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A LINEAR RESPONSE BANDIT PROBLEM∗

By Alexander Goldenshluger and Assaf Zeevi

University of Haifa and Columbia University

We consider a two–armed bandit problem which involves sequen-
tial sampling from two non-homogeneous populations. The response
in each is determined by a random covariate vector and a vector
of parameters whose values are not known a priori. The goal is to
maximize cumulative expected reward. We study this problem in a
minimax setting, and develop rate-optimal polices that combine my-
opic action based on least squares estimates with a suitable “forced
sampling” strategy. It is shown that the regret grows logarithmically
in the time horizon n and no policy can achieve a slower growth
rate over all feasible problem instances. In this setting of linear re-
sponse bandits, the identity of the sub-optimal action changes with
the values of the covariate vector, and the optimal policy is sub-
ject to sampling from the inferior population at a rate that grows
like

√
n.

1. Introduction. Sequential allocation problems, otherwise known as
multi-armed bandit problems, arise frequently in various areas of statistics,
adaptive control, marketing, economics and machine learning. The problem
can be described as that of choosing between arms of a slot machine, where
each time an arm is pulled a random reward which is arm-dependent is
realized. The goal is to maximize the cumulative expected reward. Since the
mean reward rate for each arm is not known, the gambler is faced with the
classical dilemma between exploration and exploitation.

The first instance of these sequential allocation problems was introduced
by Robbins (1952), and since then numerous variants thereof have been
studied extensively in many different contexts; we refer to Berry and Fristedt
(1985), Gittins (1989), Lai (2001) and the recent book by Cesa–Bianchi and
Lugosi (2006), as well as references therein. A stream of such literature
has focused on the characterization of optimal procedures under Bayesian
formulations, but the complexity of the problem has led many researchers to
seek approximate solutions that perform well in a suitable asymptotic sense;
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see, e.g., Lai and Robbins (1985), Lai (1987), Lai (1988), Lai and Yakowitz
(1995), Auer et al. (2002a) among others.

The prototypical bandit model assumes sequential sampling from two
“homogeneous” populations, where the distribution of the realized random
reward depends only on the chosen arm. However, in many practical situ-
ations some additional information can be utilized for allocation purposes.
In particular, imagine that at each stage t additional side information, in
the form of a random covariate Xt, is given, and the reward in each arm
depends also on the value of this side observation. This model is a more
accurate reflection of many instances treated in the bandit literature. Con-
sider for example the problem of clinical trials which motivated several of the
original bandit papers. In that setting, see Lai (1987), patients enter sequen-
tially and receive one of, say, two possible treatments whose efficacy is yet to
be determined. The objective is to allocate the “better” treatment to each
patient. Viewing the patients as a homogeneous population ignores many
important patient specifics (e.g., age, weight, blood pressure, comorbidities,
etc), that can be used to improve treatment allocation. Such additional infor-
mation can be encoded as a covariate, i.e., an auxiliary explanatory variable,
that is observable just prior to the selection of an arm, and whose value can
influence the mean response of each arm. Because the identity of the pre-
ferred arm depends on the revealed covariate value, the theory of sequential
allocation problems with such side information is significantly different from
the traditional setting where no covariates are present.

Although sequential allocation problems have been the subject of a volu-
minous literature, the study of bandit problems with side information (co-
variates) is in a far more nascent stage. The pioneering work of Woodroofe
(1979) provides recursive expressions for the optimal Bayesian policy in a
one–armed bandit problem. This setting involves one arm whose response
is known a priori, and another arm whose response depends in a very spe-
cific manner on a single covariate; see also Woodroofe (1982) and Sarkar
(1991). The one–armed allocation model was recently studied in a minimax
setting by Goldenshluger and Zeevi (2009); we refer to that paper for further
references and links to antecedent literature.

In the present paper we formulate and study a two–armed bandit prob-
lem which is a natural extension of the setups in Lai and Robbins (1985),
Woodroofe (1979) and Goldenshluger and Zeevi (2009). At each stage t a
covariate Xt ∈ R

d is observed, and the mean reward of each arm is given by
a linear function of the covariate, where the parameters characterizing this
response function are unknown. After the value of Xt is observed, one of the
two arms is selected and one obtains a noisy observation of the mean reward
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for that particular value of Xt; this is the response variable. (One can view
this setting as a linear regression model with Xt playing the role of a vec-
tor of explanatory variables.) The objective is to maximize the cumulative
expected reward over a finite horizon of length n. We refer to this setup as
the linear response bandit problem. In this setting we develop an allocation
policy, study its performance, and derive a lower bound on the minimax
regret for a natural class of joint distributions of covariates and rewards. We
demonstrate that the proposed policy is optimal in terms of the dependence
of its performance on the horizon n. That is, no other admissible policy can
achieve a faster growth rate of cumulative expected rewards. These results
characterize the complexity of the linear response bandit problem.

In antecedent literature there is some discussion of a univariate version
of the linear response bandit problem by Gooley and Lattin (2000) in the
context of dynamic customization of marketing messages. The most closely
related papers to ours are Auer (2002), Mersereau et al. (2009) and Rus-
mevichientong and Tsitsiklis (2010); it will be useful to defer further dis-
cussion of connections between our work and the aforecited literature to
Section 6, after our model and main results have been developed. We also
refer the interested reader to Ginebra and Clayton (1995), Yang and Zhu
(2002), Wang et al.] (2005), Langford and Zhang (2008), and Lu et al. (2010),
where other related models were considered.

The rest of the paper is organized as follows. In Section 2 we present
the problem formulation. Section 3 describes the proposed allocation policy,
and Section 4 contains our main results. In Section 5 we present results
characterizing properties of the least squares estimators under the proposed
policy; these are the key ingredients that are later used in the proof of
the upper bound on the regret. Section 6 contains discussion and adds some
concluding remarks. The proofs are given in Section 7. An Appendix contains
auxiliary results.

2. Problem formulation. Consider the following two–armed bandit
problem. One observes a sequence X1,X2, . . . of independent random vectors
with common distribution PX . At each stage t, one can allocate the covariate
vector Xt ∈ R

d to the i-th arm (i = 1, 2) of the bandit machine; this will
be referred to as selecting the ith arm. Following that selection, one obtains

the response Yt = Y
(i)
t ,

Y
(i)
t = βT

i Zt + ε
(i)
t , i = 1, 2,

where βi ∈ R
d+1 are unknown parameters, Zt = (1,Xt) ∈ R

d+1 and ε
(i)
t are

iid normal random variables with zero mean and variance σ2, independent
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of Xt. In that manner, at each stage t if the i-th arm is selected then the ob-

tained reward is equal to Y
(i)
t . The goal is to maximize cumulative expected

rewards up to stage n. Here and in what follows, all random variables are as-
sumed to be defined on a common probability space (Ω,F ,P), and E stands
for the expectation operator with respect to P.

An admissible allocation rule (policy) π is a sequence of random variables
π1, π2, . . . taking values in the set {1, 2} such that πt is measurable with re-
spect to the σ–field F+

t−1 generated by the previous observations and actions

{πs,Xs, Y
(πs)
s , s = 1, . . . , t− 1} and by the current covariate vector Xt,

F+
t−1 = σ

(

π1,X1, Y
(π1)
1 , . . . , πt−1,Xt−1, Y

(πt−1)
t−1 ,Xt

)

.

We also denote Ft−1 = σ(π1,X1, Y
(π1)
1 , . . . , πt−1,Xt−1, Y

(πt−1)
t−1 ).

Let π∗ = (π∗
t , t ≥ 1) be the oracle rule which “knows” the arm parameters

and at each stage t prescribes

π∗
t = argmax

i=1,2
{βT

i Zt}, t = 1, 2, . . .

Performance of an allocation rule π will be measured by the regret relative
to the oracle performance:

Rn(π, π
∗) = E

n
∑

t=1

Y
(π∗

t
)

t − E

n
∑

t=1

Y
(πt)
t = E

n
∑

t=1

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }.

Let P be a class of pairs (PX,Y (1) , PX,Y (2)) of joint distributions of (X,Y (1))

and (X,Y (2)). The maximal regret of a rule π is defined as

Rn(π;P) := sup
{

Rn(π, π
∗) : (PX,Y (1) , PX,Y (2)) ∈ P

}

,

and the objective is to develop a rate–optimal rule π̂ such that

(1) Rn(π̂;P) ≤ C inf
π

Rn(π,P)

for some positive constant C that does not depend on n. The infimum on
the right hand side is taken over all admissible policies π.

