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On Instrumental Variables Estimation of
Causal Odds Ratios
Stijn Vansteelandt, Jack Bowden, Manoochehr Babanezhad and Els Goetghebeur

Abstract. Inference for causal effects can benefit from the availability of
an instrumental variable (IV) which, by definition, is associated with the
given exposure, but not with the outcome of interest other than through a
causal exposure effect. Estimation methods for instrumental variables are
now well established for continuous outcomes, but much less so for dichoto-
mous outcomes. In this article we review IV estimation of so-called condi-
tional causal odds ratios which express the effect of an arbitrary exposure
on a dichotomous outcome conditional on the exposure level, instrumental
variable and measured covariates. In addition, we propose IV estimators of
so-called marginal causal odds ratios which express the effect of an arbitrary
exposure on a dichotomous outcome at the population level, and are therefore
of greater public health relevance. We explore interconnections between the
different estimators and support the results with extensive simulation studies
and three applications.

Key words and phrases: Causal effect, causal odds ratio, instrumental vari-
able, marginal effect, Mendelian randomization, logistic structural mean
model.

1. INTRODUCTION

Most causal analyses of observational data rely heav-
ily on the untestable assumption of no unmeasured
confounders. According to this assumption, one has
available all prognostic factors of the exposure that
are also associated with the outcome other than via a
possible exposure effect on outcome. Concerns about
the validity of this assumption plague observational
data analyses and increase the uncertainty surround-
ing many study results (Greenland, 2005). This is espe-
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cially true in settings where the data analysis is based
on registry data or focuses on research questions differ-
ent from those conceived at the time of data collection.
Substantial progress can sometimes be made in settings
where measurements are available on a so-called in-
strumental variable (IV). This is a prognostic factor of
the exposure, which is not associated with the outcome,
except via a possible exposure effect on outcome (An-
grist, 1990; McClellan and Newhouse, 1994; Angrist,
Imbens and Rubin, 1996; Hernán and Robins, 2006).
An instrumental variable Z for the effect of exposure
X on outcome Y thus satisfies the following proper-
ties: (a) Z is associated with X; (b) Z affects the out-
come Y only through X (i.e., often referred to as the ex-
clusion restriction); (c) the association between Z and
Y is unconfounded (i.e., often referred to as the ran-
domization assumption) (Hernán and Robins, 2006).
For instance, in the data analysis section, we will esti-
mate the effect of Cox-2 treatment (versus nonselective
NSAIDs) on gastrointestinal bleeding, thereby allow-
ing for the possibility of unmeasured variables U con-
founding the association between X and Y , by choos-
ing the physician’s prescribing preference for Cox-
2 (versus nonselective NSAIDs) as an instrumental
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variable (Brookhart and Schneeweiss, 2007). Because
this is associated with Cox-2 treatment [i.e., (a)], it
would qualify as an IV if it were reasonable that the
physician’s prescribing preference can only affect a
patient’s gastrointestinal bleeding through his/her pre-
scription [i.e., (b)] and is not otherwise associated with
that patient’s gastrointestinal bleeding [i.e., (c)]. As-
sumption (b) could fail, however, if preferential pre-
scription of Cox-2 were correlated with other treat-
ment preferences that have their own impact on gas-
trointestinal bleeding; the latter assumption could fail
if patients with high risk of bleeding are more often
seen with physicians who prefer Cox-2 (Hernán and
Robins, 2006). In this article, we will more generally
assume that the instrumental variables assumptions (a),
(b) and (c) hold conditional on a (possibly empty) set
of measured covariates C.

IVs have a long tradition in econometrics and are be-
coming increasingly popular in biostatistics and epi-
demiology. This is partly because the plausibility of
a measured variable as an IV can sometimes be par-
tially justified on the basis of the study design or bi-
ological theory. For instance, in randomized encour-
agement designs whereby, say, pregnant women who
smoke are randomly assigned to intensified encourage-
ment to quit smoking or not, randomization could qual-
ify as an IV for assessing the effects of smoking on low
birth weight (Permutt and Hebel, 1989), since it guar-
antees the validity of IV assumption (c). The growing
success of IV methods in biostatistics and epidemiol-
ogy can, however, be mainly attributed to applications
in genetic epidemiology (Smith and Ebrahim, 2004).
Here, the random assortment of genes transferred from
parents to offspring resembles the use of randomiza-
tion in experiments and is therefore often referred to
as “Mendelian randomization” (Katan, 1986). Building
on this idea, genetic variants may sometimes qualify
as an IV for estimating the relationship between a ge-
netically affected exposure and a disease outcome, al-
though violations of the necessary conditions may oc-
cur (see Didelez and Sheehan, 2007, and Lawlor et al.,
2008, for rigorous discussions).

Estimation methods for IVs are now well established
for continuous outcomes. The case of dichotomous
outcomes has received more limited attention. It turns
out to be much harder because of the need for addi-
tional modeling and because of difficulties to specify
congenial model parameterizations (see Sections 2.2
and 3). This paper therefore combines different, scat-
tered developments in the biostatistical, epidemiolog-
ical and econometric literature and aims to improve

the clarity and comparability of these developments by
casting them within a common causal language based
on counterfactuals.

Traditional econometric approaches have their roots
in structural equations theory and have thereby largely
focused on the estimation of conditional causal effects,
where rather than employing counterfactuals to define
causal effects, conditioning is made on all common
causes, U , of exposure X and outcome Y (see Blun-
dell and Powell, 2003, for a review). By this condition-
ing, one can assign a causal interpretation to associa-
tion measures such as

odds(Y = 1|X = x + 1,C,U)

odds(Y = 1|X = x,C,U)
.

This can be seen by noting that this odds ratio measure
can—under a consistency assumption that Y = Y(x) if
X = x—equivalently be written as (Pearl, 1995)

odds{Y(x + 1) = 1|C,U}
odds{Y(x) = 1|C,U} ,(1)

where Y(x) denotes the (possibly) counterfactual out-
come following an intervention setting X at the ex-
posure level x and where for any V,W , odds(W =
1|V ) ≡ P(W = 1|V )/P(W = 0|V ). Effect mea-
sure (1) thus compares the odds of “success” if the ex-
posure X were uniformly set to x + 1 versus x within
strata of C and U . Because U is unmeasured, these
strata are not identified, which makes (1) less appeal-
ing as an effect measure and of limited use for pol-
icy making. Its interpretation is especially hindered in
view of noncollapsibility of the odds ratio (Greenland,
Robins and Pearl, 1999), following which the magni-
tude of conditional odds ratios changes with the con-
ditioning sets, even in the absence of confounding or
effect modification. Similar limitations are inherent to
the so-called treatment effect on the treated at the IV
level z of exposure x (Tan, 2010),

odds{Y(x) = 1|X(z) = x}
odds{Y(0) = 1|X(z) = x} ,(2)

and to so-called local or principal stratification causal
odds ratios (Hirano et al., 2000; Frangakis and Rubin
2002; Abadie, 2003; Clarke and Windmeyer, 2009; see
Bowden et al., 2010, for a review). For a dichotomous
instrumental variable Z and dichotomous exposure X

taking values 0 and 1, the latter measure the association
between instrumental variable and outcome within the
nonidentifiable principal stratum of subjects for whom
an increase in the instrumental variable induces an in-
crease in the exposure; that is,

odds{Y(1) = 1|X(1) > X(0),C}
odds{Y(0) = 1|X(1) > X(0),C} .(3)
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Inference for principal stratification causal odds ratios
is also more rigid in the sense of having no flexible
extensions to more general settings involving continu-
ous instruments and exposures. While dichotomization
of the instrument and/or exposure is often employed in
view of this, it not only implies a loss of information,
but may also induce a violation of the exclusion restric-
tion and may make the relevance of the principal stra-
tum “X(1) > X(0)” become dubious (see Pearl, 2011,
for further discussion of these issues).

In view of the aforementioned limitations, our atten-
tion in this article will focus on causal effects which are
defined within identifiable subsets of the population.
Special attention will be given to the conditional causal
odds ratio (Robins, 2000; Vansteelandt and Goetghe-
beur, 2003; Robins and Rotnitzky, 2004), which we de-
fine as

odds(Y = 1|X,Z,C)

odds{Y(0) = 1|X,Z,C} .(4)

It expresses the effect of setting the exposure to zero
within subgroups defined by the observed exposure
level X, instrumental variables Z and covariates C. In
the special case where X is a dichotomous treatment
variable, taking the value 1 for treatment and 0 for no
treatment, (4) evaluated at X = 1, that is,

odds{Y(1) = 1|X = 1,Z,C}
odds{Y(0) = 1|X = 1,Z,C}

is sometimes referred to as the treatment effect in the
treated who are observed to have IV level Z (Hernán
and Robins, 2006; Robins, VanderWeele and Richard-
son, 2006; Didelez, Meng and Sheehan, 2010; Tan,
2010). Conditional causal odds ratios would be of spe-
cial interest if the goal of the study were to examine the
impact of setting the exposure to zero for those with
a given exposure level X, for example, to examine the
impact of preventing nosocomial infection within those
who acquired it (Vansteelandt et al., 2009).

