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Abstract: We consider a linear regression problem in a high dimensional
setting where the number of covariates p can be much larger than the sam-
ple size n. In such a situation, one often assumes sparsity of the regression
vector, i.e., the regression vector contains many zero components. We pro-
pose a Lasso-type estimator β̂Quad (where ‘Quad’ stands for quadratic)
which is based on two penalty terms. The first one is the ℓ1 norm of the re-
gression coefficients used to exploit the sparsity of the regression as done by
the Lasso estimator, whereas the second is a quadratic penalty term intro-
duced to capture some additional information on the setting of the problem.
We detail two special cases: the Elastic-Net β̂EN introduced in [42], which
deals with sparse problems where correlations between variables may exist;
and the Smooth-Lasso† β̂SL, which responds to sparse problems where suc-
cessive regression coefficients are known to vary slowly (in some situations,
this can also be interpreted in terms of correlations between successive
variables). From a theoretical point of view, we establish variable selection

consistency results and show that β̂Quad achieves a Sparsity Inequality,
i.e., a bound in terms of the number of non-zero components of the ‘true’
regression vector. These results are provided under a weaker assumption
on the Gram matrix than the one used by the Lasso. In some situations
this guarantees a significant improvement over the Lasso. Furthermore, a
simulation study is conducted and shows that the S-Lasso β̂SL performs
better than known methods as the Lasso, the Elastic-Net β̂EN , and the
Fused-Lasso (introduced in [30]) with respect to the estimation accuracy.
This is especially the case when the regression vector is ‘smooth’, i.e., when

∗This is an original survey paper.
†The Smooth-Lasso estimator has initially been introduced in the paper titled Regulariza-

tion with the Smooth-Lasso procedure, in [14]. Results can be found there for the this method
which are not provided here, such as the theoretical performance when p ≤ n and a simulation
study from a variable selection point of view.
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the variations between successive coefficients of the unknown parameter of
the regression are small. The study also reveals that the theoretical calibra-
tion of the tuning parameters and the one based on 10 fold cross validation
imply two S-Lasso solutions with close performance.

AMS 2000 subject classifications: Primary 62J05, 62J07; secondary
62H20, 62F12.

Keywords and phrases: Lasso, Elastic-Net, LARS, sparsity, variable se-
lection, restricted eigenvalues, high-dimensional data.
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1. Introduction

We focus on the usual linear regression model

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

where the design xi = (xi,1, . . . , xi,p) ∈ Rp is deterministic, β∗ = (β∗
1 , . . . , β

∗
p)

′ ∈
Rp is the unknown parameter, and ε1, . . . , εn, are independent, identically dis-
tributed (i.i.d.) centered Gaussian random variables with known variance σ2.
We aim on estimating β∗ in the sparse case, that is, when many of its unknown
components are zero. Thus only a subset of the design covariates (Xj)j is truly of
interest where Xj = (x1,j , . . . , xn,j)

′, j = 1, . . . , p. Moreover, we are interested
in the high dimensional problem where p ≫ n and we consider p depending
on n. In such a framework, two main problems arise: the interpretability of the
prediction and the control of the variance in the estimation. To tackle these
problems we use regularized selection type procedures of the form

β̃ = argmin
β∈Rp

{
‖Y −Xβ‖2n + pen(β)

}
, (2)

where X = (x′
1, . . . , x

′
n)

′, Y = (y1, . . . , yn)
′ and pen : Rp → R is a positive

convex function called the penalty. For any vector a = (a1, . . . , an)
′, we have

adopted the notation ‖a‖2n = n−1
∑n

i=1 |ai|2 and we denote by < ·, · >n the cor-
responding inner product in Rn. The choice of the penalty appears to be crucial.
On the one hand, although well-suited for variable selection purpose, concave-
type penalties (see for example [9, 13, 32]) are often computationally hard to
optimize. On the other hand, Lasso-type procedures (modifications of the ℓ1 pe-
nalized least square (Lasso) estimator introduced in [29]) have been extensively
studied during the last few years. See for example [3, 4, 7, 40] and references
therein. Such procedures are suitable for our purposes as they perform both
regression parameters estimation and variable selection with low computational
costs. We will explore this type of procedures in our study.

In this paper, we propose a novel estimator, denoted by β̂Quad, which is
a modification of the Lasso. It is defined as the solution of the optimization
problem (2) for a combination of the Lasso penalty (i.e.,

∑p
j=1 |βj |) and the

quadratic penalty β′J′Jβ for some m× p matrix J (m ∈ N∗).
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The matrix J typically reflects some underlying geometry or structure in the
true signal. More generally, the matrix J can be chosen so that sparsity of β∗

translates to some other desired behavior depending on the context. There is
a wide variety of interesting applications, and what we present below is not
meant to be an exhaustive list but rather a small set of illustrative examples
that motivated our work on this problem. We add this second term to the Lasso
procedure for two major issues. First, we exploit this second penalty to take
into account some prior information on the data or the regression vector (such
as correlation between variables or a specified structure on the regression vec-
tor). Second, the quadratic penalty is introduced to overcome (or to reduce)
theoretical problems observed by the Lasso estimator. Indeed, (see for example
[3, 4, 18, 21, 34, 37, 40, 41]) strong conditions to guarantee good performance in
prediction, estimation or variable selection for the Lasso procedure are required.
See also [33] for an overview of the conditions used to establish the theoretical
results according to the Lasso. It was shown that the Lasso does not always en-
sure good performance when high correlations exist between the covariates. In
this paper, we establish theoretical results showing good performance of β̂Quad

under a weaker assumption than the Lasso estimator. The improvement is es-
pecially observed when the Lasso achieves only poor results.

Two particular cases of the estimator β̂Quad are mainly considered: the Elastic-
Net introduced in [42] to deal with problems where correlations between vari-
ables exist. It is defined with the quadratic penalty term

∑p
j=1 β

2
j . The second

and novel procedure is called the Smooth-Lasso (S-Lasso) estimator. It is defined

with the ℓ2-fusion penalty, that is,
∑p

j=2 (βj − βj−1)
2
. The ℓ2-fusion penalty was

first introduced in [17]. This term helps to tackle situations where the regression
vector is structured such that its coefficients vary slowly. Let us call the regres-
sion vector ‘smooth’ in this case. Note, however, that our theoretical study takes
into account a large amount of procedures such as the closely related ‘Weighted
Fusion’ introduced in [10]. This is detailed in Remark 1.

The main contribution of this paper is the introduction of the Smooth-Lasso
estimator which significantly improves (both in theory and in practice) the per-
formance of the Lasso and the Elastic-Net in some situations. However, the
method is a special case of the estimator β̂Quad. This type of estimators aims
on

• capturing the sparsity and some other structure (smoothness in the case
of the S-Lasso);

• reducing the assumptions on the Gram matrix and providing theoretical
guarantees in situations that are not suitable for the Lasso (correlations
between successive covariates in the case of the S-Lasso).

From a practical point of view, some problems are also encountered when
we solve the Lasso criterion (for instance with the LARS algorithm [12]). In-
deed, this algorithm fails to select a complete group of correlated covariates.
We describe two disadvantages of the Lasso. First, the Lasso is not consistent
neither in variable selection nor in estimation (bad reconstitution of β∗). In this
paper, we focus on the estimation issue. We consider the case where the regres-
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sion vector β∗ is structured. We invoke the S-Lasso estimator to respond to
such problems where the covariates are ranked so that the regression vector is
‘smooth’ (that is, the vector β∗ has only small variations in its successive compo-
nents). We will see with the help of simulations that such situations support the
use of the S-Lasso estimator. This estimator is inspired by the Fused-Lasso [30].
Both S-Lasso and Fused-Lasso combine a ℓ1-penalty with a fusion term [17].
The fusion term is designed to make successive coefficients as close as possible
to each other. The main difference between these two procedures is that we use
the ℓ2 distance between the successive coefficients (that is, the ℓ2-fusion penalty:∑p

j=2(βj−βj−1)
2) whereas the Fused-Lasso uses the ℓ1 distance (that is, the ℓ1-

fusion penalty:
∑p

j=2 |βj −βj−1|). Hence, compared to the Fused-Lasso, we sac-
rifice sparsity in changes between successive coefficients in the estimation of β∗

for an easier optimization due to the strict convexity of the ℓ2 distance. This im-
plies a large reduction of computational cost. However, sparsity is, nonetheless,
ensured by the Lasso penalty. The ℓ2-fusion penalty helps to provide ‘smooth’
solutions. Consequently, even if there is no perfect match between successive
coefficients, our results are still interpretable. From a theoretical point of view,
the ℓ2 distance also helps us to provide theoretical properties for the S-Lasso
which in some situations appears to outperform the Lasso and the Elastic-Net
(cf. [42]). Let us mention that variable selection consistency of the Fused-Lasso
and the corresponding Fused adaptive Lasso have also been studied in [27] but
in a different context from the one in the present paper. The results obtained
in [27] are established not only under the sparsity assumption, but the model
is also supposed to be piecewise constant, that is, the non-zero coefficients are
represented in a block shape with equal values inside each block.

Many techniques have been proposed to address the weaknesses of the Lasso.
The Fused-Lasso procedure is one of them. Additionally we give here some
of the most popular alternative methods. The Adaptive Lasso was introduced
by [41]. It is similar to the Lasso but with adaptive weights used to penal-
ize each regression coefficient separately. This procedure reaches under certain
(strong) conditions Oracles Properties (that is, consistency in variable selection
and asymptotic normality, see [41]). Another approach is the Relaxed Lasso
(see [20]), which aims on double-controlling the Lasso estimate: one parameter
to control variable selection and another to control the shrinkage of the selected
coefficients. To overcome the problem due to the correlation between covariates,
group variable selection has been proposed in [36] with the Group-Lasso pro-
cedure which selects groups of correlated covariates instead of single covariates
at each step. A first step to the variable selection consistency study has been
proposed in [1] and Sparsity Inequalities were given in [8, 19]. In [42], another
choice of penalty has been proposed with the Elastic-Net. This penalty has also
been studied for example in [5, 15, 43].

The rest of the paper is organized as follows. In the next section, we in-
troduce the estimator β̂Quad defined with the Lasso penalty together with a
quadratic penalty. In particular, we define the S-Lasso estimator and a notion
of smoothness. We also provide a way to solve the β̂Quad problem with the at-
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tractive property of piecewise linearity of its regularization path. Consistency
in estimation and variable selection in the high dimensional case are considered
in Section 3. We moreover provide some examples in favor of the Elastic-Net
and the S-Lasso in Sections 3.1.2 and 3.1.3 and technical issues in Section 3.3.
We finally give experimental results in Section 4 which show the S-Lasso per-
formance compared to some popular methods. All proofs are postponed to the
Appendix.