3. The proposed policy. Now we are in a position to define the pro-
posed policy. The policy combines forced sampling from both arms at pre-
scribed time instances with myopic action between said times; the terms will
become clear in what follows. We begin with a description of the sequences
of time instants when the policy will perform forced sampling from both
arms.
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3.1. Forced sampling sequences. Fix a real number q > 0, which will
serve as a design parameter to be specified. Define the sequence T = (τs,
s ≥ 1) of positive integers by

τ1 = 1, τs = ⌊exp{qs}⌋, s = 2, 3, . . .

For a given natural number t, the number of elements N(t) of the sequence
T that are less than or equal to t satisfies the following inequalities:

(2)
1

q
ln t− 1 ≤ N(t) ≤ 1

q
ln(t+ 1).

It is easily verified that if

(3) s > ν := 1 +
⌈1

q
ln+

( 2

eq − 1

)⌉

,

then τs − τs−1 > 1. This fact implies that the subsequences

T1 := (τs, s ≥ ν + 1), T2 := T1 + 1 = (τs + 1, s ≥ ν + 1)

are disjoint.
Now we are in a position to define the forced sampling sequences. Let

(4) ν0 := ν ∨ (d+ 1),

and define

(5)
T1,t := {s ∈ T1 : 2ν0 + 1 ≤ s ≤ t} ∪ {s : s = 2j − 1, j = 1, . . . , ν0},
T2,t := {s ∈ T2 : 2ν0 + 1 ≤ s ≤ t} ∪ {s : s = 2j, j = 1, . . . , ν0}.

Here Ti,t denotes the set of time instances up until stage t when the policy
performs forced sampling from the ith arm. We set also Ti(t) = #{Ti,t},
where from now on #{·} stands for the cardinality of a set.

Note that by construction, for all t ≥ 2ν0+1 one has T1(t) = N(t)−ν+ν0,
while T2(t) = N(t) − ν + ν0 or T2(t) = N(t) − ν + ν0 − 1. Thus we always
have N(t) − ν + ν0 − 1 ≤ Ti(t) ≤ N(t) − ν + ν0 which, in view of (2),
yields

1

q
ln t− ν + ν0 − 2 ≤ Ti(t) ≤

1

q
ln(t+ 1) + ν0 − ν, ∀t ≥ 2ν0 + 1.(6)
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3.2. Policy description. In what follows we denote our proposed policy
by π̂ = (π̂t, t ≥ 1). For a subset J of {1, 2, . . .} we define

(7) b̂(J ) := Q̂−1(J )
[

1

#{J }
∑

s∈J
ZsY

(π̂s)
s

]

, Q̂(J ) := 1

#{J }
∑

s∈J
ZsZ

T
s .

Thus, given a set J of indices, b̂(J ) denotes the least squares (LS) estima-
tor of the parameter vector β in the linear regression model based on the

observations {Zs, Y
(π̂s)
s , s ∈ J }. We will write Ys and εs instead of Y

(π̂s)
s and

ε
(π̂s)
s respectively when the value of π̂s is clear from the context.
Let

(8) Si,t = {1 ≤ s ≤ t : π̂s = i}, and Si(t) := #{Si,t}, i = 1, 2,

be the set of indices for which the strategy π̂ pulls arm i = 1, 2, and its
cardinality, respectively. For this index set, and for Ti,t given in (5), we
define the following estimators via (7):

(9)
β̂i(t) := b̂(Si,t), Q̂i(t) := Q̂(Si,t),
β̃i(t) := b̂(Ti,t), Q̃i(t) := Q̂(Ti,t).

Thus we have two sets of the LS estimators: the estimators β̂i(t) are based
on the entire set of observations sampled from arm i = 1, 2 up until time t,
while β̃i(t) are estimators based only on the observations collected through
the forced sampling subsequence.

The proposed policy π̂ = (π̂t, t ≥ 1) uses these two sets of the LS esti-
mators and requires two design parameters: a forced sampling parameter q;
and a localization parameter h. These parameters will be specified later; see
(15) in Theorem 1. The policy is given by the following algorithm.

Algorithm 1.

1. Initialization: pull each arm ν0 times, i.e., set

π̂2j−1 = 1, and π̂2j = 2, j = 1, . . . , ν0.

2. Set t = 2ν0.
3. If t+ 1 ∈ Ti

then set π̂t+1 = i (pull arm i) and compute the estimates β̂i(t+1),
β̃i(t+ 1), i = 1, 2;

else
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if |(β̃1(t)− β̃2(t))
TZt+1| > h/2 then set

π̂t+1 = argmax
i=1,2
{β̃T

i (t)Zt+1};

if |(β̃1(t)− β̃2(t))
TZt+1| ≤ h/2 then set

π̂t+1 = argmax
i=1,2

{

β̂T
i (t)Zt+1

}

;

and compute the estimates β̂i(t+ 1), i = 1, 2.
4. t← t+ 1 and repeat from step (iii).

If the time instant t+1 belongs to a forced sampling subsequence Ti, then
the subsequent observation is taken from the ith arm (i.e. π̂t+1 is set to i),
and all estimates are updated. Otherwise, two different actions are possible.
If Zt+1 falls outside the h/2–margin of the set {z : β̃T

1 (t)z = β̃T
2 (t)z}, then

the myopic decision is made on the basis of the forced sampling LS estimates.
If Zt+1 belongs to the h/2–margin of the set {z : β̃T

1 (t)z = β̃T
2 (t)z}, then

π̂ performs myopic action using the LS estimates based on the entire set of
observations.

We note that the accuracy of the forced sampling LS estimates is easily
controlled; this fact facilitates analysis of the algorithm performance. In
particular, intuitively speaking, the forced sampling estimators are used to
ensure that statistical information is gathered in a suitable manner from
both arms, and preclude the myopic action from “under-sampling” any one
of them. In this context, when myopic action is performed, the localization
parameter h is used to distinguish whether the present covariate falls “close”
to the decision boundary; if it does, then the “full information” LS estimates
are used (these are the estimates computed based on forced sampling and
observations collected via myopic actions); if it does not, the LS estimates
based exclusively on the forced sampling instances are used.

4. Main results.

4.1. Classes of joint distributions. Since

(10) Y (i)|X = x ∼ N (βT
i z, σ

2), z = (1, x), i = 1, 2,

the classes of pairs of joint distributions of (X,Y (1)), (X,Y (2)) can be defined
by specification of parameter sets for (β1, β2) and a class of distributions PX .

Definition 1. We say that the pair (PX,Y (1) , PX,Y (2)) belongs to the
class P if (10) holds and the following conditions are satisfied:
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(A1) Xt = (Xt,1, . . . ,Xt,d), t = 1, 2, . . . are independent identically dis-
tributed random vectors having density with respect to Lebesgue mea-
sure on R

d, and maxj=1,...,d |Xt,j | ≤ r, for all t. Let µ := EXt, V :=
EXtX

T
t , and

(11) Q =

[

1 µT

µ V

]

∈ R
(d+1)×(d+1).

There exists a positive real number λ such that λmin{Q} ≥ λ > 0.
(A2) (Margin condition). There exist positive real numbers ρ0, L such that

P
{

|(β1 − β2)
TZt| ≤ ρ

}

≤ Lρ, ∀ρ ∈ (0, ρ0].

(A3) (Diversity outside margin). There exists a real number λ∗ > 0 such
that

(12) λmin

{

EU+
s ZsZ

T
s

}

∧ λmin

{

EU−
s ZsZ

T
s

}

≥ λ∗ > 0,

where U+
s := I{(β1−β2)TZs ≥ ρ0} and U−

s := I{(β1−β2)TZs < −ρ0}.
(A4) (Parameter set). The arm parameters (β1, β2) satisfy

‖βi‖ ≤ b, i = 1, 2.

Discussion of the assumptions. Assumption (A1) states that Xt is a ran-
dom vector with non–degenerate distribution over R

d, which ensures that
the arm parameters β1 and β2 are identifiable. Moreover, because this dis-
tribution has a density with respect to Lebesgue measure on R

d, it follows
that after the initialization step in Algorithm 1, the LS estimators are well–
defined, i.e., the corresponding matrices Q̂i(·) and Q̃i(·) are non–singular
with probability one.

