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Abstract: Exponential families are often used to model data sets with
complex dependence. Maximum likelihood estimators (MLE) can be diffi-
cult to estimate when the likelihood is expensive to compute. Markov chain
Monte Carlo (MCMC) methods based on the MCMC-MLE algorithm in
[17] are guaranteed to converge in theory under certain conditions when
starting from any value, but in practice such an algorithm may labor to
converge when given a poor starting value. We present a simple line search
algorithm to find the MLE of a regular exponential family when the MLE
exists and is unique. The algorithm can be started from any initial value
and avoids the trial and error experimentation associated with calibrating
algorithms like stochastic approximation. Unlike many optimization algo-
rithms, this approach utilizes first derivative information only, evaluating
neither the likelihood function itself nor derivatives of higher order than
first. We show convergence of the algorithm for the case where the gradient
can be calculated exactly. When it cannot, it has a particularly convenient
form that is easily estimable with MCMC, making the algorithm still useful
to a practitioner.
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1. Introduction

Exponential families are commonly used to model phenomena with dependence
structure, where the outcomes of the response variable of interest are in fact
dependent on one another. For example, the Ising model [24, 37] is an expo-
nential family model that has been used to model ferromagnetism and other
spatial lattice processes [10]. A realized sample from this model is depicted in
Figure 1, where neighboring pixels are more likely to have the same color. We
explore this model further in Section 5.2. Other examples of phenomena with
dependence structure modeled with exponential families include plant ecology
[3, 4], friendship networks [18, 19, 51], protein-protein interaction networks [43],
and the lifetime fitness of plants [44].

Fig 1. A realized sample from an Ising model on a 32 × 32 lattice with parameter η =
(0, log(1+

√
2))T . This value of η corresponds to the phase transition point, where the sample

images are mostly one color with small but significant portions of the other color. There is
no preference for the dominant color to be white or black.
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The appeal of exponential families in these settings stems from their simplic-
ity and maximum entropy property [17, 25]. By choosing statistics of interest
on the data, one fully specifies a model that gives the most reasonable inference
possible derived solely from those statistics. Furthermore, exponential families
have been well-studied [2, 5] and utilized over the decades and have desirable
properties such as a strictly concave likelihood function.

1.1. Parameter estimation methods in exponential families

Calculating the maximum likelihood estimators (MLE) for exponential families
when dependence is complex, however, remains a challenging problem because
the likelihood function may be computationally infeasible. In particular, the
form of the likelihood is determined by the chosen statistics up to a normal-
izing constant, but this normalizing constant may involve a summation over
an astronomical number of terms. Evaluating the likelihood function—let alone
maximizing it—presents a significant challenge.

Three commonly used parameter estimation methods to circumvent this
issue in exponential families are the pseudo-likelihood approach [4, 35, 46],
which finds parameter values that maximize the pseudo-likelihood function, the
Markov chain Monte Carlo maximum likelihood estimate (MCMC-MLE) ap-
proach [11, 17], which uses MCMC to approximate the log likelihood so that
it can subsequently be maximized, and stochastic approximation (SA) [7, 27],
which utilizes simple iterated updates of parameter estimates. The pseudo-
likelihood approach is computationally expedient, but has been shown to pro-
duce unreliable results when dependence is strong [17, 49].

The MCMC-MLE approach is theoretically guaranteed to converge to the
MLE if it exists and is the default algorithm in software packages such as
statnet [21] in the R platform for network models. However, this approach
has been shown in practice to be sensitive to initial parameter values when
used without the trust region methodology recommended in [17], and the algo-
rithm may require many iterations and enormous (sometimes infeasibly large)
Monte Carlo sample sizes when the starting value is far from the MLE [23].
Improvement to the MCMC-MLE approach is an active area of research [22].

Variations on the Robbins-Monro stochastic approximation algorithm [39]
have been applied to find the MLE similar contexts: [20, 31, 52, 53] applied
MCMC stochastic approximation to spatial models and [45] to social network
models (exponential random graph models). SA procedures for finding the MLE
of a parameter η generate iterated estimates ηk to find the root of a gradient
function h(η):

ηk+1 = ηk + αkUk, (1)

where αk is a step size and is typically a member of a decreasing sequence of
positive numbers, and Uk is a random variable from the distribution specified
by ηk that noisily estimates the gradient function h(ηk).

Restrictive conditions are required of αk and Uk to establish convergence of
the sequence ηk. In Robbins-Monro SA [39], the step size αk must be a sequence
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of positive constants that satisfies

∑

α2
k < ∞

for which the choice of

αk =
A

B + k
(2)

is commonly used, where A and B are constants that must be specified by the
user. This specification requires experimentation and care: there can be sig-
nificant variation in performance depending on choice of these constants. More
recent research [27, Chapter 11] show that αk sequences that go to 0 slower than
1/k can result in an improved rate of convergence, where rate of convergence is
measured by the asymptotic covariance of the normalized estimates about their
limit point.

The conditions on Uk are more restrictive. Popular approaches include con-
straining the sequence of estimators ηk to a compact set specified a priori, or
assuming that the noise component of Uk be a martingale difference sequence.
As commonly observed [1, 7, 30], these may be difficult to satisfy in practice.
See [1, 30] for recent developments that impose less restrictive conditions using
truncated updates.

An issue for any recursive search algorithm is the choice of starting point. It
is often the case that algorithms are good at finding the MLE when the starting
point is close to it, but of course the location of the MLE is unknown. Methods
which rely on the Fisher information matrix may fail when the starting point
for η is far from the MLE [20, 53]; for any exponential family with bounded
support, Fisher information becomes singular as the natural parameter η goes
to ∞ [38]. Of course, one may try different starting points until a “good” one
is found, but this can be cumbersome in practice and demands patience and
sophistication of the practitioner.

