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In multi-class communication networks, traffic surges due to one
class of users can significantly degrade the performance for other
classes. During these transient periods, it is thus of crucial impor-
tance to implement priority mechanisms that conserve the quality of
service experienced by the affected classes, while ensuring that the
temporarily unstable class is not entirely neglected. In this paper, we
examine the complex interaction occurring between several classes of
traffic when classes obtain bandwidth proportionally to their incom-
ing traffic. We characterize the evolution of the performance measures
of the network from the moment the initial surge takes place until the
system reaches its equilibrium. Using a time-space-transition-scaling,
we show that the trajectories of the temporarily unstable class can be
described by a differential equation, while those of the stable classes
retain their stochastic nature. In particular, we show that the tem-
porarily unstable class evolves at a time-scale which is much slower
than that of the stable classes. Although the time-scales decouple, the
dynamics of the temporarily unstable and the stable classes continue
to influence one another. We further proceed to characterize the ob-
tained differential equations for several simple network examples. In
particular, the macroscopic asymptotic behavior of the unstable class
allows us to gain important qualitative insights on how the bandwidth
allocation affects performance. We illustrate these results on several
toy examples and we finally build a penalization rule using these re-
sults for a network integrating streaming and surging elastic traffic.

1. Introduction. Communication networks are dealing with very het-
erogeneous sources of traffic having drastically different behaviors in terms
of volume of data and agressivity. Ideally, the network should respond to the
different demands in the fairest possible way, i.e. by avoiding a significant
degradation of quality of service of a given class of traffic when another class
undergoes a major traffic surge.

The impact of large-scale traffic surges, also known as slash-dot-crowds
or flash-crowds, on web servers and content distribution networks has been

Received December 2011.
AMS 2000 subject classifications: Primary 90B18; secondary 60K35; tertiary 90B36.
Keywords and phrases: Scaling methods, bnadwidth sharing networks, stochastic aver-

aging.

449

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/11-SSY053


450 M. FEUILLET, M. JONCKHEERE AND B. PRABHU

the subject of several studies (Stavrou, Rubenstein and Sahu, 2004; Kan-
dula et al., 2005; Deshpande et al., 2007). These mainly focus on designing
mechanisms to make the content providers resilient to surges of a given
type of traffic. However, in addition to overloading the content providers,
a traffic surge can also negatively impact the performance of other concur-
rent flows in the network. The temporarily unstable class can potentially
starve the other classes from network capacity thereby subjecting them to
unreasonable delays and packet losses. In such circumstances, in addition to
protection mechanisms in web servers, it is crucial to implement bandwidth-
sharing mechanisms inside the network that would protect the stable classes
from the adversarial effects of the surge. It seems natural that such mech-
anisms should penalize the temporarily unstable class more when the level
of congestion it creates is larger, without actually throttling it. (Thus, the
more significant the surge is, the smaller the bandwidth each flow in this
class gets.) To the best of our knowledge, the consequences of traffic surges
on the performance of the different classes in the presence of such bandwidth
sharing mechanisms have not been explored.

In this paper, we take a global view at the effects of a traffic surge in a
multi-class communication network: our aim is to present an analytic treat-
ment of the complex interaction that takes place between the temporarily
unstable class and the stable class during a traffic surge when the temporar-
ily unstable class is penalized proportionally to its level of congestion.

Towards this end, we consider stochastic networks describing the evolution
of the number of flows (or calls) in a communication network where different
classes of traffic compete for the bandwidth. Bandwidth-sharing network
models (Massoulié and Roberts, 2002; Bonald and Proutière, 2003; Gromoll
and Williams, 2009) have become quite a standard modeling tool over the
past decade for modeling communication networks. In particular, they have
been used extensively to represent the flow level dynamics of data traffic in
wired or wireless networks (Bonald et al., 2006), as well as for the integration
of voice and data traffic (Bonald and Proutière, 2004), hence generalizing
more traditional voice traffic models, e.g. Kelly (1979).

To obtain structural results, we introduce a scaling when possibly only
a subset of classes have initial conditions converging to infinity, thus gen-
eralizing the classical notion of fluid limit. Those classes shall be the ones
undergoing a traffic surge (surging classes or temporarily unstable classes).
We consider a situation where the allocation of bandwidth shall be mean-
while weighted such that the other classes of traffic (stable classes) are not
led to starvation, i.e. the priority weight is very small compared to the offered
traffic. Accelerating time together with re-scaling the state of the surging
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classes allow to “zoom out” the process, just as for usual fluid limits and
obtain a bird’s-eye view of the large scale dynamics for these classes. For
example, such a situation might be the consequence of an inappropriately
small level of priority. Alternatively, if the surge is externally caused, possi-
bly due to a network attack, the network may be reacting to it by penalizing
surging classes according to its level of congestion, so that other classes do
not starve, see for instance (Peng, Lecki and Ramamohanarao, 2007) for
practical considerations on the matter.

In order to obtain a classical fluid limit for Jackson networks (Robert,
2003) or for more complex bandwidth-sharing networks (Gromoll and Willi-
ams, 2009), all the classes are jointly scaled in time and in space. This yields
a set of differential equations that govern the dynamics of all the classes. Un-
der additional assumptions on the drift δ of the considered Markov process,
the differential equation is simply of the form ẋ(t) = δ(x(t)) (see the consid-
erable amount of work on fluid limits and ODE methods both for Markov
processes and for communications networks (Robert, 2003; Dai, 1995; Dar-
ling and Norris, 2008; Gromoll and Williams, 2009; Meyn, 2008)).

In our case, the situation differs as the transitions of surging classes are
also scaled to model that the priority weight of surging classes is inversely
proportional to the level of congestion. This has far-reaching consequences
for the structure of the limiting process. Under this scaling, we will show
that the dynamics of the temporarily unstable classes can be described by
a deterministic differential equation, while the stable classes retain their
stochastic nature. Hence, a time-scale separation occurs: the temporarily
unstable classes evolve on a much slower time-scale compared to the stable
classes. However even with this separation of time-scales, a strong coupling
in the dynamics of the temporarily unstable and the stable classes remains.
The dynamics of the temporarily unstable class is influenced by the stable
classes through their conditional stationary distribution (conditional on the
level of congestion of surging classes flows being fixed to its present macro-
scopic value), which in turn depends on the temporarily unstable classes.
Hence, for surging classes the differential equation obtained is of the form
ẋ(t) = δ̄t(x(t)), where δ̄t is an average of the first coordinate drift according
to the conditional distribution of the other classes, given the state of the
surging classes. This phenomenon is usually known in the probability litera-
ture as averaging principle and has been studied by many authors in different
contexts. We follow in particular the methodology introduced in the seminal
paper of Kurtz (1992). In the analysis of the fluid limit of bandwidth sharing
networks a time-scale separation between classes usually occurs when one
class of traffic reaches equilibrium faster than the others, and hence when
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the fluid limit hits an hyperplane of the state state space. Simple examples
of this phenomenon can be found in Robert (2003). A more complex exam-
ple can be found in Feuillet (2012). The interesting feature in our scaling
is the appearance of the stochastic averaging principle in the whole state
space. Similar stochastic averaging phenomena have also been studied in
statistical physics (C. Kipnis, 1991) as well as chemistry and biochemistry
(Segel and Slemrod, 1989) where the kinetics of chemical reactions can be
described by systems of ordinary differential equations. Usually these works
assume that one of the dependent variables is in steady state with respect to
the instantaneous values of the other dependent variables. Taking this time-
scale separation as an assumption, an efficient approximation method called
the quasi-steady-state is commonly used in that context. This is however in
contrast with our situation where we show that the time-scale decoupling
occurs as a consequence of the scaling of the parameters of the transitions
of the stochastic processes considered.