2. The S-Lasso procedure

In many applications for example in macroeconomics, financial time series anal-
ysis, and biological and medical sciences one often deals with data with given
complex attributes and a ‘smooth’ solution. This is, for instance, the case in
trend filtering (see [16] for a nice survey).

As a start, let us provide a definition of a ‘smooth’ vector:

Definition 2.1 (Smoothness). Let α be some positive number. A vector β ∈ Rp

is α-smooth (or simply smooth) if

p∑

j=2

(βj − βj−1)
2 ≤ α.

In the applications mentioned above, the regression vector β∗ is smooth.
Hence, it is important to consider estimation methods which can reflect this
aspect of the problem. It is often useful to assume that the regression vector
is also sparse in order to be able to treat data such as spectrometry or some
genomic data, where both smoothness and sparsity appear simultaneously. For
these reasons, it is worth introducing and analyzing a method which can re-
constitute sparse and smooth regression vectors. Hence, we define the S-Lasso
estimator β̂SL as the solution of the optimization problem (2) with the penalty

pen(β) = λ|β|1 + µ

p∑

j=2

(βj − βj−1)
2
, (3)

where λ and µ are two positive parameters that control the sparsity of our
estimator and its smoothness. For any vector a = (a1, . . . , ap)

′ and integer q,
we have used the notation |a|qq =

∑p
j=1 |aj |q. Note that the Lasso estimator is a

special case of the S-Lasso with µ = 0. More generally, we consider the following
penalty

pen(β) = λ|β|1 + µβ′J′Jβ, (4)

where J is a given m × p matrix (m ∈ N∗). This penalty is a combination of
the Lasso penalty and a quadratic penalty. The matrix J typically reflects some
underlying geometry or structure in the true signal (we refer to [31] for similar

ideas). Let us call β̂Quad the solution of the minimization problem (2) and (4).
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The S-Lasso penalty is a particular case of the penalty (4) with J given by

J =




0 0 0 . . . 0

1 −1
. . .

. . .
...

0 1 −1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 −1




. (5)

The Elastic-Net corresponds to the case where J is the identity matrix.

Remark 1. For any j, k ∈ {1, . . . , p}, denote by sj,k = sign
(X′

jXk

n

)
the sign

of the sample correlation between predictor variables j and k. Denote also by
wj,k ≥ 0 some predictor correlation driven weights. Given this notation, the
Weighted Fusion introduced in [10] corresponds to the case where the k-th di-
agonal term of J equals wk,k and (J)k,j = (J)j,k = −sj,kwj,k for j 6= k.

Now we deal with the solution β̂Quad of (2) and (4) and its computational

costs. The following lemma shows that β̂Quad can be expressed as a Lasso solu-
tion by expanding the data artificially.

Lemma 1. Given the dataset (X,Y ) and the tuning parameters (λ, µ), define

the extended dataset (X̃, Ỹ ) and ε̃ by

X̃ =

(
X√
nµJ

)
, and Ỹ =

(
Y
0

)
, and ε̃ =

(
ε

−√
nµJβ∗

)
,

where 0 is a vector of size p containing only zeros, ε = (ε1, . . . , εn)
′ is the

noise vector and J is the m × p matrix given by the penalty (4). Then, we

have Ỹ = X̃β∗ + ε̃, and the estimator β̂Quad, defined as the solution of the
minimization problem (2) with the penalty given by (4), is also the minimizer
of the Lasso-criterion

1

n

∣∣∣Ỹ − X̃β
∣∣∣
2

2
+ λ|β|1. (6)

This result is a consequence of simple algebra. It motivates the following
comments on the estimator β̂Quad.

Remark 2 (Regularization paths). LARS is an iterative algorithm introduced

in [12]. A modification of LARS can be used to construct β̂Quad. For a fixed µ, it
constructs at each step an estimator based on the correlation between covariates
and the current residual. Each step corresponds to a value of λ. Then, for a fixed
µ, we obtain the evolution of the coefficients values of β̂Quad when λ varies. This
evolution describes the regularization paths of β̂Quad which are piecewise linear
(see [28]). This property implies that (again for fixed µ) the problem (2) and
(4) can be solved using the LARS algorithm with the same computational cost
as the ordinary least square (OLS) estimate.
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3. Theoretical results in the high dimensional setting

In this section, we study the performance of the estimator β̂Quad in the high
dimensional case. In particular, we provide a non-asymptotic bound for the
squared risk. We also provide a bound for the ℓ2 estimation error of β̂Quad. Let

J̃ = J′J,

be the p×p matrix where J is the matrix appearing in the quadratic penalty (4).
Since our main interest is the study of the S-Lasso estimator, we first focus on
the case where the matrix J̃ is sparse. We refer the reader to Section 3.3 where
we address several technical points, for example the study of the case where the
matrix J̃ is general.

All the results of this section are proved in Section 6. These theoretical con-
tributions rely partly on Lemma 1. Let us finally mention that the tuning pa-
rameters λ and µ will actually be chosen depending on the sample size n. We
emphasize this dependency by adding a subscript n to these parameters.

3.1. Sparsity Inequality when J̃ is sparse

Now we establish a Sparsity Inequality (SI) achieved by the estimator β̂Quad,
that is, a bound on the squared risk that takes into account the sparsity of the
regression vector β∗. More precisely, we prove that the rate of convergence of
β̂Quad is max(|A∗| log(n)/n;µ2

n|J̃β∗|2), where A∗ is the sparsity set A∗ = {j :
β∗
j 6= 0}. This rate depends not only on the sparsity index |A∗| but also on

|J̃β∗|. In the case of the S-Lasso, this last quantity is related to the smoothness
of the vector β∗. Let us first present the assumptions needed, and the setup of
this contribution. Let η ∈ (0, 1) be given ((1 − η) will be a confidence bound,
see Theorem 1). We define the tuning parameter λn as

λn = 4
√
2σ

√
log(p/η)

n
. (7)

For now, we leave the calibration of µn free. We discuss later (see Corollary 1
and Section 3.1.1 for example) the choice for this parameter. Our assumption
on the Gram matrix Ψn := n−1X ′X involves the symmetric p × p matrix Kn

defined by
Kn = Ψn + µnJ̃ . (8)

Given the expanded dataset defined in Lemma 1, we note that Kn = n−1X̃ ′X̃
can be seen as an expanded Gram matrix. Let Θ ⊂ {1, . . . , p} be a set of indices.
Using this notation, we formulate the following assumption:

Assumption B(Θ). Let Kn be the matrix given by (8) and let ̺n = 4
√
|A∗|+

4µn

λn
|J̃β∗|2. There is a constant φµn

> 0 such that, for any ∆ ∈ Rp that satisfies
∑

j /∈Θ |∆j | ≤ ̺n
√∑

j∈Θ ∆2
j , we have

∆′Kn∆ ≥ φµn

∑

j∈Θ

∆2
j . (9)
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Here are some comments about this assumption:

• first of all, Assumption B(Θ) is inspired by the Restricted Eigenvalue
(RE) Assumption introduced in [3]. The RE assumption is widely used
in the literature and requires somehow that the restriction of the matrix
Kn to the rows and columns in Θ is invertible (when Kn is invertible, the
condition (9) is always satisfied with φµn

at least as large as the smallest
eigenvalue of Kn). We refer to [3, 33] for more details on this assumption.
The main difference with the assumption we use is that in [3] the authors
consider the case whereKn = Ψn, which matches with the Lasso estimator
(that is µn = 0 in our setting).
In the sequel, let φ0 denote φµn

for µn = 0, that is, the case of the Lasso
estimator;

• another difference to [3] is that the set on which the assumption should
hold is larger in Assumption B(Θ) than in the RE Assumption. Indeed,
in Assumption B(Θ), the considered vectors ∆ should be such that
∑

j /∈Θ |∆j | ≤ ̺n
√∑

j∈Θ ∆2
j , whereas in [3] the authors only need to con-

sider vectors ∆ such that
∑

j /∈Θ |∆j | ≤ cst ·∑j∈Θ |∆j | (see also [33]). We
make this set larger to allow large values of the tuning parameter µn. We
will explain later why this is desirable;

• in the case of the Elastic-Net, Θ = A∗ in Assumption B(Θ). Hence, the
assumption above is close to Condition Stabil in [5, page 4] for the Elastic-
Net. We will consider precisely the difference between both assumptions
in Section 3.1.2. However, let us mention here that in Condition Stabil the
condition (9) is replaced by

∆′Ψn∆ ≥ (φCS
µn

− µn)|∆A∗ |22

for a constant φCS
µn

> µn;
• only small subsets B of indices Θ will be considered in Assumption B(Θ).
More precisely, let B ⊂ {1, . . . , p} be a set of indices such including the

true sparsity set A∗. We will consider a set depending on J̃ and on A∗, and
the sparser J̃ , the smaller B. For instance, in the case of the Elastic-Net,
B = A∗, and in the case of the S-Lasso (that we will detail later), the set

B is such that |B| ≤ 3|A∗|. Thanks to the sparsity of J̃ , we will see that
we can assume that there exists a constant cJ̃ ≥ 1 such that |B| ≤ cJ̃ |A∗|
(see Sections 3.1.2 and 3.1.3).

Theorem 1 below holds for general matrices J̃ . However we emphasized here
the sparse case since Assumption B(B) with large sets B is more stringent (with
φµn

close or equal to zero). Hence in the general case, another assumption pre-
sented in Section 3.3.1 may be more attractive. We also mention that Theorem 1
is formulated as general as possible. We refer to Corollary 1 below for a special
case illustrating the superiority of β̂Quad compared to the Lasso.

Theorem 1 (J̃ sparse). Let A∗ be the sparsity set. Let the tuning parameter λn

be defined as in (7). Suppose that Assumption B(B) is satisfied with a set B ⊃ A∗
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such that |B| ≤ cJ̃ |A∗| for a given constant cJ̃ ≥ 1. Then, with probability greater
than 1− η, we have

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
≤ φ−1

µn
(2λn

√
|A∗|+ 2µn|J̃β∗|2)2, (10)

(β∗ − β̂Quad)′J̃(β∗ − β̂Quad) ≤ φ−1
µn

(2λn

√
|A∗|+ 2µn|J̃β∗|2)2

µn
, (11)

and

|β∗ − β̂Quad|1 ≤ 2φ−1
µn

(2λn

√
|A∗|+ 2µn|J̃β∗|2)2

λn
.