1.2. Algorithm overview

In this article, we propose a simple and practical line search algorithm that
converges to the MLE of any regular exponential family when the MLE exists
and the first derivative of the log likelihood can be calculated exactly. When
it cannot, the first derivative has a particularly convenient form that is easily
estimable with MCMC, making the algorithm still useful in application. The
first derivative with respect to the canonical parameter vector η has the form
g(y) − Eηg(Y ), where g(Y ) is the canonical statistic vector. Its Monte Carlo
approximation is g(y)− 1

m

∑m

i=1 g(Yi), where Y1, . . . , Ym are simulated data sets
having parameter vector η. The log likelihood itself is much harder to compute
[17]. The second derivative with respect to the canonical parameter vector has
the form −Varη g(Y ), and Monte Carlo estimate minus the empirical variance of
the g(Yi). The second derivative is less stably estimated than the first derivative,
especially when η is far from the MLE so this matrix is nearly singular. We
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also show how to construct and apply confidence intervals in such a setting to
increase the probability of convergence.

The appeal of this algorithm is its ease of use: no trial and error is needed.
The computer can find the solution with no help from the user, thus making it
suitable for use by naive users. Experimentation with multiple starting points or
tuning parameters is not necessary and no unrealistic a priori information about
the problem need be specified. It is currently used in the aster2 contributed R
package [14] as the safeguard for steepest ascent and Newton-Raphson iterations
in finding the MLE for aster models.

Our algorithm generates iterated estimates ηk of the MLE η̂ with the update

ηk+1 = ηk + αkpk (3)

where αk is a step size and pk is a search direction and is restricted to be an
ascent direction of the log likelihood. Despite the visual similarity between (1)
and (3), our line search approach treats the search direction pk in (3) as constant
in the inner loop of our algorithm whereas in SA the corresponding Uk in (1) is
random. Furthermore, line search algorithms have more restrictions on the step
size αk. The step size conditions in the classical gradient ascent algorithm, which
is the basis for our algorithm, force a sufficiently large increase in the objective
function at every step, guaranteeing convergence to a local maximum (which is
the global maximum in an exponential family because of strict concavity of the
log likelihood), if it exists.

Theorem 3.2 in [32] implies the global convergence of the steepest ascent
algorithm for a continuously differentiable function, ℓ(η). It requires the step
length αk to satisfy the Wolfe conditions for sufficient increase and curvature:

ℓ(ηk + αkηk) ≥ ℓ(ηk) + c1αk∇ℓ(ηk)
T pk

∇ℓ(ηk + αkpk)
T pk ≤ c2∇ℓ(ηk)

T pk
(4)

where ∇ is the gradient operator and 0 < c1 < c2 < 1. Variations of these
conditions exist in the numerical optimization literature [32, 47], but all require
evaluating the objective function.

Exponential families we consider are an unusual case in optimization in that
the objective function is harder to compute than its derivatives and hence not
previously considered by optimization theorists. In our algorithm, we replace
(4) with a single modified curvature condition:

0 ≤ ∇ℓ(ηk + αkpk)
T pk ≤ c∇ℓ(ηk)

T pk (5)

for some 0 < c < 1. This replacement is possible while still guaranteeing suf-
ficient increase and convergence to the MLE (if it exists) because we have the
additional property that the exponential family log likelihood function we con-
sider is strictly concave. The restrictions on the step size αk along a particular
direction pk and the resulting values for ℓ(ηk+1) are depicted in Figure 2.

The desire to avoid calculation of higher order derivatives is motivated not
just by computational considerations, but also by how much useful informa-
tion can be extracted from them. As noted in Section 1.1, if η is far from
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αmax

acceptable

ℓ(ηk + αpk)

ααc

Fig 2. The acceptable region for step size αk along a particular search direction pk according
to the modified curvature condition (5). The step sizes αc and αmax correspond to values of
∇ℓ(ηk + αpk)

T pk equaling c∇ℓ(ηk)
T pk and 0, respectively. The condition ensures sufficient

increase in the log likelihood along the search direction pk.

the MLE, the Fisher information matrix may be near-singular and algorithms
like (unsafeguarded) Newton-Raphson algorithm may fail. For this reason, the
best use of our algorithm may be from “long range,” filling a gap in the MLE
estimation toolbox. It may be expedient to switch to another algorithm like
Newton-Raphson after significant progress is made and the Fisher information
matrix becomes useful. Our line search algorithm with pk the Newton direction
provides a safeguard for Newton-Raphson that makes it safe for use from any
range. The aster2 contributed R package [14] switches pk from the steepest as-
cent direction to the Newton direction after a fixed number of steps (d/2 where
d is the dimension η) but always finds a step length αk satisfying (5), iterating
until the unsafeguarded Newton step satisfies (5).

Our algorithm can be outlined as follows. Let ‖ · ‖ denote the Euclidean norm
function, and ǫ a small value greater than 0.

Get an initial value, η0.
Set k = 0.
Calculate ∇ℓ(ηk), the direction of steepest ascent.
Set pk = ∇ℓ(ηk).
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while ‖∇ℓ(ηk)‖ > ǫ
Find a step size αk that satisfies the modified curvature condition

0 ≤ ∇ℓ(ηk + αkpk)
T pk ≤ c∇ℓ(ηk)

T pk

for some 0 < c < 1.
ηk+1 = ηk + αkpk.
Calculate ∇ℓ(ηk+1).
Find the new search direction pk+1, which must be an ascent direction.
k = k + 1.

end while

2. Background exponential family theory

An exponential family of distributions [2, 12] on a sample space Y has log
likelihood

ℓ(η) = 〈g(y), η〉 − c(η) (6)

where g(y) is a d-dimensional vector of natural statistics calculated from the
observed data y, η a d-dimensional vector of natural parameters, and 〈 · , · 〉
denotes the bilinear form

〈g, η〉 =
d

∑

i=1

giηi.