While the comparison in (4) could alternatively be
expressed as a risk difference or relative risk, our fo-
cus throughout will be limited to odds ratios because
models for other association measures do not guarantee
probabilities within the unit interval, and might not be
applicable under case–control sampling (Bowden and
Vansteelandt, 2011). We refer the interested reader to
Robins (1994) and Mullahy (1997) for inference on the
conditional relative risk

P(Y = 1|X,Z,C)

P{Y(0) = 1|X,Z,C} ,(5)

and to van der Laan, Hubbard and Jewell (2007) for
inference on the so-called switch relative risk, which
is defined as (5) for subjects with values (X,Z,C) for
which P(Y = 1|X,Z,C) ≤ P{Y(0) = 1|X,Z,C} and
as

P(Y = 0|X,Z,C)

P{Y(0) = 0|X,Z,C} ,

for all remaining subjects. The latter causal effect pa-
rameter is more difficult to interpret, but has the ad-
vantage that models for the switch relative risk, unlike
models for (5), guarantee probabilities within the unit
interval.

For policy making, the interest lies more usually
in population-averaged or marginal effect measures
(Greenland, 1987; Stock, 1988) such as

odds{Y(x + 1) = 1}
odds{Y(x) = 1} ,(6)

where x is a user-specified reference level, or

odds{Y(X + 1) = 1}
odds{Y(X) = 1} or

(7)
odds{Y(1.1 × X) = 1}

odds{Y(X) = 1} .

Here, (6) evaluates the effect of changing the expo-
sure from level x to x + 1 uniformly in the popula-
tion. It thus reflects the effect that would have been es-
timated had an ideal randomized controlled trial (i.e.,
with 100% compliance) in fact been possible, random-
izing subjects over exposure level x versus x + 1. In
contrast, the effect measures in (7) allow for natural
variation in the exposure between subjects by express-
ing the effect of an absolute or relative increase in the
observed exposure. This may ultimately be of most in-
terest in many observational studies, considering that
many public health interventions would target a change
in exposure level (e.g., diet, BMI, physical exercise,
. . . ), starting from some natural, subject-specific expo-
sure level X.

We review estimation of the conditional causal odds
ratio (4) in Section 2. By casting different develop-
ments within the same causal framework based on
counterfactuals, new insights into their interconnec-
tions will be developed. We propose novel estimators
of the marginal causal odds ratios given in (6) and (7)
in Section 3, as well as for the corresponding effect
measures expressed as risk differences or relative risks.
Extensive simulation studies are reported in Section 4
and an evaluation on 3 data sets is given in Section 5.
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2. IV ESTIMATION OF THE CONDITIONAL CAUSAL
ODDS RATIO

Identification of the conditional causal odds ratio (4)
is studied in detail in Robins and Rotnitzky (2004)
and Vansteelandt and Goetghebeur (2005), who find
that—as for other IV estimators (Hernan and Robins,
2006)—parametric restrictions are required in addition
to the standard instrumental variables assumptions. In
particular, nonlinear exposure effects and modification
of the exposure effect by the instrumental variable
are not nonparametrically identified. We will there-
fore consider estimation of the conditional causal odds
ratio under so-called logistic structural mean models
(Robins, 2000; Vansteelandt and Goetghebeur, 2003;
Robins and Rotnitzky, 2004), which impose paramet-
ric restrictions on the conditional causal odds ratio (4).
In particular, these models postulate that the exposure
effect is linear in the exposure on the conditional log
odds ratio scale, and independent of the instrumental
variable, in the sense that

odds(Y = 1|X,Z,C)

odds{Y(0) = 1|X,Z,C} = exp{m(C;ψ∗)X},(8)

where m(C;ψ) is a known function (e.g., ψ0 + ψ1C),
smooth (i.e., with continuous first-order derivatives)
in ψ , and ψ∗ is an unknown finite dimensional param-
eter. In the absence of covariates, this gives rise to a
relatively simple model of the form

odds(Y = 1|X,Z)

odds{Y(0) = 1|X,Z} = exp(ψ∗X).(9)

The assumption that the exposure effect is not modified
by the IV substitutes the monotonicity assumption [that
X(z) ≥ X(z′) if z ≥ z′] (Hernan and Robins, 2006)
which is commonly adopted in the principal stratifica-
tion approach. In spite of the randomization assump-
tion [cf. IV assumption (c)], it may be violated because
subjects with exposure level X are not exchangeable
over levels of the IV, so that they might in particular
experience different effects. The additional assumption
of a linear exposure effect is only relevant for expo-
sures that take on more than two levels. It must be cau-
tiously interpreted because the conditional causal odds
ratio (4) expresses effects for differently exposed sub-
groups which may not be exchangeable. Both these as-
sumptions are critical because they are empirically un-
verifiable. Vansteelandt and Goetghebeur (2005) assess
the sensitivity of the conditional causal odds ratio esti-
mator to violation of the linearity assumption and note
that, under violation of the linearity assumption, the es-
timator can still yield a meaningful first order approxi-
mation. In the remainder of this work, we will assume
that model (8) is correctly specified.

2.1 Approximate Estimation

Approximate IV estimators of the conditional causal
odds ratio can be obtained by averaging over the ob-
served exposure values in model (8) using the follow-
ing approximations:

E{logit E(Y |X,Z,C)|Z,C}
(10)

≈ logit E(Y |Z,C),

E[logit E{Y(0)|X,Z,C}|Z,C]
(11)

≈ logit E{Y(0)|Z,C}.
This together with the logistic structural mean
model (8) implies

logit E(Y |Z,C)

≈ logit E{Y(0)|Z,C} + m(C;ψ∗)E(X|Z,C)(12)

= logit E{Y(0)|C} + m(C;ψ∗)E(X|Z,C),

upon noting that the combined IV assumptions (b)
and (c), conditional on C, imply Y(x) ⊥⊥ Z|C for all x.
It follows that approximate IV estimators of the condi-
tional causal odds ratio can be obtained via the follow-
ing two-stage approach:

1. Estimate the expected exposure in function of the
IV and covariates by fitting an appropriate regres-
sion model. Let the predicted exposure be X̂ ≡
Ê(X|Z,C).

2. Regress the outcome on covariates C and on m(C;
ψ)X̂ through standard logistic regression to obtain
an estimate of ψ∗. In the absence of covariates, this
involves fitting a logistic regression model of the
form

logit E(Y |Z) = ω + ψX̂.(13)

When, furthermore, the IV is dichotomous, it fol-
lows from (12) that

ORY |Z ≡ odds(Y = 1|Z = 1)

odds(Y = 1|Z = 0)
(14)

≈ exp(ψ∗)�X|Z ,

where �X|Z ≡ E(X|Z = 1) − E(X|Z = 0), so that
ψ∗ can be estimated as log ÔRY |Z/�̂X|Z .

The estimator obtained using the above two-stage ap-
proach is referred to as the standard IV estimator in
Palmer et al. (2008), a Wald-type estimator in Didelez,
Meng and Sheehan (2010) and the 2-stage logistic ap-
proach in Rassen et al. (2009). It is commonly em-
ployed in the analysis of Mendelian randomization
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studies (Thompson et al., 2003; Palmer et al., 2008),
where it is typically viewed as an approximate estima-
tor of the conditional causal odds ratio (1). Our alter-
native development shows that it can also be viewed
as an approximate estimator of the conditional causal
odds ratio (4). To gain insight into the adequacy of the
approximations (10) and (11), suppose for simplicity
that there are no covariates, that the exposure has a nor-
mal distribution with constant variance σ 2

x conditional
on Z, that logit E(Y |X,Z) = β0 +βxX +βzZ and that
m(C;ψ) = ψ . Then it is easily shown, using results in
Zeger and Liang (1988), that

logit E(Y |Z) ≈ β0{β2
xσ 2

x } + βx{β2
xσ 2

x }E(X|Z)

+ βz{β2
xσ 2

x }Z,

logit E{Y(0)|Z}
≈ β0{(βx − ψ∗)2σ 2

x }
+ (βx − ψ∗){(βx − ψ∗)2σ 2

x }E(X|Z)

+ βz{(βx − ψ∗)2σ 2
x }Z,

where for any parameter β and variance compo-
nent σ 2, we define β{σ 2} = β(c2σ 2 + 1)−1/2 with
c = 16

√
3/15π . It can relatively easily be deduced

from these expressions and the fact that E{Y(0)|Z} =
E{Y(0)} that

logit E(Y |Z) ≈ β ′
0 + ψ∗√

c2β2
xσ 2

x + 1
E(X|Z),

for some β ′
0, suggesting increasing bias with increas-

ing association between X and Y (given Z) and with
increasing residual variance in X (given Z). This is
true except at the null hypothesis of no causal effect
because Y ⊥⊥ Z at the null hypothesis so that the usual
maximum likelihood estimator of ψ in model (13) will
then converge to 0 in probability. Further, note that the
standard IV estimator requires correct specification of
the first stage regression model for the expected expo-
sure (Didelez, Meng and Sheehan, 2010; Rassen et al.,
2009; Henneman, van der Laan and Hubbard, 2002).
In spite of its approximate nature, the standard IV es-
timator continues to be much used in Mendelian ran-
domization studies because of its simplicity, because
it can be used in meta-analyses of summary statistics,
even when information on ORY |Z and �X|Z is obtained
from different studies (Minelli et al., 2004; Smith et al.,
2005; Bowden et al., 2006), and because the underly-
ing principle extends to case–control studies when the
first stage regression is evaluated on the controls and

the disease prevalence is low (Smith et al., 2005; Bow-
den and Vansteelandt, 2011). For relative risk estima-
tors, the resulting bias due to basing the first stage re-
gression on controls rather than a random population
sample amounts to the difference between the log rel-
ative risk and the log odds ratio between Y and Z, in-
flated by the reciprocal of the exposure distortion �X|Z
(Bowden and Vansteelandt, 2011).