Theorem 1 states that β̂Quad achieves a SI which also brings the quantity
|J̃β∗|2 into play. A first glance at the bounds above would suggest that µn = 0
provides the best rates. However, it is worth noting that φµn

, one of the main
terms of the bounds, also depends on µn and increases with this parameter
since J̃ is positive semidefinite. Calibration of µn captures the tradeoff between
slowing down the rate of convergence and being able to address situations where
the Lasso fails. For instance, the Smooth-Lasso with a large µn is devoted to
problems with large correlations between successive variables. In Section 3.1.1,
we further discuss the importance of a good calibration of µn and the interest of
using β̂Quad (with µn different from zero) instead of the Lasso estimator. These
considerations lead to the following Corollary 1. It points out that the estimator
β̂Quad is particularly useful when the assumptions on the Gram matrix Ψn are
so restrictive that the Lasso error fails to be well controlled.

Corollary 1. Consider the same setting as in Theorem 1. Let λn =

4
√
2σ
√

log(p/η)
n with η ∈ (0, 1) and µn =

λn

√
|A∗|

2|J̃β∗|2
. Then, ̺n = 6

√
|A∗| in

Assumption B(B) and with probability greater than 1− η we have

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
≤ 288σ2

φµn

log(p/η)

n
|A∗|,

and

|β∗ − β̂Quad|1 ≤ 72
√
2σ

φµn

√
log(p/η)

n
|A∗|.

Assume furthermore that the Gram matrix Ψn is such that φ0 < λ2
n|A∗| and

that the extended Gram matrix Kn is such that φµn
≥ µn. Then the bound on

the Lasso (obtained setting µn = 0 above) does not guaranty any control on the

errors. In contrast, β̂Quad satisfies

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
≤ 72

√
2σ|J̃β∗|2

√
log(p/η)

n
|A∗|,

and if φµn
≥ √

µn

|β∗ − β̂Quad|1 ≤ 36

√
σ|J̃β∗|2

(
log(p/η)

n

)1/4

|A∗|3/4.

with probability greater 1− η.
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The above bounds are even better when |J̃β∗|2 is small. One illustration of
this corollary can be found in the example included in Section 3.1.3. Moreover,
we refer to Section 3.3 for other choices of µn which are more suitable when we
deal with a general (non sparse) matrix J̃ .

In our simulation study we focus on the particular choice of µn given in the
first part of Corollary 1. However, in real applications, since the parameters λn

and µn depend on the unknown regression vector β∗, we tune them with the
help of a 2D ten fold cross validation over a grid.

3.1.1. Discussion around µn and the rate of convergence

In this paragraph, we highlight the cases when using β̂Quad is useful in the
sense of Theorem 1. We mainly consider two aspects. The first one deals with
situations (or conditions on the Gram matrix Ψn) where φµn

is much larger
than φ0, that is, the settings where the introduction of the additional penalty
enables the estimator β̂Quad to consider problems that cannot be treated by
the Lasso. The second one is the fact that µn|J̃β∗|2 should be dominated by
λn

√
|A∗|.

For the first point, and to make things more understandable, let us restrict
ourselves to the above prediction error bound (10) and consider the particular

case of the Elastic-Net where the matrix J̃ is the identity.

Because of the definition of φµn
(in the particular case of the Elastic-Net), we

have φµn
≥ µn. We now discuss the rates of convergence of the Lasso (with φ0)

and the Elastic-Net (with φµn
) in different situations. We present the cases in an

asymptotic setting with n tending to infinity. The results provided in Theorem 1
suggest essentially three regimes:

• when φ0 is a constant: in this case, the rate |A∗| log(p)/n is optimal (up to
a logarithmic factor; cf. [6, Theorem 5.1]). This rate is reached by the Lasso
(set µn = 0 in the above Theorem 1) and as a consequence the Elastic-Net

(and more generally β̂Quad) does not help a lot. Indeed, whatever µn > 0,
the value of φµn

does not significantly vary from φ0 (although φµn
> φ0);

• when φ0 depends on n but with µn ≤ φ0 < 1: in this case, φµn
(and φ0 as

well) is an influencing term that should be taken into account in the rate
of convergence. The rate of the Lasso is worse than |A∗| log(p)/n. But,
since µn < φ0, the Elastic-Net does not cause a big improvement in this
case neither;

• when φ0 depends on n and µn > φ0: clearly here, φµn
> φ0. Then when

φ0 is small (or even very small), the rate of convergence of the Lasso is
bad (or even the Lasso error is not controlled when φ0 < λ2

n|A∗|), whereas
the Elastic-Net is guarantied to reach the worst case rate φ−1

µn
|A∗| log(p)/n

(cf. Corollary 1 for a bound independent on the second term in the LHS
of (10)). This can lead to a big improvement. For instance, Section 3.1.3
gives an illustrating example pointing out the advantage of using the
Smooth-Lasso estimator.
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The above remarks recommend large values of µn due to the fact that φµn

grows with µn. However the RHS of (10) depends on µn also through µn|J̃β∗|2.
Then one may choose the largest µn such that the second term in the RHS
of (10) remains reasonable compared to the first one. That is the choice of µn

should make a tradeoff between increasing φµn
and increasing µn|J̃β∗|2 in the

bound.
To make things clearer, let us focus on the prediction error (the same rea-

soning is true for the other errors). The rate of convergence is





λn

φµn
|A∗| if µn|J̃β∗|2 = O(λn

√
|A∗|) or even smaller in order,

µ2
n

φµnλn
|J̃β∗|22 otherwise.

Then, the term µn|J̃β∗|2 induces an alteration on the rate of convergence when

µn|J̃β∗|2 ≫ λn

√
|A∗|. In other words, the rate of convergence is worse when we

add the quadratic penalty unless if µn|J̃β∗|2 ≤ λn

√
|A∗|.

All these explanations encourage the compromise stated in Corollary 1 above
for the calibration of µn.

In the next two paragraphs we provide a more detailed study in the special
cases of the Elastic-Net and the S-Lasso estimators.

3.1.2. Elastic-Net

The Elastic-Net corresponds to the case where J̃ equals the identity matrix.
Then B = A∗ in the above theorem and corollary. The theoretical performance
of the Elastic-Net has already been considered for example in [5, 15]. In [15], the
authors considered a version of the Irrepresentable Condition to establish their
consistency results. This necessary and (almost) sufficient assumption for the
variable selection task is harder to interpret than ours. The result in the present
paper (and particularly those in Section 3.3.1) about the Elastic-Net are quite
close to those in [5]. A comparison between the results obtained here and those
stated in [5] is postponed to Section 3.3.1.

When compared to the Lasso, we essentially note two differences: first, as
mentioned before Theorem 1, the Lasso brings into play a set of linear inequal-
ities (that is, vectors ∆ ∈ Rp such that

∑
j /∈A∗ |∆j | ≤ 4

∑
j∈A∗ |∆j |, see for

instance [3, 33]), whereas we need in Theorem 1 a bigger set induced by a

quadratic set of inequalities (that is, ∆ such that
∑

j /∈A∗ |∆j | ≤ ̺n
√∑

j∈A∗ ∆2
j

with ̺n > 4
√
|A∗|). Even though this difference is small, let us mention that

we will establish in Section 3.3.1 theoretical guaranties which also require the
same linear set as in the Lasso case; second, the main difference pertains to the
values of φµn

and φ0. Since φµn
> φ0, the Elastic-Net is useful in situations that

preclude the use of the Lasso because φ0 is close to zero. This was discussed in
Section 3.1.1. For instance, when the correlations are high between variables,
the Lasso fails, whereas the Elastic-Net achieves satisfying performance (see
Corollary 1).
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Finally, we observe that in the case of the Elastic-Net, Equation (11) is noth-

ing but a SI on the ℓ2 estimation error |β∗−β̂Quad|22. Note, however, that the rate
λn

√
|A∗|, when µn is defined as in Corollary 1, is not optimal (it can be sharper

with more restrictive assumptions) but has the advantage of only requiring As-
sumption B(A∗). Imposing Assumption B(B) with B larger A∗, a better rate
of convergence can be reached (see Proposition 1). We refer to [35, Theorem 1])

for lower bounds on the ℓq estimation error of order |A∗|1/q
√

log(1+p/|A∗|)
n . See

also [25, 26].

3.1.3. Smooth-Lasso

The S-Lasso corresponds to the case where J̃ = J′J with J given by (5). This
estimator can deal with problems where the regression vector is expected to be
α-smooth in the sense of Definition 2.1. As a consequence, we have the worst case
relation |J̃β∗|2 ≤ 7|Jβ∗|2 (the constant 7 comes from some rough computations
and is not accurate). Note also that in this case Assumption B(Θ) is satisfied
with a set Θ = B whose size is less than 3|A∗|. This set can be expressed as

B = {j ∈ {2, . . . , p− 1} : β∗
j 6= 0, β∗

j−1 6= 0 or β∗
j+1 6= 0},

and Theorem 1 holds with cJ̃ = 3. Moreover, Equation (11) can be seen as a
control on the ‘smoothness error’

∑p
j=2(δj − δj−1)

2, where δj is the components

difference β∗
j − β̂Quad

j .
The S-Lasso is designed to provide a smooth and sparse solution. This is

true whatever the correlations between variables. However, it is interesting to
remark that the smoothness has quite close interactions with correlations be-
tween successive variables. Indeed, when we deal with the S-Lasso estimator,
the matrix J̃ is tridiagonal with its off-diagonal terms equal to -1. If we do not
consider the diagonal terms, we remark that Ψn and Kn differ only in the terms
on the second diagonals (that is, (Kn)j−1,j 6= (Ψn)j−1,j for j = 2, . . . , p as soon
as µn 6= 0). Terms in the second diagonals of Ψn correspond to correlations
between successive covariates.

When high correlations exist between successive covariates, a suitable choice
of µn fulfills Assumption B(B). Hence, the S-Lasso estimator is particularly
useful in situations where we expect that the variables are ranked, such that not
only the regression vector is ‘smooth’, but also successive covariates are highly
correlated. Indeed, on the one hand Assumption B(B) is a weaker assumption
for ‘smooth’ regression vector. On the other hand, this ‘smoothness’ makes the
prediction and the estimation errors sharper (as φµn

depends on |Jβ∗|2).
In the next paragraph, we present an illustrating example of Corollary 1

(or Theorem 1) where we show the importance of using the Smooth-Lasso in
certain situations where the Lasso and the Elastic-Net do not provide good
control on the different errors. In particular, we present a case where correlations
between variables exist (and where the Lasso is not suitable). Moreover, since

the influence of the quadratic penalty in the definition of β̂Quad reduces when
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|J̃β∗|2 is large (see the definition of µn in Corollary 1), we consider a smooth

regression vector with large singular coefficient values such that |J̃β∗|2 is small

when J̃ is the matrix corresponding to the Smooth-Lasso, and large when J̃ is
the identity matrix associated to the Elastic-Net. Due to this difference on the
value of |J̃β∗|2, the Smooth-Lasso outperforms the Elastic-Net.