So that the probability function integrates to 1, the cumulant function c must
have the form

c(η) = log

(
∫

e〈g(x),η〉 dµ(x)

)

, (7)

where µ is a measure on Y. Define the natural parameter space Ξ as the set of
points η = (η1, . . . , ηd) that are parameter values indexing distributions in the
model. An exponential family is full if the natural parameter space is

Ξ = {η ∈ R
d : c(η) < ∞}, (8)

and regular if, in addition, Ξ is an open set. We say an exponential family is
minimal if g(y) is not concentrated on a hyperplane. Minimality guarantees that
if an MLE exists, it is unique [12].

In finite state space models with complicated dependence like an Ising model
or exponential random graph model, (7) is a sum which may have no simple
expression and can only be evaluated by explicitly doing the sum. When the
sample space Y is even moderately large, this can be prohibitively expensive.
For example, the sample space Y for an Ising model defined on a 32× 32 square
lattice where each entry takes values of 0 or 1 has 21024 ≈ 10300 elements. A
loop with this many iterations takes too long no matter how programmed.
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A useful property of all exponential families [28, p. 27] when η is in the
interior of Ξ is that

Eη(g(Y )) = ∇c(η)

Varη(g(Y )) = ∇2c(η).

Thus we can express first and second derivatives of the log likelihood (6) and
Fisher information, I(η), as

∇ℓ(η) = g(y)− Eη g(Y ) (9)

∇2ℓ(η) = −Varη g(Y ) (10)

I(η) = −Eη ∇2ℓ(η) = Varη g(Y ) (11)

and thereby avoid evaluation of the problematic cumulant function c so long
as we make do with first and second derivatives of the log likelihood avoiding
evaluation of the log likelihood itself.

3. Long range search algorithm for MLE

We now present our line search algorithm, which will converge to the MLE
for any regular exponential family if the MLE exists. The theory is divided
into two theorems, Theorem 3.1 and 3.2: the first presents the requirements for
the algorithm and guarantees that the log likelihood gradient, when it can be
calculated exactly, converges to zero. The second shows that when the MLE
exists, this is equivalent to finding the MLE. Proofs are in Appendix A.

Theorem 3.1 also can be interpreted as assuring convergence to the MLE in
the Barndorff-Nielsen completion [12] even when the MLE does not exist in the
conventional sense. Convergence of the gradient of the log likelihood to zero is
the same as convergence of the mean value parameter µ = Eηg(Y ) to g(y), which
is the MLE of mean value parameter in the Barndorff-Nielsen completion. This is
not an efficient method of finding the MLE in the Barndorff-Nielsen completion
[33, Chapters 4 and 5], but it is interesting that our algorithm behaves well even
when the MLE does not exist in the conventional sense.

Theorem 3.1 (Exponential family zero gradient attainment). Consider any

line search of the form

ηk+1 = ηk + αkpk (12)

used to maximize the log likelihood function ℓ( · ) of a regular exponential family

on a finite sample space, where the search direction pk is a non-zero ascent
direction such that the angle θk between the search direction pk and steepest

ascent direction ∇ℓ(ηk) is restricted to be less than 90 degrees by

cos θk ≥ δ > 0 (13)

for some fixed δ > 0.
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Then, unless ∇ℓ(ηk) = 0, in which case ηk is already the solution and the

search is complete, it is possible to find a step length αk that satisfies the cur-
vature condition

0 ≤ ∇ℓ(ηk + αkpk)
T pk ≤ c∇ℓ(ηk)

T pk (14)

for some fixed 0 < c < 1.
Furthermore, repeated iterations of (12) satisfying (13) and (14) will produce

a sequence, η1, η2, . . . such that

lim
k→∞

||∇ℓ(ηk)|| = 0.

Theorem 3.1 can be adapted to a more general setting to optimize any
bounded, proper, upper semi-continuous, and strictly concave function assum-
ing there are bounded level sets of this function, as detailed in [34]. However, by
assuming here that the objective function is the log likelihood of an exponential
family, the statement of the theorem is much simplified.

We apply Theorem 3.1 to find the MLE when it is known to exist:

Theorem 3.2. For a regular exponential family with minimal representation

where the MLE exists, the line search described in Theorem 3.1 can be applied

to the log likelihood function ℓ(η) so that a search starting at any η0 ∈ Ξ will

converge to the MLE of η.

The issue of MLE existence is a problem in computational geometry, not an
optimization problem, so we do not address it here. See [12, 33, 38] for further
discussion of this issue.

4. Refinements of algorithm

In Theorem 3.1, we restricted our search direction pk to be an ascent direction, so
that ∇ℓ(ηk)

T pk > 0 or, alternatively, the angle θk between the search direction
pk and steepest ascent direction ∇ℓ(ηk) is less than 90 degrees. However, this
still leaves many possibilities for the choice of pk other than steepest ascent.
In addition, we have specified restrictions on the step size αk in the curvature
condition (14) with 0 < c < 1, but it would be useful to know if certain values
of c are better than others.

4.1. Search directions

In our examples in Section 5, by default we use steepest ascent directions in our
implementation for simplicity. Although often effective in early steps, steepest
ascent directions can result in a zigzagging trajectory of the sequence ηk [47,
Section 3.1]. Conjugate gradient methods address this phenomena and cover the
sample space more efficiently [32, Chapter 5]. It is easy to implement a variant of
the Polak-Ribière method [32, pp. 120–122] here, requiring little more in terms
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of calculation or storage. The search direction pk would update with an extra
intermediate step as follows:

γPR
k+1 = max

(

0,
[∇ℓ(ηk+1)]

T (∇ℓ(ηk+1)−∇ℓ(ηk))

‖∇ℓ(ηk)‖2
)

pk+1 = ∇ℓ(ηk+1) + γPR
k+1 pk.