The bias of the standard IV estimator can some-
times be attenuated by including the first-stage resid-
ual R ≡ X − X̂ as an additional regressor to X̂ in
model (13). This is known as the control functions
approach in econometrics (Smith and Blundell, 1986;
Rivers and Vuong, 1988) and has also been considered
in the biostatistical literature on noncompliance adjust-
ment (Nagelkerke et al., 2000) and Mendelian random-
ization (Palmer et al., 2008). A control function refers
to a random variable conditioning on which renders the
exposure independent of the unmeasured variables that
confound the association between exposure and out-
come. Intuitively, the regression residual R may apply
as a control function because it captures (part of) those
confounders. In particular, let us summarize (without
loss of generality) all confounders of the exposure ef-
fect into a scalar measurement U . Assume that the con-
tributions of the instrument Z and confounder U are
additive in the sense that X = h(Z)+U for some func-
tion h. Suppose for simplicity that there are no covari-
ates and that the conditional mean E(X|Z) is known
so that X̂ = h(Z) (here we use that U ⊥⊥ Z, as im-
plied by the IV assumptions). Then R = U so that
a (correctly specified) logistic regression of Y on X

and R (or, equivalently, X̂ and R) will yield a consis-
tent estimator of the conditional causal odds ratio (1),
which is here identical to (4) because U is completely
determined by X and Z. More generally, following
the lines of Smith and Blundell (1986), assume that
X = h(Z) + V , U = β̃∗

1 V + ε, where ε follows a stan-
dard logistic distribution, and that Y(x) = 1 if and only
if β̃∗

0 +ψ∗x +U > 0 for some β̃∗
0 , β̃∗

1 . Then it also fol-
lows that Y = 1 if and only if ε > −β̃∗

0 − ψ∗X − β̃∗
1 V ,

from which

logit E(Y |X,V ) = β̃∗
0 + ψ∗X + β̃∗

1 V.

Upon substituting V with the estimated regression
residual R, one obtains an estimator exp(ψ̂) which
consistently estimates the conditional causal odds ra-
tio (1). In the Appendix we demonstrate that this is also
a consistent estimator of the conditional causal odds ra-
tio (4) when the exposure is normally distributed with
constant variance, conditional on the instrument, but
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not necessarily otherwise. Standard error calculation
for the standard and adjusted IV estimators is also de-
tailed in the Appendix.

Over recent years, semiparametric analogs to the
adjusted IV approach have been developed in the
econometrics literature to alleviate concerns about
model misspecification. Blundell and Powell (2004)
and Rothe (2009), for instance, avoid parametric re-
strictions on the conditional expectations E(X|Z,C)

and E(Y |X,Z,C) (and, in particular, on the dis-
tribution of ε) by using kernel regression estima-
tors and semiparametric maximum likelihood estima-
tion, respectively. Imbens and Newey (2009) allow
for the contributions of the instrument Z and con-
founder U on the exposure to be nonadditive by ex-
tending the previous works to nonseparable exposure
models of the form X = h(Z,U,C) for some func-
tion h. They show that the association between ex-
posure and outcome is unconfounded upon adjusting
for R = FX|Z,C(X|Z,C) as a control function, where
FX|Z,C is the conditional cumulative distribution func-
tion of X, given Z and C. To avoid parametric restric-
tions on the conditional expectations FX|Z,C(X|Z,C)

and E(Y |X,Z,C), they base inference on local linear
regression estimators.

A limitation of all these semiparametric approaches
is that, by avoiding assumptions on the distribution
of ε, the causal parameter ψ∗ becomes difficult to in-
terpret so that it may be exclusively of interest for the
calculation of marginal causal odds ratios (see Sec-
tion 3). A further limitation is that all foregoing ap-
proaches require the exposure to be continuously dis-
tributed (Rothe, 2009); some additionally require the
IV to be continuously distributed (Imbens and Newey,
2009). In the next section we review direct approaches
to the estimation of the conditional causal odds ra-
tio (4) which do not rely on assumptions about the ex-
posure distribution.

2.2 Consistent Estimation

Remember that, although Y may well depend on Z

(in the presence of an exposure effect), the IV assump-
tions imply that Y(0) ⊥⊥ Z|C. Vansteelandt and Goet-
ghebeur (2003) make use of this to obtain a consistent
estimator of ψ∗ in model (8), which is chosen to make
this independence happen. Because this is not possi-
ble without making additional parametric modeling as-
sumptions (Robins and Rotnitzky, 2004), they model
the expected observed outcome, conditional on the ex-

posure and IV, for example,

logit P(Y = 1|X,Z,C)
(15)

= β∗
0 + β∗

1 X + β∗
2 Z + β∗

3 XZ + β∗
4 C,

where β∗
0 , β∗

1 , β∗
2 , β∗

3 and β∗
4 are unknown scalar pa-

rameters. More generally, one may postulate that

logit E(Y |X,Z,C) = m(X,Z,C;β∗),(16)

where m(X,Z,C;β) is a known function, smooth in
β , and β∗ is an unknown finite-dimensional parameter.
An estimator β̂ of β∗ can be obtained using standard
methods (e.g., using maximum likelihood estimation).
Combining the causal model (8) with the so-called as-
sociation model (16) yields a prediction for the coun-
terfactual outcome Y(0) for each subject which, for
given ψ , equals

H(ψ, β̂) = expit{m(X,Z,C; β̂) − m(C;ψ)X},
where expit(a) ≡ exp(a)/{1 + exp(a)}. Because
E{Y(0)|Z,C) = E{Y(0)|C} under the IV assumptions,
the value of ψ∗ can now be chosen as the value ψ

which makes this mean independence happen, once
Y(0) is replaced by H(ψ, β̂). When there are no co-
variates and the instrument Z is dichotomous, taking
the values 0 and 1, one thus chooses ψ such that∑

i Hi(ψ, β̂)Zi∑
i Zi

=
∑

i Hi(ψ, β̂)(1 − Zi)∑
i (1 − Zi)

.(17)

When also the exposure is dichotomous, then
model (15) is guaranteed to hold and a closed-form es-
timator is obtained, as given in the Appendix. In most
cases, the solution to (17) gives a unique estimator of
the causal odds ratio, although multiple or no solutions
are sometimes obtained when precision is limited due
to small sample size or the outcome mean being close
to 0 or 1. This is illustrated in Figure 1, which displays
the left- and right-hand side of (17) in function of ψ

for 3 settings. The top 2 panels are based on the same
simulated data set. They show that 2 or no solutions
can be obtained for the same data set, depending on
whether the association model (16) includes an inter-
action between exposure and instrument (left panel) or
not (right panel). The bottom panel corresponds to the
data analysis of Section 5.1, where a single solution
was obtained. Our experience indicates that, when 2
solutions are obtained, one of them corresponds to an
effect size which is so large that it would be deemed
unrealistic [and correspondingly yield unrealistically
small or large values of E{Y(0)}]. When no solutions
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FIG. 1. Plot of the left- (solid) and right-hand side (dotted) of expression (17) as a function of ψ . Top: simulated data set [Right: with
β∗

4 = 0 in model (15)]; Bottom: data set analyzed in Section 5.1.

are obtained, this can sometimes be resolved by choos-
ing a less parsimonious association model (as in Fig-
ure 1, top), but must be seen as an indication that infor-
mation is very limited. In the simulation experiments
of Section 4, a single solution was always obtained,
but convergence of the root-finding algorithm (nlm in
R) was sometimes very dependent on the choice of an
adequate starting value.

For general instruments, a consistent point estima-
tor of ψ∗ can be found by solving unbiased estimating
equation

0 =
n∑

i=1

[d(Zi,Ci) − E{d(Zi,Ci)|Ci}]
(18)

·[Hi(ψ, β̂) − E{Hi(ψ, β̂)|Ci}]
for ψ , where d(Zi,Ci) is an arbitrary function of Zi

and Ci , for example, d(Zi,Ci) = Zi (see Bowden and
Vansteelandt, 2011, for choices that yield a semipara-
metric efficient estimator of ψ∗). This thus leads to the
following 2-stage approach:

1. First fit the association model (16), for instance, us-
ing maximum likelihood estimation, and obtain an
estimator β̂ of β∗;

2. Next, solve equation (18) to obtain an estimator ψ̂

of ψ∗.

Corresponding R-code is available from the first au-
thor’s website (users.ugent.be/~svsteela). This app-
roach is extended in Tan (2010) to enable estimation
of the treatment effect on the treated at the IV level z

of exposure x, as defined in (2), thus avoiding condi-
tioning on C.

In the Appendix we show that when the associa-
tion model includes an additive term in d(Zi,Ci) −
E{d(Zi,Ci)|Ci} and is fitted using maximum like-
lihood estimation as in standard generalized linear
model software, then its solution is robust to misspec-
ification of the association model (16) when ψ∗ = 0.
This means that a consistent estimator of ψ∗ = 0 is
obtained, even when all models are misspecified. In
the absence of covariates and with d(Zi,Ci) = Zi and
E{d(Zi,Ci)|Ci} = ∑n

j=1 Zj/n, this is satisfied as soon

http://users.ugent.be/~svsteela/Site/Welcome.html
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as the association model includes an intercept and main
effect in Zi [as in model (15)]. The proposed approach
then yields a valid (Wald and score) test of the causal
null hypothesis that ψ∗ = 0, even when both models
(8) and (16) are misspecified. This property, which we
refer to as a “local” robustness property (Vansteelandt
and Goetghebeur, 2003), also guarantees that estima-
tors of the causal odds ratio will have small bias under
model misspecification when the true exposure effect
is close to, but not equal to, zero.