Example. Let J̃ be the matrix defined on (5). Assume that n/4 is an inte-
ger. First of all, let us define a smooth regression vector β∗ with n/2 non-zero
components such that

β∗
j = 1 for j = 1, . . . , n/4−1, and β∗

j = 1− 4

n

(
j − n

4

)
for j = n/4, . . . , n/2.

This regression vector is chosen piecewise linear (a particular case of smoothness)
to clarify the idea and for simplicity of computations. The vector β∗ is such that

|β∗|2 =

√
n

3
− 1

2
+

2

3n
= O(

√
n), and |Jβ∗|2 =

√
4

n
− 16

n2
= O(1/

√
n).

Then, we can set the smoothness parameter α = 4/
√
n in Definition 2.1.

Let us now consider the design matrix Ψn. Let ǫ > 0 be a real number.
Let Ψn be a tridiagonal Gram matrix with diagonal elements equal to 1 (that
is, normalized) and such that Ψn

j,j−1 = Ψn
k,k+1 = ǫ for j = 2, . . . , p and k =

1, . . . , p−1. In such a case, the spectrum of the Gram matrix lies in [1−2ǫ, 1+2ǫ].
Then, φ0 ≥ 1− 2ǫ (the φµn

corresponding to the Lasso estimate, that is, when
µn = 0). However, we do not know how far φ0 is from 1−2ǫ so that we can only

say the the prediction error of the Lasso β̂L is such that with high probability

∥∥∥Xβ∗ −Xβ̂L
∥∥∥
2

n
≤ 16

√
2σ2

1− 2ǫ

log(p/η)

n
|A∗| = O(σ2|A∗|),

with the choice ǫ = 1
2 − log(p/η)

2n . Actually, the above bound does not provide
any control on the prediction error of the Lasso estimator.

Let us now focus on the Elastic-Net estimate β̂EN . According to Assump-
tion B(A∗), we have to consider the spectrum of the matrix KEN

n = Ψn+µnIp,
where Ip is the identity matrix in Rp. This spectrum lies in [1−2ǫ+µn, 1+2ǫ+µn].
Given the values of ǫ and of |β∗|2, we get the control

∥∥∥Xβ∗ −Xβ̂EN
∥∥∥
2

n
≤ 1

1− 2ǫ+ µn
(2λn

√
|A∗|+ 2µn|β∗|2)2

= O(σmin{
√
log(p)|A∗|, |A∗|}),

where we used the definition of µn provided in Corollary 1. Let us mention that
choosing a different value for µn does not imply an improvement in the bound.
Hence, in this case the Elastic-Net estimator does not control the prediction
error neither.

Next, in the case of the S-Lasso β̂SL the eigenvalues of the matrix KSL
n =

Ψn+µnJ̃ lie in [1+µn− 2|ǫ−µn|, 1+2µn+2|ǫ−µn|]. We refer to [38] for more
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details on the eigenvalues of tridiagonal matrices. This interval is of the same
order as the one of the Elastic-Net. By the sequel, we have the following control
for the S-Lasso estimator (when ǫ > µn, otherwise the control is even better)

∥∥∥Xβ∗ −Xβ̂SL
∥∥∥
2

n
≤ 1

1− 2ǫ+ 3µn
(2λn

√
|A∗|+ 2µn|J̃β∗|2)2

= O
(
σ

√
log(p)|A∗|

n

)
,

where here again, we considered the value of µn given in Corollary 1. In this
‘smooth context’, the S-Lasso is obviously the best method (compared with the
Lasso and the Elastic-Net). Note that this last rate is better than the minimax

rate under the sparsity assumption log(p/|A∗|+1)|A∗|
n (cf. [6, Theorem 5.1]). This

is due to the fact that we also imposed a smoothness assumption which is nicely
exploited by the S-Lasso estimator. Thus, the above minimax rates cannot be
applied anymore.

Let us conclude with the following remarks: in the above situation, we as-
sume that the regression vector is smooth also that the successive covariates are
correlated. This is the best context for the Smooth-Lasso.

In the case where the regression vector is smooth, but we do not have a
particular structure in the Gram matrix (say the variables are independent and
φ0 is a fixed positive constant), the Lasso and the Elastic-Net (for instance with

the value of µn given in Corollary 1) reach the rate σ2 log(p)|A∗|
n . Compared to

the bounds for the Elastic-Net, there are improved bounds for the S-Lasso and
for suitable values of µn (note that µn depends on α). Here again, if we consider
the same regression vector β∗ as in the above example, the rate is of order

O
(
σ

√
log(p)|A∗|

n

)
. Consequently, we get better performance than the Elastic-Net

and the Lasso.
Finally, when the regression vector is not smooth (say, |β∗|2 and |Jβ∗|2 are

constants) and the design matrix is for instance as in the above example, the
Lasso is not suitable. In this case, both the Elastic-Net and the S-Lasso have
comparable performance and their bound is in order O(

√
log(p)|A∗|/n), which

is much better than the bounds for the Lasso (even if not optimal).
The above discussion dealt with the prediction and the estimation perfor-

mance. In the next section we consider the variable selection power of β̂Quad.

3.2. Variable selection

Let us first mention that the estimator β̂Quad, with the Smooth-Lasso as a par-
ticular case, has not been introduced for such an objective. Indeed, it is designed
to deal with the estimation criterion or, more precisely, with structural ques-
tions. However, in some problems β̂Quad may induce better variable selection
properties than the Lasso.

A large amount of work has been done on the topic of variable selection
for Lasso-type methods. One important observation is that one has to make a
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compromise between not identifying a low signal level (that is, small coefficients
β∗
j , j ∈ A∗, in absolute value) and imposing a strong restriction on the Gram

matrix Ψn which sometimes seems to be not realistic. Moreover, the question
of the identifiability of β∗ has also to be considered. Since we tackle problems
where we expect correlations between variables, we take the middle path, that
is, we impose less restrictive assumptions on the Gram matrix that permit us to
recover a reasonably low signal level. For this purpose, we first provide a bound
on the sup-norm |β∗ − β̂Quad|∞, based on a control on the ℓ2 estimation error.

To this end, we use Assumption B(Θ) on the Gram matrix. However the
set Θ should be larger than the one required in Theorem 1. To define it, let
us denote by C the index-set of the m largest components in absolute value of
β∗− β̂Quad outside B. Here B is the set introduced in Theorem 1. In this setting
m is an integer such that m+ |B| < p.

Assumption B′(B ∪ C). Let Kn be the matrix given by (8) and let

̺n = 4
√
|A∗| + 4µn

λn
|J̃β∗|2. There is a constant φµn

> 0 such that, for any

∆ ∈ Rp that satisfies
∑

j /∈B |∆j | ≤ ̺n
√∑

j∈B ∆2
j , we have

∆′Kn∆ ≥ φµn

∑

j∈B∪C
∆2

j . (12)

The above assumption differs from Assumption B(Θ) only in that we restrict
Rp in a different set than the one used in Condition (12). Obviously, Assump-
tion B′(B ∪ C) implies Assumption B(B).
Proposition 1. Let us consider the same setting as in Theorem 1 with the only

difference that λn = 2
√
2σ
√

log(p/η)
n with 0 < η < 1. Under Assumption B′(B ∪

C) and with probability 1− η

|β̂Quad − β∗|∞ ≤ |β̂Quad − β∗|2 ≤ c̃(λn

√
|A∗|+ µn|J̃β∗|2),

where c̃ = 2φ−1
µn

(1 + ̺n√
m
).

One can exploit the control provided in Proposition 1 to construct a hard-
thresholded version of β̂Quad which is consistent in variable selection. Such a
construction has already been considered is several papers for the Lasso esti-
mate. The methodology closest to ours is the one developed in [23].

Consider β̂Th−Quad = (β̂Th−Quad
1 , . . . , β̂Th−Quad

p )′, the thresholded β̂Quad es-
timator defined by

β̂Th−Quad
j = β̂Quad

j if |β̂Quad
j | ≥ c̃(λn

√
|A∗|+ µn|J̃β∗|2)

and zero otherwise, where c̃ is given in Proposition 1. This estimator consists of
β̂Quad with its small coefficients reduced to zero. We then enforce the selection
property of β̂Quad. Variable selection consistency of this estimator is established
under one more restriction on the regression vector given now.
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Assumption C. The true regression vector β∗ is such that

min
j∈A∗

|β∗
j | > 2c̃(λn

√
|A∗|+ µn|J̃β∗|2),

where c̃ = 2φ−1
µn

(1 + ̺n√
m
) is from Proposition 1, and φµn

is the term appearing

in Assumption B′(B ∪ C).
Here again, we observe how important the quantity φµn

is. We want it to be
as large as possible.

This assumption bounds from below the smallest regression coefficient in β∗.
This is a common assumption to provide sign consistency in the high dimensional
case. See for example [4, 18, 23, 34, 39, 40]. We refer to [18] for a longer discussion
on how these works are related in terms of restrictions related to the threshold
or the assumption on the Gram matrix. Now, we can state the following sign
consistency result.

Theorem 2. Let us consider the thresholded estimator β̂Th−Quad as described
above. In the same setting as in Proposition 1, and under Assumption B′(B∪C)
and Assumption C

P
(
sign(β̂Th−Quad) = sign(β∗)

)
≥ 1− η.

Note that all the remarks established in Sections 3.1.2 and 3.1.3 remain valid
also for this variable selection result.

3.3. Technical advances

We devote this paragraph to several technical considerations. First, we consider
the case of a general matrix J̃ . Then, we establish the variable selection consis-
tency of a non-thresholded version of β̂Quad. Finally, we provide a relaxation of
the assumption on the noise. The reader who is not interested in these studies
can skip them without consequences for the readability of the paper.

3.3.1. General matrices J̃

Theorem 1 is particularly interesting when J̃ = J′J is sparse. In that statement,
Assumption B(B) was needed with a set B ⊃ A∗ which depends on J̃ . More
precisely, B contains the indices of components which interfere in the sparse
product β∗′

J̃u for a given u ∈ Rp (see the proof for more details). This set is

not too large compared to A∗ when we consider the case where J̃ is sparse. This

way to solve the problem allows us to choose µn ∼ λn

√
|A∗|

|J̃β∗|2
(cf. Corollary 1). In

what follows, we consider p× p matrices J̃ (including the sparse case) for which
we only need an (adapted) RE Assumption. Contrary to the results provided in
Section 3.1, µn is here, for technical reasons, not a free parameter anymore and
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is fixed in advance (see (13) below). This value is smaller than the one given in
Corollary 1.