Contribution. Our contribution first consists in establishing the conver-
gence in L1 uniformly on compact sets for stochastic processes commonly
adopted in the modeling and analysis of communications networks under
the scaling considered. Since the slow part of the processes (surging classes)
remains coupled (at a macroscopic scale) to the fast part (the remaining
classes), such a proof is not standard and has to be decomposed in several
steps. While preliminary results for monotone networks were presented in
Jonckheere, Núñez-Queija and Prabhu (2010), a general proof for general
bandwidth sharing networks was still missing.

Second, we characterize the responses (evolutions of queue length) of dif-
ferent networks to the surge of traffic. We introduce the notion of robust
stability, which describes a situation when the network can absorb a surge
of traffic by:

• keeping the usual (non-surging) classes stable,
• reducing the macroscopic state of surging classes to 0.

We call the set of traffic parameters that lead to these two conditions, the
robust stability region. We characterize the robust stability region for work
conserving allocations and for monotone allocations. We first show that for
work conserving allocations, the unstable classes, at their macroscopic time
scale, see the other classes as having full priority, while the effect of the
surging classes on the other classes gradually vanishes (again at a macro-
scopic time scale). Hence surging classes tend macroscopically to 0 under
the (usual) stability condition of the system

∑N
j=1 ρj < 1. The situation

is more complex for non work-conserving networks, where the behavior of
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the surging classes depends in an intricate manner upon that of the other
classes. In particular, under the usual stability conditions of the network, the
macroscopic state of surging classes might converge to 0 or to a strictly pos-
itive number, depending on the conditional distribution of the other classes.
We prove for monotone networks that only when the allocation giving full
priority to the stable classes, that is the allocation in a network where surg-
ing classes have 0 arrival rate, is stable, then surging classes converge to
0 on the macroscopic time scale. This hence demonstrates that the robust
stability region might be strictly included in the (usual) stability region. We
illustrate these concepts on several simple network topologies.

Finally, we use our analytical results to build an implementable penal-
ization rule allowing to adapt the level of priority of streaming traffic in a
network integrating streaming and elastic traffic, such as to target a given
loss probability threshold/quality of service.

The rest of the paper is organized as follows. The model and notations
are described in the next section. In Section 3, we present the convergence
theorem for the considered scaling. In Section 4, we analyze the qualitative
behavior of networks after a traffic surge in different cases and give numerical
examples of applications of the main result to bandwidth sharing on some
simple network topologies. In Section 5, we construct a practical penalization
rule for elastic traffic when it shares resources with streaming traffic. Finally,
we conclude in Section 6.

2. Model.

Notation. In the sequel, for x ∈ Z
N , | · | denotes the l1-norm:

|x| =

N
∑

i=1

|xi|.

For x, y ∈ Z
N , we also use the notation x ≤ y to denote the partial order

xi ≤ yi for all i = 1, . . . , N , and x · y denotes the usual scalar product.

2.1. Networks with traffic-weighted allocations. We consider a bandwidth-
sharing network with N traffic classes. Within each of the N traffic classes,
resources are shared according to a processor-sharing service discipline. The
service rates are state-dependent: they may depend on the number of flows
within the same class, as well as on the numbers of flows in all other classes.
The service rates of the N traffic classes will be denoted by φ̃ = (φ̃i(·))

N
i=1.

Several examples are considered in the next section. Note that the service
rate function φ̃ captures the allocation of bandwidth which is determined by
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the specific network topology and congestion control mechanisms. Special
allocation functions that have received much attention in literature include
the celebrated max-min fair allocation and the proportional fair allocation.

We assume that class-i customers arrive subject to a Poisson process of
intensity λi and require exponentially distributed1 service times of mean µ−1

i

for class-i. The arrival processes of all classes are mutually independent. Our
main results allow for time-varying arrival rates for the class exhibiting a
traffic surge. When applicable, we reflect this dependence in the notation by
adding the time parameter to the arrival rates and then λ1(t) is the arrival
rate of class 1 at time t. For ease of exposition, however, we restrict ourselves
to constant arrival rates for all classes in this section and will formulate our
results with time-varying arrival rates in Section 3.

LetX be the stochastic process describing the number of flows (or calls) in
progress. In the absence of priority mechanisms, and under the assumptions
of Poisson arrivals and exponential flow sizes, X is a multi-dimensional birth
and death process with transition rates:

q(x, x− ei) = µiφ̃i(x),

q(x, x+ ei) = λi,

with x ∈ Z+
N . Assume now that priority mechanisms are employed in the

network such that the actual bandwidth allocation depends on the variables
rixi, i = 1, . . . , N , rather than simply on xi, i = 1, . . . , N . Hence, if xi is
thought of as a measure of the level of congestion of class i, a differentiation
between classes can be enforced by giving different weights to the different
classes. (Such a differentiation can be enforced at lower time-scales by packet
schedulers like weighted deficit round robin.)

It can also be the case that each class of traffic has a limited peak rate
(because of access constraints for instance). It could then be advantageous
for providers, in order to meet the demand, to share capacity as a function
of the demanded rates rixi rather than as a function of the number of flows
of each class in the network. In both configurations, X can now be described
as multi-dimensional birth and death process with transition rates:

q(x, x− ei) = µiφi(r.x),

q(x, x+ ei) = λi,

where r · x = (rixi)i=1,...,N for some r ∈ R
N
+ . To avoid confusion, we em-

phasize once more that reflecting the dependence on the control parameters

1Such assumptions are certainly not necessary to obtain the results we are aiming at;
however, a rigorous generalization would be technically very involved and is beyond the
scope of the present paper.
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ri in our notation will be more convenient for the purposes in this paper,
rather than making this dependence implicit, i.e. through the allocation
φ̃(x) = φ(r · x). The load of class i is given by

ρi =
λi
µi
.

We shall further suppose that the weights r are chosen for each class pro-
portionally to the size of the traffic surge, i.e.

ri = ri(|x|) =
ωi

|x|
.

3. Fluid limits with time scales decoupling. We model a traffic
surge by a large number of initial flows and large arrival rates for a subset
of classes being (temporarily at least) unstable. Let S ≤ N ∈ Z+ denote
the number of classes that undergo a surge. To get structural results on the
process X, we study the case where:

1. the number of initial class-i, i = 1, . . . , S, flows is of order K = |x|.
2. we scale (accelerate) time by a factor K,
3. we scale class i, i = 1, . . . , S, states by a factor 1/K,
4. the prioritization weight ri of class i, i ≤ S, is of order 1/K.

