proves (3.14).

To bound f ′′ for h having ‖h′‖ < ∞, let s ≥ 1/2 and differentiate (3.3) to find

f ′′′(x) − x

s
f ′′(x) = 2s − 1

s
f ′(x) + h′(x)

s
,(3.21)

which implies

d

dx

(
exp

(−x2

2s

)
f ′′(x)

)
= exp

(−x2

2s

)(
2s − 1

s
f ′(x) + h′(x)

s

)
.

Integrating, we obtain

exp
(−x2

2s

)
f ′′(x) = −

∫ ∞
x

exp
(−y2

2s

)(
2s − 1

s
f ′(y) + h′(y)

s

)
dy,
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so that Lemma 3.4 yields

∣∣f ′′(x)
∣∣ ≤ (2s − 1)

∥∥f ′∥∥ min
{√

π

2s
,

1

x

}
(3.22)

+ 1

s
exp

(
x2

2s

)∫ ∞
x

exp
(−y2

2s

)
h′(y) dy.

If ‖h‖ < ∞, then an integration by parts yields a bound on the second term
of (3.22) which yields

∣∣f ′′(x)
∣∣ ≤ (2s − 1)

∥∥f ′∥∥ min
{√

π

2s
,

1

x

}
+ 2‖h‖

s
.

If s ≥ 1, then apply the bound (3.14) above on ‖f ′‖ to find (3.15); for s = 1/2,
(3.16) follows immediately. Now, we can apply Lemma 3.4 directly to (3.22) to
find ∣∣f ′′(x)

∣∣ ≤ (
(2s − 1)

∥∥f ′∥∥ + ∥∥h′∥∥)
min

{√
π

2s
,

1

x

}
.(3.23)

Finally, (3.21) implies

s
∣∣f ′′′(x)

∣∣ ≤ ∣∣xf ′′(x)
∣∣ + (2s − 1)

∥∥f ′∥∥ + ∥∥h′∥∥;(3.24)

the first term can be bounded by (3.23), and if s ≥ 1, a subsequent application
of (3.20) on ‖f ′‖ and then (3.13) on ‖g‖ yields (3.17). If s = 1/2, then (3.18)
follows from (3.24) and (3.23). �

In order to obtain the bounds for the Kolmogorov metric, we need to introduce
the smoothed half-line indicator function

ha,ε(x) = 1

ε

∫ ε

0
I[x ≤ a + t]dt.(3.25)

LEMMA 3.8. If Z ∼ Ks and W is a nonnegative random variable and s ≥ 1,
then, for all ε > 0,

dK
(
L (W),Ks

) ≤ sup
a≥0

∣∣Eha,ε(W) − Eha,ε(Z)
∣∣ + ε

√
2.

If s = 1/2, then, for all ε > 0,

dK
(
L (W),K1/2

) ≤ sup
a≥0

∣∣Eha,ε(W) − Eha,ε(Z)
∣∣ + ε

√
2/e.

PROOF. The lemma follows from a well-known argument and the following
bounds on the density κs(x) defined by (1.1). If s ≥ 1, then by (2.3) with a = s − 1
and (2.2) with a = s, κs(x) is nonincreasing in x and from (2.8) with a = s − 1,

κs(0) = �(s)
√

2

�(s − 1/2)
√

s
≤ √

2,
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where the inequality is by Lemma 2.7. If s = 1/2, then κs(x) = 2xe−x2
which has

maximum
√

2/e. �

We will also need the following “indirect” concentration inequality; it follows
from the arguments of the proof of Lemma 3.8 immediately above.

LEMMA 3.9. If Z ∼ Ks and W is a nonnegative random variable and s ≥ 1,
then, for all 0 ≤ a < b,

P(a < W ≤ b) ≤ √
2(b − a) + 2dK

(
L (W),Ks

)
.

If s = 1/2, then, for all 0 ≤ a < b,

P(a < W ≤ b) ≤
√

2/e(b − a) + 2dK
(
L (W),Ks

)
.