Let us first establish the assumptions needed and the setup of this contribu-
tion. Let η ∈ (0, 1). We define the regularization parameters λn and µn in the
following way:

λn = 8
√
2σ

√
log(p/η)

n
and µn = λn

1

8|J̃β∗|∞
. (13)

We now state the adapted RE Assumption which differs from the usual one
introduced in [3] only by the matrix to which we apply the assumption (Kn

instead of Ψn):

Assumption RE. There is a constant φµn
> 0 such that, for any ∆ ∈ Rp that

satisfies
∑

j /∈A∗ |∆j | ≤ 4
∑

j∈A∗ |∆j |, we have

∆′Kn∆ ≥ φµn

∑

j∈A∗

∆2
j .

This assumption involves a set of linear inequalities. Then, we clearly have
φµn

≥ φ0 (the φµn
corresponding to the Lasso, that is, when µn = 0). With this

setting, we obtain the following result for a general matrix J̃ .

Theorem 3 (General J̃). Let A∗ be the sparsity set and let the tuning parame-
ters (λn, µn) be defined as in (13). If Assumption RE holds, then with probability
greater than 1− η we have

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
≤ 4φ−1

µn
λ2
n|A∗|,

(β∗ − β̂Quad)′J̃(β∗ − β̂Quad) ≤ 4
|J̃β∗|∞
φµn

λn|A∗|,

and
|β∗ − β̂Quad|1 ≤ 8φ−1

µn
λn|A∗|.

Similar bounds were provided for the Lasso estimator in [3]. Let us mention
that the constants are not optimal. We focused our attention on the dependency
on n (and thus on p and |A∗|). It turns out that our results are near optimal. For
instance, for the ℓ2 risk, the S-Lasso estimator reaches nearly the optimal rate
|A∗|
n log( p

|A∗| + 1) up to a logarithmic factor (see [6, Theorem 5.1]). Moreover,

Theorem 3 states a control on an error which is linked to the expected prior
information which suggested the use of the estimator β̂Quad.

The results provided in Theorem 1 and more precisely Corollary 1, differ from
those established in Theorem 3 in a few points. First, the value of µn is larger

in the sparse case. Indeed, µn equals λn

√
A∗|

2|J̃β∗|2
and λn

1

4|J̃β∗|∞
in Corollary 1

and Theorem 3 respectively. The former value can be much larger for some
regression vector β∗. Second, these values of µn have an influence on the error
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bounds through φµn
. As a consequence, the bounds in Corollary 1 are better

than those in Theorem 3. Finally, apart from the considerations on the quantity
φµn

, we observe a modification of the bound of (β∗ − β̂Quad)′J̃(β∗ − β̂Quad).

Indeed, in Theorem 1, it involves the term |J̃β∗|2
√
|A∗|, whereas in Theorem 3,

|J̃β∗|∞|A∗| appears, which is obviously larger. We then have a better control on

this error using the sparsity of the matrix J̃ . Finally, we remark that the constant
factor in the definition of the tuning parameter λn in Corollary 1 is smaller than
the corresponding constant in Theorem 3. One should however mention that for
a fixed φµn

(that is a fixed µn), the set of feasible vectors ∆ in Assumption RE
is larger than the one in Assumption B(B). In this sense, Assumption RE is less
restrictive than Assumption B(B). Nevertheless, this difference does not clearly
mean that the φµn

resulting from the Assumption RE is larger than the one
arising from Assumption B(B). Indeed, when ∆ is in the feasible set of both
assumptions, φµn

is the same in both conditions.
A close result to Theorem 3 has been established by Bunea in [5] in the partic-

ular case of the Elastic-Net. It is worth briefly pointing out here the differences
and the similarities of our work and [5] when we deal with the Elastic-Net. For
any vector b ∈ Rp and subset Θ ⊂ {1, . . . , p}, let bΘ be the vector in Rp such
that (bΘ)j = bj if j ∈ Θ and zero otherwise. In [5], Bunea provided a SI close
to the one established in Theorem 3. This inequality holds under the Condition
Stabil defined in [5, page 4] by

∆′Ψn∆ ≥ (φCS
µn

− µn)|∆A∗ |22,

where φCS
µn

> µn, and similarly to vectors in Assumption RE, ∆ is such that∑
j /∈A∗ |∆j | ≤ 4

∑
j∈A∗ |∆j |. The above equation is the analogous of the condi-

tion (9) in Assumption RE, and to make the comparison easier, let us write (9)
as follows

∆′Ψn∆ ≥ (φµn
− µn)|∆A∗ |22 − µn|∆(A∗)c |22. (14)

Since the bounds in the Sparsity Inequalities stated in [5] and in the present
paper are up to constants the same, it seems that the only difference is the
value of φµn

. Indeed, according to Inquality (14), φµn
can be much larger than

φCS
µn

(given in Condition Stabil), as we subtract the term µn|∆(A∗)c |22 in (14),
which can be large thanks to µn (we expect however |∆(A∗)c |22 to be small). It is

worth adding that the Elastic-Net corresponds to a case where the matrix J̃ is
sparse (as J̃ is the identity). Therefore, it is more convenient to use the setting
of Section 3.1 since the value of µn is larger there.

3.3.2. Non-thresholded variable selector

In Section 3.2, we established variable selection consistency for a thresholded
version of β̂Quad when J̃ is sparse. In this section, we state a comparable result
for a non-thresholded version. Indeed, paying the price of a more restrictive as-
sumption, we provide in Theorem 4 below a variable selection consistency result
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directly for β̂Quad when using a different calibration of the tuning parameters.
This result can be applied to general matrices J̃ . The approach to prove the re-
sult is also different. We first provide a bound on the sup-norm |β∗

A∗ − β̂Quad
A∗ |∞.

This can be done easily using the theorem stated in Section 3.3.1 for the ℓ1
estimation error |β∗ − β̂Quad|1. However, this would imply that only ‘high’ lev-
els of the signal can be reconstituted, that is, coefficients β∗

j , j ∈ A∗ such that
|β∗

j | ≥ cst · λn|A∗|. Therefore, we favor to exploit here again a control on the ℓ2

estimation error |β∗− β̂Quad|2 instead, which in the sequel enables us to recover
signals with |β∗

j | ≥ cst · λn

√
|A∗| with the same assumption on the matrix Kn.

Let us mention that λn

√
|A∗| is not the best level which can be recovered. One

can also get rid of the extra term
√
|A∗| through a quite restrictive assumption

on the correlations between variables (see Remark 3).

Proposition 2 below is a first step to a variable selection result. It states that
β̂Quad enables us at least to detect the relevant variables (and maybe also some
noise variables):

Proposition 2. Let us consider the same setting as in Theorem 3 with the only
difference that λn = 4

√
2σ
√

log(p/η)/n and µn = λn/(4|J̃β∗|∞) with 0 < η < 1.
Under Assumption RE, and with probability larger than 1− η, we have

|β∗
A∗ − β̂Quad

A∗ |∞ ≤ |β∗
A∗ − β̂Quad

A∗ |2 ≤ 2φ−1
µn

λn

√
|A∗|,

where φµn
is the constant appearing in Assumption RE. Moreover, if

minj∈A∗ |β∗
j | > 2φ−1

µn
λn

√
|A∗|, we have

P
(
sign(β̂Quad

A∗ ) = sign(β∗
A∗)
)
≥ 1− η.

Proposition 2 is a trivial consequence of Theorem 3. A short proof is given
in the Appendix section. This proposition emphasizes directly that under As-
sumption RE all non-zero components of β∗ are detected by β̂Quad with high
probability. Actually, in the setting of Proposition 2, β̂Quad may contain too
many non-zero components. More restrictions are needed in order to ensure
the variable selection consistency of β̂Quad. Here is an additional assumption
on the Gram matrix which controls the correlations between the truly relevant
variables and those which are not.

Assumption D. We assume that

max
j∈A∗

max
k/∈A∗

|(Kn)j,k| ≤
t

|A∗| ,

where t is a positive term smaller than
φµn

64 .

This assumption is quite close to the Mutual Coherence assumption which
involves the Gram matrix Ψn instead of Kn. In addition, the Mutual Coherence
assumption restricts correlations between all covariates.
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Theorem 4. Let consider the linear regression model (1). Let λn =

16σ

√
log(p/

√
ηp/(1+p))

n and µn = λn/(4|J̃β∗|∞). Under Assumptions RE and
C, and also Assumption D, we have

P(Â * A∗) ≤ η,

and

P
(
sign(β̂Quad) = sign(β∗)

)
≥ 1− η.

To prove the first claim, we use some arguments from [5]. The second point
is a consequence of the first one and of Proposition 2. There are essentially
two differences between the settings in Theorem 4 and Proposition 2. First,
we need for this last result a more restrictive assumption on the correlations
between variables. However, this restriction is only between relevant variables
and irrelevant covariates. This is ‘quite’ a reasonable assumption to identify the
relevant variables, that is, the non-zero components of the vector β∗. Second,
the minimal value of λn is larger in this last theorem. This suggests that we need
a larger value of this tuning parameter to set to zero the irrelevant components.
Note that we established the variable selection consistency of β̂Quad but with a
value of the tuning parameter µn smaller than the one used in the thresholded
version.

Remark 3. The results of Theorem 4 can also be obtained under the more re-
strictive Mutual Coherence assumption: maxj∈A∗ maxk∈{1,...,p}

k 6=j

|(Kn)j,k| ≤ t̃
|A∗| ,

where t̃ is a small positive constant. Here, even the correlations between relevant
variables are restricted but this restriction makes possible to recover even smaller
signal. That is, we can detect coefficients of β∗ such that |β∗

j | ≥ cst ·
√

log(p)/n.
See for instance [5] in case of the Elastic-Net.

3.3.3. Non Gaussian noise with finite variance

Most of the results established for Lasso-type methods assume Gaussian or
sub-Gaussian type noise [3, 5, 15, 34, 39]. Noise with exponential moment is
studied in [4, 23]. Only a few references consider other type of noise. Noise with
moment of order 2k, where k ≥ 1 is an integer, is considered in [40], whereas in
the paper [18], the author presents the case where the noise admits zero mean
and finite variance. It is in the same spirit as that in this last reference that we
consider this relaxation on the noise. According to the Elastic-Net, noise with
moment of order 2k + δ, where k ≥ 1 is an integer and δ is a positive constant
is considered in [43], but the authors treated only the case where p = O(n).