A drawback of the parameterization by Vansteelandt
and Goetghebeur (2003) is that the association model
may be uncongenial with the causal model. Specifi-
cally, given the observed data law f (X,Z|C) and the
limiting value β∗ of β̂ , there may be no value of the
causal parameter ψ for which E{H(ψ,β∗)|Z,C} =
E{H(ψ,β∗)|C} over the entire support of Z and C.
In the Appendix, we show that this may happen when
parametric restrictions are imposed on the main effect
of the instrumental variable in the association model
(16), along with its interaction with covariates C, but
not when that main effect is left unrestricted. It fol-
lows that no congeniality problems arise in the com-
mon situation of a dichotomous instrument and no co-
variates, so long as a main effect of the IV is included
in the association model. This continues to be true for
categorical IVs with more than 2 levels when dummy
regressors are used for the instrument in the associ-
ation model and there are no covariates. For general
IVs, one may consider generalized additive association
models which leave the main effect of the IV unre-
stricted (apart from smoothness restrictions).

Robins and Rotnitzky (2004) developed an alterna-
tive approach for estimation of ψ∗ in model (8), which
guarantees a congenial parameterization by avoiding
direct specification of an association model. They pa-
rameterize instead the selection-bias function

logit E{Y(0)|X,Z,C}
− logit E{Y(0)|X = 0,Z,C}(19)

= q(X,Z,C;η∗),

where q(X,Z,C;η) is a known function satisfying
q(0,Z,C;η) = 0, smooth in η, and η∗ is an unknown
finite-dimensional parameter. That q(X,Z,C;η∗) en-
codes the degree of selection bias can be seen because
q(X,Z,C;η∗) = 0 for all X implies that E{Y(0)|X,Z,

C} = E{Y(0)|Z,C} and thus implies that the associa-
tion between exposure and outcome [more precisely,

Y(0)] is unconfounded (conditional on Z and C). Re-
lying on a parametric model for the conditional ex-
posure distribution, f (X|Z,C) = f (X|Z,C;α∗) (fit-
ted using maximum likelihood inference, for instance),
their approach involves the following iterative proce-
dure. First, for each fixed ψ (starting from an initial
value ψ0), maximum likelihood estimators η̂(ψ) and
ω̂(ψ) are computed for the parameters η∗ and ω∗ in-
dexing the implied association model

P(Y = 1|X,Z,C;ψ,η∗,ω∗)
= expit{m(C;ψ)X + q(X,Z,C;η∗)(20)

+ v(Z,C;η∗,ω∗)},
where v(Z,C;η∗,ω∗) ≡ logit E{Y(0)|X = 0,Z,C} is
the solution to the integral equation

logit E{Y(0)|C}
= t (C;ω∗)

=
∫

expit{q(X = x,Z,C;η∗)(21)

+ v(Z,C;η∗,ω∗)}
· f (X = x|Z,C;α∗) dx,

where t (C;ω) is a known function of C, smooth in ω,
and where ω∗ is an unknown finite-dimensional param-
eter. For the given estimators η̂(ψ) and ω̂(ψ), an esti-
mator of ψ is then obtained by solving a linear combi-
nation of the estimating equations (18) and estimating
equations for the parameters indexing the association
model (20). Both these steps are then iterated until con-
vergence of the estimator. In the Appendix we suggest
a somewhat simpler strategy which, nonetheless, also
involves solving integral equations. Alternatively, one
could focus on the switch relative risk of van der Laan,
Hubbard and Jewell (2007), introduced in Section 1, to
avoid the uncongeniality problems associated with the
odds ratio.

An advantage of the approach of Robins and Rot-
nitzky (2004) is that it guarantees that E{Y(0)|Z,C} =
E{Y(0)|C} for all Z and C, although only under cor-
rect specification of the law f (X|Z,C). Under the ap-
proach of Vansteelandt and Goetghebeur (2003), this
is only guaranteed under congenial parameterizations
as suggested previously, but regardless of whether a
model for the law f (X|Z,C) is (correctly) specified.
A further advantage is that it might possibly give some-
what more efficient estimators by fully exploiting the
a priori knowledge that E{Y(0)|Z,C} = E{Y(0)|C} to
estimate unknown parameters [i.e., v(Z,C)] and by
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additionally relying on a model for the exposure dis-
tribution. A drawback is that the approach is compu-
tationally demanding, especially for continuous IVs
and/or in the presence of covariates, as it involves solv-
ing integral equations for each (Z,C) and this within
each iteration of the algorithm. In addition, standard er-
ror calculations are more complex. A further drawback
is that consistent estimation (away from the null) re-
quires correct specification of the conditional exposure
distribution f (X|Z,C).

The estimation procedure for logistic structural mean
models simplifies when the logit link is replaced with
the probit link and the exposure is assumed to be nor-
mally distributed conditional on the instrumental vari-
able and covariates (with mean α∗

0 + α∗
1Z + α∗

2C and
constant standard deviation σ ∗, where α∗

0 , α∗
1, σ ∗ are

unknown). For instance, combining the probit struc-
tural mean model

�−1{E(Y |X,Z,C)} − �−1{E(Y (0)|X,Z,C)}
(22)

= φ∗X,

where �−1 is the probit link and φ∗ is unknown, with
the probit association model

�−1{E(Y |X,Z,C)} = θ∗
0 +θ∗

1 X+θ∗
2 Z+θ∗

3 C,(23)

where θ∗
0 , θ∗

1 , θ∗
2 are unknown, and averaging over the

exposure, conditional on Z and C (see the Appendix),
gives

E{Y(0)|Z,C}
= �

{(
θ∗

0 + θ∗
2 Z

(24)
+ (θ∗

1 − φ∗)(α∗
0 + α∗

1Z + α∗
2C) + θ∗

3 C
)

· (√
1 + (θ∗

1 − φ∗)2σ 2∗)−1}
.

Because this does not depend on Z under the IV as-
sumptions, it follows that θ∗

2 = (φ∗ − θ∗
1 )α∗

1 . Averag-
ing over the exposure in the association model (23) and
using the previous identity, we obtain

E(Y |Z,C) = �

(
θ∗

0 + θ∗
1 α∗

0 + φ∗α∗
1Z + θ∗

3 C√
1 + θ∗2

1 σ 2∗

)
.

This suggests regressing the outcome on the instrumen-
tal variable and covariate using the probit regression
model

�−1{E(Y |Z,C)} = λ∗
0 + λ∗

1Z + λ∗
2C(25)

to obtain an estimate λ̂1 for the unknown regression
slope λ∗

1, and then estimating φ∗ as

φ̂ = λ̂1

√
1 + θ̂2

1 σ̂ 2

α̂1
.(26)

We will refer to this estimator as the “Probit-Normal
SMM estimator” throughout. It is related to the instru-
mental variables probit (Lee, 1981) and the general-
ized two-stage simultaneous probit (Amemiya, 1978),
both of which instead infer effect estimates conditional
on the unmeasured confounder U . When the outcome
mean lies between 10% and 90%, the above estima-
tor yields an approximate estimate of the causal odds
ratio through the identity exp(ψ∗) ≈ exp(φ∗/0.6071)

(McCullagh and Nelder, 1989). For dichotomous ex-
posures, related estimators can be obtained via probit
structural equation models that replace the linear re-
gression model for Xi in assumption 1 above, with
a probit regression model (see, e.g., Rassen et al.,
2009).

3. IV ESTIMATION OF THE MARGINAL CAUSAL
ODDS RATIO

We will now turn attention to the identification of
marginal causal effects. Under linear structural mod-
els, these coincide with conditional causal effects un-
der typical assumptions (Hernan and Robins, 2006).
Consider, for instance, the extended linear structural
mean model which imposes the restriction

E{Y − Y(x)|X,C,Z} = m(C,x;ψ∗)(X − x)

for each feasible exposure level x, where m(C,x;ψ) is
a known function (e.g., ψ0 + ψ1C + ψ2x), smooth in
ψ , and ψ∗ an unknown finite dimensional parameter.
Then it follows from the restriction

E{Y − m(C,x;ψ∗)(X − x)|C,Z}
= E{Y − m(C,x;ψ∗)(X − x)|C}

for each x, that

E{Y − m(C,x;ψ∗)X|C,Z}
= E{Y − m(C,x;ψ∗)X|C}

for each x, and thus that m(C,x;ψ∗) does not depend
on x. This then implies that the marginal causal effect
equals

E{Y(x∗) − Y(x)|C} = m(C,0;ψ∗)(x∗ − x).