LEMMA 3.10. If f satisfies (3.3) for ha,ε and s ≥ 1, then for x ≥ 0,

s
∣∣f ′′(x + t) − f ′′(x)

∣∣ ≤ |t |(2x(π
√

s + 1) + (2s − 1)
√

2π
)

+ 1

ε

∫ t∨0

t∧0
I[a < x + u ≤ a + ε]du.

If s = 1/2, then for x ≥ 0,

1

2

∣∣f ′′(x + t) − f ′′(x)
∣∣ ≤ 4|t |x + 1

ε

∫ t∨0

t∧0
I[a < x + u ≤ a + ε]du.

PROOF. Using (3.3), we obtain

s
(
f ′′(x + t) − f ′′(x)

) = x
(
f ′(x + t) − f ′(x)

) + tf ′(x + t)

+ 2(s − 1)
(
f (x + t) − f (x)

) + ha,ε(x + t) − ha,ε(x),

hence,

s
∣∣f ′′(x + t) − f ′′(x)

∣∣ ≤ |t |(x∥∥f ′′∥∥ + ∥∥f ′∥∥ + 2(s − 1)
∥∥f ′∥∥)

+ 1

ε

∫ t∨0

t∧0
I[a < x + u ≤ a + ε]du.

Applying the bounds of Lemma 3.7 yields the claim. �

LEMMA 3.11. Let W be a nonnegative random variable with EW 2 = 1 and
let W ∗ be the s-TDSB of W as in Definition 1.3 for some s ≥ 1/2. For every twice
differentiable function f with f (0) = f ′(0) = 0 and such that the expectations
below are well defined, we have

sEf ′′(W ∗) = E
{
Wf ′(W) + 2(s − 1)f (W)

}
.

PROOF. The lemma will follow from two facts:
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• If W ′′ has the double size bias distribution of W , then for all g with
E|W 2g(W)| < ∞,

Eg
(
W ′′) = E

{
W 2g(W)

}
.

• If g is a function such that g′(0) = g(0) = 0 and for V as defined in Defini-
tion 1.3, E|g′′(V )| < ∞, then

sEg′′(V ) = g′(1) + 2(s − 1)g(1).

The first item above is easy to verify from the definition of the size bias distribution
and the fact that EW 2 = 1, and the second follows from a simple calculation after
noting that V has density (2 − 1

s
) − 2x(1 − 1

s
) for 0 < x < 1.

By conditioning on W ′′ and using the second fact above for g(t) = f (tW ′′)/
(W ′′)2, we find

sEf ′′(W ∗) = E

{
f ′(W ′′)

W ′′ + 2(s − 1)
f (W ′′)
(W ′′)2

}
,

and applying the first fact above proves the lemma. �

PROOF OF WASSERSTEIN BOUND OF THEOREM 1.2. Making use of Lem-
ma 3.2 and Lemma 3.11, we have

Eh(W) − Eh(Z) = E
{
sf ′′(W) − Wf ′(W) − 2(s − 1)f (W)

}
= sE

{
f ′′(W) − f ′′(W ∗)}

,

where f is given by (3.4). If h is Lipschitz continuous, then f is three times
differentiable almost everywhere and we have∣∣Eh(W) − Eh(Z)

∣∣ ≤ s
∥∥f ′′′∥∥E

∣∣W − W ∗∣∣.
We now obtain (1.3) by invoking (3.17) and (3.18) of Lemma 3.7. �

PROOF OF KOLMOGOROV BOUND OF THEOREM 1.2. Fix a > 0 and let ε >

0, to be chosen later. Let f be as in (3.4) with h̃ replaced by ha,ε −Eha,ε(Z), where
ha,ε is defined by (3.25). Define the indicator random variable J = I[|W − W ∗| ≤
β]. Now,

Eha,ε(W) − Eha,ε(Z)

= sE
{
f ′′(W) − f ′′(W ∗)}

= sE
{
J

(
f ′′(W) − f ′′(W ∗))} + sE

{
(1 − J )

(
f ′′(W) − f ′′(W ∗))}

=: R1 + R2.