We assume that the noise random variables ε1, . . . , εn are independent and
admit zero mean and finite variance. That is Eεi = 0 and Eε2i ≤ σ2 for i =
1, . . . , n with σ2 < ∞. In this generalization we also use a revisited version of
Nemirovski’s Inequality established in [11]. One more restriction is needed on
the sample points.
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Assumption E. There exists a positive constant L < ∞ such that

n−1
n∑

i=1

max
j=1,...,p

x2
i,j ≤ L.

Theorem 5 below extends the results in Corollary 1 of Section 3 to the non-
Gaussian noise case. However, one is able to generalize all the results of that
section in the same way.

Theorem 5. Let consider the linear regression model (1) where the εi’s are in-
dependent random variables with zero mean such that Eε2i ≤ σ2 for i = 1, . . . , n
with σ2 < ∞. Denote by KNem the quantity KNem = infq∈[2,∞)(q− 1)p2/q, and

let λn = 4σ
√

KNemL
nη with 0 < η < 1. Let µn =

λn

√
|A∗|

2|J̃β∗|2
. Assume also that

Assumption B(B) (where ̺n = 6
√
|A∗|) and Assumption E hold. Then, with

probability greater than 1− η we have

|β∗ − β̂Quad|1 ≤ 72σ

φµn

√
KNemL

nη
|A∗|.

Let us mention that 2e log(p)−3e < KNem < 2e log(p)−e. As a consequence,
the rate of convergence in Theorems 5 is of the same order as in Corollary 1.
However, the constant factor seems to be worse in the non-Gaussian case since
it brings into play the constant L which can be large. This is the price to pay
to adapt to the non-Gaussian noise.

Remark 4. In the above theorem, η is fixed. However, one can set η depending
on p (or on n) in such way that it decreases to zero as p → ∞ (or n → ∞). It is
interesting to note that in this case, we loose a small power of log(p) (or log(n))
in the rate of convergence when we consider non-Gaussian noise compared to
the Gaussian case.

Using similar reasoning as in Theorem 5 (cf. proof of Theorem 5), there is no
major difficulty to extend the variable selection results established in Section 3.2
with Gaussian noise to the case where the noise is defined as above. This can
be done using Lemma 3 instead of Lemma 2 of Section 6 in all the proofs.

4. Experimental results

In this section, we present the experimental performance of the estimator β̂Quad.
In particular, we focus on two special cases: the Elastic-Net and the S-Lasso de-
fined respectively with the penalties penEN (β) = λ|β|1+µ|β|22 and penSL(β) =
λ|β|1 + µ

∑p
j=2(βj − βj−1)

2. The Elastic-Net is useful when high correlations
between variables appear, whereas the S-Lasso is devoted to problems where the
regression vector β∗ is ‘smooth’ (small variations in the values of the successive
components of β∗). We are essentially interested in the performance of these
estimators w.r.t. their estimation accuracy, that is, in terms of the estimation
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error |β̂ − β∗|2, when β∗ is known (simulated data). Indeed, the introduction

of β̂Quad is motivated by a priori knowledge on the structure of the parameter
β∗, or on the correlation between variables, and the purpose here is to see how
this information can be taken into account to improve the reconstitution of the
vector β∗. As benchmarks, we use the Lasso and the Fused-Lasso estimators,
since the first is the reference method and the second is close in spirit to the
S-Lasso estimator. Indeed, the Fused-Lasso produces solutions with equal suc-
cessive components (‘piecewise linear’) [30]. Note also that in the pioneer paper
of the Elastic-Net, a ‘corrected’ version of this estimator is proposed [42]. There
is as yet no theoretical support for this method. Moreover, it outperforms the
‘non-corrected’ Elastic-Net (this ‘non-corrected’ Elastic-Net is denoted by naive
in [42]) in only a very few of the situations we consider in this paper. We omitted
the results for these ‘corrected’ versions to avoid digressions.

Except for the Fused-Lasso solution, all of the Lasso, the S-Lasso and the
Elastic-Net solutions can be computed with the LARS algorithm (cf. Lemma 1).
However, we will not use the LARS algorithm in this study. In order to be fair
with all the methods, we used the same algorithm for all of them. We use
an algorithm provided by J. Mairal1 which is an implementation of a general
algorithm given in [24].

In all our experiments, the tuning parameters are chosen based on the 10
fold cross validation criterion (for the Fused-Lasso, the Elastic-Net and the S-
Lasso, the cross validation is performed on a 2d Grid), but we also display the
results obtained based on the theoretical values. Note that for the Fused-Lasso,
we consider the same theoretical values of the tuning parameters as for the
S-Lasso as they are both motivated by similar applications (this choice seems
arbitrary, but to our knowledge no precise study has been made for the Fused-
Lasso in the context we consider). On the other hand, both the Elastic-Net and

the S-Lasso involve a sparse matrix J̃ in the definition of the estimator β̂Quad.
Then, the theoretical values of the tuning parameters are λ = 2

√
2σ
√

log(p)/n

and µ = λ
√
A∗/2|J̃β∗|2, in accordance with Corollary 1 and Proposition 1.

These quantities depend on unknown parameters. They can be used only in the
simulation study, otherwise one needs to estimate |J̃β∗|2.

The different methods are applied to several simulation examples. They also
have been applied to a pseudo-real dataset generated from the riboflavin dataset.

4.1. Synthetic data

There are several parameters: the dimension p, the sample size n and the level
of noise σ. They will be specified in the experimental settings (that is, in the
different tables and figures captions). The first one is classical and has been
introduced in the original paper of the Lasso [29]. The second simulation, where
we are interested in observing the performance of the procedures when groups
of variables appear, comes from [42]. The last two studies aim on determining
the behavior of the methods when the regression vector is ‘smooth’.

1http://www.di.ens.fr/~mairal/index.php

http://www.di.ens.fr/~mairal/index.php
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Fig 1. Performance of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL), and the
Elastic-Net (EN) applied to Example (a) and based on 500 replications. The tuning pa-
rameters are chosen based on the theoretical study. Left: Evaluation of the prediction er-
ror ‖Ytest − Xtestβ̂‖2n in comparison with the performance of the truth (T), that is,

‖Ytest −Xtestβ∗‖2n. Right: Evaluation of the ℓ2 estimation error |β̂ − β∗|2.

Example (a) [σ/ρ]: No particularities. We fix p = 8 and n = 20. Here only
β∗
1 , β

∗
2 and β∗

5 are nonzero and equal respectively 3, 1.5 and 2. Moreover,
for j, k ∈ {1, . . . , 8} the design correlation matrix Ψ is defined by Ψj,k =
ρ−|j−k| where ρ ∈]0, 1[.

Example (b) [p/n/σ]: Groups. We have β∗
j = 3 for j ∈ {1, . . . , 15} and zero

otherwise. We construct three groups of correlated variables: Ψj,j = 1 for
every j ∈ {1, . . . , p}; for j 6= k, Ψj,k ≈ 1 (actually Ψj,k = 1

1+0.01 , due to an

extra noise variable) when (j, k) belongs to {1, . . . , 5}2, {6, . . . , 10}2 and
{11, . . . , 15}2 and zero otherwise.

Example (c) [p/n/σ]: Smooth regression vector. The regression vector is given
by β∗

j = (3 − 0.2j)2 for j = 1, . . . , 15 and zero otherwise. Moreover, the

correlations are described by Ψj,k = exp(−|j − k|) for (j, k) ∈ {1, . . . , p}2.
Example (d) [p/n/σ]: High sparsity index and smooth regression vector. The

regression vector is such that β∗
j = (4+0.1j)2 for j ∈ {1, . . . , 40} and zero

otherwise, and the correlations are the same as in Example (c).

Except when p = 500 where we run only 100 replications, we based all the
experiments on 500 replications.

Results. The performance of the estimator β̂ (which can be the Lasso, the
S-Lasso, the Elastic-Net or the Fused-Lasso) in terms of the prediction error

‖Ytest − Xtestβ̂‖2n (on a test set (Ytest, Xtest) of size n, that is, a set with the

same size as the training set) and the ℓ2 estimation error |β̂−β∗|2 are illustrated
by boxplots in Figures 1 to 4. For some of these experiments, the corresponding
computational costs (in seconds) of each method is reported in Table 1. In
what follows, we first compare the methods to each other in terms of their
accuracy. Then, we compare them in terms of their computational costs. Finally,
we provide some numerical justifications to the theoretical calibration of the
tuning parameters of the S-Lasso procedure.
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Fig 2. Performance of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL) and the Elastic-
Net (EN) applied to Example (b) and based on 500 replications. The tuning parameters are
chosen based on the theoretical study in the first two plots and by 10 fold cross validation in
the third. Left: Evaluation of the prediction error ‖Ytest −Xtestβ̂‖2n, in comparison with the
performance of the truth (T), i.e., ‖Ytest −Xtestβ∗‖2n. Center and Right: Evaluation of the

ℓ2 estimation error |β̂ − β∗|2.

Methods comparison in terms of performance: Let us consider the different ex-
amples separately.
− Example (a): when we consider the procedures induced by the cross valida-
tion criterion (for the choice of the tuning parameter), we notice that none of
them outperforms the others even when ρ = 0.9 (quite large correlation be-
tween successive variables). This is observed for both prediction and estimation
errors. This is essentially due to the good behavior of the Lasso in such a situa-
tion where the regression vector is sparse but without any particular structure.
Actually, this conclusion holds in almost all the cases even when the tuning pa-
rameters are chosen based on the theoretical study. However, two observations
can be made. First, when both of ρ and σ are small, the Lasso estimator per-
forms slightly better than the other methods. Moreover, when ρ is large a small
improvement can be observed using the Fused-Lasso, the Elastic-Net and the
S-Lasso methods when we care about the estimation error. This is illustrated
in Figure 1 (left and right respectively) where we display the performance of
the methods in terms of the prediction error in Example (a) [1/0.1] (left) and in
terms of the estimation error in Example (a) [3/0.9] (right). For this example,
the Lasso seems to be the best method since it involves only one tuning param-
eter. It moreover has a lower (mean) computational cost equal to 0.18 seconds
(based on the cross validation criterion) as displayed in Table 1. The S-Lasso,
the Elastic-Net and the Fused-Lasso computational costs are respectively 3.7,
3.6 and 4.2 seconds.