Unfortunately, this result does not extend to logistic
structural mean models, so that the conditional causal
odds ratio corresponding to a single reference exposure
level (e.g., 0) does not uniquely map into the marginal
causal odds ratio.
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Let us therefore assume that in addition to the associ-
ation model (16), the extended logistic structural mean
model holds, which we define by the restriction

odds(Y = 1|X,Z,C)

odds{Y(x) = 1|X,Z,C}
(27)

= exp{m(C;ψ∗
x )(X − x)},

for each feasible exposure level x, where m(C;ψx) is
a known function (e.g., ψx0 + ψx1C), smooth in ψx ,
and ψ∗

x an unknown finite-dimensional parameter. The
marginal causal odds ratio (6) can now be identified
upon noting that

P{Y(x) = 1}
= E[expit{m(X,Z,C;β∗) − m(C;ψ∗

x )(X − x)}]
and the marginal causal odds ratio [(7), left] upon not-
ing that

P{Y(X + 1) = 1}
= E[expit{m(X,Z,C;β∗) + m(C;ψ∗

X+1)}].
A consistent estimator of (6) is thus obtained by first
obtaining consistent estimators of β∗,ψ∗

x and ψ∗
x+1,

using the strategy of the previous section, and then
calculating p̂x+1(1 − p̂x)/{p̂x(1 − p̂x+1)}, where for
given x

p̂x = n−1
n∑

i=1

expit{m(Xi,Zi,Ci; β̂)

− m(Ci; ψ̂x)(Xi − x)}.
A consistent estimator of [(7), left] is obtained by first
obtaining consistent estimators of β∗ and ψ∗

x+1 for
each observed value Xi for x using the strategy of
the previous section, and then calculating p̂X+1(1 −
p̂X)/{p̂X(1 − p̂X+1)}, where

p̂X = n−1
n∑

i=1

Yi,

p̂X+1 = n−1
n∑

i=1

expit{m(Xi,Zi,Ci; β̂)

+ m(Ci; ψ̂Xi+1)}.
Standard error calculations are reported in the Ap-
pendix. Using the above expressions, also estima-
tors of the marginal risk difference P{Y(x + 1) =
1} − P{Y(x) = 1} or relative risk P{Y(x + 1) =
1}/P{Y(x) = 1} can straightforwardly be obtained.

A drawback of this strategy, which we discuss in the
Appendix, is that even when model (27) is congenial

with the association model (16) for x = 0 (or some
other reference level), it need not be a well-specified
model for all x. We conjecture that when this would
happen, this may be partially detectable in the sense
of yielding estimating equations with no solution, as
the uncongeniality is then due to the nonexistence of
a value of ψ∗

x for some x so that E{Y(x)|Z,C} =
E{Y(x)|C} for all (Z,C). As with other causal models
that are not guaranteed to be congenial (e.g., Petersen
et al., 2007; Tan, 2010) and as confirmed in simulation
studies in the next section, we believe this is unlikely to
induce an important bias. The concern for bias is fur-
ther alleviated by the aforementioned local robustness
property, which continues to hold for extended logistic
structural mean models.

The idea of using conditional causal effect estimates
as plug-in estimates in inference for marginal effects
has been advocated in the biostatistical and epidemio-
logical literature (see, e.g., Greenland, 1987; Ten Have
et al., 2003) and is commonly employed in the econo-
metrics literature (see, e.g., Blundell and Powell, 2004;
Imbens and Newey, 2009), where related proposals
have been made starting from a semiparametric control
functions approach. Alternative approaches involve as-
suming that all confounders of the exposure effect can
be captured into a scalar variate U , which has an ad-
ditive effect on the outcome (Amemiya, 1974; Foster,
1997; Johnston et al., 2008; Rassen et al., 2009) in the
sense that

E(Y |X,C,U) = expit(β∗
0 + ψ̃∗X +β∗

1 C)+U,(28)

where β∗
0 , β∗

1 , ψ̃∗ are unknown and where E(U |C) =
0; note that E(U |X,C) 
= 0 when there is confound-
ing. Because, for each x, Y(x) ⊥⊥ X|U,C, model (28)
implies the marginal structural model

E{Y(x)|C} = E[E{Y(x)|X = x,C,U}|C]
= expit(β∗

0 + ψ̃∗x + β∗
1 C)

considered by Henneman, van der Laan and Hubbard
(2002). This clarifies that exp(ψ̃∗) in model (28) can be
interpreted as the marginal (i.e., population averaged)
causal odds ratio

exp(ψ̃∗) = odds{Y(1) = 1|C}
odds{Y(0) = 1|C} .

Using that Z ⊥⊥ U |C under the IV assumptions, an es-
timator ψ̂ for ψ∗ can be obtained by solving the fol-
lowing unbiased estimating equations:

0 =
n∑

i=1

⎛
⎝ 1

Zi

Ci

⎞
⎠ {Yi − expit(β0 +ψXi +β1Ci)}.(29)
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The marginal causal odds ratio (6) can be identified
upon noting that

P{Y(x) = 1} = E[expit(β∗
0 + ψ̃∗x + β∗

1 C)];
it equals exp(ψ̃∗) when C is empty. The marginal
causal odds ratio [(7), left] can be identified upon not-
ing that

P{Y(X + 1) = 1}
= E[expit{β∗

0 + ψ̃∗(X + 1) + β∗
1 C}].

In the absence of covariates, it follows from the un-
biasedness of the estimating functions at ψ̃∗ = 0 that
the resulting estimator is (locally) robust against model
misspecification at the null hypothesis of no causal ef-
fect. However, it is not guaranteed to exist and may be
inconsistent for ψ∗ 
= 0 because the dichotomous na-
ture of the outcome imposes strong restrictions on the
distribution of U , which may be impossible to recon-
cile with the basic assumption that Z ⊥⊥ U |C (Henne-
man, van der Laan and Hubbard, 2002).

4. SIMULATION STUDY

We conducted 5 simulation experiments, each with a
sample size of 1,000 and with 1,000 simulation runs.
As in Palmer et al. (2008), the instrumental variable
Z was generated in such a manner as to represent the
number of copies (0, 1 or 2) of a single bi-allelic SNP
in the Hardy–Weinberg equilibrium. The underlying
allele frequency in the population was assumed to be
p = 0.3, and so Z was generated from a multinomial
distribution with cell probabilities (0.09, 0.42, 0.49).
The exposure X was generated to be N(Z,2) in sim-
ulation experiments a, b and e, Z + t2 in simulation
experiment c and �(Z,1) in simulation experiment d
[with �(·, ·) referring to the Gamma distribution]. Fi-
nally, the outcome was generated to satisfy

P(Y = 1|X,Z) = expit(β0 + βxX + βzZ),

where β0 was fixed at different values to result in out-
come means of 0.05, 0.1, 0.25 and 0.5 and βx was
chosen to yield Y(0) ⊥⊥ Z under the logistic structural
mean model (9) with ψ equaling 0 or 1. Finally, βz

was set to 1 in simulation experiments a and e, to 2 in
simulation experiments b and c and to −2 in simula-
tion experiment d to correspond to different degrees of
unmeasured confounding. Indeed, note that the condi-
tional association βz between Y(0) and Z, conditional
on X, is largely explained by the extent of unmeasured
confounding.

Table 1 compares the Wald estimator, the Adjusted
IV estimator and the logistic structural mean model es-
timator of the conditional causal log odds ratio. We do
not report results for the semiparametric control func-
tion approaches since these require the IV to be contin-
uously distributed (Imbens and Newey, 2009). Table 1
demonstrates that the Wald estimator can have substan-
tial bias when there is unmeasured confounding of the
exposure–outcome association (cf. experiment b). As
predicted by the theory, the adjusted IV estimator gives
unbiased estimators when the exposure has a symmet-
ric distribution with constant variance (cf. experiments
a–c), conditional on the IV, but not when the exposure
distribution is skewed (cf. experiment d) or when an
exposure–IV interaction is ignored (cf. experiment e).
Note, in particular, that the adjusted IV estimator is not
locally robust to model misspecification at the causal
null hypothesis ψ∗ = 0, despite the existence of an
asymptotically distribution-free test. The logistic SMM
estimator is unbiased in all cases. It has slightly in-
creased variance relative to the Adjusted IV estimator
when the exposure is normally distributed, but reduced
variance when the exposure is t-distributed because of
outlying exposure residuals (i.e., control functions) af-
fecting the Adjusted IV estimator.

Table 2 compares the proposed estimators of the
marginal log odds ratio (6) (labeled “MLOR 1”) and
(7) (labeled “MLOR 2”), as well as the same estima-
tors where, for computational convenience, ψ̂x is sub-
stituted with ψ̂0 for all x (labeled “Approx. MLOR 1”
and “Approx. MLOR 2”). We do not report results on
the estimators obtained by solving (29) since they were
doing very poorly, often resulting in nonconvergence in
over 80% of the simulation runs. Table 2 demonstrates
that the approximate estimators perform adequately
and much like the proposed estimators, although the
nominal coverage level is slightly better attained for
the proposed estimators. Given the good agreement,
the results in Table 3 are based on the computationally
more attractive approximate estimators. Interestingly,
it reveals that the estimators of the marginal causal log
odds ratio have a much reduced variance relative to the
three considered estimators of the conditional causal
log odds ratio. In particular, highly efficient estimates
are obtained for the marginal causal log odds ratio (6)
which we regard to be of most interest in many practi-
cal applications, since it essentially expresses the result
that would be obtained in a randomized experiment.
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TABLE 1
Bias (×100), empirical standard deviation (×100) (ESE), average sandwich standard error (×100) (SSE) and coverage of 95% confidence

intervals (Cov.) for the standard IV estimator, the adjusted IV estimator and the logistic structural mean model estimator of the log
conditional causal odds ratio

Standard IV Adjusted IV Logistic SMM

Exp. E(Y ) ψ Bias ESE SSE Cov. Bias ESE SSE Cov. Bias ESE SSE Cov.