If s ≥ 1, using (3.15) from Lemma 3.7 implies

|R2| ≤ 4
(
πs3/2 + 1

)
P

(∣∣W − W ∗∣∣ > β
) ≤ 17s3/2

P
(∣∣W − W ∗∣∣ > β

)
.
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Applying Lemma 3.10,

|R1| ≤ β
(
2EW(π

√
s + 1) + (2s − 1)

√
2π

) + 1

ε

∫ β

−β
P(a < W + u ≤ a + ε) du.

Noticing that EW ≤ 1 and applying Lemma 3.9 to the integrand,

|R1| ≤ 12sβ + 2βε−1(
√

2ε + 2δ) ≤ 15sβ + 4βε−1δ,

where δ = dK(L (W),Ks).
From Lemma 3.8, we have

δ ≤ √
2ε + 15sβ + 4βε−1δ + 17s3/2

P
(∣∣W − W ∗∣∣ > β

)
.

Choosing ε = 8β and solving for δ,

δ ≤ 16
√

2sβ + 30sβ + 34s3/2
P

(∣∣W − W ∗∣∣ > β
)
,

which yields (1.4).
A nearly identical argument yields the statement for s = 1/2. �

4. Proof of Theorem 1.1. We first reformulate Theorem 1.1 in terms of a gen-
eralized Pólya urn model. An urn initially contains i black balls and j white balls
and at each step a ball is drawn. If the ball drawn is black, it is returned to the urn
along with an additional α black balls and β white balls; if the ball drawn is white,
the ball is returned to the urn along with an additional γ black balls and δ white
balls. We use the notation (α,β;γ, δ)ni,j to denote the distribution of the number of

white balls in the urn after n draws and replacements. For example, (α,β;γ, δ)0
i,j

has a single point mass at j and also note that (1,0;0,1)ni,j corresponds to the
classical Pólya urn model.

THEOREM 1.1(a). Let n ≥ 1 and i ≥ 0 be integers and L (Wn,i) =
(2,0;1,1)ni,1. If b2

n,i = EW 2
n,i , then, for some constants c,C > 0 independent of n,

c√
n

≤ dK
(
L (Wn,i/bn,i),K(i+1)/2

) ≤ C√
n
.

Theorem 1.1 follows immediately from Theorem 1.1(a) after noting that for
model 1 with n ≥ i ≥ 2, the degree of vertex i in Gn, the graph with n vertices
and n − 1 edges, has distribution (2,0;1,1)n−i

2i−3,1; this is because the degree of
vertex i in Gi is 1 and the sum of the degrees of the remaining vertices is 2i − 3
(since Gi has i − 1 edges). For model 2 with n ≥ i ≥ 1, the degree of vertex i in
Gn, the graph with n vertices and n edges, has distribution (2,0;1,1)n−i+1

2i−2,1; this
is because the sum of the degrees of Gi−1 is 2i − 2 and vertex i has probability
1/(2i − 1) of self-attachment when forming Gi from Gi−1.

The lower bound of the theorem follows from the following general result com-
bined with the fact from Lemma 4.7 below that EW 2

n,i ≤ 2(1 + 2n).
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LEMMA 4.1. Let μ be a probability distribution with a density f such that
for all x in some interval (a, b), f (x) > ε > 0. If (Xn)n≥1 is a sequence of integer-
valued random variables and (an)n≥1 is a sequence of nonnegative numbers tend-
ing to zero, then

dK
(
L (anXn),μ

) ≥ can

for some positive constant c independent of n.

PROOF. Let F be the distribution function of μ and note that the hypothesis
on the density f implies that if a ≤ x < y ≤ b, then

F(y) − F(x) ≥ ε(y − x).(4.1)

Since limn an = 0, there exists N such that for all n ≥ N , there is an integer kn

such that [ankn, an(kn + 1)] ⊂ (a, b). From (4.1), for n ≥ N we have

F
(
an(kn + 1)

) − F(ankn) ≥ anε,

and now using the continuity of F on (a, b) and the fact that the distribution func-
tion Gn of anXn is constant on the interval In := [ankn, an(kn + 1)), it follows that
for n ≥ N ,

dK
(
L (anXn),μ

) ≥ sup
x∈In

∣∣Gn(x) − F(x)
∣∣ ≥ ε

2
an.