Assumption (A2) is related to the behavior of the distribution ofXt “near”
the decision boundary {x : βT

1 x = βT
2 x}; it is akin to the so-called margin

condition that is widely used in the classification literature [see, e.g., Tsy-
bakov (2004)]. Roughly speaking, the region near the decision boundary is
where it is most “difficult” to distinguish between the two arms. At the
same time, the contribution to the regret of making incorrect decisions is
affected by the probability of covariates falling into that region. The margin
condition therefore plays a central role in determining the complexity of the
linear response bandit problem, much like its role in classification problems.

Assumption (A3) implies “persistence of excitation,” in the language of
automatic control. Under this condition it is possible to improve the accu-
racy of estimates of the arm parameters without necessitating errors in the
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selection of the arms; for further discussion see Goldenshluger and Zeevi
(2011). Assumption (A3) also implies that

(13) p∗ := min
[

P
{

(β1 − β2)
TZt ≥ ρ0

}

, P
{

(β1 − β2)
TZt < −ρ0

}

]

> 0.

That is, there is probability mass away from the region in which the margin
condition holds. This implies that the distribution PX is such that with
positive probability the random variable (β1−β2)

TZt can take positive and
negative values, and the preference of arms is changed depending on the sign
of (β1 − β2)

TZt.

4.2. Bounds on the regret. The next result establishes an upper bound
on the maximal regret of the policy defined in Algorithm 1.

Let t∗ denote the minimal positive integer satisfying

t∗ ≥ (8ν0 + 1) ∨ 4096σ2(1 ∨ r2)d(1 + rd)2ρ−2
0 λ−2

∗ ,(14)

where ν0 is given in (4), and ρ0 and λ∗ appear in Assumptions (A2) and (A3).

Theorem 1. Let π̂ = (π̂t, t ≥ 1) be the policy defined by Algorithm 1 and
associated with parameters h and q. If P is a class of pairs (PX,Y (1) , PX,Y (2))
of joint distributions given in Definition 1, and

(15) ρ0 ≥ h, min
{ h2λ

192σ2(1 + r2d)
,

λ2

24(d + 1)2(r2 ∨ r4)

}

≥ q

then for every n > t∗

Rn(π̂;P) ≤
4b

q

√

λmax(Q) ln(n+ 1)

+ C1Lσ
2d2(1 + r2d)λ−2

∗ (1 ∨ r)2 lnn+ C2,(16)

where C1 is an absolute constant, and C2 is a constant that can depend on
parameters of the class P, σ2,d, r and b only.

The bound shows that the maximal regret of π̂ grows at most logarith-
mically, i.e., Rn(π̂;P) = O(lnn) as n → ∞. As the proof of the theorem
indicates, the first term on the right hand side of (16) describes the contri-
bution of the forced sampling scheme to the regret, while the second term
is due to the “difficulty” of resolving the correct allocation when the co-
variate Xt falls “near” the decision boundary. It is also worth noting that
the proposed policy does not require a priori knowledge of the length of the
horizon n.
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Another characteristic of the policy is the maximal inferior sampling rate,
defined as the worst–case expected cumulative number of inferior arm selec-
tions:

Mn(π̂;P) := sup
{

Mn(π̂, π
∗) : (PX,Y (1) , PX,Y (2)) ∈ P

}

Mn(π̂, π
∗) := E

n
∑

t=1

I{πt 6= π∗
t },

where π∗ = (π∗
t , t ≥ 1) is the oracle rule. The inferior sampling rate of the

policy π̂ is bounded as follows

Mn(π̂;P) ≤
1

q
ln(n+ 1)

+ C3Ld
3/2λ−1

∗ σ
√

1 + r2d (1 ∨ r)
√
n + C4,(17)

i.e., Mn(π̂;P) = O(
√
n) as n→∞. In the end of the proof of Theorem 1 we

present the arguments leading to this upper bound.
A natural question is whether there is a policy with maximal (over P)

regret that grows slower than O(lnn) as n → ∞. We now show that the
magnitude of the regret established in Theorem 1 is essentially best possi-
ble.

Theorem 2. Let P = (PX,Y (1) , PX,Y (2)) be the class of pairs of distri-
butions defined in Definition 1. Then for any admissible policy π̃ and for n
sufficiently large

Rn(π̃;P) ≥ C3σ
2 lnn,

where C3 depends on the parameters of the class P.

This theorem, along with Theorem 1, shows that the proposed policy π̂
is rate–optimal in the sense of (1).

4.3. Numerical illustration. In this section we illustrate performance of
the proposed policy and its dependence on the dimensionality of the co-
variate vector Xt. In our simulations the covariate vectors Xt were chosen
to be uniformly distributed on [−1, 1]d with d ∈ {2, 4, 6, 8, 10, 12}. In each
run the arm parameters β1, β2 ∈ R

d+1 are chosen as follows: β1 = 0 and
β2 = 1√

d
(0, δ1, . . . , δd) where δi are independent random signs (Rademacher

random variables). The policy is implemented with parameters h = 1 and
q = min{0.1, d−2}.

In each run we compute the regret of our policy for the horizon n = 250×k
where k ∈ {1, 2, 3, 4, 6, 12, 20, 30} and average the results over 50 runs. Fig-
ure 1 depicts the graphs of average regret against the logarithm of the hori-
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Fig 1. Regret of the proposed policy averaged over 50 runs against the logarithm of the

horizon lnn for dimensions d ∈ {2, 6, 12}.

Table 1

The slope estimates for lnn dependence of the regret

dimensionality d 2 4 6 8 10 12

slope estimate 10.659 17.715 27.021 42.467 61.134 84.636
standard deviation 0.380 0.562 0.594 1.012 3.370 4.522

zon for d ∈ {2, 6, 12}. As predicted by the results of Theorem 1, the graphs
indicate an approximately linear growth of the regret with lnn. It is also
clearly seen that the policy performance deteriorates with the dimension-
ality d. Based on the regret samples obtained in 50 runs we estimated the
slopes using the least squares method. The slope estimates along with the
standard deviations are given in Table 1. These results indicate that the
upper bound of Theorem 1 is conservative in terms of its dependence on the
dimensionality d.

5. Statistical properties of the LS estimators under the pro-
posed policy. The key to establishing upper bounds on the regret in The-
orem 1 is an analysis of statistical properties of the least squares estimators
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β̃i(t) and β̂i(t), i = 1, 2 defined in (9). In this section we present several
results to that effect and briefly discuss their implications.

Our results will be in the form of various probability bounds, and for that
purpose it will be useful to define the following quantity that will be used
repeatedly. For κ, s, u > 0, put

P (κ, s, u) :=

√

2

π
(1 + r2d)1/2

√
s

κσ
exp

{

− κ
2λ s

4σ2u2

}

+ 2d(d + 3) exp

{

− λ2s

8(d+ 1)2(r2 ∨ r4)

}

.(18)

The next statement establishes a probability bound related to deviations
of the LS estimators along the forced sampling subsequence, β̃i(t), from the
true parameter values.

Proposition 1. Let Assumption (A1) hold; then for any κ > 0, and
any t ≥ 2ν0 + 1

P

{

∣

∣(β̃i(t)− βi)
TZt+1

∣

∣ ≥ κ

}

≤ P
(

κ, Ti(t),
√

1 + r2d
)

, i = 1, 2.

Proposition 1 and the lower bounds on Ti(t), i = 1, 2 in (6) imply that
the probability P{|(β̃i(t)−βi)

TZt+1| ≥ κ} can be made negligible by choice
of the forced sampling parameter q. It turns out that this fact, together
with Assumption (A3) that characterizes the diversity of Xt’s outside the
margin, ensures that under the proposed policy each arm is pulled a linearly
increasing number of times with high probability. Moreover, under the pro-
posed policy the information about the unknown parameters increases at a
suitable rate. These facts are central for the proof of Theorem 1; they are
subject of the next statement for which the following notation will be useful.

For J ⊆ {1, 2, . . .} let Σ(J ) :=∑s∈J ZsZ
T
s . Recall also that Si,t = {1 ≤

s ≤ t : π̂s = i}, and Si(t) = #{Si,t}, i = 1, 2.