We now consider a network with several classes of traffic and with class
i, i = 1, . . . , S, going through a temporary surge of traffic. Recall that we
focus on a regime where ri ≡

ωi

K
and K → ∞. We further let Y K denote the

(scaled) process:

(1) Y K(t) =

(

(

XK
i (Kt)

K

)

i=1,...,S

,
(

XK
i (Kt)

)

i=S+1,...,N

)

.

In the following we show that, as K → ∞, Y K converges to a stochastic
process whose first S coordinates are deterministic, which are a solution of
a differential equation that can be described in terms of an averaged rate φ̄.
In the limit, the result implies a time-scale separation between the surging
classes and the other ones.

Define U z to be a N−S dimensional Markov birth-and-death process with
arrival rates λi and death rates φi(z, ·), i = S + 1, . . . , N , where z ∈ R

S
+.

Denote by πz(·) its stationary probability (when it exists). When we do not
use a time index, we implicitly suppose that we consider stationary versions
of the processes.

To establish our main result, we shall make the following assumptions:

(A1): φi(·, xS+1, . . . , xN ) can be extended to a Lipschitz continuous func-
tions from R

S
+ \ {0} to R+.
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(A2): for all fixed z, the process U z is ergodic. We can thus define EU z the
mean under the stationary distribution of the process U z.

(A3):
1
K

∫ Kt

0 λi(s) ds→ ai(t), i = 1, . . . , S. It shall be assumed that ai(t) is
differentiable for all t and i.

We note that although the model was formulated for a constant arrival rate
for ease of exposition, our results will be proved for time-dependent arrival
rates that satisfy assumption (A3) stated above.

Let u(t) ∈ R
S be the solution (assuming it exists and it is unique) of the

differential equation:

(2) ∀i = 1, . . . , S, u̇i(t) =

{

ȧi(t)− φ̄i(u(t)), if ui(t) > 0,

0, if u1(t) = 0,

with φ̄i(z) =
∑

y∈Z+
N−S φi(z, y)π

z(y).
We can now proceed to state our main result:

Theorem 3.1. Under the assumptions (A1), (A2) and (A3), the pro-
cess Y K

i (t)i=1,...,S converges in L1, uniformly on compact intervals, to the
deterministic trajectory u(t), i.e.

(3) E

[

sup
0≤s≤t

∣

∣Y K
i (s)− ui(s)

∣

∣

]

→ 0, K → ∞, ∀i = 1, . . . , S.

Moreover, for all times t, and for all bounded continuous functions f :

lim
K→∞

E

(

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
f
(

Y K(θ)
)

(4)

− E
UZ(θ)

(

f
(

Z(θ), UZ(θ)(θ)
) ∣

∣

∣
Z(θ) = u(θ)

)

dθ

∣

∣

∣

∣

)

= 0.

Remark 3.1. The processes U z represent networks where classes i =
1, . . . , S, have been frozen. Our main theorem hence simply states that a
decoupling of time scales occurs (in the limit) between surging and still
classes: the latter see (at their time scale) the surging classes as frozen and
hence get stationary (i.e. stable) if and only if the processes U z are stable.
On the contrary, the surging classes see only the stationary mean of the
other classes which evolve infinitely faster.

The details of the proof, assuming S = 1 to simplify the exposition, are
given in the next Section. We underline here the main steps:

• We first prove tightness of the laws of the scaled process, and show
that the limit-points of Y K

1 are continuous processes.
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• Supposing the convergence in distribution of the first class we charac-
terize the limit of the functional

∫ t

0 1{(XK
2 (Ks),...,XK

N
(Ks))∈Γ} ds, ∀Γ ⊂

Z̄
N−1
+ and prove the limits are unique (and deterministic given the

value of the first class). A key step is the useful characterization of
bimeasures.

• Finally, we show that Y K
1 converges in distribution towards a deter-

ministic process which allows to prove, using the previous step, the
convergence in L1, uniformly on compact sets.

3.1. Proof of Theorem 3.1.

Step 1. As mentioned previously, for the ease of exposition, we suppose
that only class 1 undergoes a surge of traffic, i.e. S = 1. The proof then
extends directly to the general case. We also remind the reader that the
prioritization weight of class 1 is inversely proportional to K.

We thus consider the process Y K(t) = (
XK

1 (Kt)
K

, (XK
i (Kt))i=2,...,N ) as

defined by (1). We define Z̄+ = Z+ ∪ {+∞} topologized by taking as open
sets all the open subsets U of Z̄+ together with all subsets V which contain
∞ and such that its complementary is closed and compact, (topology of the
Alexandroff compactification, also know as one-point compactification, see
Engelking (1977)). For each K, we define the following random measure on
[0,∞) × Z̄

N−1
+ :

νK((0, t) × Γ) =

∫ t

0
1{(XK

2 (Ks),...,XK
N
(Ks))∈Γ} ds, ∀Γ ⊂ Z̄

N−1
+ , and ∀t ≥ 0.

We denote L0(Z̄
N−1
+ ) the set of measures on [0,∞)× Z̄

N−1
+ such that, for all

measures ν in L0(Z̄
N−1
+ ) and all t ≥ 0, we have ν((0, t) × Z̄

N−1
+ ) = t. Since

Z̄+ is compact for the chosen topology, we have that L0(Z̄
N−1
+ ) is compact

and we deduce that {νK , K ∈ Z+} is relatively compact.
In order to prove the relative compactness of {(Y K

1 , νK), K ∈ Z+}, we
then just have to prove the relative compactness of {Y K

1 , K ∈ Z+}. We
define the following process

MK
1 (t) = Y1(t)

(5)

−
1

K

Kt
∫

0

λ1(s) ds+
1

K

Kt
∫

0

φ1

(

XK
1 (s)

K
,XK

2 (s), . . . ,XK
N (s)

)

ds

The martingale characterization of jump processes (see Rogers and Willi-
ams (2000 (1987))) shows that MK

1 is a local martingale and its increasing
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process is given by

〈MK
1 〉 =

1

K2

∫ Kt

0
λ1(s) ds+

1

K2

∫ Kt

0
φ1

(

XK
1 (s)

K
,XK

2 (s), . . . ,XK
N (s)

)

ds

Using Doob’s inequality2, it follows that MK
1 converges in probability to 0

on any compact set when K → ∞, i.e. for any T ≥ 0 and any ε > 0,

(6) lim
K→∞

P

(

sup
0≤s≤T

|MK
1 (s)| > ε

)

= 0.

We then define wh the modulus of continuity for any function h defined on
[0, t]:

wh(δ) = sup
s1,s2≤t; |s1−s2|<δ

|h(s1)− h(s2)|.

Using Equations (5) and (6), since the process Y K
1 (·) decomposes into an

absolutely continuous part and a martingale part converging to 0 we have
that for any ε > 0 and η > 0, there exists δ > 0 and A such that for K > A,
we have

P

(

wY K
1 (.)(δ) > η

)

≤ ε.

The conditions of (Billingsley, 1999, 7.2 p. 81) are then fulfilled and the
set {Y K

1 , K ∈ Z+} is relatively compact. Moreover, any limiting point is a
continuous process.