− Example (b): with Example (a), this is the least favorable example for the
S-Lasso. Indeed, here the fifteen first coefficients equal 3. Then the value of the
coefficients drops down directly to 0. There is a breakpoint in the ‘smoothness’
in the true regression vector. Figure 5 displays the best reconstitution of the
regression vector β∗ using the S-Lasso solution (which minimizes the ℓ2 estima-
tion error since β∗ is known). We observe the edge effects (breakpoint in the
‘smoothness’) that the S-Lasso cannot solve due to the ℓ2 fusion penalty term.
However, even in this case, it seems that all the procedures perform in a similar
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Fig 3. Evaluation of the ℓ2 estimation error |β̂ − β∗|2 of the Lasso (L), the S-Lasso (SL),
the Fused-Lasso (FL) and the Elastic-Net (EN) applied to Example (c) and based on 500
replications. Left: The tuning parameters are chosen by 10 fold cross validation. Right: The
tuning parameters are chosen based on the theoretical study.

way when the tuning parameters are chosen by cross validation. When the noise
level is large (σ = 15), let us nevertheless mention a (very) small improvement
using the corrected versions of the S-Lasso and the Elastic-Net. Figure 2 (right)
illustrates the performance of the methods in terms of the estimation error when
they are applied to Example (b) [40/50/15]. The Fused-Lasso outperforms the
other methods slightly in this example (with σ = 15) when we deal with the
estimation performance.

On the other hand, when the methods are based on the theoretical calibration
of the tuning parameters, two observations can be made regardless of the noise
level (1 ≤ σ ≤ 15): the S-Lasso and the Lasso perform better than the other
methods in terms of the prediction error; the S-Lasso and the Elastic-Net provide
good results whereas the Lasso has poor performance in terms of estimation
error. This is illustrated in Figure 2 (left and center respectively) when the
methods are applied to Example (b) [40/50/3]. Note moreover that a similar
results are also obtained when p = 100 and n = 40. In this case, the behavior of
the different methods seems to be stable with the parameters p, n and σ. This
example is quite interesting since it corroborates that a good method for the
prediction objective can be less efficient for the estimation objective (see the
performance of the Lasso and the Elastic-Net).
− Example (c): we consider several values of the sample size n and the dimension
p. It turns out that here again, when p < n, all the methods behave in the same
way when the tuning parameters are chosen by cross validation (the S-Lasso
induces just a small improvement). However, when p > n the S-Lasso is by far
better than the other methods. This is illustrated by Figure 3 (left) where the ℓ2
estimation error of each method applied to Example (c) [100/30/3] is displayed.
The same plot is obtained for the prediction error.

Moreover, when the tuning parameters are calibrated according to the the-
oretical study, the S-Lasso performs the best and the Fused-Lasso the worst.
This appears to be true whatever the values of the parameters p, n and σ. See
for instance Figure 3 (right) where the different methods are applied to Ex-
ample (c) [100/30/3] and for the estimation task (the same is obtained for the
prediction objective).
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Fig 4. Evaluation of the ℓ2 estimation error |β̂ − β∗|2 of the Lasso (L), the S-Lasso (SL),
the Fused-Lasso (FL) and the Elastic-Net (EN) applied to Example (d) and based on 500
replications. Left: The tuning parameters are chosen by 10 fold cross validation. Center-left;
Center-right; Right: The tuning parameters are chosen based on the theoretical study.

Note that in this example, the Fused-Lasso and the Elastic-Net appear to be
useless.

− Example (d): this is with Example (c) the most favorable situation for the
S-Lasso estimator where the regression vector is ‘smooth’ with a large amount of
non-zero components. The S-Lasso estimator seems to dominate its opponents
in all the cases and regardless of the sample size n, the dimension p, or the noise
level σ. This observation holds for the ℓ2 estimation and the prediction errors.
Note that when the tuning parameters are chosen by cross validation, the Lasso,
the Fused-Lasso and the Elastic-Net have quite close performance. Figure 4
illustrates this fact when p < n for the estimation error (left: cross validation;
center-left: theory). Moreover, Figure 4 (center-right and right) displays the
performance of the methods when p > n in case where the tuning parameters
are based on the theoretical study (note that ranking of the methods does not
change from the case p < n when the tuning parameters are chosen by cross
validation). In addition, an interesting observation follows from the experiments
on Example (d) [100/30/3] (Figure 4-left). Indeed, here the sparsity index |A∗| =
40 and it is then larger than the sample size n = 30. In this case, the Lasso has
poor performance. However, the S-Lasso is still good. Moreover, there even exists
a pair (λ, µ) (the pair minimizing the ℓ2 estimation error since β∗ is known) such
that we have a good reconstitution on the regression vector β∗ (see Figure 5-
right).

Methods comparison in terms of computational costs: Table 1 displays the com-
putational cost (in seconds) of each method on several examples. First note
that the Fused-Lasso has the largest computational cost in all the simulations
whereas the Lasso has the smallest. The Elastic-Net and the S-Lasso have in-
termediate computational costs but are still reasonable compared to the Fused-
Lasso. More precisely, when the tuning parameters are chosen by cross valida-
tion, we remark that the computational costs for the S-Lasso and the Elastic-Net
are about 30 times larger than for the Lasso. This can partly be explained by the
number of values explored for the tuning parameter µ (a grid with 20 elements).
Actually, since the S-Lasso and the Elastic-Net are obtained with a Lasso pro-
gram applied to expanded data (cf. Lemma 1), it turns out that even for fixed
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Fig 5. Best reconstitution of the regression vector β∗ (black curve) by the SL-Lasso estima-
tor (red curve). Left: Application to Example (b) [40/50/15]. Right: Application to Exam-
ple (d) [100/30/3].

Table 1
Computational costs in seconds for the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL)
and the Elastic-Net (EN) in several examples illustrated in the above figures. We chose
either Tun. = Th or Tun. = Cv, depending on whether we consider the methods with the
tuning parameters based on the theoretical issue (in this case, the values displayed in the
table are scaled by a factor 104 for more readability) or on the 10 fold cross validation

Meth. Tun. Ex.(a) Ex.(a) Ex.(b) Ex.(c) Ex.(d)
[1/0.1] [3/0.9] [40/50/15] [30/50/3] [500/100/3]

L
Th 1.1± 0.1 8± 41 5± 2 33± 64 457± 243
Cv 0.18± 0.01 0.5± 0.2 0.5± 0.1 1.1± 0.3 12.3± 4.9

SL
Th 5.1± 6.4 8± 28 6± 6 48± 81 967± 441
Cv 3.7± 0.1 11.1± 1.3 10.2 ± 2.0 36.2 ± 9.1 648.3± 219.2

FL
Th 2.6± 0.3 10.0± 30.0 20± 12 518 ± 271 5996 ± 2019
Cv 4.2± 0.2 14.1± 1.6 38.3 ± 5.8 245.6 ± 64.3 ≃ 3 · 103

EN
Th 4.7± 3.5 9± 43 5± 3 41± 60 1022 ± 432
Cv 3.6± 0.2 11.0± 1.3 10.2 ± 2.0 35.2 ± 8.9 637.3± 214.0

λ and µ, the computation costs of the Lasso is (a bit) smaller than the com-
putation costs of the S-Lasso and the Elastic-Net. This is observed for example
when we consider the solutions computed when the tuning parameters are cho-
sen based on the theoretical study. Except Example (a), where the increase of
computational cost using the S-Lasso and the Elastic-Net is not justified (since
the improvement using the Lasso-type methods is quite small), in most of the
considered situations it is quite interesting to use the Elastic-Net and even more
interesting to use the S-Lasso estimator. This is due to the ‘smoothness’ of the
true regression vector.

Finally, the Fused-Lasso has a large computation cost due to the ℓ1-fusion
penalty which admits a singularity. Moreover, it does not improve significantly
the Lasso estimator in the situations we considered in this paper (as observed
in the previous part).

In view of the computational costs related to Example (a) (the first two
columns in Table 1), let us finally remark that these costs increase with ρ,
the correlation level between variables, and σ, the noise level. We observe for
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Fig 6. Evaluation of the ℓ2 estimation error |β̂−β∗|2 (top) and the prediction error ‖Ytest −

Xtestβ̂‖2n (bottom) of the S-Lasso based on 500 replications. For each subplot: Left: The
tuning parameters are chosen by 10 fold cross validation. Right: The tuning parameters are
chosen based on the theoretical study. We refer to Table 2 for an evaluation of these tuning
parameters

example that the mean computational cost of the Lasso estimator (when the
tuning parameter is chosen by cross validation) is 1.1 seconds when ρ = 0.1 and
σ = 1 and increases to 8 seconds when ρ = 0.9 and σ = 3.

S-Lasso; theory vs. cross validation: in what follows, we compare both of the
version of the S-Lasso. That is, we compare the S-Lasso when the tuning pa-
rameters are chosen by cross validation and when the tuning parameters are
chosen based on the theoretical study:

• first, we compare these two methods in terms of their performance. Figure 6
summarizes the comparison between the S-Lasso based on a theoretical choice
of the tuning parameters (denoted in this part by S-LassoTh) and the S-Lasso
where the tuning parameters are based on 10 fold cross validation (denoted here
by S-LassoCv). First we can observe that the performance of both S-LassoTh

and S-LassoCv are close. Moreover, given the results in the part ‘Methods com-
parison in terms of performance’, they both perform in a good way. However,
it seems that S-LassoCv outperforms S-LassoTh when we deal with the predic-
tion task. This seems quite intuitive since by definition, the cross validation
criterion attempts to provide good estimator for the prediction objective. Ac-
cording to the ℓ2 estimation goal, we cannot conclude the superiority of one
of the estimators on the other. Nevertheless, in the high dimensional setting
Example (d) [500/100/σ], it seems that S-LassoCv begins to become better.
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Table 2
Median values of the tuning parameters (λ, µ) of the S-Lasso for different ways of

calibration: ‘Cv’ for cross validation; ‘Th’ for theoretical choice; ‘Est’ for ℓ2 estimation
error minimizers. The tuning parameters displayed here correspond to the experiments

illustrated in Figure 6

Tuning Ex.(a) [3/0.9] Ex.(b) [100/40/3] Ex.(c) [100/30/3] Ex.(d) [500/100/3]

λCv 0.4 0.5 0.3 1.0

µCv 0.0005 0.0003 0.2 0.1

λTh 2.7 2.8 1.1 2.1

µTh 0.5110 1.3100 0.4 1.2

λEst 0.7 1.0 0.3 1.0

µEst 0.2500 1.2500 0.3 2.0

At least, the theoretical choice for µ (µ =
λ
√

|A∗|
2|J̃β∗|2

) provides good perfor-

mance both in terms of ℓ2 estimation error and test error. They are often close
to the performance of the S-Lasso estimator based on the cross validation crite-
rion. This is quite interesting since the computational cost of S-LassoTh is much
smaller than S-LassoCv. This study is actually more a verification of our theo-
retical choices of the tuning parameters than a rule to apply in practice. Indeed,
since the theoretical choice of µ depends on β∗, the corresponding estimator
S-LassoTh is unusable in real data problems;

• second, we evaluate the values of the tuning parameters in both cases. Table 2
displays the values of the tuning parameters (λ, µ) of the S-Lasso, when they
are chosen by cross validation (λCv, µCv) and based on the theoretical values
(λTh, µTh). We compare them to the values of the parameters (λEst, µEst) that
minimize the ℓ2 estimation error.

