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We consider a generalization of the Ewens measure for the symmetric
group, calculating moments of the characteristic polynomial and similar mul-
tiplicative statistics. In addition, we study the asymptotic behavior of linear
statistics (such as the trace of a permutation matrix or of a wreath product)
under this new measure.

1. Introduction. The trace of a matrix is one of the most natural additive class
functions associated to the spectra of a matrix. Traces of unitary matrices chosen
randomly with Haar measure have been much studied, for example by Diaconis
and Shahshahani [8], Diaconis and Evans [6] and Rains [24] using methods from
representation theory, by Diaconis and Gamburd [7] using combinatorics and using
methods from mathematical physics by Haake et al. [11].

Another natural class function, this time multiplicative, is the characteristic
polynomial, and the distribution of characteristic polynomials of random unitary
matrices has been studied by many authors, including Keating and Snaith [17] and
Hughes, Keating and O’Connell [13].

From the characteristic polynomial one can find the number of eigenvalues ly-
ing in a certain arc (since the underlying matrix is unitary, all the eigenvalues lie
on the unit circle). The problem of studying the number of eigenvalues lying in an
arc was studied by Rains [24] and Wieand [26] who found a very interesting cor-
relation structure when multiple arcs were considered, and Hughes, Keating and
O’Connell [13] who made the connection with characteristic polynomials.

One of the reasons for such an extensive study into random unitary matrices and
their spectra is that the statistical distribution of the eigenvalues is expected to have
the same behavior as the zeros of the Riemann zeta function (see Montgomery [21]
and Keating and Snaith [17]).

The statistics of the distribution of spectra of infinite subgroups of the unitary
group, such as the symplectic and orthogonal groups, are also expected to model
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families of other L-functions (Keating and Snaith [16]), and the distribution of
traces for these groups have been studied, frequently in the same papers.

However, the statistics of the spectra of finite subgroups of the unitary group,
such as the permutation group, is not so well studied, though there are many results
known.

Wieand [25] studied the number of eigenvalues of a uniformly random permu-
tation matrix lying in a fixed arc, and Hambly et al. [12] found corresponding
results for the characteristic polynomial, making the same connection between the
characteristic polynomial and the counting function of eigenvalues.

In all these cases, the permutation matrices were chosen with uniform measure
and the results were similar to those found for the full unitary group with Haar
measure. However, there were some significant differences primarily stemming
from the fact that the full unitary group is rotation invariant, so the characteristic
polynomial is isotropic. The group of permutation matrix is clearly not rotation
invariant, and the distribution of the characteristic polynomial depends weakly on
the angle of the parameter. Most results require the angle to have the form 2πτ

with τ irrational and of finite type. (It is worth pointing out that those angles
which are not of this type, have Hausdorff dimension zero). More recently Ben
Arous and Dang [2] have extended some of the results of Wieand to more general
measures together with new observations very specific to permutation matrices. In
particular, they prove that the fluctuations of smooth linear statistics (with bounded
variance) of random permutation matrices sampled under the Ewens measure are
asymptotically non-Gaussian but infinitely divisible.

A permutation matrix has the advantage that the eigenvalues are determined by
the cycle-type λ = (λ1, . . . , λ�) of the corresponding permutation. This allows us
to write down in many situations explicit expression for the studied object. For
example, the characteristic polynomial of an N × N permutation matrix M is

ZN(x) = det(I − xM) =
N∏

j=1

(1 − xeiαj ) =
�(λ)∏
m=1

(1 − xλm)

(1.1)

=
N∏

k=1

(1 − xk)Ck ,

where eiα1, . . . , eiαN are the eigenvalues of M and Ck is the number of cycles of
length k (i.e., the number of j such that λj = k).

Equation (1.1) has been used by Dehaye and Zeindler [5] to introduce mul-
tiplicative class functions (i.e., invariant under conjugation) associated to func-
tion f . These functions have the form

WN(f )(x) =
N∏

k=1

f (xk)Ck(1.2)
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and generalize the characteristic polynomial, which is the case f (x) = (1 − x).
This nice generalization is not possible for the unitary group because the eigenval-
ues lack the structure of eigenvalues of permutation matrices that allows (1.1) to
hold. The most natural analogue for unitary matrices is Heine’s identity which con-
nects Haar averages of multiplicative class functions with determinants of Toeplitz
matrices.

Equation (1.1) can also be used to express linear statistics or traces of functions
of random permutation matrices in terms of the cycle counts. More precisely, if we
identify a random permutation matrix M with the permutation σ it represents, we
have the following definition.

DEFINITION 1.1. Let F :S1 → C be given. We then define the trace of F to
be the function Tr(F ) :SN → C with

Tr(F )(σ ) :=
N∑

k=1

F(ωk),(1.3)

where (ωk)
N
k=1 are the eigenvalues of σ with multiplicity.

Observe that when F(x) = xd , we have Tr(F )(σ ) = Tr(σ d), and this justifies
the use of the terminology trace. The trace of a function is also referred to as a
linear statistic on SN .

LEMMA 1.2. Let F :S1 → C and σ ∈ SN with cycle type λ be given. We then
have

Tr(F )(σ ) =
N∑

k=1

kCk	k(F )(1.4)

with 	k(F ) := 1
k

∑k
m=1 F(e2πim/k).

PROOF. This follows immediately from equation (1.1). �

The reason why the expressions in (1.1) and (1.2) are useful is that many things
are known about the cycle counts Ck . For example, the cycle counts Ck converge
weakly to independent Poisson random variables Pk , with mean 1/k. Also useful
in this context is the Feller coupling, since in many situations this allows one to
replace Ck by Pk . Several details on the cycle counts and the Feller coupling can
be found in the book by Arratia, Barbour and Tavaré [1].

These results all concern the uniform measure, where each permutation has
weight 1/N !, or the Ewens measure, where the probability is proportional to the
total number of cycles, θ�(λ)/(N !hN), with hN the required normalization constant
(the case θ = 1 corresponding to the uniform measure). A common ingredient in
all the above cited works is the use of the Feller coupling (details can again be
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found in the book by Arratia, Barbour and Tavaré [1]) and some improvements
on the known bounds for the approximation given by this coupling (see [2], Sec-
tion 4).

In recent years, there have been many works in random matrix theory aimed
at understanding how much the spectral properties of random matrices depend on
the probability distributions of its entries. Here a similar question translates into
how are the linear and multiplicative (i.e., multiplicative class functions) statistics
affected if one considers more general probability distributions than the Ewens
measure on the symmetric group? The Ewens measure can be naturally generalized
to a weighted probability measure which assigns to the permutation matrix M (i.e.,
to the associated permutation) the weight

1

N !hN

N∏
k=1

θ
Ck

k ,

where hN is a normalization constant. The Ewens measure corresponds to the
special case where θk = θ is a constant. This measure has recently appeared in
mathematical physics models (see, e.g., [3] and [9]) and one has only recently
started to gain insight into the cycle structures of such random permutations. One
major obstacle with such measures is that there exists nothing such as the Feller
coupling and therefore the classical probabilistic arguments do not apply here. In
a recent work, Nikeghbali and Zeindler [23] propose a new approach based on
combinatorial arguments and singularity analysis of generating functions to obtain
asymptotic expansions for the characteristic functions of the Ck’s as well as the
total number of cycles, thus extending the classical limit theorems (and some dis-
tributional approximations) for the cycle structures of random permutations under
the Ewens measure. In this paper we shall use the methods introduced in [23],
namely, some combinatorial lemmas, generating series and singularity analysis to
study linear and multiplicative statistics for random permutation matrices under the
general weighted probability measure. In fact, we shall consider the more general
random matrix model obtained from the wreath product S1 � SN (see, e.g., [27]);
this amounts to replacing the 1’s in the permutation matrices by independent ran-
dom variables taking values in the unit circle S1. The distribution of eigenvalues
of such matrices (alongside other generalizations) has been studied previously by
Najnudel and Nikeghbali [22]. It should be noted that many groups closely related
to SN exhibit such matrices, for instance, the Weyl group of SO(2N).

More precisely this paper is organized as follows.
In Section 2 we fix some notation and terminology, recall some useful combina-

torial lemmas together with some results of Hwang (and some slight extensions) on
singularity analysis of generating functions. In particular, we shall introduce two
relevant classes of generating functions according to their behavior near singular-
ities on the circle of convergence. In this article, we shall state our theorems for
random matrices under the generalized Ewens measures for which the generating
series of (θk)k≥1 is in one of these two classes.
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In Section 3 we study the multiplicative class functions associated to a func-
tion f and obtain the asymptotic behavior of the joint moments. In particular, we
extend earlier results of [5, 28] and of [12] on the characteristic polynomial of
uniformly chosen random permutation matrices.

In Section 4 we focus both on the traces of powers and powers of traces which
are classical statistics in random matrix theory. In fact we prove more generally
that the fluctuations of the linear statistics for Laurent polynomials are asymp-
totically infinitely divisible (they converge in law to an infinite weighted sum of
independent Poisson variables). We also establish the convergence of the integer
moments of linear statistics for functions of bounded variation together with the
rate of convergence.