Note that when γPR
k+1 = 0, pk+1 will be just ∇ℓ(ηk+1), the direction of steepest

ascent, and thus serves as a “reset”. The curvature condition (14) guarantees
that this method always yields a ascent direction for pk+1 and thus Theorem 3.1
still holds.

4.2. Step size

We now turn our attention to the optimal step size αk. Taking the derivative of
ℓ(ηk +αkpk) with respect to αk shows that the log likelihood is maximized as a
function of αk along the direction pk when

∇ℓ(ηk+1)
T pk = 0.

By choosing c to be small, say 0.2, we ensure that the step taken is close to
maximizing the log likelihood along the search direction. This is also apparent
in Figure 2.

Making c too small, however, may make it difficult to find an αk that meets
the curvature condition (14) since this search must be done numerically. In fact,
as the line search nears the MLE and ∇ℓ(ηk) gets smaller, the rightmost term
in (14) gets smaller in magnitude (it equals c‖∇ℓ(ηk)‖2 if using steepest ascent
directions), making a numerical search for αk more challenging.

4.3. MCMC approximations

Our algorithm requires us to be able to calculate ∇ℓ(η) using (9). When this
can be done exactly, our algorithm is straightforward to apply, as illustrated in
the logistic regression example in Section 5.1. However, for many applications,
we will need to approximate Eη g(Y ) using MCMC. That is,

∇ℓ(η) = g(y)− Eη g(Y ) ≈ g(y)− 1

m

m
∑

i=1

g(Yi), (15)

where Y1, . . . , Ym are MCMC draws from the distribution with parameter η.
There are many MCMC algorithms such as Metropolis-Hastings [15] or Swensen-
Wang [48, 50], used for the Ising model example in Section 5.2.

The accuracy of the approximation in (15) increases with Monte Carlo sam-
ple size m. When the current estimate is far away from the MLE, we can use
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smaller m to save time and work with a fairly noisy approximation of the gra-
dient. However, when the current estimate approaches the MLE, larger m are
necessary.

Our algorithm relies on the computed values of ∇ℓ(η) in the curvature con-
dition (14), as well as the stop condition for the algorithm, ‖∇ℓ(ηk)‖ < ǫ. Given
that we may only have approximations of ∇ℓ(η), we cannot know for certain if
either of these conditions are truly met. We can ameliorate this by constructing
confidence intervals for each of the inequalities.

For the inequalities in (14), we can estimate asymptotic standard errors of
∇ℓ(ηk + αkpk)

T pk and c∇ℓ(ηk)
T pk − ∇ℓ(ηk + αkpk)

T pk by appealing to the
Markov chain Central limit theorem [6, 26, 40, 41]. The initseq function from
the R package mcmc [13] can be used to estimate asymptotic standard errors
for univariate functionals of reversible Markov chains: given an MCMC sam-
ple for a univariate quantity, initseq returns a value (divided by sample size)
that is an estimate of the asymptotic variance in the Markov chain central
limit theorem. Both of the quantities in (14) are univariate. In the second ex-
pression, c∇ℓ(ηk)

T pk − ∇ℓ(ηk + αkpk)
T pk, the MCMC sample generated for

∇ℓ(ηk+αkpk)
T pk is independent of the sample generated for c∇ℓ(ηk)

T pk. Thus
initseq can be applied to each sample separately and the results summed
for an estimated variance. We can then be approximately 95% confident (non-
simultaneously) that αk satisfies (14) if

∇ℓ(ηk + αkpk)
T pk − 1.645 · se1 > 0

c∇ℓ(ηk)
T pk −∇ℓ(ηk + αkpk)

T pk − 1.645 · se2 > 0

where se1 and se2 are the asymptotic standard errors for ∇ℓ(ηk +αkpk)
T pk and

c∇ℓ(ηk)
T pk −∇ℓ(ηk + αkpk)

T pk, respectively, calculated as described.
The delta method can be applied to estimate a standard error for ‖∇ℓ(ηk)‖.

The asymptotic variance is calculated by

V (‖∇ℓ(ηk)‖) =
1

‖∇ℓ(ηk)‖2
∇ℓ(ηk)

T Σ∇ℓ(ηk),

where Σ is the variance matrix of ∇ℓ(ηk) and can be estimated by the sample
variance matrix of the batch mean vectors of g(Y1), . . . , g(Yn) divided by the
number of batches (the initseq function requires a univariate vector and so
cannot be used here). We can be approximately 95% confident that ‖∇ℓ(ηk)‖ > ǫ
if

‖∇ℓ(ηk)‖ − 1.645
√

V (‖∇ℓ(ηk)‖) > ǫ.

In practice, however, use of confidence intervals does not appear necessary
with Monte Carlo sample sizes that are set large enough so that these standard
errors are initially small relative to the point estimates. The ratio of point es-
timate to standard error of course decreases as the algorithm progresses and
the estimate of the parameter nears the MLE, reflected in ∇ℓ(ηk) nearing 0.
Thus these confidence intervals are most useful as a guide for when to increase
the MCMC sample size, or when to switch methods, or when to terminate the
algorithm.
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4.4. Combining with other algorithms

We believe the best use of this algorithm is in combination with other faster
methods like MCMC-MLE or Newton-Raphson safeguarded by our line search
algorithm. Our algorithm with steepest ascent or conjugate gradient search di-
rection should be used initially from long range, when one has no good intuition
for an initial value. It is well known that when the objective function is quadratic,
the conjugate gradient method with exact arithmetic converges to the solution
in at most d steps, where d is the dimension of the problem [32, Chapter 5].
As a rule of thumb, we think using our algorithm for 2d steps before switching
seems reasonable when using conjugate gradient directions. Determining a more
precise criteria for when we are inside the “radius of convergence” for algorithms
like Newton-Raphson or MCMC-MLE is an area for further research.