Since Gn is the distribution function of a discrete random variable and F is contin-
uous, it follows that dK(L (anXn),μ) > 0 for all n ∈ N (and in particular n < N ),
so that we may choose c > 0. �

REMARK 4.1. As mentioned in the Introduction we write our results as rates,
but the constants are recoverable. For the sake of clarity, we have not been careful
to optimize the bounds in our arguments, but it is clear that sharper statements can
be read from the proofs below. For example, the constant in both the lower bound
and upper bounds of Theorem 1.1(a) depend crucially on the scaling factor EW 2

n,i .
For our purposes Lemma 4.7 below is acceptable, but note that exact results are
available [see (4.23) and (4.24) in the proof of Lemma 4.7].

Now let W := Wn,i have distribution (2,0;1,1)ni,1. We will use (1.4) to prove
the upper bounds of Theorem 1.1(a) and so we will show that there is a close
coupling of W and V W ′′, where V is as in Definition 1.3 with s = (i + 1)/2. This
result will follow from the following lemmas proved at the end of this section.

LEMMA 4.2. There is a coupling (R,W ′′) of (2,0;1,1)n−1
i,3 and the double

size bias distribution of (2,0;1,1)ni,1 satisfying P(R �= W ′′) ≤ C/
√

n.
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LEMMA 4.3. The distribution (2,0;1,1)ni,1 can be expressed as a mixture of

the distributions (2,0;1,1)n−1
i+1,2 and (2,0;1,1)n−1

i+2,1 with respective probabilities
1/(1 + i) and 1 − 1/(1 + i).

In the next lemma we use the notation (α,β;γ, δ)Ni,j for a nonnegative integer-
valued random variable N to denote a mixture of the distributions (α,β;γ, δ)ni,j
for n = 0,1,2, . . . that are mixed with respective probabilities P(N = n) for n =
0,1,2, . . . .

LEMMA 4.4. Let L (R) = (2,0;1,1)n−1
i,3 , let L (X1) = (1,0;0,1)R−3

1,2 and let

L (X2) = (1,0;0,1)R−3
2,1 . Then

L (X1) = (2,0;1,1)n−1
i+1,2 and L (X2) = (2,0;1,1)n−1

i+2,1.

LEMMA 4.5. Let U1 and U2 be uniform (0,1) random variables, independent
of each other and of R, defined as in Lemma 4.2. Then there exist random variables
X1 with distribution (1,0;0,1)R−3

1,2 and X2 with distribution (1,0;0,1)R−3
2,1 such

that ∣∣X1 − R max(U1,U2)
∣∣ < 3 and

∣∣X2 − R min(U1,U2)
∣∣ < 3 a.s.

From these lemmas we can now prove Theorem 1.1(a); here and below we use
C to denote a generic constant that may differ from line to line.

PROOF OF THEOREM 1.1(a). Let W = Wn,i and b = bn,i , let (R,W ′′) be de-
fined as in Lemma 4.2 above and, as per Definition 1.3, let Y be a Bernoulli(1/(1+
i)) random variable and V = Y max(U1,U2)+ (1−Y)min(U1,U2), where U1 and
U2 are independent uniform (0,1) variables independent of Y . Lemmas 4.3, 4.4
and 4.5 imply that we can couple W and V R together so that |W −V R| < 3 almost
surely. Thus, using Lemma 4.2,

P
(∣∣W − V W ′′∣∣ > 3

) ≤ P
(
W ′′ �= R

) ≤ C/
√

n,

and recalling that V W ′′ has the s-TDSB distribution, the theorem follows

from (1.4) taking β = 3/b, noting that for c > 0, (cW)′ D= cW ′ and using b2 ≥ Cn

from Lemma 4.7 below. �

We have left to prove Lemmas 4.2–4.5 and 4.7; Lemma 4.3 is immediate after
considering the urn process corresponding to (2,0;1,1)ni,1 and conditioning on the
color of the first ball drawn, which is white with probability 1/(1 + i).