In Section 5 we consider the more general model consisting of the wreath prod-
uct S1 � SN and study the linear statistics for general functions F in (1.3). In such
models, the 1’s in the permutation matrix are replaced with (zj )1≤j≤N which are
i.i.d. random variables taking their values on the unit circle S1. In this framework,
Lemma 1.2 can be naturally extended (see Lemma 5.1) and the quantity

	k(F, z) := 1

k

∑
ωk=z

F (ω)(1.5)

naturally appears in our technical conditions. Under some conditions on rate of
convergence to 0 of the L1-norm of 	k(F, z), and some assumptions on the sin-
gularities of the generating series of (θk)k≥1, we are able to compute the asymp-
totics of the characteristic function of Tr(F ) with a good error term. From these
asymptotics we are able to compute the fluctuations of Tr(F ). We also translate
our conditions in terms of the Fourier coefficients of F , where F has to be in some
Sobolev space Hs .

In Section 6 we still work within the framework of the wreath product S1 �
SN and consider the case where the variance of Tr(F ) is diverging. This time we
restrict ourselves to the Ewens measure since our methods do not seem to apply
in this situation. Hence, we go back to probabilistic arguments (i.e., use the Feller
coupling) to prove that under some technical conditions on F , the fluctuations
are Gaussian. In fact, we essentially adapt the proof by Ben Arous and Dang [2]
to these more general situations. Nonetheless our theorem is also slightly more
general in that it applies to a larger class of functions F .

2. The generalized Ewens measure, generating series and singularity anal-
ysis. In this section we fix notation and we recall some facts about the symmetric
group and generating functions, as well as the main results from singular analysis
(we also provide some variants and extensions for the purpose of this paper). Our
presentation closely follows [23].
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2.1. Some combinatorial lemmas and the generalized Ewens measure. We
present in this section some basic facts about SN and then define the generalized
Ewens measure. We give here only a very short overview and refer to [1] and [20]
for more details.

2.1.1. Conjugation classes and functions on SN . We first take a closer look at
the conjugation classes of the symmetric group SN (the group of all permutations
of a set of N objects). We only need to consider the conjugation classes since all
probability measures and functions considered in this paper are invariant under
conjugation (i.e., they are class functions). It is well known that the conjugation
classes of SN can be parameterized with partitions of N .

DEFINITION 2.1. A partition λ is a sequence of nonnegative integers λ1 ≥
λ2 ≥ · · · eventually trailing to 0’s, usually omitted. The size of the partition is
|λ| := ∑

m λm. We call λ a partition of N if |λ| = N , and this will be denoted by
λ � N . The length of λ is the largest � such that λ� �= 0.

Let σ ∈ SN be arbitrary. We can write σ = σ1 · · ·σ� with σm, 1 ≤ m ≤ �, dis-
joint cycles of length λm. Since disjoint cycles commute, we can assume that
λ1 ≥ λ2 ≥ · · · ≥ λ�. We call the partition λ = (λ1, λ2, . . . , λ�) the cycle-type of σ .
We write Cλ for the set of all σ ∈ SN with cycle type λ. One can now show that
two elements σ, τ ∈ SN are conjugate if and only if σ and τ have the same cycle-
type and that Cλ are the conjugation classes of SN . Since this is well known, we
omit the proof and refer the reader to [20] for more details.

DEFINITION 2.2. Let σ ∈ SN be given with cycle-type λ. The cycle num-
bers Ck are defined as

Ck = Ck(σ ) := #{m :λm = k}(2.1)

and the total number of cycles T (σ) is

T (σ) :=
N∑

k=1

Ck.(2.2)

The functions Ck(σ ) and T (σ) depend only on the cycle type of σ are thus class
functions. Clearly T (σ) equals �(λ), the length of the partition corresponding to σ .

All expectations in this paper have the form 1
N !

∑
σ∈SN

u(σ ) for a class func-
tion u. Since u is constant on conjugation classes, it is more natural to sum over
all conjugation classes. We thus need to know the size of each conjugation class.

LEMMA 2.3. We have

|Cλ| = |SN |
zλ

with zλ :=
N∏

k=1

kCkCk!(2.3)
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with Ck defined in (2.1), and

1

N !
∑

σ∈SN

u(σ ) = ∑
λ�N

1

zλ

u(Cλ)(2.4)

for a class function u :SN → C.

PROOF. The first part can be found in [20] or in [4], Chapter 39. The second
part follows immediately from the first part. �

2.1.2. Definition of the generalized Ewens measures. We now define the gen-
eralized Ewens measures.

DEFINITION 2.4. Let � = (θk)
∞
k=1 be a sequence of strictly positive numbers.

We define for σ ∈ SN with cycle-type λ

P�[σ ] := 1

hNN !
�(λ)∏
m=1

θλm = 1

hNN !
N∏

k=1

θ
Ck(σ )
k(2.5)

with hN = hN(�) a normalization constant and h0 := 1.

The second equality in (2.5) follows immediately from the definition of Ck

(Definition 2.2). The uniform measure and the Ewens measure are special cases,
with θk ≡ 1 and θk ≡ θ a constant, respectively.

We now introduce two generating functions closely related to P�:

g�(t) :=
∞∑

k=1

θk

k
tk and G�(t) := exp

( ∞∑
k=1

θk

k
tk

)
.(2.6)

At the moment, g�(t) and G�(t) are just formal power series, however, we will
see in Section 2.2 that

G�(t) =
∞∑

N=0

hNtN,(2.7)

where the hN are given in Definition 2.4.

2.2. Generating functions and singularity analysis. The idea of generating
functions is to encode information of a sequence into a formal power series.

DEFINITION 2.5. Let (gN)N∈N be a sequence of complex numbers and define
the (ordinary) generating function of the sequence as the formal power series

G(t) =
∞∑

N=0

gNtN .(2.8)

We define [tN ][G] to be the coefficient of tN in G(t), that is, [tN ][G] := gN .
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The reason why generating functions are useful is that it is often possible to
compute the generating function without knowing gN explicitly.

The main tool in this paper to calculate generating functions is the following
lemma.

LEMMA 2.6. Let (am)m∈N be a sequence of complex numbers. Then

∑
λ

1

zλ

(
�(λ)∏
m=1

aλm

)
t |λ| = ∑

λ

1

zλ

( ∞∏
k=1

(akt
k)Ck

)
= exp

( ∞∑
k=1

1

k
akt

k

)
(2.9)

with the same zλ as in Lemma 2.3.
If any one of the sums in (2.9) is absolutely convergent, then so are the others.

PROOF. The first equality follows immediately from the definition of Ck . The
proof of the second equality in (2.9) can be found in [20] or can be directly verified
using the definitions of zλ and the exponential function. The last statement follows
with dominated convergence. �

We now use this lemma to prove the identity given in (2.7). The constant hN

in (2.5) is chosen so that P�[σ ] is a probability measure on SN . It thus follows
that

hN = 1

N !
∑

σ∈SN

N∏
k=1

θ
Ck

k = ∑
λ�N

1

zλ

�(λ)∏
m=1

θλm.(2.10)

It now follows, with Lemma 2.6, that

∞∑
N=0

hNtN = ∑
λ

1

zλ

t |λ|
�(λ)∏
m=1

θλm = exp

( ∞∑
k=1

θk

k
tk

)
= G�(t),(2.11)

which proves (2.7).

COROLLARY 2.7. In the special case of the Ewens measure, when θk is a
constant θ , say, we have

G�(t) =
∞∑

N=0

hNtN = (1 − t)−θ .(2.12)

From this it immediately follows that hN = (−1)N
(−θ

N

) = (N+θ−1
N

)
.

Given a generating function G(t), a natural question is: what is the coefficient
of tN and what is the asymptotic behavior of this coefficient as N → ∞? If G(t)

is holomorphic near 0, then one can use Cauchy’s integral formula to do this. But
it turns out that it is often difficult to compute the integral exactly, but we will now
see that one can nevertheless extract the asymptotic behavior of the coefficient
when G(t) has a special form.
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FIG. 1. Illustration of 	0(r,R,φ).

DEFINITION 2.8. Given R > r and 0 < φ < π
2 , let

	0 = 	0(r,R,φ) = {z ∈ C : |z| < R,z �= r, | arg(z − r)| > φ}.(2.13)

The domain 	0 is illustrated in Figure 1.

DEFINITION 2.9. Let r > 0, ϑ ≥ 0 and a complex constant K be given. We
say that a function g(t) is in F (r,ϑ,K) if there exists R > r and 0 < φ < π

2 such
that g(t) is holomorphic in 	0(r,R,φ), and

g(t) = ϑ log
(

1

1 − t/r

)
+ K + O(t − r)(2.14)

as t → r with t ∈ 	0(r,R,φ).

The following theorem, proven by Hwang in [14], gives the asymptotic behavior
of the coefficient of tN for certain special generating functions.

THEOREM 2.10 (Hwang [14]). Let g(t) ∈ F (r,ϑ,K), and let S(t) be holo-
morphic in |t | ≤ r . Set G(t,w) = ewg(t)S(t), then

[tN ][G(t,w)] = eKwNwϑ−1

rN

(
S(r)

�(ϑw)
+ O

(
1

N

))
(2.15)

uniformly for bounded complex w.

REMARK. The idea of the proof is to take a suitable Hankel contour and to
estimate the integral over each piece. The details can be found in [14], Chapter 5.