Step 2. We now suppose that (Y K
1 ) converges in distribution to a limit

Z1. We have to characterize any limiting point of the sequence (νK) and then
deduce the existence and uniqueness of the limit of (νK). In the following, we
consider a convergent subsequence (Y Kl , νKl) and its limit process (Z1, ν).

Let (Ω,F ,P) be the probability space on which they are defined. We call
{Ft} the natural filtration of (Z1, ν). We then define γ such that

∀A ∈ F , ∀B ∈ B([0,∞)),∀C ∈ B(Z̄N−1
+ ) γ(A×B × C) = E(1Aν(B × C)).

According to (Ethier and Kurtz, 1986, Appendix 8), γ can be extended
to a measure on F ⊗B([0,∞))⊗B(Z̄N−1

+ ). Furthermore, there exists ϑ such

2For any martingale M , using Cauchy Schwartz and Doob’s inequality Darling and
Norris (2008), we get that:

E

(∣

∣

∣

∣

sup
0≤s≤t

Ms

∣

∣

∣

∣

)2

≤ E

(

sup
0≤s≤t

|Ms|

)2

≤ E

(

sup
0≤s≤t

M
2
s

)

,

≤ 4E
(

M
2
t

)

.
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that for all t, ϑ(t, ·) is a random probability measure on Z̄
N−1
+ , for any B ∈

B(Z̄N−1
+ ), (ϑ(t, B), t ≥ 0) is {Ft}-adapted and for any A ∈ F ⊗ B([0,∞)),

(7) γ(A×B) = E

(
∫ +∞

0
1A(s)ϑ(s,B) ds

)

.

Let us now define

MB(t) = ν([0, t] ×B)−

∫ t

0
ϑ(s,B) ds.

MB is {Ft}-adapted and continuous. We consider t ≥ s, and D ∈ Fs. We
define 1C(ω, θ) = 1D(ω)1[s,t)(θ) and we have

E (1Dν([s, t)×B)) = γ(D × [s, t)×B),

= γ(C ×B),

= E

(∫ ∞

0
1C(θ)ϑ(θ,B) dθ

)

, (according to (7))

= E

(1D ∫ t

s

ϑ(θ,B) dθ

)

.

Since the previous equality is true for all D ∈ Ft, it follows that

E (ν([s, t)×B) | Fs) = E

(
∫ t

s

ϑ(θ,B) dθ

∣

∣

∣

∣

Fs

)

.

and immediately, we have

E (MB(t) | Fs) =MB(s).

Then, MB is a continuous {Ft}-martingale. It has finite sample paths
from which we deduce that it is almost surely identically null. Then, the
following equation holds for all t, almost surely,

(8) ∀B ⊂ Z̄
N−1
+ , ν([0, t) ×B) =

∫ t

0
ϑ(s,B) ds.

We have to characterize the random measures ϑ(t, .) associated to ν. For
any uniformly continuous bounded function g on Z̄

N−1
+ and any K ∈ Z+,

we define,

MK
g (t) =

1

K

(

g
(

XK
2 (Kt), . . . ,XK

N (Kt)
)

− g(0)
)

−
N
∑

i=2

λi

∫ t

0

(

g
(

XK
2 (Kt), . . . ,XK

i (Kt) + ei, . . . ,X
K
N (Kt)

)
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− g
(

XK
2 (Kt), . . . ,XK

N (Kt)
)

)

ds

−

N
∑

i=2

µi

∫ t

0

(

g
(

XK
2 (Kt), . . . ,XK

i (Kt)− ei, . . . ,X
K
N (Kt)

)

−g
(

XK
2 (Kt), . . . ,XK

N (Kt)
)

)

φi
(

Y K
1 (s),XK

2 (Kt), . . . ,XK
N (Kt)

)

ds.

As MK
1 is a martingale, MK

g is a martingale. Using the same argument

as for M1
K , (i.e. controlling the quadratic variation), we obtain that MKl

g

converges in distribution to 0. |Kl|
−1(g(XKl

2 (Klt), . . . ,X
Kl

N (Klt))−g(0)) also
converges to 0 because g is bounded. As a consequence, the following term

N
∑

i=2

λi

∫ t

0

(

g
(

XKl

2 (Kt), . . . ,XKl

i (Klt) + ei, . . . ,X
Kl

N (Klt)
)

(9)

− g
(

XKl

2 (Klt), . . . ,X
Kl

N (Klt)
)

)

ds

−
N
∑

i=2

µi

∫ t

0

(

g
(

XKl

2 (Klt), . . . ,X
Kl

i (Klt)− ei, . . . ,X
Kl

N (Klt)
)

− g
(

XKl

2 (Klt), . . . ,X
Kl

N (Klt)
)

)

φi

(

Y Kl

1 (s),XKl

2 (Klt), . . . ,X
Kl

N (Klt)
)

ds

also converges in distribution to 0. But, by the continuous mapping theorem,
using the continuity of g and φ, the processes g(XKl

2 (Kt), . . . ,XKl

i (Klt) +

ei, . . . ,X
Kl

N (Klt)) as well as φi(Y
Kl

1 (s),XKl

2 (Klt), . . . ,X
Kl

N (Klt)) converge
also in distribution. Now using (8), the term in (9) converges in distribution
to

∫ t

0

N
∑

i=2

(

λi
∑

y∈ZN−1
+

g(y + ei)− g(y)

+ µi
∑

y∈ZN−1
+

(g(y − ei)− g(y)) φi (Z1(s), y)

)

ϑ(s, y) ds.

Consequently, this is null almost surely for all t and we have then, for
Lebesgue-almost every t,

N
∑

i=2

(

λi
∑

y∈ZN−1
+

g(y + ei)− g(y)
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+ µi
∑

y∈ZN−1
+

(g(y − ei)− g(y))φi(Z1(t), y)

)

ϑ(t, y) = 0.

We deduce immediately that
∫

Z̄
N−1
+

ΩZ1(t)(g)(y)ϑ(t,dy) = 0

where ΩZ1(t) is the infinitesimal generator of (UZ1(t)(s)). This proves exactly
that ϑ(t, ·) is invariant for UZ1(t). By uniqueness of the invariant distribution
of (UZ1(t)(s)), this implies that, given Z1, ϑ(t, ·) is a deterministic measure
for all t. We can deduce that, if (Y Kl) is a converging subsequence, then
(vKl) is also converging and its limit is a random measure in L0(Z

N−1
+ ).

This implies in particular that (vKl) is tight in L0(Z
N−1
+ ). We can now

proceed of the last part of this step.
We consider ε > 0, η > 0 and t ≥ 0. Because the sequence (νKl) is tight

in L0(Z
N−1
+ ), there exists κ > 0 and a compact Γ ⊂ Z

N−1
+ such that:

P

(

sup
l≥κ

νKl([0, t) × Γc) ≥ ε

)

≤ η/2.

Because Z1 is almost surely continuous and f is Lipschitz-continuous, we
have

P

(

sup
l≥κ,y∈Γ,s≥t

∣

∣

∣f(Y
Kl

1 (t), y) − f(Z1(t), y)
∣

∣

∣ ≥ ε

)

≤ η/2.