Proposition 2. Let Assumptions (A1) and (A3) hold, and let

Pt := (d+ 1)
t
∑

s=⌊t/2⌋

2
∑

i=1

P

(

ρ0
4(1 + rd)

, Ti(s − 1), 1

)

,

where P (·, ·, ·) is defined in (18). If h ≤ ρ0 then for all t ≥ 8ν0 + 1 and
i = 1, 2

P
{

Si(t) ≤
1

8
p∗t
}

≤ Pt + exp
{

− p2∗t
128

}

,(19)
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P

{

λmin

(

Σ(Si,t)
)

≤ λ∗t
8

}

≤ Pt + (d+ 1)(d+ 2) exp
{

− λ2
∗t

128(1 ∨ r2)2(1 + d)2

}

,(20)

where p∗ and λ∗ are given in (13) and in (12) respectively.

A couple of remarks on the statement of Proposition 2 are in order. First,
it follows from (18) and (6) that if for any k > 0 we set q ≤ C1k

−1, where
C1 = C1(ρ0, λ, d, r) is some explicit constant, then Pt ≤

√
ln t/tk for all

t ≥ 8ν0+1. Under this choice of the forced sampling parameter q, with high
probability the proposed policy pulls each arm a linearly growing number of
times. Second, inequality (20) shows that with high probability the minimal
eigenvalue of the matrix Σ(Si,t) grows linearly. This, in turn, implies that

the accuracy of the estimates β̂i(t) improves in a suitable manner when
sampling according to the proposed policy. This last fact is quantified in the
next proposition.

Proposition 3. Let Assumptions (A1) and (A3) hold, and let h ≤ ρ0;
then for all t ≥ 2ν0 + 1 and i = 1, 2 one has

P

{

‖β̂i(t)− βi‖ ≥ κ, λmin

(

Σ(Si,t)
)

≥ λ∗t
8

}

≤ 2 exp
{

− κ
2λ2

∗t
256σ2

}

+ 2d exp
{

− κ
2λ2

∗t
256σ2dr2

}

,

P

{

|(β̂i(t)− βi)
TZt| ≥ κ, λmin

(

Σ(Si,t)
)

≥ λ∗t
8

}

≤ 2 exp
{

− κ
2λ2

∗t
256σ2(1 + r2d)

}

+ 2d exp
{

− κ
2λ2

∗t
256σ2d(1 + r2d)r2

}

.

Proposition 3 establishes bounds on the deviations of the LS estimates
β̂i(t) from βi, i = 1, 2, on the event that the minimal eigenvalue of the
matrix Σ(Si,t) grows linearly in t. As stated above in Proposition 2, this
event occurs with high probability under an appropriate choice of the force
sampling parameter q.

6. Discussion and concluding remarks.
1. Extensions. As shown above, under suitable conditions on the class of

joint distributions of covariates and responses, the minimax regret in the
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linear response bandit problem scales like lnn with the horizon length n.
These results can be extended in different directions.

The upper bound of Theorem 1 remains intact if condition (A2) in the
definition of the class P is replaced by the following more general margin
condition: there exist positive real numbers ρ0, L and α ≥ 1 such that
P{|(β1 − β2)

TZt| ≤ ρ} ≤ Lρα, ∀ρ ∈ (0, ρ0]. Note, however, that because the
covariate Xt is assumed to have a continuous distribution, the case α = 1 is
the most typical. When α > 1, the policy proposed in this paper is no longer
rate–optimal; see Goldenshluger and Zeevi (2009) that treats a particular
one-armed setting from which the above conclusion can be drawn.

Although we considered the two–armed version of the linear response
bandit problem, our results can be extended to the case of K arms. Indeed,
one expects that under a suitable margin condition, of the type given in (A2)
ensuring proper separation of the best arm from other arms for any given
value of the covariate vector, a maximal regret of the order lnn is achievable.
It is also worth noting that the results of this paper remain intact if instead

of the Gaussian assumption, the errors ε
(i)
t , i = 1, 2 are assumed to have

sub–Gaussian tails.
2. Relation to existing literature. The linear response model was previously

studied by Auer (2002); however, his assumptions, analysis and results all
differ from ours. In particular, Auer (2002) considers the K–armed bandit
problem with bounded linear response, when the parameter vector is com-
mon to all arms (for the two–armed problem, β1 = β2 in our notation).
In his model, the covariates are assumed to be arbitrary, deterministic and
arm–dependent, i.e., for each arm there is an arm–specific sequence of the
corresponding covariates. In this setup, Auer (2002) develops a policy and
shows that the worst–case regret (with respect to the covariates) is bounded
from above by O(

√
n). In this context it is also worth noting that even in

the traditional bandit problem, the minimax regret has the order
√
n under

so-called adversarial and “gap–free” scenarios [see, e.g., Auer et al. (2002b)
and Juditsky et al. (2008)].

The work by Mersereau et al. (2009) and Rusmevichientong and Tsitsiklis
(2010) considers the problem of sequential constrained linear optimization
based on noisy observations of function values. In particular, in their set up,
the mean reward is given by an underlying linear function, whose parameters
are not known a priori. At each stage, the decision maker needs to choose
an argument value of that function, with the objective of maximizing the
cumulative mean rewards. In that setting, Rusmevichientong and Tsitsiklis
(2010) propose a rate–optimal policy and demonstrate that the minimax
regret is of the order

√
n for a broad family of constraint sets.
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In contrast to these results, we consider the case when the parameter
vectors are arm–dependent, and the covariates are independent identically
distributed vectors. To further clarify, what we term as a “covariate” is
exogenously given, while in Mersereau et al. (2009) and Rusmevichientong
and Tsitsiklis (2010) this is the decision variable. Thus our model is a more
natural extension of the traditional line of research on bandit problems, and
in particular directly extends the clinical trial model considered by Lai and
Robbins (1985).

3. Regret, inferior sampling rates, and traditional bandit results. The or-
der of maximal regret achieved by our policy exhibits a growth rate of
O(lnn) that is identical to the best achievable asymptotic results in the
traditional bandit literature; cf. Lai and Robbins (1985). The reasoning for
this is markedly different in the linear response bandit problem. First note
that in the traditional bandit problem, the regret is proportional to the in-
ferior sampling rate. Hence the logarithmic growth is essentially driven by
controlling the error probability in a sequential hypothesis testing problem.
In contrast, in the linear response bandit problem the errors are essentially
due to the difficulty of allocating covariates Xt in proximity of the decision
boundary. In particular, the maximal inferior sampling rate here is of or-
der
√
n, which means that the frequency at which one makes sub-optimal

arm selections is quite high relative to the traditional bandit problem. In
essence, when the values of Xt are in the vicinity of the decision boundary
{z : βT

1 z = βT
2 z}, it is impossible to distinguish the two arms at stage t to

any finer resolution than order 1/
√
t. This is the determining factor behind

the
√
n-growth in the inferior sampling rate. At the same time, the regret is

also determined by the difference in the mean reward rate, which is smaller
near the margin. Hence, eventually the large number of inferior arm selec-
tions does not translate into a large growth rate in the regret. One other
comment pertains to the lower bounds which establishes the rate-optimality
of our proposed policy. Unlike the change-of-measure argument due to Lai
and Robbins (1985), which is ubiquitous in asymptotic optimality results
found in the traditional bandit literature, our lower bound argument builds
on a Bayesian analogue of a Cramér-Rao type inequality to bound the mean
squared estimation error from below at each stage t.

4. The case of “fully separated” responses. We have focused on classes of
joint distributions of covariates and rewards such that the preference of arms
changes for different values of the covariate vector Xt. If the arm parameters
are well–separated and preference of the arms does not change for all values
of Xt, and if the distribution of Xt is continuous, then the minimax regret
is also of the order lnn as n→∞. This rate is achieved by the policy with
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forced sampling and myopic action, just on the basis of “forced sampling”
least squares estimates β̃i(t), i = 1, 2 [see (9)]. We note, however, that under
these conditions both the regret and the inferior sampling rate are of the
order lnn which is similar to the setup considered in Lai and Robbins (1985).

7. Proofs. As stated in the discussion of the assumptions in Section 4.1,
under Assumption (A1) the initialization step of the proposed policy results
in well defined LS estimates (i.e., the corresponding LS matrices are invert-
ible) with probability one. This fact is used in all the proofs below without
further explicit mentioning.