REMARK. One can compute lower order error terms if one has more terms in
the expansion of g(t) near r .
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As a first simple application of this result, we compute the asymptotic behav-
ior of hN for the generalized Ewens measure if g�(t), as defined in (2.6), is in
F (r,ϑ,K).

LEMMA 2.11. Let g�(t) ∈ F (r,ϑ,K). We then have

hN = eKNϑ−1

rN

(
1

�(ϑ)
+ O

(
1

N

))
.(2.16)

PROOF. We have proven in (2.11) that
∑∞

N=0 hNtN = exp(g�(t)). We thus
can apply Theorem 2.10 with g(t) = g�(t), w = 1 and S(t) ≡ 1. �

REMARK. For the Ewens measure, when � is the constant sequence (θ)∞k=1,

we have g�(t) ∈ F (1, θ,0) and thus hN = Nθ−1

�(θ)
(1 + O( 1

N
)). However, in this

special case, one can do much more since hN is known to equal
(N+θ−1

N

)
.

Essentially, one can think of Hwang’s result as concerning functions with a
solitary singularity at t = r . In Section 3.3 we will need a version of this theorem
with multiple singularities that we now state.

DEFINITION 2.12. Let ξ = (ξi)
d
i=1 with ξi �= ξj for i �= j , and with |ξi | = r

(so the ξi are distinct points lying on the circle of radius r). Let R > r and let
0 < φ < π

2 , then set

	d(r,R,φ, ξ)
(2.17)

:=
d⋂

i=1

{z ∈ C : |z| < R,z �= ξi, | arg(z − ξi) − arg(ξi)| > φ}.

An example of a 	d(r,R,φ, ξ) domain is given in Figure 2.

DEFINITION 2.13. Let ϑ = (ϑi)
d
i=1 and K = (Ki)

d
i=1 be two sequences of

complex numbers, and let r > 0. We say a function g(t) is in F (r,ϑ,K) if there
exists R > r and 0 < φ < π

2 such that g(t) is holomorphic in 	d(r,R,φ, ξ), and
for each i = 1, . . . , d ,

g(t) = ϑi log
(

1

1 − t/ξi

)
+ Ki + O(t − ξi)(2.18)

as t → ξi with t ∈ 	d(r,R,φ, ξ).

Theorem 2.10 generalizes to the next theorem.

THEOREM 2.14. Let g ∈ F (r,ϑ,K), and let S(t) be holomorphic in t for
|t | ≤ r . Set G(t,w) = ewg(t)S(t). We have

[tN ][G(t,w)] =
d∑

i=1

eKiwNwϑi−1

ξN
i

(
S(ξi)

�(ϑiw)
+ O

(
1

N

))
(2.19)
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FIG. 2. Illustration of the domain 	d(r,R,φ, ξ).

uniformly for bounded w.

SKETCH OF THE PROOF. The proof is a combination of the proof of a mul-
tiple singularities theorem in [10], Section VI.5, and the proof of Theorem 2.10.
More precisely, we apply Cauchy’s integral formula with the curve C illustrated in
Figure 3, where the radius R of the great circle is chosen fix with R > r , while the
radii of the small circles are 1/n.

A straightforward computation then shows that the integral over this curve
gives (2.19) and that the error terms are uniform for bounded w. �

FIG. 3. The curve C.
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In practice, the computation of the asymptotic behavior near the singularity
is often very difficult, and it is not easy to prove whether a function g(t) is in
F (r,ϑ,K) or not. An alternate approach is to combine singularity analysis with
more elementary methods. The idea is to write G = G1G2 in a way that we can
apply singularity analysis on G1 and can estimate the growth rate of [tN ][G2]. One
then can compute the coefficient [tN ][G] directly and apply elementary analysis
on it. This method is called the convolution method.

DEFINITION 2.15. Let ϑ ≥ 0, r > 0,0 < γ ≤ 1 be given. We say g(t) is in
eF (r,ϑ, γ ) if g(t) is holomorphic in |t | < r with

g(t) = ϑ log
(

1

1 − t/r

)
+ g0(t)(2.20)

and

[tN ][g0] = O(r−NN−1−γ )(2.21)

as N → ∞.

THEOREM 2.16 (Hwang [15]). Let g(t) ∈ eF (r,ϑ, γ ), and let S(t) be holo-
morphic in |t | ≤ r . Set G(t,w) = ewg(t)S(t), then

[tN ][G(t,w)] = ewg0(r)Nwϑ−1

rN

S(r)

�(ϑw)
+ RN(w)(2.22)

with

RN(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O

(
Nϑ Re(w)−1−γ log(N)

rN

)
, if Re(w) ≥ 0,

O

(
N−1−γ

rN

)
, if Re(w) < 0,

(2.23)

uniformly for bounded w.

This theorem is more general than Theorem 2.10, but the error terms are worse.
As in Lemma 2.11, we can compute the asymptotic behavior of hN in the case of
the generalized Ewens measures when g�(t) ∈ eF (r,ϑ, γ ).

LEMMA 2.17. Assume that g�(t) ∈ eF (r,ϑ, γ ). We then have

hN = eg0(r)Nϑ−1

rN�(ϑ)
+ O

(
Nϑ−1−γ logN

rN

)
.(2.24)

3. Moments of multiplicative class functions. We extend in this section the
results of [5, 12] and [28] to the generalized Ewens measure P�. More precisely,
we compute the asymptotic behavior of the moments of the characteristic poly-
nomial ZN(x) and of multiplicative class functions WN(P ) with respect to P�

using the methods of generating functions and singularity analysis introduced in
the previous section.
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3.1. Multiplicative class functions. It is well known that SN can be identified
with the group of permutation matrices via

σ �→ (
δi,σ (j)

)
1≤i,j≤N.(3.1)

It is easy to see that this map is an injective group homomorphism. We thus do
not distinguish between SN and the group of permutation matrices and use for
both the notation SN . It will always be clear from the context if it is necessary to
consider σ ∈ SN as a matrix.

DEFINITION 3.1. Let x ∈ C and σ ∈ SN . The characteristic polynomial of σ

is

ZN(x) = ZN(x)(σ ) := det(IN − xσ).(3.2)

It is a standard fact that the characteristic polynomial can be written in terms of
the cycle type of σ .

LEMMA 3.2. Let σ ∈ SN be given with cycle type λ; then

ZN(x) =
�(λ)∏
m=1

(1 − xλm),(3.3)

with �(λ) the length of the partition λ, which is the same as the number of cy-
cles T (σ).

PROOF. Since any permutation matrix is conjugate to a block matrix with each
block corresponding to one of the cycles, and the characteristic polynomial factors
over the blocks, it is sufficient to prove this result in the simple case of a one-cycle
permutation, where it follows from a simple calculation. More explicit details can
be found, for instance, in [28], Chapter 2.2. �

Equation (3.3) shows that the spectrum of permutation matrix is uniquely deter-
mined by the cycle type. We use this as motivation to define multiplicative class
functions on SN .

DEFINITION 3.3. Let P(x) be a polynomial in x. We then define the multi-
plicative class function associated to the polynomial P as

WN(P )(x) = WN(P )(x)(σ ) :=
�(λ)∏
m=1

P(xλm).(3.4)

For brevity, we simply call this a multiplicative class function.
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It follows immediately that the characteristic polynomial is the multiplicative
class function associated to the polynomial P(x) = 1 − x. The main difference
between ZN(x) and WN(P ) is that WN(P ) is independent of the interpretation of
SN as matrices.

We now wish to obtain the asymptotic behavior of the moments

E�[(WN(P1)(x1))
k1(WN(P2)(x2))

k2]
for x1 �= x2. The easiest way to achieve this is to extend the definition of WN(P ).

DEFINITION 3.4. Let P(x1, x2) be a polynomial in the two variables x1, x2.
For σ ∈ SN with cycle type λ, we set

WN(P )(x1, x2) = WN(P )(x1, x2)(σ ) :=
�(λ)∏
m=1

P(x
λm

1 , x
λm

2 ).(3.5)

A simple computation using the definitions above shows

(WN(P1)(x1))
k1(WN(P2)(x2))

k2 = WN(P
k1
1 )(x1)W

N(P
k2
2 )(x2)

= WN(P )(x1, x2)

with P(x1, x2) = P
k1
1 (x1)P

k2
2 (x2).

This shows that it is enough to consider E�[WN(P )(x1, x2)].

REMARK. There is no restriction to the number of variables. All arguments
used here work also for more than two variables. We restrict ourselves to two
variables since this is enough to illustrate the general case.

3.2. Generating functions for WN . In this section we compute the generating
functions of the moments of multiplicative class functions.