a 0.1 0 1.15 16.2 15.9 95.5 1.11 19.2 18.9 95.1 1.62 20.1 19.6 95.6
0.05 1 3.82 30.8 30.4 96.1 3.92 30.8 30.5 96.0 5.31 33.0 32.2 96.2
0.1 1 1.71 22.0 21.9 95.3 1.80 22.0 21.9 95.5 2.71 23.6 23.0 95.6
0.25 1 0.68 15.0 15.0 95.5 0.77 15.0 15.1 95.6 1.24 15.8 15.7 95.3
0.5 1 1.18 12.3 12.7 95.1 1.28 12.3 12.7 95.3 1.46 12.6 13.0 95.6

b 0.1 0 1.28 15.7 15.9 95.1 1.31 24.8 25.1 95.5 2.86 28.3 28.3 95.9
0.05 1 −7.12 31.1 27.9 88.9 4.38 34.4 33.4 95.3 6.63 38.7 37.3 95.1
0.1 1 −13.5 22.1 18.9 80.1 2.69 25.4 25.7 95.3 4.37 29.0 28.9 95.2
0.25 1 −21.9 15.3 11.6 49.2 1.84 19.8 20.1 95.1 2.76 22.1 22.2 95.8
0.5 1 −26.0 13.2 8.89 26.5 1.28 18.0 18.3 95.4 1.65 19.3 19.4 95.4

c 0.1 0 1.77 17.0 17.1 95.0 7.06 73.5 61.3 94.4 5.31 39.8 39.5 95.2
0.05 1 −34.8 36.1 30.4 55.4 10.8 79.8 69.4 94.4 12.2 58.0 56.2 93.1
0.1 1 −29.1 34.9 26.6 50.5 9.82 83.0 63.5 94.8 8.15 41.1 39.7 95.9
0.25 1 −25.6 30.3 21.2 41.9 7.45 68.3 54.2 93.1 3.50 26.9 25.2 95.1
0.5 1 −24.7 26.8 18.9 39.2 7.23 66.9 53.1 93.8 1.8 19.7 19.0 95.3

d 0.1 0 0.08 15.6 15.8 95.3 −56.2 25.6 26.2 40.8 −1.03 28.6 28.5 94.0
0.05 1 −48.0 24.1 26.2 51.7 −91.8 47.0 43.5 42.4 −1.09 40.0 34.1 87.7
0.1 1 −55.8 15.8 19.0 14.3 −83.4 32.3 31.9 22.3 1.16 33.5 31.6 88.2
0.25 1 −65.2 9.87 13.1 0.00 −61.8 23.3 23.1 21.2 1.59 26.8 27.0 94.0
0.5 1 −72.8 8.53 10.8 0.00 −27.0 19.9 20.3 76.3 −0.07 27.3 28.5 95.2

e 0.1 0 2.55 15.5 15.4 94.8 2.83 18.6 19.2 95.9 3.25 26.8 26.4 97.2
0.05 1 −37.7 25.8 25.2 62.2 −37.4 26.0 25.8 64.0 13.4 56.3 52.4 91.0
0.1 1 −36.6 18.4 18.3 45.0 −36.4 18.6 18.9 48.1 8.38 39.8 38.0 93.9
0.25 1 −31.0 12.7 13.0 34.3 −30.9 12.7 13.2 35.6 4.83 24.4 24.3 95.7
0.5 1 −19.1 10.7 11.9 61.8 −18.7 10.8 11.4 60.4 4.18 17.1 17.4 96.0

5. APPLICATIONS

5.1 Analysis of a Health Register

Brookhart et al. (2006) and Brookhart and Schnee-
weiss (2007) assess short-term effects of Cox-2 treat-
ment (as compared to nonsteroidal anti-inflammatory
treatment) on the risk of gastrointestinal (GI) bleeding
within 60 days. As Table 4 shows, of the 37,842 new
nonselective NSAID users drawn from a large popula-
tion based cohort of medicare beneficiaries who were
eligible for a state-run pharmaceutical benefit plan,
26,407 patients were placed on Cox-2 treatment. Let
the received treatment X equal 1 for subjects placed on
Cox-2 and 0 for those on nonselective NSAIDs. Let the
outcome Y indicate 1 for upper gastrointestinal (GI)
bleeding within 60 days of initiating an NSAID and 0
otherwise. As in Brookhart and Schneeweiss (2007),
we use the physician’s prescribing preference for Cox-
2 (versus nonselective NSAIDs) Z as an instrumen-

tal variable for the effect of Cox-2 treatment on gas-
trointestinal bleeding. The Wald and adjusted IV esti-
mator of the conditional causal odds ratio were found
to be identical: 0.26 (95% confidence interval 0.084–
0.79, P 0.018). In contrast, the logistic structural mean
model estimator [both using the approach of Vanstee-
landt and Goetghebeur (2003) and using the approach
of Robins and Rotnitzky (2004)] was found to be 0.081
(95% confidence interval 0.0095–0.82, P 0.018), which
might be more reliable, considering the nonnormal-
ity of the exposure distribution. The marginal causal
odds ratio was estimated to be almost identical: 0.083
(95% confidence interval 0.0096–0.82). We thus esti-
mate roughly that the use of nonselective NSAIDs in-
stead of Cox-2 increases the odds (or risk) of gastroin-
testinal bleeding by at least 18% (= 1 − 0.82).

Besides the IV assumptions, all results rely on the
assumption that the effect of Cox-2 versus nonselec-
tive NSAIDS is the same in Cox-2 users whose physi-
cian prefers Cox-2 treatment as in Cox-2 users whose
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TABLE 2
Bias (×100), empirical standard deviation (×100) (ESE), average sandwich standard error (×100) (SSE) and coverage of 95% confidence

intervals (Cov.) for the approximate and exact estimators of the logarithm of (6) (MLOR1) and the logarithm of (7) (leftmost) (MLOR2)

Approx. MLOR 1 MLOR 1

Exp. E(Y ) ψ Bias ESE SSE Cov. Bias ESE SSE Cov.

a 0.1 0 −0.10 15.9 15.6 93.7 −0.30 15.7 15.6 94.9
0.05 1 −0.31 9.82 9.79 93.6 −0.65 9.54 10.1 96.0
0.1 1 −1.01 14.2 14.3 92.6 −1.52 14.0 15.0 95.2
0.25 1 0.04 6.50 6.51 94.7 −0.16 6.31 6.52 95.6
0.5 1 0.32 5.44 5.56 95.9 0.24 5.46 5.50 94.1

b 0.1 0 −0.49 15.5 15.9 94.1 −1.30 16.1 16.1 95.5
0.05 1 −0.04 11.0 10.8 94.0 −0.58 10.7 12.0 96.4
0.1 1 0.23 8.29 8.35 94.2 −0.24 7.89 8.90 96.3
0.25 1 0.18 6.42 6.49 95.1 −0.06 6.12 6.52 96.1
0.5 1 0.07 5.80 5.87 95.8 −0.04 5.70 5.80 95.5

Approx. MLOR 2 MLOR 2

Bias ESE SSE Cov. Bias ESE SSE Cov.

a 0.1 0 1.2 16.4 16.1 95.5 1.14 16.3 16.0 94.9
0.05 1 1.57 20.6 20.2 95.6 1.04 19.4 23.9 94.8
0.1 1 4.00 30.1 29.5 95.6 3.06 28.4 28.1 95.0
0.25 1 0.24 12.7 12.7 95.1 0.00 12.0 14.0 95.7
0.5 1 0.29 9.93 10.3 95.9 0.25 9.8 10.1 95.9

b 0.1 0 1.46 15.9 16.1 95.8 1.28 15.7 15.9 95.2
0.05 1 3.74 28.4 28.7 96.4 2.97 26.3 26.7 95.3
0.1 1 2.41 20.1 21.0 96.6 1.72 18.4 19.2 95.5
0.25 1 1.24 14.2 15.1 96.5 0.80 12.8 13.9 96.0
0.5 1 0.58 12.4 13.3 97.1 0.52 12.0 13.1 96.7

physician prefers nonselective NSAIDS (and likewise
for the effect of nonselective NSAIDS). They are in
stark contrast with the estimate obtained from an un-
adjusted logistic regression analysis: 1.12 (95% confi-
dence interval 0.85–1.5).

5.2 Analysis of Randomized Cholesterol
Reduction Trial with Noncompliance

We reanalyze the cholesterol reduction trial reported
in Ten Have et al. (2003). Let Y be an indicator of
treatment success (defined as a beneficial change in
cholesterol), X be an indicator of using educational di-
etary home-based audio tapes (which equals 0 on the
control arm) and Z be the experimental assignment to
the use of educational dietary home-based audio tapes.
The Wald estimator of the conditional causal odds ratio
was found to be 1.37 (95% confidence interval 0.68–
2.74, P 0.38), and analogous to the logistic structural
mean model estimator, 1.31 (95% confidence interval
0.72–2.40, P 0.37). This expresses that in patients who
used the audio tapes on the intervention arm, the odds
of a beneficial reduction in cholesterol would have

been 1.31 times lower had they not received the in-
tervention. The adjusted IV estimator was uninforma-
tive: 0.020 (95% confidence interval 0–10171, P 0.99).
The marginal causal odds ratio (6) was estimated to
be 1.28 (95% confidence interval 0.74–2.19, P 0.38). It
expresses that, had all patients complied perfectly with
their assigned treatment, the intention-to-treat analysis
would have resulted in an odds ratio of 1.28. Since the
exposure is dichotomous, the marginal causal odds ra-
tio (7) is not of interest. Since subjects on the control
arm have no access to the audio tapes, model (9) is only
relevant for those who were assigned to the interven-
tion arm (i.e., Z = 1); hence, this analysis does not rely
on untestable assumptions regarding the absence of ex-
posure effect modification by the instrumental variable.