Proof of Proposition 1. Because the estimates β̃i(t) are based on the
forced sampling observations only we have

β̃i(t)− βi | {Xs : s ∈ Ti,t} ∼ Nd+1

(

0,
σ2

Ti(t)
Q̃−1

i (t)
)

, i = 1, 2,

where Q̃i(t) is given in (9). Therefore, for any vector a ∈ R
d+1 and any real

number κ > 0

P

{

(β̃i(t)− βi)
Ta ≥ κ

∣

∣

∣
{Xs : s ∈ Ti,t}

}

≤
√

Ti(t)√
2πκσ[aT Q̃−1

i (t)a]1/2
exp

{

− κ
2Ti(t)

2σ2aT Q̃−1
i (t)a

}

.(21)

We need the following bounds on the eigenvalues of the matrices Q̃−1
i (t).

Because the maximal eigenvalue of a symmetric matrix is less than the
maximum of the sums of absolute values of its row elements, it follows from
boundedness of the components of Xt that λmax{Q̃i(t)} ≤ 1 + r2d. Hence

(22) λmin

{

Q̃−1
i (t)

}

≥ 1

1 + r2d
.

Furthermore, we can write Q̃i(t) = Q + Ei(t), i = 1, 2, where Q is given
in (11), and Ei(t) is a symmetric matrix whose elements can be controlled
using Lemma 1 [see Appendix]. In particular, letting Γ∗ = Γ(κ∗,Ti,t) in
(38) (see Lemma 1 in the Appendix), κ∗ := [2(d + 1)]−1λ with λ given in
Assumption (A1) we have

max
k,l=1,...,d+1

∣

∣[Ei(t)]kl
∣

∣I
{

Γ∗
}

≤ κ∗ =
λ

2(d+ 1)
.

Here [Ei(t)]kl denotes the k, l entry in the matrix Ei(t). Hence on the event
Γ∗, all eigenvalues of Ei(t) belong to the interval [−λ/2, λ/2]. The well–
known result on perturbation of eigenvalues of d × d symmetric matrices
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states that if A and E are symmetric matrices, then λj(A + E) ∈ [λj(A) +
λmin(E), λj(A) + λmax(E)], for j = 1, . . . , d [see, e.g., (Stewart and Sun,
1990, Corollary 4.9)]. Using this result we have that on the event Γ∗

(23) λmin{Q̃i(t)} ≥
1

2
λ ⇒ λmax{Q̃−1

i (t)} ≤ 2

λ
.

Using (22) and (23) we obtain from (21)

P

{

[

(β̃i(t)− βi)
Ta ≥ κ

]

∩ Γ∗
∣

∣

∣
{Xs : s ∈ Ti,t}

}

≤
√

(1 + r2d)Ti(t)√
2πκσ‖a‖

exp

{

− κ
2λTi(t)

4σ2‖a‖2
}

.(24)

Here and in what follows ‖ · ‖ stands for the Euclidean norm of a vector. In
addition, by Lemma 1

P

{

[

(β̃i(t)− βi)
Ta ≥ κ

]

∩ Γc
∗
}

≤ P{Γc
∗}

≤ d(d+ 3) exp

{

− λ2Ti(t)

8(d + 1)2(r2 ∨ r4)

}

.(25)

Combining these inequalities we obtain for any a ∈ R
d+1 that

P

{

(β̃i(t)− βi)
Ta ≥ κ

}

≤
√

(1 + r2d)Ti(t)√
2πκσ‖a‖

exp
{

− κ
2λTi(t)

4σ2‖a‖2
}

+ d(d+ 3) exp
{

− λ2Ti(t)

8(d+ 1)2(r2 ∨ r4)

}

.(26)

In order to complete the proof of the proposition, we substitute Zt+1 for
a in (24) while conditioning on Xt+1, use the evident bounds ‖Zt+1‖ ≥ 1
and ‖Zt+1‖ ≤

√
1 + r2d, and combine the obtained result with (25).

Proof of Proposition 2. We will prove the proposition for S1,t and
Σ(S1,t). The proof for S2,t and Σ(S2,t) is completely analogous.

Let ξi(s) = β̃i(s)− βi, i = 1, 2. We have the following set inclusions

S1,t = {1 ≤ s ≤ t : π̂s = 1}
(a)

⊇ {2ν0 + 1 ≤ s ≤ t : π̂s = 1, (β̃1(s− 1)− β̃2(s− 1))TZs ≥ h/2}
(b)

⊇ {2ν0 + 1 ≤ s ≤ t : (β̃1(s− 1)− β̃2(s− 1))TZs ≥ ρ0/2}
=
{

2ν0 + 1 ≤ s ≤ t : (β1 − β2)
TZs ≥

ρ0
2
− ξT1 (s− 1)Zs + ξT2 (s − 1)Zs

}
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⊇
{

2ν0 + 1 ≤ s ≤ t : (β1 − β2)
TZs ≥ ρ0, |ξT1 (s− 1)Zs| ≤ ρ0/4,

|ξT2 (s− 1)Zs| ≤ ρ0/4
}

=: S̃1,t,

where (a) follows from truncation of the index set, and (b) follows from the
structure of the policy π̂ and h ≤ ρ0.

10. Recall that S1(t) = #{S1,t}. Using the above inclusions we have

S1(t) ≥ #{S̃1,t} ≥
t
∑

s=2ν0+1

I
{

(β1 − β2)
TZs ≥ ρ0

}

ws,

where ws := I(As), and the event As is defined by

As :=
{

max
j=1,...,d+1

|ξ1,j(s−1)| ≤
ρ0

4(1+ rd)
, max
j=1,...,d+1

|ξ2,j(s−1)| ≤
ρ0

4(1+ rd)

}

.

Therefore for any c > 0

P{S1(t) ≤ ct} ≤ P

{

t
∑

s=2ν0+1

I[(β1 − β2)
TZs ≥ ρ0]ws ≤ ct

}

≤ P

{

t
∑

s=2ν0+1

I
[

(β1 − β2)
TZs ≥ ρ0

]

ws ≤ ct,

t
∑

s=2ν0+1

ws ≥ 2ct/p∗
}

+ P

{

t
∑

s=2ν0+1

ws < 2ct/p∗
}

=: J1 + J2.

Denote p′ = P{(β1 − β2)
TZs ≥ ρ0} and observe that by (13), p′ ≥

p∗. Note also that ws is Fs−1-measurable; hence (
∑t

s=2ν0+1[p
′ − I{(β1 −

β2)
TZs ≥ ρ0}]ws,Fs) is a martingale with bounded differences. Therefore

by the Azuma–Hoeffding inequality

J1 ≤ P

{

t
∑

s=2ν0+1

[

p′ − I{(β1 − β2)
TZs ≥ ρ0}

]

ws ≥ p′
t
∑

s=2ν0+1

ws − ct,

p∗

t
∑

s=2ν0+1

ws ≥ 2ct

}
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≤ P

{ t
∑

s=2ν0+1

[

p′ − I{(β1 − β2)
TZs ≥ ρ0}

]

ws ≥ ct

}

≤ exp

{

− c2t2

2(t− 2ν0)

}

.

In order to bound J2 note that

{ t
∑

s=2ν0+1

I{Ac
s} > t− 2d− 2− 2ct

p∗

}

⊆
{ t

∑

s=2ν0+1

I{Ac
s} >

t

2

}

⊆
t
⋃

s=⌊t/2⌋
Ac

s,

provided that t ≥ 8ν0 +1 and c ≤ p∗/8. Therefore using a union bound and
(25) with the vector a taken to be the standard basis vectors in R

d+1 we
obtain

J2 ≤
t
∑

s=⌊t/2⌋
P{Ac

s} ≤
t
∑

s=⌊t/2⌋

2
∑

i=1

P

{

max
j=1,...,d+1

|ξi,j(s − 1)| ≥ ρ0
4(1 + rd)

}

≤ (d+ 1)

t
∑

s=⌊t/2⌋

2
∑

i=1

P
( ρ0
4(1 + rd)

, Ti(s − 1), 1
)

,

where we have used Proposition 1; recall that P (·, ·, ·) is defined in (18).
Setting c = p∗/8 we arrive to (19).

20. By Lemma 3 we have that for any two sets of indices J2 ⊆ J1,
λmin{Σ(J2)} ≤ λmin{Σ(J1)}. Hence

λmin{Σ(S1,t)} ≥ λmin{Σ(S̃1,t)}

≥ λmin

{ t
∑

s=2ν0+1

wsZsZ
T
s I{(β1 − β2)

TZs ≥ ρ0}
}

= λmin

{ t
∑

s=2ν0+1

wsU
+
s ZsZ

T
s

}

.