THEOREM 3.5. Let P be a complex polynomial with

P(x1, x2) =
∞∑

k1,k2=0

bk1,k2x
k1
1 x

k2
2 .(3.6)

We have as formal power series

∞∑
N=0

tNhNE�[WN(P )(x1, x2)] =
∞∏

k1,k2=0

(G�(x
k1
1 x

k2
2 t))bk1,k2 ,(3.7)

where G�(t)b = exp(b · g�(t)), and G� and g� are defined in (2.6).
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PROOF. From (3.5) and (2.5) we have

E�[WN(P )(x1, x2)] = 1

hNN !
∑

σ∈SN

�(λ)∏
m=1

θλmP (x
λm

1 , x
λm

2 )(3.8)

and since WN(P ) is a class function, we may use (2.4) to obtain

E�[WN(P )(x1, x2)] = 1

hN

∑
λ�N

1

zλ

�(λ)∏
m=1

θλmP (x
λm

1 , x
λm

2 ).(3.9)

We now compute the generating function of hNE�[WN(P )(x1, x2)] with the help
of Lemma 2.6:

∞∑
N=0

tNhNE[WN(P )(x1, x2)] =
∞∑

N=0

tN
∑
λ�N

1

zλ

�(λ)∏
m=1

θλmP (x
λm

1 , x
λm

2 )

= ∑
λ

1

zλ

t |λ|
�(λ)∏
m=1

(θλmP (x
λm

1 , x
λm

2 ))

= exp

( ∞∑
m=1

θm

m
tmP (xm

1 , xm
2 )

)

= exp

( ∞∑
k1,k2=0

bk1,k2

∞∑
m=1

θm

m
(x

k1
1 x

k2
2 t)m

)
.

Note that

∞∑
m=1

θm

m
(x

k1
1 x

k2
2 t)m = g�(x

k1
1 x

k2
2 t),(3.10)

where g� is defined in (2.6), and hence,

∞∑
N=0

tNhNE[WN(P )(x1, x2)] =
∞∏

k1,k2=0

(G�(x
k1
1 x

k2
2 t))bk1,k2(3.11)

and this proves (3.7), as required. �

REMARK. The requirement for P to be a polynomial is there to ensure abso-
lute convergence, and clearly this condition can be considerably weakened (see [5],
Sections 5, 6).

As an immediate consequence we have the following corollary.
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COROLLARY 3.6. Let s1, s2 ∈ N be given. Then
∞∑

N=0

tNhNE�[ZN(x1)
s1ZN(x2)

s2]
(3.12)

=
s1∏

k1=0

s2∏
k2=0

(G�(x
k1
1 x

k2
2 t))

(−1)k1+k2(s1
k1
)(s2

k2
)
.

PROOF. We have

ZN(x1)
s1ZN(x2)

s2 = (
WN(1 − x1)

)s1
(
WN(1 − x2)

)s2

= WN (
(1 − x1)

s1(1 − x2)
s2

)
.

The corollary now follows immediately by calculating the Taylor expansion of
(1 − x1)

s1(1 − x2)
s2 near 0. �

3.3. Asymptotic behavior of the moments. Combining the generating func-
tions in Theorem 3.5 with the singularity analysis developed in Section 2.2, we
compute the asymptotic behavior of E�[WN(P )] as N → ∞.

We have to distinguish between the cases |xi | < 1 and |xi | = 1. We consider here
only g�(t) ∈ F (r,ϑ,K). The results and computations for g�(t) ∈ eF (r,ϑ, γ ) are
similar, with only minor differences in the error terms.

We first look at the asymptotic behavior inside the unit disc. We have the fol-
lowing theorem.

THEOREM 3.7. Let P be as in Theorem 3.5, and let x1, x2 ∈ C be given with
max{|x1|, |x2|} < 1. Assume that g�(t) ∈ F (r,ϑ,K), then

E[WN(P )] = Nϑ(b0,0−1)eK(b0,0−1)

(
E1 + O

(
1

N

))
,(3.13)

with

E1 = E1(x1, x2) = �(ϑ)

�(ϑb0,0)

∏
(k1,k2) �=(0,0)

(G�(rx
k1
1 x

k2
2 ))bk1,k2 .(3.14)

PROOF. Set

S(t) := ∏
(k1,k2) �=(0,0)

(G�(x
k1
1 x

k2
2 t))bk1,k2 .(3.15)

Since P is polynomial, the product is finite and there is no problem with conver-
gence. The domain of holomorphicity of S is thus the intersection of the domains
of holomorphicity of each factor. This shows that the function S(t) is holomorphic
for |t | < r + ε for an ε > 0 since max{|x1|, |x2|} < 1 and G�(t) is holomorphic
for |t | < r .
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Separating the k1 = k2 = 0 term in (3.7) from the rest, we can write the gener-
ating function as

∞∑
N=0

tNhNE�[WN(P )(x1, x2)] = exp
(
b0,0 · g�(t)

)
S(t).(3.16)

Applying Theorem 2.10, we get

hNE[WN(P )] = Nϑb0,0−1eKb0,0
1

rN

(
S(r)

�(ϑb0,0)
+ O

(
1

N

))
.

Comparing S(r) with E1, and using Lemma 2.11 to find the asymptotic behavior
of hN , proves the theorem. �

As a special case, we get the asymptotic behavior of E�[Zs1
N (x1)Z

s2
N (x2)] with

respect to P� inside the unit disc.

COROLLARY 3.8. Let x1, x2 ∈ C be given with max{|x1|, |x2|} < 1 and let
s1, s2 ∈ N. We then have

E�[Zs1
N (x1)Z

s2
N (x2)]

(3.17)

= ∏
(k1,k2) �=(0,0)

(G�(rx
k1
1 x

k2
2 ))

(−1)k1+k2(s1
k1
)(s2

k2
) + O

(
1

N

)
.

PROOF. This follows immediately from the fact that ZN(x) = WN(1 − x)(x)

and that (1 − x1)
s1(1 − x2)

s2 evaluated at x1 = x2 = 0 is 1. �

In particular, for the uniform measure (θk ≡ 1 for all k) Corollary 2.7 gives
G�(t) = (1 − t)−1 in which case we have

E[Zs1
N (x1)Z

s2
N (x2)]

(3.18)

= ∏
(k1,k2) �=(0,0)

(1 − x
k1
1 x

k2
2 )

−(s1
k1
)(s2

k2
)(−1)k1+k2 + O

(
1

N

)
.

This shows that Corollary 3.8 agrees with [28], Theorem 2.13, in the unform case.
The behavior on the unit disc is more complicated. The reason is that the gen-

erating function can have (for fixed x1, x2) more than one singularity on the circle
of radius r . Another point that makes this case more laborious is the requirement
to check whether some of the singularities of the factors on the right-hand side
of (3.7) are equal. For simplicity, we assume that all singularities are distinct.

THEOREM 3.9. Let P be as in Theorem 3.5, and let x1, x2 ∈ C be given with
|x1| = |x2| = 1 and x

k1
1 x

k2
2 �= 1 for all (k1, k2) ∈ Z

2 \ {(0,0)}. Assume that g�(t) ∈
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F (r,ϑ,K), then

E�[WN(P )]
= ∑

k1,k2
bk1,k2 �=0

E2(k1, k2)N
ϑ(bk1,k2−1)x

Nk1
1 x

Nk2
2

(
�(ϑ)

�(ϑbk1,k2)
+ O

(
1

N

))

with

E2(k1, k2) = eK(bk1,k2−1)
∏

(m1,m2) �=(k1,k2)

(G�(rx
m1−k1
1 x

m2−k2
2 ))bm1,m2 .(3.19)

PROOF. We define

F(t) = ∑
k1,k2

bk1,k2g�(x
k1
1 x

k2
2 t).(3.20)

By (3.7) we see that exp(F (t)) is the generating function of hNE�[WN(P )]. We
first take a look at the domain of holomorphicity of F(t). We have by assumption
that g�(t) is holomorphic in 	0(r,R,φ) for an R > r and 0 < φ < π

2 . This shows

that g�(x
k1
1 x

k2
2 t) is holomorphic for t in the domain 	1(r,R,φ, rx

−k1
1 x

−k2
2 ) with

	1 as in Definition 2.12, and that F is holomorphic in

D := ⋂
k1,k2

bk1,k2 �=0

	1(r,R,φ, rx
−k1
1 x

−k2
2 ) = 	d(r,R,φ, ξ),(3.21)

where ξ is the finite sequence of all rx
−k1
1 x

−k2
2 with bk1,k2 �= 0 (in any order).

Notice that this is only a finite intersection since P is a polynomial. Since |x1| =
|x2| = 1, we see that D has a shape as in Figure 2 and that F has singularities at
t = rx

−k1
1 x

−k2
2 . We thus may use Theorem 2.14 and therefore need to take a look

at the behavior of F near each singularity. We assumed that x
k1
1 x

k2
2 �= x

m1
1 x

m2
2 for

(m1,m2) �= (k1, k2), which implies that the singularities are distinct, and thus near
the point rx

−k1
1 x

−k2
2 , F(t) has the expansion

F(t) = bk1,k2ϑ log
(

1

1 − tx
k1
1 x

k2
2 /r

)
+ bk1,k2K

(3.22)
+ ∑

(m1,m2) �=(k1,k2)

bm1,m2g�(rx
m1−k1
1 x

m2−k2
2 ) + O(t − rx

−k1
1 x

−k2
2 )

for t → rx
−k1
1 x

−k2
2 . This shows that we can apply Theorem 2.14. Combining this

together with Lemma 2.11 proves the theorem. �

REMARK. For simplicity we have assumed that all the singularities are dis-
tinct. The modification required to cope with the case when x

k1
1 x

k2
2 = x

m1
1 x

m2
2 for
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some (m1,m2) �= (k1, k2) would appear in (3.22), but technically there is no re-
striction. Such a situation, with all the details written out explicitly, appears in [5].