PROOF OF LEMMA 4.4. Consider an urn with i green balls, 1 black ball and 2
white balls. A ball is drawn at random and replaced in the urn along with another
ball of the same color plus an additional green ball.
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If X is the number of times a nongreen ball is drawn in n− 1 draws, the number
of white balls in the urn after n − 1 draws is distributed as (1,0;0,1)X1,2. Since

X + 3 is distributed as (2,0;1,1)n−1
i,3 (which is also that of R) and the number of

white balls in the urn after n − 1 draws has distribution (2,0;1,1)n−1
i+1,2, the first

equation follows. The second equation follows from similar considerations. �

PROOF OF LEMMA 4.5. We will show that for U1 and U2 independent uni-
form (0,1) random variables, there exist random variables N and M such that
L (N) = (1,0;0,1)n−3

1,2 , L (M) = L (n − N) and∣∣N − nmax(U1,U2)
∣∣ < 3 and

∣∣M − nmin(U1,U2)
∣∣ < 3 a.s.

The lemma follows from these “conditional” almost sure statements after noting
that L (M) = (1,0;0,1)n−3

2,1 since we can think of n − N as the number of black

balls in the (1,0;0,1)n−3
1,2 urn.

The formulas of Durrett [(2010), page 206] imply that (1,0;0,1)n−3
1,2 has distri-

bution function

F(k) =
(

k

n − 1

)(
k − 1

n − 2

)
, k = 1, . . . , n − 1,(4.2)

and it is straightforward to verify that

N := max
(⌈

(n − 1)U1
⌉
,1 + ⌈

(n − 2)U2
⌉)

has the same distribution. We find |N − nmax(U1,U2)| < 3 and thus a coupling
satisfying the first claim above. Defining

M := min
(⌈

(n − 1)U1
⌉
,1 + ⌈

(n − 2)U2
⌉)

,

(4.2) implies L (M) = L (n − N) and |M − nmin(U1,U2)| < 3. �

Before proving Lemma 4.2, we provide a useful construction for the double size
bias distribution of a sum of indicators.

LEMMA 4.6. Let W = ∑n
i=1 Xi , where the Xi are Bernoulli random variables

and b2 := EW 2. For each j, k ∈ {1, . . . , n}, let (X
(j,k)
i )i /∈{j,k} have the distribution

of (Xi)i /∈{j,k} conditional on Xj = Xk = 1 and let J and K be random variables
independent of the variables above satisfying

P(J = j,K = k) = E(XjXk)

b2 , j, k ≥ 1.

Then,

W ′′ = ∑
i /∈{J,K}

X
(J,K)
i + 2 − I[J = K]

has the double size bias distribution of W .
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PROOF. We have

Ef
(
W ′′) = b−2

∑
j,k

E(XjXk)Ef

( ∑
i /∈{j,k}

X
(j,k)
i + 2 − I[j = k]

)

= b−2
∑
j,k

E(XjXk)E
{
f (W)|Xj = Xk = 1

}

= b−2
∑
j,k

E
{
XjXkf (W)

} = b−2
E

{
W 2f (W)

};
this is exactly (1.2). �

To simplify the notation we consider i fixed in what follows. We write

Wn =
n∑

j=0

Xj,

where for j ≥ 1, Xj is the indicator that a white ball is drawn on draw j from the
(2,0;1,1)i,1 urn and X0 = 1 to represent the initial white ball in the urn. We will
then define random variables M

j,k
n such that

L
(
Mj,k

n

) = L (Wn|Xj = Xk = 1),(4.3)

so that by Lemma 4.6, if J and K are random variables independent of M
j,k
n

satisfying

P(K = k, J = j) = E(XkXj )

b2 , j, k ≥ 0(4.4)

for b2 := EW 2, then MJ,K
n has the double size bias distribution of W .