We can write

t
∑

s=2ν0+1

wsU
+
s ZsZ

T
s =

t
∑

s=2ν0+1

wsE{U+
s ZsZ

T
s }+

t
∑

s=2ν0+1

wsE(s),
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where
E(s) = U+

s ZsZ
T
s − EU+

s ZsZ
T
s .

Thus we have

λmin(Σ(S̃1,t)) ≥ λ∗

t
∑

s=2ν0+1

ws

−max

{
∣

∣

∣

∣

λmin

( t
∑

s=2ν0+1

wsE(s)

)
∣

∣

∣

∣

,

∣

∣

∣

∣

λmax

( t
∑

s=2ν0+1

wsE(s)

)
∣

∣

∣

∣

}

.

Define the event

Dt :=

{

max
k,l=1,...,d+1

∣

∣

∣

t
∑

s=2ν0+1

wsEk,l(s)
∣

∣

∣
≤ λ∗t

8(d+ 1)

}

,

where Ek,l(s) are the components of the matrix E(s). Note that for any k
and l, (

∑t
s=2ν0+1wsEk,l(s),Fs) is a martingale with bounded differences,

|Ek,l(s)| ≤ 2(1∨ r2). Therefore by a union bound and the Azuma–Hoeffding
inequality

P{Dc
t} ≤ (d+ 1)(d + 2) exp

{

− λ2
∗t

128(1 ∨ r2)2(1 + d)2

}

.

On the event Dt

max

{
∣

∣

∣

∣

λmin

(

t
∑

s=2ν0+1

wsE(s)
)

∣

∣

∣

∣

,

∣

∣

∣

∣

λmax

(

t
∑

s=2ν0+1

wsE(s)
)

∣

∣

∣

∣

}

≤ λ∗t
8

.

Therefore,

P

{

λmin

(

Σ(S̃1,t)
)

≤ λ∗t
8

}

≤ P

{

λmin

(

Σ(S̃1,t)
)

≤ λ∗t
8

,Dt

}

+ P{Dc
t}

≤ P

{

λ∗

t
∑

s=2ν0+1

ws ≤
λ∗t
4

,Dt

}

+ P{Dc
t}

≤ (d+ 1)
t
∑

s=⌊t/2⌋

2
∑

i=1

P
( ρ0
4(1 + rd)

, Ti(s− 1), 1
)

+ (d+ 1)(d + 2) exp

{

− λ2
∗t

128(1∨ r2)2(1+ d)2

}

,

where the last inequality follows from the bound on J2. This concludes the
proof.
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Proof of Proposition 3. Observe that

(27) β̂i(t)− βi = Σ−1(Si,t)
t
∑

s=1

ZsεsI(π̂s = i), i = 1, 2.

Furthermore, by Lemma 2 in the Appendix for any κ > 0

P

{∣

∣

∣

t
∑

s=1

εsI(π̂s = i)
∣

∣

∣
≥ κ

}

≤ 2 exp
{

− κ
2

2tσ2

}

,

P

{

max
k=1,...,d

∣

∣

∣

t
∑

s=1

Xs,kεsI(π̂s = i)
∣

∣

∣
≥ κ

}

≤ 2d exp
{

− κ
2

2tσ2r2

}

.

Consider the event

(28) Bi,t :=
{

λmin

(

Σ(Si,t)
)

≥ λ∗t
8

}

, i = 1, 2.

Then it follows from Lemma 2 in the Appendix, the previous two inequalities,
and (27) that

P

{

‖β̂i(t)− βi‖ ≥ κ, Bi,t

}

≤ P

{

λmax{Σ−1(Si,t)}
∥

∥

t
∑

s=1

ZsεsI(π̂s = i)
∥

∥ ≥ κ, Bi,t

}

≤ P

{

∥

∥

t
∑

s=1

ZsεsI(π̂s = i)
∥

∥ ≥ κλmin{Σ(Si,t)}, Bi,t

}

≤ P

{

∥

∥

t
∑

s=1

ZsεsI(π̂s = i)
∥

∥ ≥ κλ∗t
8

}

≤ P

{

∣

∣

t
∑

s=1

εsI(π̂s = i)
∣

∣ ≥ κλ∗t
16

}

+P

{

max
k=1,...,d

∣

∣

∣

t
∑

s=1

Xs,kεsI(π̂s = i)
∣

∣

∣
≥ κλ∗t

16
√
d

}

≤ 2 exp
{

− κ
2λ2

∗t
256σ2

}

+ 2d exp
{

− κ
2λ2

∗t
256 dσ2r2

}

,

where the second to last inequality follows from the fact that Zs = (1,Xs).
The second statement of the proposition follows from the above bound and
the Cauchy–Schwarz inequality.



LINEAR RESPONSE BANDIT PROBLEM 251

Proof of Theorem 1. In the proof below c1, c2, . . . denote the absolute
constants, while C1, C2, . . . stand for positive constants that can depend on
λ, σ2, d, ρ0, b, r.

10. Let T̄n = T1,n ∪ T2,n denote the set of time instances where the pol-
icy π̂ performs forced sampling from the first and second arm; and recall
that Ti(t) = #{Ti,t}. Using the Cauchy–Schwarz inequality and Assump-
tions (A1) and (A4) we have

Rn(π̂, π
∗) = E

n
∑

t=1

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }

≤ 2b
√

λmax(Q) t∗ + E

n
∑

t=t∗+1
t∈T̄n

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }

+ E

n
∑

t=t∗+1
t6∈T̄n

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }

≤ 2b
√

λmax(Q)
[

t∗ + T1(n) + T2(n)
]

+ E

n
∑

t=t∗+1
t6∈T̄n

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }.(29)

By definition of the policy π̂,

{π̂t 6= π∗
t } =

4
⋃

i=1

Di(t)

where

D1(t) :=
{

(β̃1(t− 1)− β̃2(t− 1))TZt >
h

2
, (β1 − β2)

TZt ≤ 0
}

D2(t) :=
{

(β̃1(t− 1)− β̃2(t− 1))TZt < −
h

2
, (β1 − β2)

TZt ≥ 0
}

D3(t) :=
{
∣

∣(β̃1(t− 1)− β̃2(t− 1))TZt

∣

∣ ≤ h

2
,

(β̂1(t− 1)− β̂2(t− 1))TZt ≤ 0, (β1 − β2)
TZt > 0

}

D4(t) :=
{∣

∣(β̃1(t− 1)− β̃2(t− 1))TZt

∣

∣ ≤ h

2
,

(β̂1(t− 1)− β̂2(t− 1))TZt ≥ 0, (β1 − β2)
TZt < 0

}

.

The event D1(t)∪D2(t) occurs when at the step t the policy makes an error
taking a myopic action based on the forced sampling estimates β̃i(t − 1),
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i = 1, 2. The event D3(t) ∪D4(t) describes the situation when at step t the
policy incurs an error taking myopic action based on the estimates β̂i(t−1),
i = 1, 2.

Write

E

n
∑

t=t∗+1
t6∈T̄n

|βT
1 Zt − βT

2 Zt|I{πt 6= π∗
t }

≤ E

n
∑

t=t∗+1
t6∈T̄n

|βT
1 Zt − βT

2 Zt|I{D1(t) ∪D2(t)}

+ E

n
∑

t=t∗+1
t6∈T̄n

|βT
1 Zt − βT

2 Zt|I{D3(t) ∪D4(t)}

=: E1 + E2

20. First we bound E1. We have

P{D1(t)} ≤ P
{

(β̃1(t− 1)− β1)
TZt + (β2 − β̃2(t− 1))TZt > h/2

}

≤ P
{

|(β̃1(t− 1)− β1)
TZt| > h/4}

+ P
{

|(β2 − β̃2(t− 1))TZt| > h/4
}

≤ P (h/4, T1(t− 1),
√

1 + r2d) + P (h/4, T2(t− 1),
√

1 + r2d),(30)

where we have used Proposition 1. The same upper bound holds for P{D2(t)}.
Thus in view of (30)

E1 ≤ 2b(1 + r2d)1/2
n
∑

t=t∗+1

2
∑

i=1

P (h/4, Ti(t− 1),
√

1 + r2d).