To illustrate this theorem, we will calculate the autocorrelation of two charac-
teristic polynomials at distinct points x1, x2 on the unit circle subject to x

k1
1 �= x

k2
2

for all {k1, k2} �= {0,0}.
The four coefficients of ZN(x1)ZN(x2) are easy to calculate, being b0,0 =

b1,1 = 1 and b1,0 = b0,1 = −1 and this enables an immediate simplification to
occur by observing that only the terms with bk1,k2 maximal contribute; the others
are of lower order, in this case being O(N−2ϑ).

Substituting these values into the theorem we have

E�[ZN(x1)ZN(x2)]
(3.23)

= E2(0,0) + E2(1,1)xN
1 xN

2 + O

(
1

N

)
+ O

(
1

N2ϑ

)

with

E2(0,0) = G�(rx1x2)

G�(rx1)G�(rx2)
(3.24)

and

E2(1,1) = G�(rx−1
1 x−1

2 )

G�(rx−1
1 )G�(rx−1

2 )
.(3.25)

4. Traces.

4.1. Traces of permutation matrices. In this section we consider the asymp-
totic behavior of traces of permutation matrices. Powers of traces and traces of
powers have received much attention in the random matrix literature (see, e.g., [6–
8]). More specifically, we first look at Tr(σ d) for fixed d ∈ Z. Since the embedding
of SN into the unitary group in (3.1) is a group homomorphism, we can interpret
σd as d-fold matrix multiplication and as the matrix corresponding to σ ◦ · · · ◦ σ︸ ︷︷ ︸

d times

.

We first recall a well-known explicit expression for Tr(σ d) that we shortly prove
for completeness.

LEMMA 4.1. We have for d ∈ Z

Tr(σ d) =
N∑

k=1

1k|dkCk(σ ), with 1k|d =
{

1, if k divides d,

0, otherwise.
(4.1)
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PROOF. The matrix corresponding to σd has the form (δi,σ d(j)). We thus have

Tr(σ d) =
N∑

i=1

δi,σ d(i) = #{i :σd(i) = i}.(4.2)

Therefore, Tr(σ d) is the number of 1-cycles of σd . A simple computation now
shows that the number of 1-cycles of σd is indeed

∑N
k=1 1k|dkCk(σ ). �

Using this expression and the method of generating functions developed in Sec-
tion 2.2, we prove a weak convergence result for Tr(σ d).

THEOREM 4.2. Let d ∈ N be given. We then have
∞∑

N=0

hNE�

[
eis Tr(σ d)]tN = exp

(∑
k|d

θk

k
(eisk − 1)tk

)
G�(t).(4.3)

If gθ is of class F (ϑ, r,K), then

E�

[
eis Tr(σ d )] = exp

(∑
k|d

θk

k
(eisk − 1)rk

)
+ O

(
1

N

)
.(4.4)

If gθ is of class eF (ϑ, r, γ ), then

E�

[
eis Tr(σ d )] = exp

(∑
k|d

θk

k
(eisk − 1)rk

)
+ O

(
log(N)

Nγ

)
.(4.5)

PROOF. Applying Lemma 4.1, and evaluating the expectation explicitly in
terms of partitions using Lemma 2.3, we have

∞∑
N=0

hNE�

[
eis Tr(σ d )]tN = ∑

λ

1

zλ

∞∏
k=1

(θke
isk1k|d tk)Ck .(4.6)

The cycle index theorem (Lemma 2.6) yields that this equals

exp

( ∞∑
k=1

1

k
θke

isk1k|d tk
)

= exp
(∑

k|d

θk

k
(eisk − 1)tk

)
G�(t),(4.7)

where G�(t) is given in (2.6). This proves equation (4.3).
Applying Theorem 2.10 to this yields equation (4.4), and Theorem 2.16 yields

equation (4.5), as required. �

REMARK. An alternative way to prove Theorem 4.2 is to use Theorem 3.1
in [23], which computes the generating function of hNE�[exp(

∑b
k=1 iskCk)] and

its asymptotic behavior for g�(t) ∈ F (ϑ, r,K) and g�(t) ∈ eF (ϑ, r, γ ).

We obtain the following as an immediate corollary.



RANDOM PERMUTATION MATRICES 1007

COROLLARY 4.3. Let d ∈ Z be fixed and assume that g� is in F (ϑ, r,K) or
eF (ϑ, r, γ ). Then

Tr(σ d)
d−→ ∑

k|d
kPk as N → ∞,(4.8)

where Pk are independent Poisson distributed random variables with E[Pk] =
θk

k
rk .

4.2. Traces of functions. Recall from the Introduction that if M is the permu-
tation matrix representing the permutation σ , then for a function F :S1 → C, we
defined the trace of F to be the function Tr(F ) :SN → C with

Tr(F )(σ ) :=
N∑

k=1

F(ωk),(4.9)

where (ωk)
N
k=1 are the eigenvalues of M or σ with multiplicity. Lemma 1.2 showed

that Tr(F ) could be expressed in terms of the cycle structure of σ as

Tr(F )(σ ) =
N∑

k=1

kCk	k(F )(4.10)

with

	k(F ) := 1

k

k∑
m=1

F(e2πim/k).(4.11)

The asymptotic behavior of Tr(F ) is not so easy to compute for an arbitrary
function defined on the unit circle. This problem will be dealt with more carefully
in Sections 5 and 6. However, if F is a Laurent polynomial, we can use the same
method as for Tr(σ d).

THEOREM 4.4. Let

F(x) = ∑
d

bdxd(4.12)

be a Laurent polynomial. If g� ∈ F (ϑ, r,K) or g� ∈ eF (ϑ, r, γ ), then

Tr(F )(σ ) − Nb0
d−→

∞∑
d=−∞
d �=0

bd

∑
k≥1
k|d

kPk as N → ∞,(4.13)

where Pk are independent Poisson distributed random variables with E[Pk] =
θk

k
rk .
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PROOF. Due to the linearity of Tr(F ), we may assume the constant term, b0, is
zero. As in the previous computations, we apply the cycle index theorem to obtain

∞∑
N=0

hNE�

[
eis Tr(F )(σ )]tN = ∑

λ

1

zλ

∞∏
k=1

(
θke

isk	k(F )tk
)Ck(4.14)

= exp

( ∞∑
k=1

θk

k
eisk	k(F )tk

)
(4.15)

and since 	k(x
d) = 1k|d and is linear, this equals

exp

( ∞∑
k=1

θk

k
exp

(
is

∑
d �=0

bdk1k|d
)
tk

)
(4.16)

= exp

( ∞∑
k=1

θk

k

(∏
d �=0
k|d

eisbdk − 1
)
tk

)
G�(t).

Note the first factor is entire, so Theorem 2.10 [for the case of F (r,ϑ,K)] and
Theorem 2.16 [for the case of eF (r,ϑ, γ )] yields

E�

[
eis Tr(F )(σ )] → exp

( ∞∑
k=1

θk

k

(∏
d �=0
k|d

eisbdk − 1
)
rk

)
.(4.17)

The right-hand side is the characteristic function of the right-hand side in (4.13).
The proof is complete. �

THEOREM 4.5. Let F :S1 → C be of bounded variation, and d ∈ N be given.
Then

1

Nd
E�[(Tr(F )(σ ))d ] =

(∫
S1

F(ϕ)dϕ

)d

+ O

(
E�[T (σ)]

N

)
,(4.18)

where T (σ) is the total number of cycles of σ , and dϕ the uniform measure on S1.
Moreover, if g�(t) ∈ F (ϑ, r,K) or g�(t) ∈ eF (ϑ, r, γ ), then E�[T (σ)] ∼

ϑ log(N), and thus we have a quick convergence of the moments.

PROOF. Since F is of bounded variation we can apply Koksma’s inequality
([19], Theorem 5.1) to see that∣∣∣∣∣1

k

k∑
m=1

F(e2πim/k) −
∫
S1

F(ϕ)dϕ

∣∣∣∣∣ ≤ 2DkV (F )(4.19)
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with V (F) the variation of F and Dk the discrepancy of the sequence
(e2πim/k)km=1. But the discrepancy Dk is dominated by 1/k. We thus have

	k(F ) = 1

k

k∑
m=1

F(e2πim/k) =
∫
S1

F(ϕ)dϕ + O

(
1

k

)
.(4.20)

We now combine (4.10) and (4.20) and get

Tr(F )(σ ) =
N∑

k=1

Ck

(
k

∫
S1

F(ϕ)dϕ + O(1)

)
(4.21)

= N

∫
S1

F(ϕ)dϕ + O(T (σ)),

where we have used that
∑N

k=1 kCk = N and
∑N

k=1 Ck = T (σ). Notice that (4.21)
is independent of any probability measure on SN . Using the binomial theorem and
the fact that 0 < T (σ)/N ≤ 1 for all σ , we get

1

Nd
(Tr(F )(σ ))d =

(∫
S1

F(ϕ)dϕ

)d

+ OF,d

(
T (σ)

N

)
,(4.22)

where the constant implicit in the big-O is independent of σ and N . We apply
E�[·] on both sides, and this proves the first part of the theorem.

The last statement follows from [23], Theorem 4.2, where it is shown that if
g�(t) ∈ F (ϑ, r,K) or g�(t) ∈ eF (ϑ, r, γ ) then E�[T (σ)] ∼ ϑ log(N). �

REMARK. In fact, for many probability distributions on SN , E�[T (σ)] =
o(N). The only way for this not to be true is for σ to frequently have only small
cycles, which will occur if � = (θk)

∞
k=1 is a sequence tending to zero very rapidly.