In order to generate a variable satisfying (4.3) for j < k, we use the follow-
ing lemma that yields a method to construct an urn process having the law of the
(2,0;1,1)i,1 urn process up to time n conditional on Xk = Xj = 1. This condi-
tioned process follows the law of the (2,0;1,1, )i,3 urn process up to (and includ-
ing) draw j − 1. At draw j , exactly one black ball is added and then draws j + 1
through k − 1 follow the (2,0;1,1) urn law. Again at draw k exactly one black
ball is added and then the process continues to draw n following the (2,0;1,1) urn
rule. We write M

j,k
n to denote the number of white balls in the urn after n draws in

this process, and we refer to this process as the Mj,k process. Our next main result
shows that this construction of M

j,k
n has the distribution specified in (4.3). First we

state a technical lemma; the proof can be found at the end of this section.

LEMMA 4.7. Fix i ≥ 1 and let Wn = ∑n
j=0 Xj where for j ≥ 1, Xj is the

indicator that a white ball is drawn on draw j from the (2,0;1,1)i,1 urn and
X0 = 1. If 1 ≤ j < k ≤ n, then

P(Xj = 1|Xk = 1,Wj−1) = 1 + Wj−1

2j + i
,(4.5)
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and if 1 ≤ l < j < k ≤ n,

P(Xl = 1|Xk = 1,Xj = 1,Wl−1) = 2 + Wl−1

2l + i + 1
.(4.6)

For all 1 ≤ j < k ≤ n,

EWn ≤ √
2π

√
n

i + 2
+ 1

2
, EXj ≤

√
π√

(i + 1)(i + 2j − 1)
,

(2 − √
π)

i + 2n + 1

i + 1
≤ EW 2

n ≤ 2
i + 2n + 1

i + 1
,

E(XjXk) ≤
√

2π(1 + √
π)

(i + 2)
√

(i + 2j)(i + 2k − 1)
.

If L (Rt ) = (2,0;1,1)ti,3, then for some constant C independent of t and i,

ERt ≤ C
√

t/i.(4.7)

LEMMA 4.8. Let 1 ≤ j < k ≤ n and M
j,k
n , Wn and (Xl)l≥1 be defined as in

Lemma 4.7 and the preceding two paragraphs. Then

L
(
Mj,k

n

) = L (Wn|Xj = Xk = 1).

PROOF. Let M
j,k
l = 3 + ∑l

t=1 m
j,k
t , where for t �= j, k, m

j,k
t is the indica-

tor that draw t in the Mj,k urn process is white and m
j,k
j = m

j,k
k = 0. From the

definition of the process, for l < j ,

P
(
m

j,k
l = 1|Mj,k

l−1

) = M
j,k
l

2l + i + 1
.(4.8)

And for j < l < k, since m
j,k
j = 0,

P
(
m

j,k
l = 1|Mj,k

l−1

) = M
j,k
l

2l + i
.(4.9)

Note also that M
j,k
0 = W0 + 2 = 3, m

j,k
j = m

j,k
k = 0 and draw l > k in the Mj,k

urn process follows the (2,0;1,1) urn law. Now comparing (4.8) to (4.6) and (4.9)
to (4.5), we find the sequential conditional probabilities agree and so the lemma
follows. �

We are now ready to prove Lemma 4.2, and we first give the following remark
about the argument. The (2,0;1,1)i,3 process and the Mj,k process defined above
differ only in that, in the latter process, after each of draws j and k a single black
ball is added into the urn regardless of what is drawn; in the former process, the two
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balls added to the urn in these draws depend on the color drawn. This difference
turns out to be small enough to allow a close coupling as stated in the lemma.