By definition, t∗ ≥ 8ν0 + 1; then (6) and (18) imply that if q satisfies

q ≤ min
{ h2λ

128σ2(1 + r2d)
,

λ2

16(d + 1)2(r2 ∨ r4)

}

then

E1 ≤ C1

n
∑

t=t∗+1

√
ln t

(t− 1)2
≤ C2.

30. Now we bound E2. For brevity we will write ∆β = β1−β2 and ∆̂β(t) =

β̂1(t)− β̂2(t). We have

E|∆T
βZt|I{D3(t)} = E|∆T

βZt|I
{

D3(t),∆
T
βZt > ρ0

}
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+E|∆T
βZt|I

{

D3(t),∆
T
βZt ≤ ρ0

}

=: J1(t) + J2(t).

In words, J1(t) and J2(t) are the t–step contributions to the regret due
to myopic action errors when the covariate Xt falls inside and outside the
ρ0–margin of the decision boundary ∆T

βZt = 0.
We have

J1(t) ≤ 2b(1 + r2d)1/2 P
{

(β̂1(t− 1)− β1)
TZt

+ (β2 − β̂2(t− 1))TZt ≤ −ρ0
}

≤ 2b(1 + r2d)1/2
2
∑

i=1

[

P

{

∣

∣(β̂i(t− 1)− βi)
TZt

∣

∣ ≥ ρ0/2, Bi,t−1

}

+ P{Bc
i,t−1}

]

,(31)

where Bi,t is defined in (28). By inequality (20) of Proposition 2 and (6),

(32) P{Bc
i,t} ≤ C3(t− 1)−2

√

ln(t− 1),

provided that

q ≤ min
{ ρ20λ

192σ2(1 + rd)2
,

λ2

24(d + 1)2(r2 ∨ r4)

}

.

In addition, by the second inequality of Proposition 3 the first probability on
the RHS of (31) decreases exponentially in t. Therefore

∑n
t=t∗+1 J1(t) ≤ C4,

i.e., we have finite contribution to the regret from myopic actions errors
when Xt’s are far from the decision boundary.

Now we proceed with J2(t). Let Bt := B1,t ∩B2,t; then

J2(t) = E|∆T
βZt|I

{

D3(t),∆
T
βZt ≤ ρ0

}

I{Bt−1}
+E|∆T

βZt|I
{

D3(t),∆
T
βZt ≤ ρ0

}

I{Bc
t−1}

≤ E|∆T
βZt|I

{

D3(t),∆
T
βZt ≤ ρ0

}

I{Bt−1}+ 2(1 + r2d)1/2P{Bc
t−1}

=: J
(1)
2 (t) + J

(2)
2 (t).

By (32) and our choice of q

J
(2)
2 (t) ≤ C5

√

ln(t− 1)

(t− 1)2
, and

n
∑

t=t∗+1

J
(2)
2 (t) ≤ C6.
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It remains to bound J
(1)
2 (t). Define the events

Mk =
{

2−k−1ρ0 < (β1 − β2)
TZt ≤ 2−kρ0

}

, k = 0, 1, 2, . . .

Then

J
(1)
2 (t) = E

∞
∑

k=0

|∆T
βZt|I

{

Mk, (β̂1(t− 1)− β1)
TZt − (β̂2(t− 1)− β2)

TZt

≤ −∆T
βZt, Bt−1

}

≤ ρ0 E

∞
∑

k=0

2−kI
{

(β1 − β2)
TZt ≤ ρ02

−k
}

× I

{ 2
∑

i=1

|
(

β̂i(t− 1)− βi)
TZt

∣

∣ ≥ 2−k−1ρ0, Bt−1

}

≤ ρ0

∞
∑

k=0

2−k
P
{

(β1 − β2)
TZt ≤ ρ02

−k
}

×
2
∑

i=1

P

{

‖β̂i(t− 1)− βi‖ ≥
2−k−2ρ0√
1 + r2d

, Bt−1

}

≤ 2(2d+ 2)Lρ20

∞
∑

k=0

2−2k exp{−2−2kz},

where

(33) z =
ρ20λ

2
∗t

4096σ2(r2 ∨ 1)d(1 + r2d)
.

Here the second inequality is obtained by bounding ‖Zt‖ ≤
√
1 + r2d, con-

ditioning on Ft−1 and using the fact that Zt is independent of Ft−1; and
the last inequality follows from Assumption (A2) and Proposition 3. Taking
into account that z ≥ 1 by (14), and using Lemma 4 we finally obtain

J
(1)
2 (t) ≤ c1K2Ld

2λ−2
∗ σ2(1 + r2d)(1 ∨ r2)t−1,

where c1 is an absolute constant, and Kα is given in Lemma 4 in Appendix.
Combining the above bounds we obtain that

(34)

n
∑

t=t∗+1

E|∆T
βZt|I{D3(t)} ≤ c2Lσ

2d2(1 + r2d)λ−2
∗ (1 ∨ r2) lnn+ C7,

where c2 is an absolute constant.
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We note that
∑n

t=t∗+1 E|∆T
βZt|I{D4(t)} is also bounded by the expression

on the RHS of (34); the proof of this bound follows verbatim to the above.
Combining these results with (29) and taking into account the upper bound
in (6) we complete the proof.

Remark on the proof of (17). The proof follows Theorem 1 with the
following changes. Instead of (29) we have

Mn(π̂, π
∗) ≤

[

t∗ + T1(n) + T2(n)
]

+ E

n
∑

t=t∗+1
t6∈T̄n

I{πt 6= π∗
t }.

The first term on the RHS above is upper bounded by t∗ + q−1 ln(n + 1).
Bounding the second term on the RHS goes along the same lines. The dom-

inant term here will be J
(1)
2 (t) that now takes the form

J
(1)
2 (t) ≤ 2(2d + 2)Lρ0

∞
∑

k=0

2−k exp{−2−2kz},

where z is given by (33). Then application of Lemma 4 leads to (17).

Proof of Theorem 2. Let Xt = (Xt,1, . . . ,Xt,d) be a random vector
with independent components, each distributed with a density fX with re-
spect to the Lebesgue measure such that supp(fX) = [−1, 1], and

0 < cf ≤ fX(x) ≤ Cf <∞, ∀x ∈ [−1, 1].

Denote β = (β1, β2) ∈ R
d+1 × R

d+1 the vector of the arm parameters; we
refer to β = (β1, β2) as the configuration. Let B ⊆ R

d+1 × R
d+1 be a set of

configurations, and let λ be a probability measure on B, with Eλ denoting
the expectation with respect to λ. (In what follows B and λ will be chosen
so that assumptions defining the class P hold.)

Put ∆β := β1 − β2 and fix an arbitrary policy π. The regret of π can be
bounded from below as follows

sup
{

Rn(π, π
∗) :

(

PX,Y (1) , PX,Y (2)

)

∈ P
}

≥ sup
β∈B

E

n
∑

t=1

|∆T
βZt|

[

I{∆T
βZt ≥ 0, πt = 2}+ I{∆T

βZt < 0, πt = 1}
]

≥ E

n
∑

t=1

(

Eλ

[

∆T
βZtI{∆T

βZt ≥ 0} | F+
t−1

]

I{πt = 2}
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− Eλ

[

∆T
βZtI{∆T

βZt < 0} | F+
t−1

]

I{πt = 1}
)

.

The Bayesian decision rule is: choose π̂t = 1 if

Eλ

[

∆T
βZtI{∆T

βZt ≥ 0} | F+
t−1

]

≥ −Eλ

[

∆T
βZtI{∆T

βZt < 0} | F+
t−1

]

and π̂t = 2 otherwise. Set γt−1 := Eλ[∆β | F+
t−1]. Now, since Zt is indepen-

dent of both Ft−1 and β, then Eλ[∆β | F+
t−1] = Eλ[∆β | Ft−1]. Therefore,

the Bayesian policy takes the form π̂t = I{γTt−1Zt ≥ 0} + 2I{γTt−1Zt < 0}.
Thus we have

Rn(π;P) ≥ E

n
∑

t=1

Eλ|∆T
βZt|I

{

sign(∆T
βZt) 6= sign(γTt−1Zt)

}

.(35)

Now we specify the probability measure λ on B ⊆ R
d+1×R

d+1; λ will be
taken as the product measure of the form λ = (δ0×δ1×δ0×· · ·×δ0)× (λ0×
δ0 × · · · × δ0), where δa denotes the point mass at a, and λ0 is a probability
distribution on [−1/2, 1/2] to be specified. Under these circumstances β1 =
(0, 1, 0, . . . , 0) and β2 = (θ, 0, . . . , 0), where θ is a random variable distributed
according to λ0. With this construction, the observations are realized as:

Y
(1)
t = Xt,1 + ε

(1)
t and Y

(2)
t = θ + ε

(2)
t for t = 1, 2, . . .. Note that with the

above choice of primitives, for any probability distribution λ0 on [−1/2, 1/2]
we have that: Assumption (A1) holds with r = 1; Assumption (A2) holds
with L = 2Cf and ρ0 = 1/4; Assumption (A3) holds with p∗ = cf/4; and
Assumption (A4) holds with b = 1.