5. Wreath product, traces and the generalized Ewens measure. In this
section we consider the traces of the wreath product S1 �SN (see, e.g., [27]). More
precisely, we consider random matrices of the form

M(σ, z1, . . . , zN) := diag(z1, . . . , zN) · σ,

where σ is a random permutation of SN , and (zj )j≥1 is a sequence of i.i.d. random
variables with values in S1 (the complex unit circle), independent of σ . Many
groups closely related to SN give similar matrices, for instance, the Weyl group
of SO(2N).

The trace of a function F is then extended in the obvious way by

Tr(F ) = Tr(F, z1, . . . , zN)(σ ) :=
N∑

k=1

F(ωk),(5.1)

where (ωk)
N
k=1 are the N eigenvalues of M(σ, z1, . . . , zN).

We now give a more explicit expression of Tr(F ).
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LEMMA 5.1.

Tr(F )
d=

N∑
k=1

Ck∑
m=1

k	k(F,Zk,m),(5.2)

where (Zk,m)k,m≥1 is a sequence of independent random variables which is in-
dependent of (Ck)k≥1 (the sequence of cycle numbers of σ ), with Zk,m equal in
distribution to

∏k
j=1 zj , and

	k(F,y) := 1

k

∑
ωk=y

F (ω).(5.3)

PROOF. The characteristic polynomial of M(σ, z1, . . . , zN) with σ ∈ SN with
cycle type λ, is given by

det
(
1 − xM(σ, z1, . . . , zN)

) =
N∏

k=1

Ck∏
m=1

(
1 − xk

k∏
j=1

z
k,m
j

)
,(5.4)

where the sequence (z
k,m
j )k,m,j is the same sequence as (zj )

N
j=1, but with a differ-

ent numeration and ordering. [Note that this is why it is crucial that the (zj ) are
i.i.d.] The proof of (5.4) is similar to the proof of (3.3) and we thus omit the details.
The lemma now follows immediately from (5.4). �

As in Section 4, we can compute the generating function of Tr(F ).

LEMMA 5.2. We define

χk(s) := E
[
eisk	k(F,Zk,m)].(5.5)

We then have
∞∑

N=0

hNE�

[
eis Tr(F )]tN = exp

( ∞∑
k=1

θk

k
χk(s)t

k

)
.(5.6)

REMARK. Note that χk(s) is independent of m since Zk,1
d= Zk,2

d= · · · d=
Zk,m.

PROOF OF LEMMA 5.2. We compute E[exp(is Tr(F ))]. For this we use the
independence of Ck and 	k to obtain

E
[
eis Tr(F )] = E

[
N∏

k=1

Ck∏
m=1

eisk	k(F,Zk,m)

]
= E

[
N∏

k=1

Ck∏
m=1

χk(s)

]
(5.7)

= E

[
N∏

k=1

(χk(s))
Ck

]
.

The theorem now follows immediately from Lemma 2.6. �
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DEFINITION 5.3. Let

gTr(F )(t) :=
∞∑

k=1

θk

k
χk(s)t

k.(5.8)

THEOREM 5.4. Assume E[|	k(F,Zk,1)|] = O(k−1−δ) for some 0 < δ ≤ 1,
and assume g�(t) is in eF (r,ϑ, γ ), where eF (r,ϑ, γ ) is given in Definition 2.15.
Then gTr(F )(t) is in eF (r,ϑ,min {γ, δ}) and

E�

[
eis Tr(F )] = exp

( ∞∑
k=1

θk

k

(
χk(s) − 1

)
rk

)
+ O

(
N−min {γ,δ} log(N)

)
(5.9)

and as N tends to infinity, Tr(F ) converges in law to the random variable

Y :=
∞∑

k=1

Pk∑
m=1

k	k(F,Zk,m),(5.10)

where (Pk)k≥1 is a sequence of independent Poisson random variables, indepen-
dent of (Zk,m)k,m≥1, and such that Pk has parameter θkr

k/k. Here, the series
defining Y is a.s. absolutely convergent.

REMARK. By linearity of trace, if F is Riemann integrable one can always
subtract a suitable constant to make

∫
S1 F(ϕ)dϕ = 0, which ensures 	k(F, z) → 0

as k → ∞.

REMARK. One should compare equation (5.10) with equation (5.2). The re-
placement of the cycle counts Ck with Pk is indicative of Feller coupling for the
generalized Ewens measure.

PROOF OF THEOREM 5.4. We have

gTr(F )(t) =
∞∑

k=1

θk

k
χk(s)t

k = g�(t) +
∞∑

k=1

θk

k

(
χk(s) − 1

)
tk.(5.11)

We now have

|χk(s) − 1| ≤ E
[∣∣eisk	k(F,Zk,1) − 1

∣∣] ≤ E[(k|	k(F,Zk,1)|)] = O(k−δ).(5.12)

On the other hand, we have θk = O(r−k). This follows immediately from the fact
that g�(t) is in eF (r,ϑ, γ ). We thus have

θk

k

(
χk(s) − 1

) = O(r−kk−1−δ).(5.13)

This shows that gTr(F )(t) ∈ eF (r,ϑ,min{γ, δ}).
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Since g�(t) ∈ eF (r,ϑ, γ ), we can write g�(t) = ϑ log( 1
1−t/r

) + g0(t) with
g0(r) < ∞. Thus,

gTr(F )(t) = ϑ log
(

1

1 − t/r

)
+ g0(t) +

∞∑
k=1

θk

k

(
χk(s) − 1

)
tk.(5.14)

We get with Theorem 2.16 that

hNE�

[
eis Tr(F )] = Nϑ−1

rN�(ϑ)
exp

(
g0(r) +

∞∑
k=1

θk

k

(
χk(s) − 1

)
rk

)
+ RN(5.15)

with

RN = O

(
Nϑ−1−min{γ,δ} log(N)

rN

)
.(5.16)

Dividing by hN proves equation (5.9).
Using the characteristic function of Tr(F ), we can deduce its convergence in

law to Y . The absolute convergence of the series in (5.10) comes from

E

[ ∞∑
k=1

Pk∑
m=1

k|	k(F,Zk,m)|
]

=
∞∑

k=1

kE[Pk]E[|	k(F,Zk,1)|]

= ∑
k≥1

θkr
kO(k−1−δ)(5.17)

< ∞,

since θk = O(r−k). Now, for s ∈ R and k ≥ 1,

E
[
eisk

∑Pk
m=1 	k(F,Zk,m)] = E

[(
E

[
eisk	k(F,Zk,1)

])Pk
] = E[(χk(s))

Pk ]
(5.18)

= exp
(

θk

k

(
χk(s) − 1

)
rk

)
.

Hence, by absolute convergence,

E[eisY ] = exp

( ∞∑
k=1

θk

k

(
χk(s) − 1

)
rk

)
,(5.19)

and thus by equation (5.9), E�[eis Tr(F )] → E[eisY ] as N → ∞, and thus Tr(F )

converges in law to Y . �

With a more direct approach one can prove the convergence in law of Tr(F )

to Y (albeit without a rate of convergence) under slightly weaker conditions.

THEOREM 5.5. Assume that g�(t) is in eF (r,ϑ, γ ) and that
∞∑

k=1

k(1−ϑ)+E[|	k(F,Zk,1)|] < ∞.(5.20)
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Then Tr(F ) converges in law to Y , where Y is given by (5.10).

PROOF. Under these conditions, the absolute convergence of the series defin-
ing Y is checked as follows:

E

[ ∞∑
k=1

Pk∑
m=1

k|	k(F,Zk,m)|
]

=
∞∑

k=1

kE[Pk]E[|	k(F,Zk,1)|](5.21)

=
∞∑

k=1

θkr
k
E[|	k(F,Zk,1)|](5.22)

= O

( ∞∑
k=1

E[|	k(F,Zk,1)|]
)

(5.23)

and this converges by assumption.
In [23], Corollary 3.1.1, it is proven that for all fixed b ≥ 1, (C1,C2, . . . ,Cb)

tends in law to (P1,P2, . . . ,Pb) when the dimension N goes to infinity.
Now let

Trb(F ) :=
b∑

k=1

Ck∑
m=1

k	k(F,Zk,m)(5.24)

and

Yb :=
b∑

k=1

Pk∑
m=1

k	k(F,Zk,m).(5.25)

The same argumentation as in Theorem 5.4 gives

∞∑
N=0

hNE�

[
eis Trb(F )]tN = exp

(
b∑

k=1

θk

k

(
χk(s) − 1

)
tk

)
eg�(t)(5.26)

from which follows (again by the same reasoning as in Theorem 5.4)

E�

[
eis Trb(F )] → E[eisYb ](5.27)

as N → ∞. Here b is fixed but arbitrary, so this convergence implies (by using the
inequality |eix − eiy | ≤ |x − y|) that

lim sup
N→∞

∣∣E�

[
eis Tr(F )] − E[eisY ]∣∣

≤ |s| lim sup
N→∞

∞∑
k=b+1

kE[|	k(F,Zk,1)|]E′[(Ck + Pk)](5.28)

≤ |s|
∞∑

k=b+1

kE[|	k(F,Zk,1)|]Hk,
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where E
′ is the expectation over the product measure of P� and the measures

occurring from (Pk)k≥1, and where

Hk = E[Pk] + sup
N≥1

E�[Ck].(5.29)

Therefore, the theorem is proven if we show that
∞∑

k=1

kHkE[|	k(F,Zk,1)|] < ∞.(5.30)

Ercolani and Ueltschi [9], Proposition 2.1(c), show that

E�[Ck] =
⎧⎨
⎩

θk

k

hN−k

hN

, if k ≤ N ,

0, if k > N.