5.3 Analysis of Randomized Blood Pressure Trial
With Noncompliance

We reanalyze the blood pressure study reported in
Vansteelandt and Goetghebeur (2003). Let Y be an in-
dicator of successful blood pressure reduction, X mea-
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TABLE 3
Bias (×100), empirical standard deviation (×100) (ESE), average sandwich standard error (×100) (ESE) and coverage of 95% confidence
intervals (Cov.) for the logistic structural mean model estimator of the log conditional causal odds ratio (4), the approximate estimator of

the logarithm of (6) (MLOR1) and the logarithm of (7) (leftmost) (MLOR2)

Logistic SMM MLOR 1 MLOR2

Exp. E(Y ) ψ Bias ESE SSE Cov. Bias ESE SSE Cov. Bias ESE SSE Cov.

a 0.1 0 1.62 20.1 19.6 95.6 −0.10 15.9 15.6 93.7 1.23 16.4 16.1 95.5
0.05 1 5.31 33.0 32.2 96.2 −0.31 9.82 9.79 93.6 1.57 20.6 20.2 95.6
0.1 1 2.71 23.6 23.0 95.6 −1.01 14.2 14.3 92.6 4.00 30.1 29.5 95.6
0.25 1 1.24 15.8 15.7 95.3 0.04 6.50 6.51 94.7 0.24 12.7 12.7 95.1
0.5 1 1.46 12.6 13.0 95.6 0.32 5.44 5.56 95.9 0.29 9.93 10.3 95.9

b 0.1 0 2.86 28.3 28.3 95.9 −0.49 15.5 15.9 94.1 1.46 15.9 16.1 95.8
0.05 1 6.63 38.7 37.3 95.1 −0.04 11.0 10.8 94.0 3.74 28.4 28.7 96.4
0.1 1 4.37 29.0 28.9 95.2 0.23 8.29 8.35 94.2 2.41 20.1 21.0 96.6
0.25 1 2.76 22.1 22.2 95.8 0.18 6.42 6.49 95.1 1.24 14.2 15.1 96.5
0.5 1 1.65 19.3 19.4 95.4 0.07 5.80 5.87 95.8 0.58 12.4 13.3 97.1

c 0.1 0 5.31 39.8 39.5 95.2 0.85 15.7 15.7 94.8 2.47 16.5 16.5 95.3
0.05 1 12.2 58.0 56.2 93.1 1.30 17.4 17.0 91.0 7.10 36.4 36.4 93.2
0.1 0 8.15 41.1 39.7 95.9 1.19 13.1 12.8 92.9 4.72 26.7 26.7 95.5
0.25 1 3.50 26.9 25.2 95.1 0.35 9.24 8.69 93.9 1.62 17.2 16.8 95.6
0.5 1 1.8 19.7 19.0 95.3 0.04 6.80 6.63 95.2 0.46 12.1 12.4 96.1

d 0.1 0 −1.03 28.6 28.5 94.0 0.31 21.3 20.6 92.9 2.31 21.6 21.4 97.0
0.05 1 −1.09 40.0 34.1 87.7 −1.52 22.0 20.0 84.3 11.3 52.4 48.9 90.0
0.1 0 1.16 33.5 31.6 88.2 0.17 14.9 14.8 90.9 6.78 36.2 35.0 93.5
0.25 1 1.59 26.8 27.0 94.0 1.00 9.56 9.79 93.0 3.45 21.3 21.4 95.7
0.5 1 −0.07 27.3 28.5 95.2 1.42 7.36 7.4 92.9 2.39 13.8 14.1 95.6

e 0.1 0 3.25 26.8 26.4 97.2 1.66 15.2 15.2 93.4 −0.73 15.1 15.1 93.9
0.05 1 13.4 56.3 52.4 91.0 6.54 41.8 36.7 82.5 −1.93 13.3 11.5 85.2
0.1 0 8.38 39.8 38.0 93.9 6.50 33.5 31.8 87.2 −0.38 11.1 10.7 83.6
0.25 1 4.83 24.4 24.3 95.7 2.88 22.1 22.4 93.3 0.46 9.51 9.64 91.9
0.5 1 4.18 17.1 17.4 96.0 −3.39 19.3 19.9 94.4 0.08 11.3 11.9 95.1

sure the percentage of assigned active dose which was
actually taken (which equals 0 on the control arm)
and Z be the experimental assignment to active treat-
ment or placebo. The Wald and adjusted IV estima-
tor of the conditional causal odds ratio were found to
be identical, 4.29 (95% confidence interval 1.6–11.3,
P 0.0032), and analogous to the logistic structural mean
model estimator, 4.44 (95% confidence interval 1.6–
12.6, P 0.0049). This expresses that in patients on the
intervention arm with unit exposure per day, the odds
of a beneficial reduction in diastolic blood pressure
would have been 4.44 times lower had they not re-
ceived the experimental treatment. The marginal causal
odds ratio (6) was estimated to be 4.12 (95% confi-
dence interval 1.6–10.3, P 0.0025). It expresses that,
had all patients complied perfectly with their assigned
treatment, the intention-to-treat analysis would have
resulted in an odds ratio of 4.12.

TABLE 4
Observed data with Xi indicating received treatment [Cox-2 (1)
versus nonselective NSAIDs (0)], Zi indicating the physician’s
prescribing preference [Cox-2 (1) versus nonselective NSAIDs

(0)], and Yi indicating gastrointestinal (GI) bleeding (1) within 60
days of initiating an NSAID for subject i

Zi = 0 Zi = 1

Yi = 0 Yi = 1 Yi = 0 Yi = 1

Xi = 0 5640 39 5722 34
Xi = 1 6740 60 19493 114

APPENDIX

A.1 Closed-Form Estimator

When X and Z are both dichotomous, taking values
0 and 1, the logistic structural mean model estimator is
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obtainable in closed form as

ψ̂ = log
[−Q1 ±

√
Q2

1 − 4Q2(Q2 − X̂11 + X̂10)Q3

2Q2

]
,

(30)
where X̂xz is the percentage of subjects with X = x

among those with Z = z, and

Q1 = (Q2 + X̂10) exp(β̂0 + β̂1)

+ (Q2 − X̂11) exp(β̂0 + β̂1 + β̂2 + β̂3),

Q2 = expit(β̂0)X̂00 − expit(β̂0 + β̂2)X̂01,

Q3 = exp(β̂0 + β̂1 + β̂2 + β̂3) × exp(β̂0 + β̂1).

A.2 Standard Errors for Conditional Causal Log
Odds Ratio Estimators

Suppose that X satisfies the conditional mean model

E(X|Z,C) = g(Z,C; θ∗),
where g(Z,C; θ) is a known function, smooth in θ ,
and θ∗ is an unknown finite-dimensional parameter; for
example, g(Z,C; θ) = θ0 + θ1Z + θ2C. With R(θ∗) ≡
X − g(Z,C; θ∗), assume further that

logit E(Y |Z,C,R(θ∗))
= m0(C,R(θ∗);ω∗) + m(C;ψ∗)g(Z,C; θ∗),

where m0(C,R(θ∗);ω) is a known function, smooth
in ω, and ω∗ is an unknown finite-dimensional pa-
rameter; for example, m0(C,R(θ∗);ω) = ω0 + ω1C +
ω2R(θ∗). Then the adjusted IV estimator is equiva-
lently obtained by solving the multivariate score equa-
tion

∑n
i=1 Si(ξ) = 0 for ξ ≡ (θ ′,ω′,ψ ′)′ and taking the

solution for ψ , where Si(θ,ω,ψ) equals⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g

∂θ
(Zi,Ci; θ)Var−1(Xi |Zi,Ci)Ri(θ)⎛

⎜⎝
∂m0

∂ω
(Ci,Ri(θ);ω)

∂m

∂ψ
(Ci;ψ)g(Zi,Ci; θ)

⎞
⎟⎠

· [Yi − expit{m0(Ci,Ri(θ);ω)

+ m(Ci;ψ)

·g(Zi,Ci; θ)}]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(31)

The asymptotic variance of the adjusted IV estimator
can now be obtained from the “sandwich” expression

1

n
E−1

(
∂Si(ξ)

∂ξ

)
Var{Si(ξ)}E−1

(
∂Si(ξ)

∂ξ

)T

.

The asymptotic variance of the standard IV estimator
is similarly obtained upon redefining m0(C,R(θ∗);ω)

to be a function of only C and ω. The asymptotic vari-
ance of the logistic SMM-estimator is obtained as in
Vansteelandt and Goetghebeur (2003).

A.3 Theoretical Comparison of the Adjusted IV
Estimator and the Logistic Structural Mean
Model Estimator

To simplify the exposition, suppose that there are no
covariates. Assume that X is normally distributed, con-
ditional on Z. Let the adjusted IV estimator be based
on the model

logit P(Y = 1|R,Z) = ω0 + ω1R + ω2E(X|Z),

and assume, for the purpose of comparability, that this
is also the association model underlying the logistic
structural mean model estimator [e.g., when E(X|Z)

is linear in Z, then this is equivalent with a standard lo-
gistic regression model with main effects in X and Z].
Under model (9), it then follows that

logit P
(
Y(0) = 1|X,Z

)
= ω0 + (ω1 − ψ)R + (ω2 − ψ)E(X|Z).

We will now demonstrate that the adjusted IV estimator
ω̂2 is a consistent estimator of the causal parameter ψ∗
indexing the logistic structural mean model. We will
do so by demonstrating that the estimating equations
for the logistic structural mean model estimator ψ̂ have
mean zero at ψ = ω2.