Since f is bounded, we can deduce:

P

(

sup
k≥κ

∣

∣

∣

∣

∣

∫

[0,t]×Z̄
N−1
+

f(Y Kl

1 (s), y)νKl(ds× dy)

−

∫

[0,t]×Z̄
N−1
+

f(Z1(s), y)ν(ds× dy)

∣

∣

∣

∣

∣

≥ 2ε‖f‖

)

≤ η.

According to (8), there exists a family (ϑ(t, ·)) of random measures on
Z̄
N−1
+ such that

sup
0≤s≤t

∣

∣

∣

∣

∣

∣

∣

∫ s

0
f(Y Kl

1 (θ),XKl

i (Klθ))−
∑

y∈Z̄N−1
+

f (Z1(θ), y)ϑ(θ, y) dθ

∣

∣

∣

∣

∣

∣

∣

converges in probability to 0 when Kl tends to infinity.
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Since f is bounded, we can apply the dominated convergence theorem
and we have that

lim
Kl→∞

E

(

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
f
(

Y Kl

1 (θ),XKl

i (Klθ)
)

−
∑

y∈Z̄N−1
+

f (Z1(θ), y)ϑ(θ, y) dθ

∣

∣

∣

∣

∣

∣

∣






= 0.

We further have that

lim
K→∞

E

(

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
f
(

Y K
1 (θ),XK

i (Kθ)
)

−E

(

f
(

Z1(θ), U
Z1(θ)
i (θ)

) ∣

∣

∣
Z1(θ)

)

dθ
∣

∣

∣

)

= 0.

Step 2 is now complete.

Step 3. Using the martingale decomposition of XK
1 ,

Y K
1 (t) =

XK
1 (Kt)

K

= x1 +MK(t) +
1

K

∫ Kt

0
λK1 (s) ds

−
1

K

∫ Kt

0
φ1

(

XK
1 (s)

K
,XK

2 (s), . . . ,XK
N (s)

)

ds.

As already remarked in Step 1, since φ is bounded it follows that

E

(

MK(t)2
)

≤
At

K

which implies using Doob’s inequality that there exists a constant A′ such
that for K big enough:

E

(∣

∣

∣

∣

sup
0≤s≤t

MK(s)

∣

∣

∣

∣

)

≤ A′

√

t

K
≤ ε.

Using the convergence of the arrival process (see assumption (A3)) to-
gether with the convergence of the martingale MK , we obtain the uniform
integrability of Y K

1 . (The tightness of Y K
1 has already been obtained in

Step 1). Now consider a converging subsequence Y Kl

1 towards Z1. Using the
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results of Step 2, the convergence of the arrival process together and the
convergence of the martingale MK , we obtain that Z1 must satisfy:

Z1(t) = x1 + 0 + a1(t)−

∫ t

0
φ̄1(Z1(s)) ds.

Hence the limit is unique and deterministic.
This in turn shows the convergence of Y K

1 in distribution and completely
characterizes the measure ϑ introduced in Step 2 as a deterministic measure.
We can now prove the convergence in L1. Let ε be given. Define the error
estimate:

nK(t) = sup
0≤s≤t

|Y K
1 (s)− u1(s)|.

Define now the noise amplitude as:

M̄K(t) = sup
0≤s≤t

|MK(s)| .

Using the convergence of the intensity of the arrival process,

nK(t) ≤ M̄K(t) + ε

+ sup
s≤t

∣

∣

∣

∣

1

K

∫ Ks

0
φ1

(

XK
1 (z)

K
,XK

2 (z), . . . ,XK
N (z)

)

dz −

∫ s

0
φ̄1(u(z)) dz

∣

∣

∣

∣

.

Using Step 2, φ1 being Lipschitz and bounded, for K large enough:

E

(

sup
s≤t

∣

∣

∣

∣

1

K

∫ Ks

0
φ1

(

XK
1 (z)

K
,XK

2 (z), . . . ,XK
N (z)

)

dz −

∫ s

0
φ̄1(u(z)) dz

∣

∣

∣

∣

)

≤ ε,

which concludes the proof for the L1 convergence of Y K
1 .

4. Qualitative behavior of the limiting processes. We now de-
scribe the different qualitative behaviors that may occur depending on the
traffic conditions. Assume that class i, i = 1, . . . , S, have entered a traffic
surge. Under the scaling considered in Theorem 3.1, we observe three qual-
itative types of behaviors for the network responses, which are completely
characterized using the stationary distributions of the family of processes
Ux
i , i = S + 1, . . . , N . Defining

(10) ∀x ∈ R
S
+, ∀i ∈ {1, . . . , S}, δ̄i(x) = λi − µiφ̄i(x),
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let A the set of positive solutions of the equation

δ̄(x) = 0.

Given the classical results on asymptotic stability of non-linear autonomous
systems, we can partially classify the possible situations using in particular
the Hartman-Grobman theorem (see for instance Hartman (1960)). For a C1

flow δ, we write Dδ(x) < 0 if the linearization of δ has only eigenvalues with
strictly negative real parts and no eigenvalue on the unit complex circle.
Assume in the following δ̄ is C1. The possible behaviors are:

1. The network continues to see class i, i ≤ S, saturated (at a macroscopic
time and space scales), even after any large (macroscopic) amount
of time. A sufficient condition is that there exists x ∈ A such that
Dδ̄(x) < 0 and x > 0, with initial conditions sufficiently close to
x. Then the differential equation is asymptotically stable with stable
point x > 0. In this case, limits in time and K cannot commute since
there is always a part of the bandwidth of the network used for surging
classes, while taking first the limit in time and then the limit in K al-
ways converge to the system with allocation φi(0, . . . , 0, xS+1, . . . , xN )
for stable classes.

2. The differential equation (2) governing the dynamics of u is unsta-
ble, which means that the traffic surge cannot be absorbed and keeps
building up. It might lead to the instability of other classes in the
network.

3. The traffic surge will be absorbed at macroscopic time, i.e. the differ-
ential equation is asymptotically stable with stable point 0. Necessary
conditions for this situation are that:

(a) 0 ∈ A,

(b) Dδ̄(0) < 0, and

(c) the initial condition is close enough to 0, or A = {0}.

In this case, note that the stationary measure of (Y K
i (t))i>S converges

when K → ∞ to the stationary measure of the original system with
allocation φi(0, . . . , 0, xS+1, . . . , xN )), which boils down to the fact that
the limit in time and in K commute for classes S + 1 to N .

4.1. Robust bandwidth sharing networks. Bandwidth sharing networks
constitute a natural extension of a multi-class processor-sharing queue, and
have become a standard stochastic model for the flow level dynamics of
Internet congestion control (they were introduced by Massoulié and Roberts
(2002)).
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Fig 1. Tree network and linear network.

Consider for example the tree network represented on the left of Figure 1,
with two traffic routes, each passing through a dedicated link, followed by a
common link. If each dedicated link has a capacity ci ≤ 1, i = 1, 2, and the
common link has capacity 1, the flow on each route gets a capacity φi(x)
that lies in the polyhedron C:

2
∑

i=1

φi(x) ≤ 1,(11)

φi(x) ≤ ci, i = 1, 2.(12)

Another example of interest is the linear network represented on the right
of Figure 1 with 3 routes sharing two links.