In the case of MCMC-MLE, [22] show that getting a distribution so that
g(y) is within the convex hull of the MCMC samples is a necessary condition
for this algorithm to converge (in fact, this appears to be the impetus for their
steplength MCMC-MLE approach). However, this is not sufficient. An effective
approach may be to examine the importance sampling weights used in the log
likelihood approximation in the previous iteration, and look for these to sta-
bilize. This “rearview” approach should inform us if the previous value for ηk
was close enough to apply MCMC-MLE; applying MCMC-MLE to the current
distribution should then converge.

5. Examples

We illustrate the application of our algorithm in two settings for regular expo-
nential families, where the MLE is known to exist:

1. Logistic regression. The gradient of the log likelihood, ∇ℓ(η), can be cal-
culated exactly. In this setting, Theorem 3.2 guarantees converges to the
MLE from any starting point.
Of course, logistic regression is done more efficiently through iterated
reweighted least-squares, as in the glm function in the R platform. Our
purpose here is to show the application of our algorithm in a familiar
setting. We choose a poor starting point, where an algorithm like Newton-
Raphson would fail. Other optimization algorithms such as those based
on (4) would also work here.

2. Ising model. The gradient of the log likelihood, ∇ℓ(η), can only be ap-
proximated via MCMC. In this setting, Theorem 3.2 does not guarantee
convergence, but our algorithm is still effective in practice, even for poor
starting values. In this case, optimization algorithms based on (4) cannot
be applied since they depend on evaluating the log likelihood.

In both cases, we compare our algorithm with stochastic approximation to
clarify the distinctions made in Section 1.1 between the two approaches.



Long range search for maximum likelihood 135

5.1. Example: Logistic regression

We apply our algorithm to the case of a logistic regression with a starting point
far from the solution. In such a case, the Hessian matrix is often near-singular
and algorithms such as Newton-Raphson which rely on it will fail. For classical
SA with step size 1/k, the magnitudes of the updates diminish too quickly for
the parameter estimates to approach the MLE in a reasonable amount of time.

The response vector Y has components that are Bernoulli trials with mean
vector p. The natural parameter is θi = log

(

pi

1−pi

)

, which is modeled componen-
twise as a linear function of the predictors 1, x1, . . . , xq, so that

θi = β0 + β1x1i + β2x2i + · · ·+ βqxq i = βTxi i = 1, . . . , n

where β = (β0, . . . , βq)
T and xi = (1, x1i, . . . , xqi)

T .
Defining the model matrix M to be the n × (q + 1) matrix with the xi as

rows, we can express θ = Mβ. This in turn allows us to reparameterize the
exponential family as one with β as the natural parameter vector and MT y the
vector of statistics with log likelihood

ℓ(β) = βT (MT y)− c(β),

where y is the vector of observed Bernoulli responses. By (9), the gradient is

∇ℓ(β) = MT y − Eβ(M
TY ) = MT (y − Eβ(Y )),

where Eβ(Y ) = 1
1+exp(−Mβ) can be calculated exactly. This allows us to directly

apply Theorem 3.2.
We specified our true 100-dimensional parameter value to be

β = (−0.748, 0.357, 0.727, 0.296,−0.904, 0.960, 0.262,−0.353, . . . ,−0.162)T

with component values generated from a Uniform(−1, 1) distribution. Then,
using 1000 independent draws from a correlated multivariate normal distribution
centered at 0 as our predictors, we generated data for this model (the data
vector has length 1000 like the predictor vectors). Fitting these data using the
R function glm, we find the MLE of β to be

β̂MLE = (−1.051, 0.862, 0.908, 0.229,−1.192, 1.187, 0.294,−0.655, . . . ,−0.377)T ,

where the disparity to the true value of β results from a relatively small sample
size of n = 1000. We then use

β0 = (5,−5, 2, 0, 3, 4, 3, 0, . . . , 1)T

for the starting point for our line search algorithm, a point for which Newton-
Raphson fails due to a nearly singular Hessian matrix.

We measure the performance of our algorithm in terms of the total number of
iterations used, where each iteration requires evaluation of the gradient,∇ℓ(βk+
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Table 1

Comparison of MLEs of β for Example 1: MLE = glm, Steep = line search using steepest
ascent, CG = line search using conjugate gradient, and SA = SA with step size = 1/k

terminated at 10,000 iterations, n = number of iterations. Only first 8 components out of
100 shown. Our proposed algorithm arrives at nearly identical MLE estimates to glm

n β[1] β[2] β[3] β[4] β[5] β[6] β[7] β[8]
True β −0.748 0.357 0.727 0.296 −0.904 0.960 0.262 −0.353

β̂MLE −1.051 0.862 0.908 0.229 −1.192 1.187 0.294 −0.655

β̂Steep 538 −1.052 0.862 0.909 0.229 −1.192 1.188 0.294 −0.655

β̂CG 292 −1.051 0.862 0.908 0.229 −1.192 1.187 0.294 −0.655

β̂SA 105 −132.33 90.92 120.18 28.40 −128.58 99.011 24.39 −56.02

αkpk). Typically, several iterations take place in an inner loop to find a step size
αk that meets the curvature condition (14), a process that grows increasingly
difficult as the estimates near the MLE since the rightmost term in (14) gets
smaller in magnitude. Once an acceptable step size is found, the parameter
estimate βk is updated and a new search direction is determined, requiring
another evaluation of the gradient.