Note that, at ω2 = ψ , logit P(Y (0) = 1|X,Z) = ω0 +
(ω1 −ψ)R. A Taylor series expansion of the estimating
function for ψ , that is,

[d(Z)−E{d(Z)}] expit[ω0 + (ω1 −ψ){X−E(X|Z)}],
around X = E(X|Z) then gives

∞∑
k=0

[d(Z) − E{d(Z)}]{X − E(X|Z)}k

· expit(k)(ω0)
(ω1 − ψ)k

k! ,

where expit(k)(ω0) refers to the kth order deriva-
tive of expit(ω0) w.r.t. ω0. When X is normally
distributed, conditional on Z, with constant vari-
ance, then this is a mean zero equation because then
E[{X − E(X|Z)}k|Z] = E[{X − E(X|Z)}k] for all k. It
thus follows that ω̂2 is a consistent estimator of the
causal parameter ψ∗. This result continues to hold
for other distributions than the normal, which sat-
isfy that for each k, either E[{X − E(X|Z)}k|Z] =
E[{X − E(X|Z)}k] or expit(k)(ω0) = 0. For instance,
when X is normally distributed, conditional on Z,
with variance depending on Z and when, in addi-
tion, expit(ω0) = 1/2, then ω̂2 stays a consistent es-
timator of the causal parameter ψ∗ because E[{X −
E(X|Z)}k|Z] = E[{X − E(X|Z)}k] for all k 
= 2 and
expit(2)(ω0) = expit(ω0){1 − expit(ω0)}{1 −
2 expit(ω0)} = 0.
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A.4 Local Robustness

Suppose first that Ci is empty, d(Zi,Ci) = Zi

and E{d(Zi,Ci)|Ci} = ∑n
j=1 Zj/n. When ψ∗ = 0,

then equation (18) becomes
∑n

i=1(Zi −
∑n

j=1 Zj

n
) ·

expit{m(Xi,Zi; β̂)}. Suppose now that the associa-
tion model includes an intercept and main effect in
Zi , and that β̂ is the standard maximum likelihood
estimator of β∗. We then show that equation (18)

equals
∑n

i=1(Zi −
∑n

j=1 Zj

n
)Yi , which has mean zero

at ψ∗ = 0, even under model misspecification. That
this equality is true follows because β̂ satisfies the fol-
lowing score equations:

0 =
n∑

i=1

(
1
Zi

)
[Yi − expit{m(Xi,Zi; β̂)}]

from which
∑n

i=1 ZiYi = ∑n
i=1 Zi expit{m(Xi,Zi; β̂)}

and
n∑

i=1

∑n
j=1 Zj

n
Yi =

n∑
i=1

∑n
j=1 Zj

n
expit{m(Xi,Zi; β̂)}.

Extending this argument, it is seen that local robustness
is attained whenever the association model includes an
additive term in d(Zi,Ci) − E{d(Zi,Ci)|Ci}.
A.5 Uncongenial Models

It follows from the parameterization of Robins and
Rotnitzky (2004) that, for each law f (X|Z,C), the lo-
gistic structural mean model (8) is congenial with as-
sociation models of the form

P(Y = 1|X,Z,C)

= expit{m(C;ψ∗)X + q(X,Z,C) + v(Z,C)}
for each function q(X,Z,C) of (X,Z,C) satisfying
q(0,Z,C) = 0 for all Z,C, each function t (C) of C,
and v(Z,C) solving

t (C) =
∫

expit{q(X = x,Z,C) + v(Z,C)}
· f (X = x|Z,C)dx.

It thus follows that, for each law f (X|Z,C), the lo-
gistic structural mean model (8) is also congenial with
association models of the form

P(Y = 1|X,Z,C)

= expit{m(C;ψ∗)X + q(X,Z,C)(32)

+ t∗(C) + v∗(Z,C)}

for each such function, each function t∗(C) of C, and
v∗(Z,C) satisfying v∗(0,C) = 0 for all C and∫

expit{q(X = x,0,C) + t∗(C)}
·f (X = x|Z = 0,C)dx

=
∫

expit{q(X = x,Z,C)(33)

+ t∗(C) + v∗(Z,C)}
·f (X = x|Z,C)dx

for each Z. Indeed, this follows upon defining t∗(C) as
the solution to

t (C) =
∫

expit{q(X = x,0,C) + t∗(C)}
·f (X = x|Z = 0,C)dx.

It follows that a given association model is congenial
with the logistic structural mean model (8) when no re-
strictions are imposed on the function v∗(Z,C), which
encodes the main effect of Z, along with interactions
with C. The above derivation also suggests an eas-
ier strategy for fitting the model of Robins and Rot-
nitzky (2004), whereby the association model is of the
form (32) and integral equations of the form (33) are
solved.

Consider now the extended logistic SMM (27). Sup-
pose that model (27) is congenial with the association
model (16) for x = 0 in the sense that for the given β∗,
there exists a value ψ∗

0 such that∫
expit{m(X,Z,C;β∗)−m(C;ψ∗

0 )X}f (X|Z,C)dX

does not depend on Z. Then it does not necessarily fol-
low that there exists a value ψ∗

x for given x such that∫
expit{m(X,Z,C;β∗)

− m(C;ψ∗
x )(X − x)}f (X|Z,C)dX

does not depend on Z. Model (27) being congenial
with the association model (16) for x = 0 hence does
not imply congeniality for all x.

A.6 Probit-Normal SMM Estimator

We explain how to derive E(Y (0)|Z,C) under mod-
els (22) and (23). Note that

E{Y(0)|Z,X,C}
= P(U ≤ θ∗

0 + θ∗
1 X + θ∗

2 Z + θ∗
3 C − φ∗X),
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where U is a standard normally distributed variate,
independent of (Z,X). Averaging over the exposure,
conditional on Z and C, then yields

E{Y(0)|Z,C}
=

∫ ∞
−∞

P
(
U + (φ∗ − θ∗

1 )X

≤ θ∗
0 + θ∗

2 Z + θ∗
3 C

)
dF(X|Z,C),

where F(X|Z,C) refers to the conditional distribu-
tion of X, given Z and C. Define U∗ = U + (φ∗ −
θ∗

1 )X. Then, for normally distributed X with mean
α∗

0 + α∗
1Z + α∗

2C and constant variance σ 2∗, con-
ditional on Z and C, U∗ has a normal distribution
with mean (φ∗ − θ∗

1 )(α0 + α1Z + α∗
2C) and variance

1 + (φ∗ − θ∗
1 )2σ 2. Then

E{Y(0)|Z,C} =
∫ ∞
−∞

∫ θ∗
0 +θ∗

2 Z+θ∗
3 C

−∞
dF(U∗,X|Z,C),

which is as given in (24). The conditional mean
E(Y |Z,C) can be derived using similar arguments.

A.7 Standard Errors for Marginal Causal Log Odds
Ratio Estimators

Consider the marginal log odds ratio defined by

η = log
μ1(1 − μ0)

μ0(1 − μ1)
,(34)

where μx = E[expit{m(X,Z,C;β∗) + m(C;ψ∗
x )(x −

X)}] for x = 0,1, and let the corresponding estimators
be η̂ and μ̂x, x = 0,1, respectively. Then a Taylor se-
ries expansion shows that

0 = 1√
n

n∑
i=1

expit{m(Xi,Zi,Ci; β̂)

+ m(Ci; ψ̂x)(x − Xi)} − μ̂x

= 1√
n

n∑
i=1

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψx)(x − Xi)} − μx

+ 1√
n

n∑
i=1

E
[

∂

∂θx

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψx)(x − Xi)}
]

· E−1
(

∂Uix(θx)

∂θx

)
Uix(θx)

− √
n(μ̂x − μx),

where θx ≡ (βT ,ψT
x )T and Uix(θx) is the vector of

estimating functions for θx , from which the influence
function for μ̂x is

expit{m(Xi,Zi,Ci;β) + m(Ci;ψx)(x − Xi)} − μx

+ 1√
n

n∑
i=1

E
[

∂

∂θx

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψx)(x − Xi)}
]

· E−1
(

∂Uix(θx)

∂θx

)
Uix(θx).

From the Delta method, it then follows that the influ-
ence function for η̂ is

1

μ1(1 − μ1)

·
[

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψ1)(1 − Xi)} − μ1

+ 1√
n

n∑
i=1

E
[

∂

∂θ1
expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψ1)(1 − Xi)}
]

· E−1
(

∂Ui1(θ1)

∂θ1

)
Ui1(θ1)

]

− 1

μ0(1 − μ0)

·
[

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψ0)(0 − Xi)} − μ0

+ 1√
n

n∑
i=1

E
[

∂

∂θ0
expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψ0)(0 − Xi)}
]

· E−1
(

∂Ui0(θ0)

∂θ0

)
Ui0(θ0)

]
.

The asymptotic variance of η̂ thus equals 1 over n times
the variance of this influence function (where averages
and variances can be replaced with sample analogs, and
population values with consistent estimators).
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Consider the marginal log odds ratio defined by (34)
with the redefinitions

μ1 = E[expit{m(X,Z,C;β∗) + m(C;ψ∗
X+1)}]

and μ0 = E(Y ). Then using similar arguments as be-
fore, we obtain that the influence function for η̂ is

1

μ1(1 − μ1)

·
[

expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψXi+1)} − μ1

+ 1√
n

n∑
i=1

E
[

∂

∂θXi+1
expit{m(Xi,Zi,Ci;β)

+ m(Ci;ψXi+1)}
]

· E−1
(

∂Ui,Xi+1(θXi+1)

∂θXi+1

)
Ui,Xi+1(θXi+1)

]

− 1

μ0(1 − μ0)
[Yi − μ0].
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