(5.31)

By Lemma 2.17, we have, for some A > 0 and for N going to infinity,

hN ∼ A(N + 1)ϑ−1/rN,(5.32)

so

hN−k

hN

= O

(
rk

(
1 − k

N + 1

)ϑ−1)
.(5.33)

Now, for k fixed,

max
N≥k

(
1 − k

N + 1

)ϑ−1

(5.34)

=
{

1, if ϑ ≥ 1,
(k + 1)1−ϑ, if ϑ < 1 (attained at N = k).

Since g�(t) ∈ eF (r,ϑ, γ ), we have θkr
k = O(1), and so we deduce that

sup
N≥1

E�[Ck] = O

(
θk

k
rk(k + 1)(1−ϑ)+

)
= O

(
k−1+(1−ϑ)+)

.(5.35)

Finally, since

E[Pk] = θkr
k/k = O(1/k)(5.36)

we have

Hk = O
(
k−1+(1−ϑ)+)

,(5.37)

and so
∞∑

k=1

kHkE[|	k(F,Zk,1)|] = O

( ∞∑
k=1

k(1−ϑ)+E[|	k(F,Zk,1)|]
)

< ∞(5.38)

as required. �
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REMARK. In the case when zi are all equal to 1 almost surely, then
	k(F,Zk,m) = 	k(F ) as given in (4.11), and we are back in the case of per-
mutation matrices. Thus these two theorems fulfill the promise made in Section 4.

The following result gives sufficient conditions, expressed only in terms of the
Fourier coefficients of F , under which we can be assured the conditions of Theo-
rems 5.4 and 5.5 apply.

THEOREM 5.6. Let us suppose that F is continuous and for m ∈ Z, let us
define the mth Fourier coefficient of F by

cm(F ) := 1

2π

∫ 2π

0
e−imxF (eix) dx.(5.39)

We assume that the mean value of F vanishes, that is, c0(F ) = 0. If for some
δ ∈ (0,1], cm(F ) = O(|m|−1−δ) when |m| goes to infinity then

E[|	k(F,Zk,1)|] = O(k−1−δ).(5.40)

If there exists s > (1 − ϑ)+ such that∑
m∈Z

|m|s |cm(F )| < ∞(5.41)

then
∞∑

k=1

k(1−ϑ)+E[|	k(F,Zk,1)|] < ∞.(5.42)

REMARK. If the assumptions of Theorem 5.6 are satisfied, except that
c0(F ) = 0, then one can still apply the result to the function F − c0(F ), and
deduce, from Theorem 5.4 or Theorem 5.5, that Tr(F )−Nc0(F ) converges in law
to Y , where Y is given by (5.10).

PROOF OF THEOREM 5.6. Since F is continuous, one has, for all x ∈ [0,2π),

F(eix) = lim
n→∞

∑
m∈Z

(n − |m|)+
n

cm(F )eimx,(5.43)

by using the Fejér kernel. Now, by assumption,∑
m∈Z

|cm(F )| < ∞,(5.44)

and hence, by dominated convergence,

F(eix) = ∑
m∈Z

cm(F )eimx,(5.45)
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where the series is absolutely convergent. Since c0(F ) = 0, one deduces that for
all k ≥ 1 and x ∈ [0,2π),

	k(F, eix) = 1

k

k−1∑
j=0

F
(
ei(x+2jπ)/k)

= 1

k

∑
m∈Z\{0}

cm(F )

(
k−1∑
j=0

eim(x+2jπ)/k

)

= ∑
m∈Z\{0},

k|m

cm(F )eimx/k.

If F satisfies the first assumption, that cm(F ) = O(|m|−1−δ), then

sup
x∈[0,2π)

|	k(F, eix)| ≤ ∑
m∈Z\{0},

k|m

|cm(F )| = O

( ∑
m∈Z\{0},

k|m

|m|−1−δ

)
(5.46)

= O(k−1−δ)(5.47)

for k going to infinity, which clearly implies E[|	k(F,Zk,1)|] = O(k−1−δ).
If F satisfies the second assumption, one has

∞∑
k=1

k(1−ϑ)+ sup
x∈[0,2π)

|	k(F, eix)| ≤
∞∑

k=1

k(1−ϑ)+
∑

m∈Z\{0},
k|m

|cm(F )|(5.48)

≤
∞∑

k=1

∑
m∈Z\{0},

k|m

|m|(1−ϑ)+|cm(F )|(5.49)

≤ ∑
m∈Z\{0}

|cm(F )||m|(1−ϑ)+τ(|m|),(5.50)

where τ(|m|) denotes the number of divisors of |m|. Since τ(|m|) = O(|m|ε) for
all ε > 0, one deduces that∑

k≥1

k(1−ϑ)+E[|	k(F,Zk,1)|] = O

( ∑
m∈Z\{0}

|cm(F )||m|s
)

< ∞.(5.51)

The proof of the theorem is complete. �

COROLLARY 5.7. Let F be a continuous function from S1 to C, contained in
a Sobolev space Hs for some s > 1/2 + (1 − ϑ)+. Then, the second condition of
Theorem 5.6 is fulfilled, and thus also the conditions of Theorem 5.5.
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PROOF. By the Cauchy–Schwarz inequality, one has, for any α ∈ ((1 −
ϑ)+, s − 1/2),∑

m∈Z\{0}
|m|α|cm(F )|

(5.52)

≤
( ∑

m∈Z\{0}
|m|2s |cm(F )|2

)1/2( ∑
m∈Z\{0}

|m|2(α−s)

)1/2

,

which is finite since F ∈ Hs and 2(α − s) < −1. �

REMARK. Note that it is not always obvious to estimate directly the Fourier
coefficients of a function F , however, standard results from Fourier analysis con-
cerning the differentiability of F yield sufficient bounds on the decay of the Fourier
coefficients of F for the conditions of Theorem 5.6 to be checked (see, e.g, [18],
Chapter 9).

6. Diverging variance for the classical Ewens measure. In the previous two
sections, we have been considering the convergence of Tr(F ) to some limit for
random permutation matrices (and their generalization to wreath products), where
the underlying probability space is the generalized Ewens measure. The conditions
we have used have all implied that the variance of Tr(F ) stays bounded as N → ∞.

A recent paper by Ben Arous and Dang [2] dealing with Tr(F ) for real F and for
random permutation matrices in the special case of the classical Ewens measure
(which is when θk = θ , a constant), demonstrates a dichotomy between converging
and diverging variance for Tr(F ) in the classical Ewens distribution. In the former
case they also show convergence of Tr(F ) to an explicit finite limit, and in the
latter case they prove the following central limit theorem.

THEOREM 6.1 (Ben Arous and Dang). Let F : C → R be given and assume
that

VN := θ

N∑
k=1

k	k(F )2(6.1)

tends to infinity as N → ∞ and

max
1≤k≤N

k|	k(F )| = o
(√

VN

)
(6.2)

then,

Tr(F ) − E[Tr(F )]√
VN

d−→ N (0,1).(6.3)
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In the generalized Ewens measure, we are currently unable to apply the func-
tion theoretic methods to prove weak convergence results in the case of diverging
variance. However, for the classical Ewens measure we are able to prove a similar
central limit theorem the wreath product, with slightly extended application, in the
sense that condition (6.2) can be weakened from a sup-norm to a p-norm.

THEOREM 6.2. Let F : C → R be given and assume that

VN := θ

N∑
k=1

kE[(	k(F,Zk,1))
2](6.4)

tends to infinity as N → ∞. Assume further that there exists a p > max{ 1
θ
,2} such

that

N∑
k=1

kp−1
E[|	k(F,Zk,1)|p] = o(V

p/2
N )(6.5)

with 	k(F, z) = 1
k

∑
ωk=z F (ω). Then(

Tr(F ) − EN√
VN

)
N≥1

(6.6)

converges in distribution to a standard Gaussian random variable, where

EN := θ

N∑
k=1

E[	k(F,Zk,1)].(6.7)

The behavior for complex functions F can be computed in a similar way. We
consider here only real F to keep the notation simple and to avoid further techni-
calities.

REMARK. Recall that without loss of generality we may assume F has mean
zero in the sense that

∫ 2π
0 F(eix) dx = 0. We remark that this does not necessarily

imply that 	k(F, z) tends to zero, even though 	k(F, z) is a discretization of the
integral, without the assumption of further smoothness conditions. Moreover, note
that in the framework of the symmetric group (i.e., Zk,1 = 1 almost surely), the
assumption (6.5) is implied by the condition (6.2) given in [2]. Indeed, if (6.2) is
satisfied, then for p > 2, one has

N∑
k=1

kp−1|	k(F )|p ≤
(

max
1≤k≤N

(k|	k(F )|)
)p−2 N∑

k=1

k|	k(F )|2

= o
(
V

(p−2)/2
N

)
O(VN) = o(V

p/2
N ).
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In the proof of Theorem 6.2, we use the Feller coupling, which allows the ran-
dom variables Ck and Pk to be defined on the same space and to replace the weak

convergence Ck
d→ Pk by convergence in probability (but not a.s. convergence).