Our algorithm took 538 iterations over 204 different search directions to get
‖∇ℓ(βk)‖ < 0.01 and arrive at an estimate for the MLE that differs from the
glm result by 3.309 in Euclidean distance (See Table 1). Using the Polak-Ribière
conjugate gradient method described in the previous section resulted in com-
parably sharp MLE estimates (see Table 1) in fewer iterations—292 over 116
search directions—a noticeable improvement.

We also applied SA with step size 1/k (setting A = 1, B = 0 in (2)) from the
same starting point β0. The choice of constants A and B in the step size is of
course not likely to be optimal; however, we want to apply SA without trial and
error experimentation. After 100,000 iterations, the parameter estimates look
nothing at all like the MLE (See Table 1). The initial step sizes are far too large,
then diminish rapidly so that the algorithm does not converge in a reasonable
amount of time. Table 2 shows the first 20 step sizes used by SA and our line
search. Our line search continues to use step sizes of relatively stable magnitude
even well into the process. It should be noted that these 20 step sizes correspond
to the first 20 iterations of SA but 50 iterations of our line search algorithm using
steepest ascent, since we spends several iterations finding an acceptable step size
for each update, and 45 iterations using conjugate gradient directions.

5.2. Example: Ising model

In this example, we apply our gradient-based line search algorithm to an Ising
model [24] on a toroidal square lattice. Here the gradient of the log likelihood
cannot be calculated exactly as in the logistic example and so Theorem 3.2
cannot be applied directly. However, as discussed in Section 4.3, the gradient
can be approximated using MCMC, allowing our algorithm to still be effective
in finding the MLE.

Ising models are exponential families where each entry in the square lattice
takes the value of either zero or one. A realized sample is shown in Figure 1. The
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Table 2

The first 20 step sizes used by SA (with step size 1/k) and our algorithm for Example 1.
The step sizes used by our algorithm do not diminish like 1/k

k αSA = 1/k αSteep αCG

1 1.000 0.002 0.002
2 0.500 0.055 0.055
3 0.333 0.007 0.012
4 0.250 0.071 0.073
5 0.200 0.002 0.003
6 0.167 0.029 0.073
7 0.143 0.003 0.015
8 0.125 0.078 0.013
9 0.111 0.004 0.008

10 0.100 0.003 0.022
11 0.091 0.005 0.005
12 0.083 0.003 0.030
13 0.077 0.005 0.015
14 0.071 0.003 0.006
15 0.067 0.007 0.009
16 0.063 0.002 0.006
17 0.059 0.011 0.009
18 0.056 0.002 0.004
19 0.053 0.024 0.010
20 0.050 0.002 0.004

sufficient statistic vector is two-dimensional, comprising the number of entries
with value one and the number of “neighbor” entries with the same value. Entries
are considered “neighbors” if they are adjacent to one another horizontally or
vertically (but not diagonally).

Here we describe the toroidal square lattice as an n × n matrix Y and each
entry as Yij , where i and j take values in 1, . . . , n considered as a cyclical set
(addition is done modulo n). The sufficient statistic, g(y), has components:

g1(y) =

n
∑

i=1

n
∑

j=1

I(Yij = 1),

g2(y) =
1

2

n
∑

i=1

n
∑

j=1

[

I(Yij = Yi−1,j) + I(Yij = Yi,j−1)

+ I(Yij = Yi+1,j) + I(Yij = Yi,j+1)
]

,

where I(·) denotes the indicator function taking logical expressions to the num-
bers zero and one, false expressions to zero and true expressions to one.

Because of the dependence of neighboring entries in the lattice, there is
no closed form expressing ∇ℓ(η). Instead, we need to approximate ∇ℓ(η) us-
ing MCMC as described by (15). The MCMC draws are performed here using
the Swendsen-Wang algorithm [48, 50], available in the contributed R package
potts [16].

We choose η =
(

0, log(1 +
√
2)
)T

to generate a 32 × 32 lattice, which we
use as our observed data (Figure 1). This value for η is of particular interest
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Table 3

Comparison of MLEs for η for Example 2: MLE = Newton-Raphson starting from the true
η, Steep = line search using steepest ascent, CG = line search using conjugate gradient, and

SA = SA with step size = 1/k. All algorithms converged

MC Samples η[1] η[2]
(thousands)

True η 0.000 0.881
η̂MLE −0.007 0.896
η̂Steep 620 −0.011 0.895
η̂CG 450 −0.008 0.895
η̂SA 1368 −0.010 0.895

Table 4

The first 17 step sizes used by SA (with step size 1/k) and our algorithm for Example 2.
The step sizes used by our algorithm are initially much smaller than 1/k

k αSA = 1/k αSteep αCG

1 1.0000 0.0029 0.0029
2 0.5000 0.0005 0.0005
3 0.3333 0.0017 0.0017
4 0.2500 0.0013 0.0045
5 0.2000 0.0017 0.0007
6 0.1667 0.0011 0.0002
7 0.1429 0.0021 0.0015
8 0.1250 0.0009
9 0.1111 0.0020

10 0.1000 0.0007
11 0.0909 0.0018
12 0.0833 0.0006
13 0.0769 0.0013
14 0.0714 0.0006
15 0.0667 0.0007
16 0.0625 0.0003
17 0.0588 0.0013

because it corresponds to the phase transition point [37] and has been shown
to be difficult to estimate [9]. In order to get a good estimate of the MLE to
which we can compare our algorithm’s results, we use 10 iterations of MCMC
Newton-Raphson [36] starting at the true value of η so that it will converge.