PROOF OF LEMMA 4.2. For each t we construct (rt ,m
j,k
t ) to, respectively,

denote the indicator for the event that a white ball is added to the urn after draw
number t for the (2,0;1,1)i,3 process and for the Mj,k process, and we write

Rn−1 = 3 +
n−1∑
t=1

rt , Mj,k
n = 3 +

n∑
t=1

m
j,k
t

to denote the number of white balls in the urn after draw n − 1 and n, respec-
tively, for each process. Let Ut be independent uniform (0,1) random variables.
We define

rt = I
[
Ut <

Rt−1

i + 2t + 1

]
(4.10)

and for t �= k, t �= j we define

m
j,k
t = I

[
Ut <

M
j,k
t−1

i + 2t + 1 − I[t > j ] − I[t > k]
]
.

We also set m
j,k
k = m

j,k
j = 0 since a single black ball is added after draws j and

k. Writing the event M
j,k
n �= Rn−1 as a union of the events that index t is the least

index such that rt �= m
j,k
t , and also using that m

j,k
k = m

j,k
j = 0, we find that for

0 < j < k,

P
(
Mj,k

n �= Rn−1
)

≤ E(rk + rj ) + P

(
Un <

Rn−1

i + 2n − 1

)

+
n−1∑
t=j

P

(
Rt−1

i + 2t + 1
< Ut <

Rt−1

i + 2t − 1

)
.

From (4.10), Ert = ERt−1/(i + 2t + 1), so that we find

P
(
Mj,k

n �= Rn−1
)

≤ ERk−1

i + 2k + 1
+ ERj−1

i + 2j + 1
+ ERn−1

i + 2n − 1

+
n−1∑
t=j

ERt−1

(
1

i + 2t − 1
− 1

i + 2t + 1

)

≤ C

√
k

i

(
1

i + 2k + 1

)
+ C

√
j

i

(
1

i + 2j + 1

)
+ C

√
n

i

(
1

i + 2n − 1

)
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+ C

n−1∑
t=j

√
t

i

(
1

i + 2t − 1
− 1

i + 2t + 1

)

≤ Cj−1/2,

where we have used (4.7). Defining J and K as in (4.4) we now have

P
(
MJ,K

n �= Rn−1
)

(4.11)

≤ P(J = 0) + P(K = 0) + P(J = K) + 2C

b2

∑
j<k

j−1/2
EXjXk.

Since X2
i = Xi , X0 = 1 and using (4.4), we have

P(J = K) = P(K = 0) = P(J = 0) = EWn/b
2,

and now using the bounds on EXiXj , EWn and EW 2
n from Lemma 4.7, we find

that (4.11) is bounded above by

3EWn

b2 + C

b2

∑
j<k

1√
jk

1√
j

≤ C√
n

+ C

n

∑
j<k

j−3/2 ≤ C√
n

+ C
∑
j

j−3/2 ≤ C√
n
.
�

PROOF OF LEMMA 4.7. Let Am = {Xm = 1}. By the definition of conditional
probability,

P(Al|Ak,Aj ,Wl−1) = P(Al|Wl−1)P(AkAj |Al,Wl−1)

P(AkAj |Wl−1)
(4.12)

and

P(Aj |Ak,Wj−1) = P(Aj |Wj−1)P(Ak|Aj ,Wj−1)

P(Ak|Wj−1)
,(4.13)

and we next will calculate the probabilities above. For j ≥ 1, we have

P(Aj |Wj−1) = Wj−1

i + 2j − 1
,(4.14)

which implies that for k ≥ j ,

P(Ak|Wj−1) = E(Wk−1|Wj−1)

i + 2k − 1
(4.15)

and

P(Ak|Aj ,Wj−1) = E(Wk−1|Aj ,Wj−1)

i + 2k − 1
.(4.16)

Now to compute the conditional expectations appearing above note first that

E(Wk|Wk−1) = Wk−1 + Wk−1

i + 2k − 1
=

(
i + 2k

i + 2k − 1

)
Wk−1.(4.17)



PREFERENTIAL ATTACHMENT RANDOM GRAPHS 1215

Conditioning on Wj−1 and taking expectations yields

E(Wk|Wj−1) =
(

i + 2k

i + 2k − 1

)
E(Wk−1|Wj−1),

and then iterating and substituting k − 1 for k yields

E(Wk−1|Wj−1) =
k−j∏
t=1

(
i + 2(k − t)

i + 2(k − t) − 1

)
Wj−1.(4.18)