In general, like for the specific foregoing examples, the capacity constraints
determine the space over which a network controller can choose a desired
allocation function. It has been argued by Kelly, Maulloo and Tan (1998)
that a good approximation of current congestion control algorithms such as
TCP (the Internet’s predominant protocol for controlling congestion) can be
obtained by using the weighted proportional fair allocation, which solves an
optimization problem for each vector x of instantaneous numbers of flows.
Specifically, the weighted proportional fair allocation η(x) for state vector x
maximizes

N
∑

i=1

wixi log(ηi), η ∈ C,

where the weights wi are class-dependent control parameters.

Remark 4.1. By definition of this optimization program, if φ(·) = η(·)
is the standard (unweighted) proportional fair allocation with wi ≡ 1, then
the allocation φr(x) = φ(r.x) corresponds to the weighted proportional fair
allocation with weights wi ≡ ri.

This framework has been generalized to so-called weighted α-fair alloca-
tions, which provide flexibility to model different levels of fairness in the net-
work. Another important alternative is the balanced fair allocation (Bonald
et al., 2006), which allows a closed form expression for the stationary dis-
tribution of the numbers of flows in progress. In addition, the balanced fair
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allocation gives a good approximation of the proportional fair allocation
while being easily evaluated, which is attractive for performance evaluation.

Remind that all α-fair bandwidth-sharing are stable for α > 0 (in the
sense that the process X is positive recurrent, Bonald and Massoulié (2001);
de Veciana, Konstantopoulos and Lee (2001)) if

ρ ∈ S = {η,Aη ≤ C}.

From now on, we refer to the interior of the set S as the “usual conditions
of stability”. We also use the term frontier of the stability set to refer to
the closure of S minus its interior. We now refine the concept of stability by
saying that the network is robust stable if classes undergoing a surge (penal-
ized adequately) eventually drain while the other classes stay stochastically
stable. More formally, let I ⊂ [1, N ] be the set of indexes of surging classes
and P([1, N ]) the power set of [1, N ].

Definition 4.1. The network is robust stable if for all i = 1, . . . , N :

lim sup
t→∞

sup
I∈P([1,N ])

lim sup
|xj |→∞,j∈I

Ex[X
|x|
i (|x|t)]

|x|
= 0.

We hence define the robust stability region as the set of parameters such
that the network is robust stable, i.e.:

Sr =

{

ρ ∈ R
N
+ : ∀i = 1, . . . , N,

(13)

lim sup
t→∞

sup
I∈P([1,N ])

lim sup
|xj |→∞,j∈I

Ex[X
|x|
i (|x|t)]

|x|
= 0.

}

Remark that when all classes are undergoing a surge of traffic, we retrieve
the usual notion of fluid limit, for which the convergence to 0 implies the
network (usual notion of) stability. Hence it holds in general that:

Sr ⊂ S =

{

ρ ∈ R
N
+ : ∀i = 1, . . . , N,

lim sup
t→∞

lim sup
xi→∞,∀i=1,...,N

Ex[X
|x|
i (|x|t)]

|x|
= 0

}

.

In the sequel, we show that:
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• we can apply Theorem 1 to bandwidth sharing networks operating
under α-fair policies under the usual conditions of stability,

• for work-conserving allocations, the robust stability set coincides with
the usual stability set (except possibly on its frontier),

• for monotonic networks, the robust stability set coincides with the
set of parameters under which a ’priority allocation’ is stable and can
hence be strictly included in S;

• the situation is much more complex for non-monotone allocations and
a full characterization of the robust stability set is still an open prob-
lem. The complexity of the dynamics can be explained through the
fact that a surging fluid class can “bounce” at 0. We give a simple
example of such a phenomenon.

4.2. Existence of the fluid limit.

Lemma 4.1. For bandwidth sharing networks under α-fair allocations
with α > 0, if ρ ∈ S, then the processes U z are positive recurrent for any z,
and Theorem 3.1 applies.

Proof. All the mentioned allocations are stable if ρ ∈ S. U z represents
in that context a network with z permanent customers of classes i = 1, . . . , S
and no arrivals and departures for these classes. The usual proof of stability
for networks with α-fair allocation relies on the following Lyapunov function
(de Veciana, Konstantopoulos and Lee (2001)):

F (x) =

N
∑

i=1

x2i riλ
α−1
i ,

using the simple fact that for any vector s in the interior of S, there exists ε >
0, such that ∇ηU(x, η)·(s−φ(x)) ≤ −ε, where∇ denotes the usual gradient.
We adapt this Lyapunov argument to our context. For xS = (xS+1, . . . , xN )
such that |xS | is big enough we have that

∆F (xS) =
N
∑

i=S+1

λi(F (x
S + ei)− F (xS))

+ φi(z, x
S)(F (xS − ei)− F (xS)),

=
N
∑

i=S+1

xSi riλ
α−1
i (λi − φi(z, x

S)) + o(|xS |),

=

N
∑

i=S+1

xSi riλ
α−1
i (λi − φi(z, x

S))
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+

S
∑

i=1

ziriλ
α−1
i (λi − φi(z, x

S)) + o(|xS |),

= ∇ηU(z, xS).(λ− φ(z, xS)) + o(|xS |) ≤ −ε+ o(|xS |),

where we used that
∑S

i=1 ziriλ
α−1
i (λi − φi(z, x

S)) is bounded.

4.3. Work-conserving allocations. Consider a work conserving allocation
such that

∀x 6= 0,
N
∑

i=1

φi(x) = 1.

It is immediate from a simple Lyapunov argument that every work-conserving
allocation has the same stability region, namely S = {

∑N
i=1 ρi < 1}. If this

stability condition is satisfied, then the priority mechanism considered is
asymptotically equivalent to giving full priority to class i, i ≥ S + 1. In
other words, the fluid limit obtained for class i, i ≤ S, is in that case the
same as the fluid limit of an allocation that gives a full priority to class
i, i ≥ S + 1, which we prove in the following Proposition.

Proposition 4.1. For a work conserving network, Sr = S (except pos-
sibly on the frontier of the stability set) and for all i = 1, . . . , S:

Y K
i (t)

L1

→ ui(t) =



ui(0) + λi − µi



1−
N
∑

j=S+1

ρj



 t





+

.

Proof. Note that, by definition, Sr ⊂ S. We need, therefore, to show
that Sr ⊃ S to conclude the proof.

Assume
∑N

i=1 ρi < 1 in which case the network is stable. Fix z1 ∈ R. Using
the conservation of the rates at equilibrium for the process U z1 (which boils
down in the Markovian context to saying that at equilibrium the drift of
y → yi should be 0), we can write that:

N
∑

i=S+1

∑

y∈Z+
N−S

φi(z1, y)π
z1(y) =

N
∑

i=S+1

ρi.

We now calculate φ̄i for z1 > 0:

φ̄i(x) =
∑

y∈Z+
N−S

φi(z1, y)π
z1(y),
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Fig 2. DPS with three classes: scaling of class-1 (left) and of class-2 (right).