With the above setting, γt−1 = (θ̂t−1, 1, . . . , 0) with θ̂t−1 := −Eλ0 [θ|Ft−1],
and note that |θ̂t−1| ≤ 1/2. Therefore

Eλ|∆T
βZt|I

{

sign(∆T
βZt) 6= sign(γTt−1Zt)

}

= Eλ0 |Xt,1 − θ|
[

I
{

Xt,1 ≥ θ,Xt,1 < θ̂t−1

}

+ I
{

Xt,1 > θ,Xt,1 ≤ θ̂t−1

}

]

.

Because θ̂t−1 is Ft−1–measurable, and Xt,1 is independent of Ft−1 we have
from (35)

Rn(π;P) ≥ EEλ0

n
∑

t=1

∫ θ∨θ̂t−1

θ∧θ̂t−1

|x− θ|fX(x)dx ≥ cf
2

n
∑

t=1

EEλ0 |θ̂t−1 − θ|2.

Let ℓ(θ) denote the density of λ0. Let F∗
t−1 = σ(X1,1, . . . ,Xt−1,1, Y

(1)
1 , . . . ,

Y
(1)
t−1, Y

(2)
1 , . . . , Y

(2)
t−1); because Ft−1 ⊂ F∗

t−1,

n
∑

t=1

EEλ0 |θ̂t−1 − θ|2 ≥
n
∑

t=1

inf
δt−1

∫

E|δt−1 − θ|2ℓ(θ)dθ,
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where the inf above is taken over all sequences δ = (δt) such that δt−1 is
F∗
t−1–measurable. Therefore we have

Rn(π;P) ≥
cf
2

n
∑

t=1

inf
δt−1

∫

E|δt−1 − θ|2ℓ(θ)dθ.(36)

Thus the problem is reduced to establishing a lower bound on the Bayesian
risk in the problem of estimating the scalar parameter θ ∈ [−1/2, 1/2] from
observations Yt−1 = {(Xs,1, Y

(1)
s , Y

(2)
s ), s = 1, . . . , t − 1}, where Y

(1)
s =

Xs,1 + ε
(1)
s and Y

(2)
s = θ + ε

(2)
s for s = 1, . . . , t − 1 and {ε(1)t , ε

(2)
t } are

sequences of mutually independent iid zero mean Gaussian random vari-
ables with variance σ2. This problem is well–studied, and there are different
methods for establishing such lower bounds. In particular, by the van Trees
inequality [see Gill and Levit (1995)]

(37) inf
δt−1

∫

E|δt−1 − θ|2ℓ(θ)dθ ≥ 1

It−1 + I(ℓ)
,

where It−1 is the expected Fisher information for θ associated with the
conditional density of the observations Yt−1 given θ; and I(ℓ) is the Fisher
information for the location parameter in ℓ. Thus,

It−1 := E

[ ∂

∂θ
ln f(Yt−1|θ)

]2
= E

[

− 1

σ2

t−1
∑

s=1

(Y (2)
s − θ)

]2
=

t− 1

σ2
.

A standard choice of the distribution λ0 is

ℓ(θ) = 2 cos2(πθ)I{|θ| ≤ 1/2}.

With this choice I(ℓ) = 4π2. Therefore applying the inequality in (37) for
each summand in (36) we obtain

Rn(π;P) ≥
cf
2

n
∑

t=1

1

It−1 + I(ℓ)
≥ σ2 cf

2

n
∑

t=2

1

t− 1 + 4π2σ2
≥ Ccfσ

2 lnn.

for n large enough. This completes the proof.

APPENDIX A: AUXILIARY RESULTS

Lemma 1. Let Xs = (Xs,1, . . . ,Xs,d), s = 1, . . . , n be a sequence of
independent identically distributed random vectors from R

d with bounded
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components, maxj=1,...,d |Xs,j| ≤ r. Let EXs = µ and EXsX
T
s = V . For any

κ > 0 and any non–random index set J ⊆ {1, . . . , n} define the event

Γ(κ,J ) =

{

max
i=1,...,d

∣

∣

∣

1

#{J }
∑

s∈J
Xs,i − µi

∣

∣

∣
≤ κ

}

⋂

{

max
i,j=1,...,d

∣

∣

∣

1

#{J }
∑

s∈J
Xs,iXs,j − Vij

∣

∣

∣
≤ κ

}

.(38)

Then

P{Γc(κ,J )} ≤ d(d+ 3) exp

{

− κ
2#{J }

2(r2 ∨ r4)

}

.

Proof. The proof is an immediate consequence of the Hoeffding inequal-
ity, the union bound, and straightforward algebra.

Lemma 2. Let {wt} be a sequence of random variables such that ws is
Fs−1–measurable and |ws| ≤ Lw for all s almost surely. Let {εt} be iid,
εt ∼ N (0, σ2) and εt is independent of Ft−1. Then for any a > 0 one has

P

{

t
∑

s=1

wsεs > a
}

≤ exp
{

− a2

2tσ2L2
w

}

, ∀t.

Proof. The proof is straightforward; we provide it for completeness. For
any λ > 0 we have

E exp
{

λ

t
∑

s=1

wsεs

}

= E

t
∏

s=1

exp{λwsεs} = E

{

E

[

t
∏

s=1

exp{λwsεs}
∣

∣

∣
Ft−1

]}

= E

[

t−1
∏

s=1

exp{λwsεs}E
{

exp
(

λwtεt
)

∣

∣

∣
Ft−1

}]

.

Furthermore,

E

{

exp
(

λwtεt
)

∣

∣

∣
Ft−1

}

= exp
(σ2

2
λ2w2

t

)

≤ exp
(σ2

2
λ2L2

w

)

,

because the random variable λwtεt is conditionally (on Ft−1) Gaussian. It-
erating this argument we finally obtain that

E exp
{

λ

t
∑

s=1

wsεs

}

≤ exp
( t

2
λ2σ2L2

w

)

.
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Lemma 3. For J ⊆ {1, 2, . . .} define Σ(J ) := ∑s∈J ZsZ
T
s . If J2 ⊆ J1

then λmin{Σ(J2)} ≤ λmin{Σ(J1)}.

Proof. The proof is immediate and it is omitted.

Lemma 4. For α, z > 0, let V (α, z) :=
∑∞

k=0 2
−αk exp{−z2−2k}. Then

for all 0 < α ≤ 2z

(39) V (α, z) ≤ Kαz
−α/2, Kα =

[

(α/2)α/2

1− 2−α
+

Γ(α/2)

2 ln 2

]

,

where Γ(·) is the Gamma–function.

Proof. Let

I(α, z) :=

∫ ∞

0
2−αy exp{−z2−2y}dy.(40)

Note that the integrand above has a unique (global) maximum at y∗ =
−(1/2) log2(α/2z) provided that α ≤ 2z. Put k∗ := ⌊y∗⌋ and write

V (α, z) =

k∗
∑

k=0

2−αk exp{−z2−2k}+
∞
∑

k=k∗+1

2−αk exp{−z2−2k}

=: V1(α, z) + V2(α, z).

It follows that

V2(α, z) ≤
2−αy∗

1− 2−α
=

(α/2)α/2

1− 2−α
z−α/2.

Since the integrand in (40) is monotone increasing on [0, y∗), we have that

V1(α, z) ≤
∫ y∗

0
2−αy exp{−z2−2y}dy ≤ I(α, z)

=
1

ln 2

∫ 1

0
uα−1 exp{−zu2}du ≤ Γ(α/2)

2 ln 2
z−α/2,

where Γ(·) denotes the gamma function. Thus for all 0 < α ≤ 2z

V (α, z) ≤ z−α/2

[

(α/2)α/2

1− 2−α
+

Γ(α/2)

2 ln 2

]

.

as claimed.
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