We apply our line search algorithm to this data using a far off initial value of
η(0) = (2, 0.001) and a fixed MCMC sample size of 10,000. Our algorithm used
62 iterations (gradient evaluations) over 17 search directions to get ‖∇ℓ(ηk)‖ <
0.005 and arrive at an estimate of the MLE that differs from Newton-Raphson
by 0.0037 (see Table 3). Using the Polak-Ribière conjugate gradient method
resulted in comparably sharp MLE estimates using 45 iterations over 7 search
directions. The total MCMC sample sizes used were 62 × 10, 0000 = 620, 000
and 45× 10, 0000 = 450, 000, respectively.

We also applied MCMC SA, again with step size 1/k from the same starting
point η(0), and used a MCMC sample size of 1,000 for gradient calculation. Here
SA converged in 1368 iterations or 1,368,000 MC samples, comparable to our
algorithm (see Table 3). Table 4 shows the first 17 step sizes used by SA and
our line search. The step sizes used by our line search are initially very small
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compared to 1/k, but stay in a range of about 1/300 to 1/3000. So, the 1/k step
size used by SA in fact occasionally satisfies our curvature condition when k is
large.

6. Discussion

We have presented a simple line search algorithm for finding the MLE of a
regular exponential family when the MLE exists (or the MLE in the Barndorff-
Nielsen completion when the MLE does not exist in the conventional sense).
The algorithm avoids any trial-and-error experimentation involving tuning pa-
rameters or starting points commonly associated with optimization routines not
invented by optimization specialists. Our algorithm is modeled after algorithms
discussed in optimization textbooks [8, 32, 47], all of which are safeguarded to
ensure rapid automatic convergence.

Convergence is guaranteed when the gradient can be calculated exactly.
Even when the gradient cannot be calculated exactly and is only estimable via
MCMC, the algorithm is still useful in practice, as demonstrated by the Ising
model example. We have also described a way to construct and use confidence
intervals to make convergence highly probable.

The algorithm can be computationally demanding. When the current itera-
tion approaches the solution, the curvature condition for step size becomes more
difficult to satisfy and the method may require several iterations of MCMC
sampling and perhaps an increase in MCMC sample size. Eventual increase in
MCMC sample size is unavoidable, because the achievable accuracy is inversely
proportional to the square root of the MCMC sample size, as in all Monte Carlo.
Thus we believe the best use of this algorithm is in combination with other faster
methods like MCMC-MLE or Newton-Raphson safeguarded by our line search
algorithm. Our algorithm should be used from “long range”, when one has no
good intuition for an initial value and is concerned about picking one that is far
from the MLE. The switch between types of search direction (steepest ascent,
conjugate gradient, or Newton) within our algorithm or the switch to another
algorithm (such as MCMC-MLE) need not require manual intervention. When
used in combination, we do not think the confidence intervals are necessary as
the curvature condition is quite easily satisfied when the current iteration is far
from the MLE.

One way to improve performance is to use conjugate gradient search direc-
tions rather than steepest ascent. In our examples, this reduced the number
of iterations by over 25%. However, in other problems we tried with differ-
ent dimensionality, this performance varied significantly and it appears that no
guarantee can be made about quantity of improvement in performance, though
in all cases we examined, it never did worse. This is no surprise, because the
necessity of “preconditioning” for good performance of the conjugate gradient
algorithm is well known (but no good “preconditioner” is available for maximum
likelihood in exponential families).

There are several outstanding issues. Most notably, we have not showed con-
vergence of the algorithm when the gradient is approximated via MCMC. This
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is a more difficult theoretical problem and is the motivation for stochastic ap-
proximation research. Further work is necessary to determine if one can adapt
our restrictive curvature condition (14) to the approach of [1, 30] in MCMC
stochastic approximation.

Another remaining issue is the stopping criterion: what value should be cho-
sen for ǫ in the exit condition ‖∇ℓ(ηk)‖ < ǫ? Because the value of ‖∇ℓ(ηk)‖
can only be approximated via MCMC, one cannot be certain if this condition
is actually satisfied. Here again, the switch to another methodology may be ap-
propriate, though at least in our Ising model example, our use of 10,000 for the
MCMC sample size and 0.005 for ǫ were successful in obtaining a reasonable
parameter estimate.

A final remaining issue is estimation of Monte Carlo error of the estimates.
Here too we recommend switching to another algorithm at the end. The MCMC-
MLE procedure gives accurate error estimates [11]. For very small steps these
are essentially the same as the Monte Carlo error of a single unsafeguarded
Newton-Raphson step, so the method in [11] can be used for either.

Appendix A: Proofs

Proof of Theorem 3.1. Let f(·) represent the negative log likelihood −ℓ(·), the
objective function to be minimized. We proceed from the perspective of a min-
imization of a function f(·) since this is the convention in the optimization
literature [32, 42].

The negative log likelihood function −ℓ(·) is strictly convex by (10), and con-
tinuous since it is infinitely differentiable by Theorem 5.8 in [28]. It is bounded
below by the negative log likelihood of the limiting conditional model of this
exponential family described in Theorem 6 of [12], which is guaranteed to have
a global minimum.

Then, unless ∇f(xk) = 0 in which case xk is already the solution, for each
k, we can uniquely define αck as follows:

∇f(xk + αckpk)
T pk = c∇f(xk)

T pk (16)

The point αck is uniquely defined because it is the minimizer of the function
α 7→ f(xk + αpk)− αc∇f(xk)

T pk. We may also define αmink
as follows:

αmink
=

{

α s.t. ∇f(xk + αpk)
T pk = 0 if such an α exists

+∞ otherwise.
(17)

These values appear on the α-axis in Figure 3 for the case where a minimizer
exists for α 7→ f(xk + αpk).