φ̄i(x) =
∑

y∈Z+
N−S

(1−
∑

j≥S+1

φj(z1, y))π
z1(y),

φ̄i(x) = 1−
∑

j≥S+1

ρj.

Hence, the capacity seen asymptotically by class 1 is (1−
∑

j≥S+1 ρj), which
concludes the proof.

Example: One link with the DPS allocation. The simplest instance of a
network consists of one link shared by several competing classes of traffic.
If the initial policy is supposed to be the classical processor sharing policy:
φi(x) =

xi

|x| then the prioritized version of the model becomes the so-called

discriminatory processor sharing (DPS): φi(r · x) =
rixi∑
j rjxj

.

Consider a single link of capacity 1 shared by three classes. The bandwidth
is allocated according to DPS with weight ri for class i, i = 1, 2, 3. Proposi-
tion 4.1 says that u1(t) is a straight line with slope λ1 − µ1(1 − (ρ2 + ρ3)).
This behavior is illustrated in Figure 2, for which λ1 = 0.5, µ1 = 1, ρ2 =
0.3, ρ3 = 0.1. The slope calculated using the proposition is thus 0.1, which
is verified in the figure.

In Figure 2, we plot the empirical mean of class 2 at a macroscopic scale,
(i.e. 1

s

∫ t+s

t
f(Y K(h)) dh) for a temporal window of s = 0.1.

4.4. Monotone allocations. Define the allocation ψ giving full priority to
classes S + 1 to N , given by

ψ(x) = φ(0, . . . , 0, xS+1, . . . , xN ), if xi > 0, for some i > S.

ψ(x) = φ(x), otherwise.

Denote S(ψ) the stability region of the network with allocation ψ.
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Proposition 4.2. Consider a monotonic allocation (i.e. such that φi is
decreasing in xj , j 6= i).

If δ̄(0) < 0, where δ̄(·) is defined by (10), then the network is robust stable
and surging classes do not influence asymptotically stable classes. Conversely
if δ̄(0) > 0, the network is not robust stable.

Moreover δ̄(0) < 0 if the network with allocation ψ is stable i.e.:

Sr(φ) = S(ψ).

Proof. Using stochastic comparisons (see Borst, Jonckheere and Leskelä
(2008) for more details on stochastic comparisons of multidimensional birth-
and-death processes), we obtain that for all i = S + 1, . . . , N ,

U0
i ≤st U

z
i , ∀z,

which implies that ∀z, φ̄i(z) ≥ φ̄i(0), i = 1, . . . , S. This in turn implies that,
for i = 1, . . . , S,

d

dt
ui(t) < δ̄(0) < 0, ∀t ≥ 0, such that ui(t) > 0.

This implies that ui will reach 0 in finite time.
The reverse statement follows along the same lines.

Example: A tree network. Let us consider the tree network shown in Figure
1 with c1 = 0.4 and c2 = 0.8. We shall assume the following bandwidth
allocation: Define S1 = {(x1, x2) : (r1x1 + r2x2)c1 < r1x1}. For x1 > 0 and
x2 > 0,

(14) φ1(x1, x2) =

{

c1, if (x1, x2) ∈ S1,

max
(

r1x1
r1x1+r2x2

, 1− c2

)

, if (x1, x2) ∈ Sc
1,

and φ2 = 1− φ1.
For this network, the allocation becomes a strict priority allocation for

class 2 when r1 = 0, in which case class 1 gets capacity c1 if there are no
class 2 flows, and 1 − c2 otherwise. Thus, for a fixed value of ρ2, class 1
is stable if ρ1 < (1 − ρ2

c2
)c1 +

ρ2
c2
(1 − c2). The stability regions for r1 = 0

and r1 > 0 are shown in Figure 3. This is an example where Sr is strictly
included in S.

The dynamics of u1(t) for two different values of ρ1 – one in each region
– is plotted in Figure 4, for which ρ2 = 0.5.
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Fig 3. Partitioning of the stability region for the tree network.
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For class 2, when the priority allocation is stable the dynamics of the
average number of customers converges to the one of the priority allocation,
that is ρ2/(c2 − ρ2), as is illustrated in Figure 4.

In Figure 5, we show how class 1 is actually favored by asymptotically
using the bandwidth of class 2, compared to the case where class 2 is given
a strict priority. Though the stability conditions are identical for the two
allocations, their performances at a fluid scale are very different.

4.5. Non-monotone networks with multiple unstable classes bouncing at 0.
For a general multi-class network, characterizing the robust stability region
is still an open question and cannot be answered using priority allocations as
for monotonic networks. We now present a scenario with multiple unstable
classes emphasizing the complexity of the dynamical systems obtained at the
limit when the network is not monotonic. Consider the linear network of two
links and three classes shown in Figure 6. Each unstable class is penalized
in inverse proportion to the scale of its initial surge. Since the scale of the
initial congestion is the same for the three classes, and the rate allocation
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Fig 5. Tree network: comparisons of trajectories of class 1 for a proportional fair allocation
and a priority (to class 2) allocation.

λ1 = 0.1, µ1 = 1 λ2 = 0.45, µ2 = 1

λ3 = 0.45, µ3 = 1

Class-1 Class-2

Class-3

Fig 6. A linear network with two links.

to each class is a homogeneous function of degree zero, our proposed scaling
results in the usual fluid limit.

Even though this classical fluid limit has been widely investigated, the
following phenomenon has not been studied in detail: a class which drains
out (that is, becomes stable) could become unstable later on. As an example,
consider the following network parameters with the arrival rates and the
service rates as shown in Figure 6:

c1 = c2 = 1, r1 = r2 = r3 = 1,

X1(0) = 10 ·K,X2(0) = K,X3(0) = K,

that is, the three classes have a macroscopic state at the beginning. The
trajectories of the number of flows as a function of the scaled time for K =
10000 is shown in Figure 7. Observe that class 2 becomes stable around the
2 time unit mark, then becomes unstable around the 15 time unit mark, and
becomes stable again around the 40 time unit mark. This behavior can be
explained as follows.
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Fig 7. The trajectories of the scaled number flows as a function of the scaled time. K =
10000.

Class 1 has a larger initial surge than that of class 3 which has the same
initial surge as class 2. Thus, class 1 gets a higher share of bandwidth on
link 1 which creates a bottleneck for class 3 flows on that link. This leaves
sufficient capacity for class 2 to drain out while the number of class-3 flows
grows.

Once the number of class-1 flows has reduced sufficiently (around the same
number as that of class-3 flows), class 3 starts to get sufficient capacity to go
towards stability. However, the arrival rate of class-3 flows is higher than that
of class-1 flows which means that the rate of decrease of the number of class-
3 flows is smaller than that of the class-1 flows. Eventually, the proportion
of flows of class 1 is smaller compared to that of class 3. This allows class- 3
flows to get a larger share of bandwidth link 1. More importantly, since link
2 is not a bottleneck for class-3 flows, this also allows class 3 to get a larger
share on link 2. The arrival and service rates of class 2 and class 3 being the
same, the imbalance in the rate allocation means that class 2 is now unstable
and its number of flows starts to grow until it reaches the same number as
that of class-3 flows at which time they both share the link capacity equally.
Since the network is stable, all the three classes drain out eventually.