This coupling exists only for the classical Ewens measure and thus Pk are inde-
pendent Poisson distributed random variables with E[Pk] = θ

k
. The construction

and further details can be found, for instance, in [1], Sections 1 and 4.
The Feller coupling allows us to prove Theorem 6.2 with Ck replaced by Pk ,

and the following lemma allows us to estimate the distance between the two.

LEMMA 6.3 (Ben Arous and Dang [2]). For any θ > 0 there exists a constant
K(θ) depending on θ , such that for every 1 ≤ m ≤ N ,

E[|Ck − Pk|] ≤ K(θ)

N
+ θ

N
�N(k),(6.8)

where

�N(k) :=
(

N − k + θ − 1
N − k

)(
N + θ − 1

N

)−1
.(6.9)

PROOF OF THEOREM 6.2. The main idea of the proof is to define the auxiliary
random variable

YN(F ) :=
N∑

k=1

Pk∑
m=1

k	k(F,Zk,m)(6.10)

and to show that Tr(F ) and YN(F ) have the same asymptotic behavior after nor-
malization, and that (again after normalization) YN(F ) satisfies a central limit the-
orem.

First, we will show that

E[|Tr(F ) − YN(F )|] = o((VN)1/2).(6.11)

We use Lemma 6.3 and that Zk,m are independent of Ck and Pk to get

E[|Tr(F ) − YN(F )|]

≤ E

[
N∑

k=1

|Ck − Pk|kE[|	k(F,Zk,1)|]
]

(6.12)

≤ K(θ)

N

N∑
k=1

kE[|	k(F,Zk,1)|] + θ

N

N∑
k=1

kE[|	k(F,Zk,1)|]�N(k).

For the first term, we apply Jensen’s inequality and condition (6.5) to obtain

1

N

N∑
k=1

kE[|	k(F,Zk,1)|] ≤
(

1

N

N∑
k=1

kp
E[|	k(F,Zk,1)|]p

)1/p

(6.13)
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≤
(

N∑
k=1

kp−1
E[|	k(F,Zk,1)|p]

)1/p

(6.14)

= o(V
1/2
N ).(6.15)

Now we deal with the second term in (6.12). If θ ≥ 1 then �N(k) is bounded
by 1, so the same argument as above shows that the second summand is also
o(V

1/2
N ) in this case.

If 0 < θ < 1, we have to be more careful. A simple computation shows that
there exists constants K1,K2 such that

�N(k) ≤
⎧⎪⎨
⎪⎩K1

(
1 − k

N

)θ−1

, for k < N,

K2N
1−θ , for k = N

(6.16)

and so

θ

N

N∑
k=1

kE[|	k(F,Zk,1)|]�N(k)(6.17)

≤ θK2N
1−θ

E[|	N(F,ZN,1)|]
(6.18)

+ θK1

N

N−1∑
k=1

kE[|	k(F,Zk,1)|]
(

1 − k

N

)θ−1

.

Using the value of p given in the conditions of the theorem,

N1−θ
E[|	N(F,ZN,1)|] = (Np−pθ

E[|	N(F,ZN,1)|]p)1/p(6.19)

≤
(

N∑
k=1

kp−pθ
E[|	k(F,Zk,1)|]p

)1/p

(6.20)

≤
(

N∑
k=1

kp−1
E[|	k(F,Zk,1)|p]

)1/p

(6.21)

since kp−pθ ≤ kp−1 (since pθ > 1) and E[|	k(F,Zk,1)|]p ≤ E[|	k(F,Zk,1)|p]
(since p > 1). Thus, by condition (6.5), this is o(V

1/2
N ).

Hölder’s inequality gives

1

N

N−1∑
k=1

kE[|	k(F,Zk,1)|]
(

1 − k

N

)θ−1

(6.22)

≤
(

1

N

N−1∑
k=1

kp
E[|	k(F,Zk,1)|p]

)1/p(
1

N

N−1∑
k=1

(
1 − k

N

)q(θ−1)
)1/q
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with 1
p

+ 1
q

= 1.

After re-ordering the sum, the second factor is (Nq(1−θ)−1 ∑N−1
j=1 j−q(1−θ))1/q ,

and if q(θ − 1) > −1 then it is bounded above by a constant. Note that

(θ − 1)q > −1 ⇐⇒ (1 − θ) <
1

q
⇐⇒ (1 − θ) < 1 − 1

p

⇐⇒ θ >
1

p

and thus condition (6.5) now ensures the existence of a p > 1
θ

such that the first
factor is o((VN)1/2) and the second factor is bounded. This proves (6.11).

Therefore Slutsky’s theorem implies that YN(F ) and Tr(F ) have the same
asymptotic distribution after scaling. Thus it suffices to show that

YN(F ) − EN√
Vn

(6.23)

converges in law to a standard Gaussian random variable.
We calculate the mean of YN(F ) by first taking expectation with respect to Zk,m

and then with respect to Pk , to obtain

E[YN(F )] =
N∑

k=1

E

[
Pk∑

m=1

kE[	k(F,Zk,m)]
]

(6.24)

=
N∑

k=1

E[Pk]kE[	k(F,Zk,1)],

where we use the fact that E[	k(F,Zk,m)] = E[	k(F,Zk,1)] for all m. Finally,
since E[Pk] = θ/k, we see that E[YN(F )] = EN as defined in (6.7).

For the variance, since Pk and Zk,m are all independent, one can move the sum
outside the variance, to obtain

Var(YN(F )) =
N∑

k=1

Var

(
Pk∑

m=1

k	k(F,Zk,m)

)
.(6.25)

Now, the variance of a sum of random length of i.i.d. random variables is given by
the following formula:

Var

(
P∑

m=1

Xm

)
= Var(X1)E[P ] + Var(P )E[X1]2,(6.26)

if (Xm)m≥1 are i.i.d., L2 random variables, and if P is an L2 variable, independent
of (Xm)m≥1 (this result can be proved by a straightforward calculation). Letting
Xm = k	k(F,Zk,m) and P = Pk and knowing that E[Pk] = Var(Pk) = θ/k, we
deduce that Var(YN(F )) = VN .
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Finally we apply the Lyapunov central limit theorem since YN(F ) is a sum of
independent random variables. We will show that

N∑
k=1

E

[∣∣∣∣∣
Pk∑

m=1

k	k(F,Zk,m) − E[kPk	k(F,Zk,1)]
∣∣∣∣∣
p]

(6.27)

�
N∑

k=1

kp−1
E[|	k(F,Zk,1)|p]

and by condition (6.5), with p > 2, this is o(V
p/2
N ) which means YN(F )−EN√

Vn
con-

verges in law to a standard Gaussian random variable.
For simplicity, let P be a Poisson random variable with parameter θ/k (we

think of k as being large), and let Xm = k	k(F,Zk,1) be i.i.d. random variables
with E[|Xm|p] finite. Then

E

[∣∣∣∣∣
P∑

m=1

Xm − E[P ]E[X1]
∣∣∣∣∣
p]

= E

[∣∣∣∣∣
P∑

m=1

(Xm − E[X1]) + (P − E[P ])E[X1]
∣∣∣∣∣
p]

(6.28)

≤
(

E

[∣∣∣∣∣
P∑

m=1

(Xm − E[X1])
∣∣∣∣∣
p]1/p

+ E
[|P − E[P ]|p]1/p

E[X1]
)p

by the generalized triangle inequality.
Now, for all p > 1,

E
[|P − E[P ]|p] ≤ E[P p] � E[P ](6.29)

as E[P ] → 0, and so the second term in (6.28) is

E
[|P − E[P ]|p]1/p

E[X1] � E[P ]1/p
E[X1](6.30)

� (E[P ]E[|X1|p])1/p(6.31)

by Hölder’s inequality, since p > 1.
To bound the first term in (6.28), let qn = P[P = n], and note that

E

[∣∣∣∣∣
P∑

m=1

(Xm − E[X1])
∣∣∣∣∣
p]

=
∞∑

n=0

qnE

[∣∣∣∣∣
n∑

m=1

(Xm − E[X1])
∣∣∣∣∣
p]

(6.32)

≤
∞∑

n=0

qn

(
n∑

m=1

E
[|Xm − E[X1]|p]1/p

)p

(6.33)

=
∞∑

n=0

qnn
p
E

[|X1 − E[X1]|p]
(6.34)
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= E[P p]E[|X1 − E[X1]|p]
(6.35)

� E[P ]E[|X1|p].(6.36)

Thus,

E

[∣∣∣∣∣
P∑

m=1

Xm − E[P ]E[X1]
∣∣∣∣∣
p]

� (
(E[P ]E[|X1|p])1/p + (E[P ]E[|X1|p])1/p)p(6.37)

� E[P ]E[|X1|p].
Using E[P ] = θ/k and E[|X1|p] = kp

E[|	k(F,Zk,1)|p], and summing for k =
1, . . . ,N we have proven (6.27). By condition (6.5), if p > 2, then this is o(V

p/2
N )

which by Lyapunov’s theorem means that YN(F )−EN√
Vn

converges in law to a standard
Gaussian random variable as required. �
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