By the strict convexity of f and Theorem 2.14(b) in [42],

f(xk + αckpk) < f(xk) +
[

∇f(xk + αckpk)
]T

αckpk.
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c: (αmin, f(xk + αminpk))

f(xk + αpk)

ααc

acceptable

b: (αc, f(xk + αcpk))

a: (αc, f(xk) + αcc∇f(xk)
Tpk)

αmin

Fig 3. Acceptable region for α according to curvature condition (14) when restricting to
direction pk.

Applying (16) to the right hand side of the above gives

f(xk + αckpk) < f(xk) + αckc∇f(xk)
T pk. (18)

(See points a and b in Figure 3).
The subproblem α 7→ f(xk+αpk) is strictly convex and hence monotonically

decreasing at αk such that αck ≤ αk < αmink
(in Figure 3, see points b and c).

That is,

f(xk + αminpk) ≤ f(xk + αkpk) ≤ f(xk + αckpk), (19)

where the left-hand side denotes infα∈R f(xk + αpk) when αmin = ∞.
Combining the second inequality of (19) with (18), we have

f(xk + αkpk) < f(xk) + αckc∇f(xk)
T pk, (20)

We now turn our attention to (16). Define xck = xk + αckpk. Then

∇f(xck)
T pk = c∇f(xk)

T pk.

Subtracting ∇f(xk)
T pk from both sides gives

(∇f(xck)−∇f(xk))
T
pk = (c− 1)∇f(xk)

T pk. (21)
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By (10), ∇2ℓ(η) is bounded for finite state space g(Y), which is true by as-
sumption. Thus |∇2f(x)| ≤ K for some constant K for all x. Then by Theorems
9.2 and 9.7 in [42], ∇f(x) is Lipschitz continuous relative to the convex set Rd.

Thus there exists a constant L < ∞ such that

‖∇f(x)−∇f(x̃)‖ ≤ L‖x− x̃‖ for all x, x̃ ∈ R
d.

Applying this relation to xck and xk, we have

‖∇f(xck)−∇f(xk)‖ ≤ L‖xck − xk‖ = L‖αckpk‖. (22)

The rest of this proof is nearly identical to the proof for Theorem 3.2 in [32,
pp. 43–44]. Multiplying both sides of (22) by ‖pk‖ and then applying Cauchy-
Schwartz gives

(∇f(xck)−∇f(xk))
T pk ≤ αckL‖pk‖2. (23)

Substituting (21) into the left-hand side of (23) gives

−αck ≤ (1− c)

L

∇f(xk)
T pk

‖pk‖2
. (24)

Substituting (24) into (20), we obtain

f(xk+1) < f(xk)− c
(1− c)

L

(∇f(xk)
T pk)

2

‖pk‖2
. (25)

The angle θj between the search direction pk and steepest descent direction

−∇f(xk) can be expressed by cos θj =
−∇f(xj)

T pj

‖∇f(xj)‖·‖pj‖
. Substituting this relation

into (25) gives

f(xk+1) < f(xk)− c
(1 − c)

L
‖∇f(xk)‖2 cos2 θk.

By summing this expression over all indices less than or equal to k,

f(xk+1) < f(x0)− c
(1− c)

L

k
∑

j=0

‖∇f(xj)‖2 cos2 θj .

Because f(x) is bounded below, there exists some M < ∞ such that f(x0)−
f(xk+1) < M for all k, so that

c(1− c)

L

k
∑

j=0

‖∇f(xj)‖2 cos2 θj < M < ∞.

Taking k → ∞ while noting that 0 < c < 1 gives

∞
∑

j=0

‖∇f(xj)‖2 cos2 θj < ∞. (26)
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With the additional restriction on the search direction pk such that cos θk ≥
δ > 0 for some choice of δ, for all choices of k, the convergent series in (26)
implies that

lim
k→∞

‖∇f(xk)‖ = 0.

The inequality (26) has been referred to as Zoutendijk’s condition [32], though
we arrive at this result via different assumptions.

Theorem 3.1 shows that the gradient of the objective function converges to
0. The proof for Theorem 3.2 is concerned with the conditions for mapping
this convergence to the convergence of the iterated parameter estimates ηk to
the unique MLE. In particular, the mapping from ηk to the gradient must be
globally invertible.

Proof of Theorem 3.2. The Fisher information for an exponential family with
minimal representation is non-singular by (11) and thus invertible. If we consider
the map defined by

h(η) = ∇c(η)

where c is the cumulant function (7), its first derivative matrix is

∇h(η) = ∇2c(η) = I(η) (27)

which is again non-singular. Since this is true for any η, by the inverse function
theorem, h is everywhere locally invertible.

In fact, h is globally invertible. For any µ in the range of h, consider the
function

q(η) = µT η − c(η).

Since ∇2q(η) = −I(η) by (27), q is strictly concave. There exists an η such that

∇q(η) = µ− h(η) = 0

because of the assumption that µ is in the range of h. Thus this η is a stationary
point of q, which is a global maximizer of q by concavity and the unique global
maximizer by strict concavity. This says that for every µ in the range of h, there
exists a unique η such that µ = h(η), which is global invertibility of h.

Since c is infinitely differentiable by Theorem 2.7.1 in [29], so is h, and by the
inverse function theorem, so is h−1 (even if we do not know the form of h−1).
The first derivative of h−1 can be expressed as

∇h−1(µ) = [∇h(η)]
−1

= [I(η)]
−1

, when µ = h(η),

and is thus non-singular everywhere, including at the MLE of η, η̂MLE.
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Thus our algorithm, which concludes that ||∇ℓ(ηk)|| = ||g(y) − h(ηk)|| → 0,
implies that

µk = h(ηk) → g(y),

or

h−1(µk) → h−1 (g(y)) ,

or

ηk → η̂MLE

because if the MLE exists, then the gradient of the log likelihood is zero at the
MLE which is g(y) = h(η̂MLE).
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