Using (4.18) with j substituted for j − 1, we also find

E(Wk−1|Aj ,Wj−1) =
k−j−1∏

t=1

(
i + 2(k − t)

i + 2(k − t) − 1

)
(1 + Wj−1);(4.19)

note here that conditioning on Aj and Wj−1 is equivalent to conditioning on Wj

and the event {Wj = Wj−1 + 1}. We use a similar approach to obtain

E
(
W 2

k |Wk−1
) = W 2

k−1

(
1 − Wk−1

i + 2k − 1

)
+ (Wk−1 + 1)2 Wk−1

i + 2k − 1

=
(

i + 2k + 1

i + 2k − 1

)
W 2

k−1 + Wk−1

i + 2k − 1
,

which can then be added to (4.17) while letting Dk = Wk(1 + Wk) to obtain

E(Dk|Wk−1) = i + 2k + 1

i + 2k − 1
Dk−1,

and thus

E(Dk|Wj−1) = i + 2k + 1

i + 2k − 1
E(Dk−1|Wj−1).

Iterating and substituting k − 1 for k gives

E(Dk−1|Wj−1) = i + 2k − 1

i + 2j − 1
Dj−1 = i + 2k − 1

i + 2j − 1
Wj−1(1 + Wj−1),(4.20)

and using (4.20) with j substituted for j − 1, we also find

E(Dk−1|Aj ,Wj−1) = i + 2k − 1

i + 2j + 1
(Wj−1 + 1)(Wj−1 + 2).

Letting

c = 1

(i + 2j − 1)(i + 2k − 1)

k−j−1∏
t=1

(
i + 2(k − t)

i + 2(k − t) − 1

)
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and applying (4.14), (4.16), (4.19) and (4.20) we have

P(AjAk|Wl−1) = E
(
P(Aj |Wj−1)P(Ak|Aj ,Wj−1)|Wl−1

)
= cE(Dj−1|Wl−1)(4.21)

= c
i + 2j − 1

i + 2l − 1
Wl−1(1 + Wl−1),

and by substituting l for l − 1 in (4.21), we also find

P(AjAk|Al,Wl−1) = c
i + 2j − 1

i + 2l + 1
(1 + Wl−1)(2 + Wl−1).(4.22)

Substituting (4.14)–(4.16), (4.18), (4.19), (4.21) and (4.22) appropriately into
(4.12) and (4.13) proves (4.5) and (4.6).

From (4.18) we have

EWn =
n∏

t=1

i + 2t

i + 2t − 1
= �((i + 1)/2)�(n + (i + 1)/2 + 1/2)

�((i + 1)/2 + 1/2)�(n + (i + 1)/2)
,(4.23)

and from (4.14) we find

EXj = EWj−1

i + 2j − 1
.

Now using (4.16) and (4.19) yields

E(XjXk) = E(1 + Wj−1)EXj

i + 2k − 1

k−1∏
t=j+1

i + 2t

i + 2t − 1
,

and using (4.20) we find

EW 2
n = 2

i + 2n + 1

i + 1
− EWn.(4.24)

Lemma 2.7 applied to (4.23) implies

1√
π

√
2n

i + 2
+ 1 ≤

n∏
t=1

i + 2t

i + 2t − 1
≤ √

π

√
2n

i + 2
+ 1,(4.25)

and collecting the appropriate facts above yields the bounds on EWn, EW 2
n ,

EXiXj and EXi .
For the bound on ERt , an argument similar to (4.18) leading to (4.23) yields

that

ERt = 3
t∏

m=1

i + 2m + 2

i + 2m + 1
= �((i + 3)/2)�(t + (i + 3)/2 + 1/2)

�((i + 3)/2 + 1/2)�(t + (i + 3)/2)
,

which can be bounded by Lemma 2.7 resulting in inequalities which are similar
to (4.25). �
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