5. Integration of streaming and elastic traffic. Consider now a
system where two intrinsically different types of traffic – “streaming” and
“elastic” traffic – coexist and share a link of capacity 1. Such models have
been considered by Núñez-Queija, van den Berg and Mandjes (1999); Del-
coigne, Proutière and Régnié (2004); Bonald and Proutière (2004).

It is natural to equip streaming traffic with a fixed required rate, say, c per
flow. On the other hand, the rate allocated to the elastic traffic is variable.
Giving priority to streaming traffic (class 2) the allocation of service may be
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chosen as:

φ1(x) = min

(

r1x1
r1x1 + cx2

, 1− cx2

)

,

φ2(x) = cx2,

where the parameter r1 quantifies the level of priority. The allocated capacity
to class 1 cannot exceed its fair share, which is assumed to be r1x1/(r1x1 +
cx2). Since each streaming session is guaranteed a rate c, the total allocation
to class 1 cannot exceed 1− cx2 either.

The allocated capacity cannot exceed the total capacity, and the state-
space must be restricted to states x2 such that φ1(x)+φ2(x) ≤ 1. Then, if the
number of current streaming flows x2 is such that φ1(x+e2)+φ2(x+e2) > 1,
arriving streaming flows must be blocked from the network. The capacity
that remains is a provision for future incoming streaming calls. The above
allocation is asymptotically work-conserving, and it follows that the system
is stable under the usual condition: ρ1 + ρ2 < 1.

In Kumar and Massoulié (2007), fluid and diffusion approximations are
derived for a similar model when both streaming and elastic flows are evolv-
ing at a fast time-scale. In contrast, in this section we will be interested in
the blocking probability of streaming flows when the elastic flows undergo
a traffic surge which means that only the elastic flows will be scaled to a
deterministic limit whereas the streaming flows will retain their stochastic
nature.

In networks in which streaming and elastic traffic do not interact, the
probability of blocking can be computed using an Erlang Fixed-Point ap-
proximation Kelly (1986). However, in the context of the present example,
the interaction of these two types of traffic makes it more difficult to apply
these fixed-point approximations, mainly due to the fact that the state space
of the elastic flows is unbounded. In the regime when r1 is small, we propose
a rule-of-thumb, based on the Theorem 3.1, that can guarantee a blocking
probability smaller than a desired value.

Let pm denote the desired maximal blocking probability of class-2 flows.
We shall set the priority level of class 1 (by varying r1) such that the prob-
ability of blocking of class-2 flows is always less than pm. Performing the
scaling previously defined, remark that the state-space of class 2 depends,
for a fixed macroscopic state z of class 1, on both z and c. Denote

Sz =

{

x2 :
z

z + cx2
+ cx2 ≤ 1

}

,

the state-space of class 2 given that u1(t) = z. It can be seen that an arrival
of class 2 is blocked if and only if there are already ⌊1−z

c
⌋ calls of class 2
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present. Define ρ2 =
λ2
µ2c

. The process U z
2 is a birth-death process with birth

rate λ2 and death rate µ2cx2, and whose stationary distribution conditioned
on z is given by

πz2(x2) =
1

∑

j∈Sz
ρj2/j!

ρx2
2

x2!
.

For u1(t) = z, the blocking probability of class 2 is then

πz2(x2)|x2=⌊ 1−z
c

⌋=: g(z).

Let z̄ := sup{z : g(z) ≤ pm, 0 < z < 1}. Since g(z) is a non-decreasing
function of z, in order to guarantee a maximal blocking of pm, u1(t) has
to be smaller than z̄ for all t. This leads us to the following necessary and
sufficient condition which guarantees the desired quality of service:

(15) ū1 := sup
0≤t<∞

u1(t) < z̄.

We can compute ū1 as follows. From Theorem 3.1, the dynamics of u1(t)
depends on the average capacity allocated to class 1, which an be computed
as:

φ̄1(z) =
∑

x2∈Sz

min

(

z

z + cx2
, 1− cx2

)

ρx2

x2!
C(z),

where C(z) = (
∑

x2∈Sz

ρx2

x2!
)−1. In the case that c is very small (c ≪ 1),

we might consider as a reasonable approximation a Poisson distribution for
class 2, whatever the state of class 1. In that case, φ̄1 takes a slightly simpler
form. After simple calculations:

φ̄1(cz) = H(z) =
z
∫ ρ2
0 uz−1 exp(u) du

ρz2 exp(ρ2)
.

Using the monotonicity of φ1 in its first variable, we can conclude that u1(t)
converges monotonically to its limit point, and that

ū1 =

{

u1(0), if λ1 < φ̄1(u1(0));

φ̄−1
1 (λ1), otherwise,

The inequality (15) can be ensured by scaling the process u1(t) by a fac-
tor z̄/ū1, which, in turn, can be achieved by scaling the priority level (or,
equivalently, r1) by this very same factor. This additional scaling results in
a larger share of the bandwidth for class-1 flows in case z̄ > ū1. Conversely,
if z̄ < ū1, the priority level of class-1 flows is appropriately decreased so that
the blocking probability constraint of class-2 flows is not violated.
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Remark 5.1. In a network of links shared by several classes of streaming
flows and one class of elastic flow, we could use fixed-point approximations
to compute the blocking probability for the different classes of streaming
flows as a function of z1. Assuming that this probability is increasing in z1,
we could then compute the maximum value that z1 can attain without the
streaming classes violating their individual blocking probability.

6. Conclusions. We analyzed the flow-level performance of multi-class
communication networks when one or more classes undergoes a traffic surge.
We showed that, under an appropriate scaling of space and time and amount
of penalization, the dynamics of the temporarily unstable class can be de-
scribed by a deterministic differential equation in which the time derivative
at a given point depends on the conditional stationary distribution of the
other classes calculated at that point. For work-conserving allocations, the
differential equation is the same as the one of the network in which other
classes have strict priority over the temporarily unstable class, that is, the
scaled process evolves linearly and is either absorbed at zero or grows indef-
initely depending on whether the network is stable or not.

For non-work conserving allocations, the trajectory is much more complex
to describe as it depends on the mean residual bandwidth left over by the
other classes which in turn depends on the current state of the first class.
The limit point of the fluid trajectory can hence be non-zero and finite.
We characterized the robust stability region of monotone allocations. We
illustrated this behavior through several examples of network topologies and
bandwidth allocations that are commonly used to model communication
networks.

The time-space-transitions scaling that we considered raises several open
questions which would give a better understanding of the network dynamics.
In particular, finding necessary and sufficient conditions for the limit point
of non work-conserving allocations to be zero would constitute a very inter-
esting result. Also, error bounds estimates would be necessary to obtain a
reliable performance evaluation tool.
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Massoulié, L. and Roberts, J. (2002). Bandwidth sharing: objectives and algorithms.
IEEE/ACM Trans. Netw. 10 320–328.

Meyn, S. (2008). Control Techniques for Complex Networks. Cambridge University Press.
MR2372453
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