A first remark is that the values of the tuning parameters calibrated based
on the theoretical study are always larger than those chosen by cross validation.
This is not surprising since the theoretical calibration of the tuning parameters
is fixed to capture smoothness with a large value of µn. It then turns out that the
theoretical considerations leads to ‘smoother’ solutions than the cross validation.
Note however that λTh > λCv does not imply that the solution based on the
theoretical issue is sparser since a larger µ usually implies that the solution is
less sparse.

Regarding the best solution (where the tuning parameters minimize the ℓ2
estimation error), there are two cases. When the true regression vector is not
smooth, it seems that these ‘best’ tuning parameters are closer to the ones
chosen by cross validation. When the true regression vector is smooth, they are
closer to the tuning parameters calibrated based on theory. To sum up, on can
say that the best λ is close to the one chosen by cross validation, whereas the
best µ is closer to the one based on theory;

• finally, we compare both of the methods in terms of their estimation accuracy
of Jβ∗. Table 3 summarizes the results. The first four rows displays the median
values of |Jβ̂|2 when β̂ denotes the S-Lasso estimator. We compare the three
ways to calibrate the tuning parameters. We observe that the S-Lasso based on
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Table 3
Median value of |Jβ̂|2 (four first rows) and median number of nonzero components |Â| (four
last rows) of the S-Lasso for different ways of calibration of the tuning parameters: ‘Cv’ for
cross validation; ‘Th’ for theoretical choice; ‘Est’ for ℓ2 estimation error minimizers. The

third quantiles are displayed in brackets. The values in this table correspond to the
experiments illustrated in Figure 6 (and in Table 2 as well)

Tuning Ex.(a) [3/0.9] Ex.(b) [100/40/3] Ex.(c) [100/30/3] Ex.(d) [500/100/3]

|Jβ∗|2 3.5 3 2.4 2.8

|Jβ̂Cv|2 4.4 [6.0] 4.7 [6.0] 2.5 [2.7] 4.0 [4.4]

|Jβ̂Th|2 0.9 [1.1] 1.8 [1.8] 2.3 [2.4] 2.9 [2.9]

|Jβ̂Est|2 1.8 [2.7] 1.8 [2.6] 2.3 [2.4] 2.7 [2.8]

|Â∗| 3 15 15 40

|ÂCv | 5 [7] 35 [41] 29 [33] 74 [82]

|ÂTh| 6 [7] 17 [19] 18 [21] 53 [57]

|ÂEst| 6 [7] 40 [58] 33 [37] 102 [113]

cross validation (S-LassoCv) provides satisfying estimations of |Jβ∗|2. We also
note that the S-Lasso based on the theoretical values of the tuning parameters
(S-LassoTh) is particularly good in Examples (c) and (d). This is not surprising
since the regression vector in these examples is smooth. It behaves similarly as
the best S-Lasso solution (in terms of the minimization of the ℓ2 estimation
error).

Since λTh and µTh depend on |Jβ∗|2 and |A∗| (cf. Corollary 1), one can
intent to use S-LassoCv to estimate these two quantities. In this way, one would
be able to compute S-LassoTh even in real dataset experiments. However, our
experiments reveal that S-LassoCv may overestimate the number of nonzero
components as illustrated by the four last rows of Table 3 (this is also a well-
known fact). Nevertheless, we do not exclude this approach, which can be helpful
to provide closer performance to those of S-LassoEst.

Conclusion of the experimental results. The S-Lasso has good performance
when the regression vector is ‘smooth’ (Examples (c) and (d)). Nevertheless,
even in situations made in favor of the Elastic-Net and the Fused-Lasso (Exam-
ples (b)), the S-Lasso performs similarly as the other methods when the tuning
parameters are chosen based on the cross validation criterion. The S-Lasso is
even better in these examples when the methods are constructed based on the
theoretical considerations.

All the results according to the procedures for which the tuning parameters
are chosen based on the theoretical perspectives is a little unfair in disfavor of
the Fused-Lasso. Indeed, the rates of the tuning parameters have been calibrated
based on a study made for the estimator β̂Quad (the Elastic-Net and the S-Lasso
are two particular cases of this estimator). For the Lasso estimator, we also used
the usual rate for λ. Even if the Fused-Lasso seems to be close to the S-Lasso,
it turns out that similar choices for the tuning parameters lead to worse results
for the Fused-Lasso.

Based on results on Examples (c) and (d) it seems that the Fused-Lasso and
the Elastic-Net imply a large bias for large values of µ when the regression
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vector is smooth (also observed in [10]). They do not improve significantly the
performance of the Lasso estimator in such situations. Even the ‘corrected’
Elastic-Net does not provide better results since the artificial correction seems
to work for a small number of pairs (λ, µ) that have to be chosen very carefully.

One can think of two-stage methods to obtain better performance for the
Fused-Lasso and the Elastic-Net (and also for the S-Lasso and the Lasso), where
for instance an ordinary least squares is fitted based on the estimated support.
This technique reduces of course the bias of the procedures and we refer to [2]
for a nice theoretical study of such procedures. However, we attempt here to
examine the performance for the (one-stage) methods and observe how well the
S-Lasso approaches the true regression vector.

4.2. Pseudo-real dataset

We apply all the methods we previously studied on artificially generated dataset
from the riboflavin data. These data is about riboflavin (vitamin B2) production
by Bacillus subtilis. They kindly have been provided to us by DSM Nutritional
Products (Switzerland). In the original data, the real-valued response variable
is the logarithm of the riboflavin production rate, and there are p = 4088 co-
variates measuring the logarithm of the expression level of 4088 genes that cover
essentially the whole genome of Bacillus subtilis. The sample size is n = 71.

Here, we are not interested in the riboflavin production, but only in the
covariates matrix X coming from this application. We use this design matrix
to generate an artificial response vector with a ‘smooth’ regression vector as in
Equation (1). Let us mention that this trick to generate pseudo-real datasets has
already been used in [22]. In what follows, we consider two different applications
based on the real covariates matrix provided by the riboflavin dataset. In the
first application, say Application 1, let us define X as the 1023 first covariates of
the riboflavin dataset. Moreover, let us define the regression vector β∗ such that
β∗
j = 10 · exp− 1

1−((j−125)/125.1)2 for j = 1, . . . , 250 (cf. Figure 8) and the noise

level σ = 3. Hence, n = 71 and p = 1023 and then this is a high-dimensional
setting with p ≫ n where the number of non-zero components (the sparsity index
|A∗|) is larger than the sample size n. According to the second application, say
Application 2, we restrict X to the 300 first covariates of the riboflavin dataset.
The regression vector β∗ is such that β∗

j = 10 · exp− 1
1−((j−25)/25.1)2 for j =

1, . . . , 50 (cf. Figure 8), and the noise level σ = 3. This is a more common high-
dimensional case where the sparsity index |A∗| is smaller than the sample size n.

Let us now detail the obtained results for different experiments. First, we
mention that, with the exception of the S-Lasso, all the methods provide an
estimation of the regression vector which is characterized by large variations
in the values of the successive components when µ is small (for the Elastic-
Net and the Fused-Lasso) and by large bias when µ is large. Hence, we focus
here on the S-Lasso estimator. Nevertheless, we display the comparison of all
the methods in terms of accuracy in Figure 7 when the methods are applied
to Application 2. Even though the S-Lasso estimator is outperformed when
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Fig 7. Evaluation of the ℓ2 estimation error |β̂ − β∗|2 and the prediction error ‖Ytest −

Xtestβ̂‖2n of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL) and the Elastic-Net (EN)
applied to the pseudo-real data, and based on 20 replications of Application 2. Left; Center-
left: The tuning parameters are chosen by 10 fold cross validation. Center-right; Right: The
tuning parameters minimize the ℓ2 estimation error.
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Fig 8. Best reconstitution of the regression vector β∗ (black curve) by the SL-Lasso estimator
(red curve). Left: On Application 2. Right: On Application 1.

the tuning parameter is chosen by cross validation (by the Fused-Lasso for the
estimation error and by all the methods for the prediction; cf. Figures 7 (left
and center-left)), it turns out that we can find a S-Lasso solution which performs
better than the other methods as displayed in Figures 7 (center-right and right).
One of the best solution of the S-Lasso estimator in Application 2 can also be
seen in Figure 8 (left). We observe how the S-Lasso succeeds to reconstruct
the ‘smooth’ regression vector β∗. Before considering Application 1, we point
out one more fact: in both center-right and right plots in Figure 8, the tuning
parameters minimize the ℓ2 estimation error. This can provide an explanation
of such a bad performance of the Lasso when we consider the prediction error
(right plot). This also implies the big discrepancy between the Lasso based on
cross validation (plot center-left) and the one corresponding to the right plot.

Finally, let us consider Application 1, and let us recall that the sparsity index
is here larger than the sample size. Figure 8 (right) displays the best reconsti-
tution of the regression vector on this very difficult problem. We observe that
the S-Lasso succeeds only partly to reconstruct the true regression vector. In
the simulation study, we met a similar situation with Example (d) [100/30/3]
(cf. Figure 5), where the S-Lasso perfectly estimated β∗. However, the situation
here is even more difficult since the sparsity index is much larger than the sam-
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ple size and since many high and negative correlations between the covariates
appear in the riboflavin dataset.

5. Conclusion

In this paper, we introduced the Lasso-type estimator β̂Quad which consists of
two penalty terms: a ℓ1 penalty term which ensures sparsity and a quadratic
penalty term which captures some structure in the regression vector. We showed
that this estimator satisfies good theoretical properties, specifically when the
Lasso estimator might fail. As special cases we considered the Elastic-Net and
the S-Lasso. These methods are interesting in particular when correlations be-
tween variables exist or when the regression vector is ‘smooth’. We illustrated
this in a certain setting and an example where β̂Quad performs better than the
Lasso.

In a concrete survey, we considered the performance of the S-Lasso estima-
tor compared to the Lasso, the Elastic-Net and the Fused-Lasso in terms of
prediction and estimation accuracy. We found the superiority of the S-Lasso
in several simulation experiments where the regression vector has a particu-
lar structure. We also observed that the theoretical calibration of the tuning
parameters and those obtained by 10 fold cross validation provide similar per-
formances. The methods have also been applied to pseudo real examples based
on the riboflavin dataset. Finally, we pointed out in several simulation studies
(see Example (d) [100/30/σ]) the ability of the S-Lasso to recover smooth vector
even in difficult situations where the sparsity index is larger than the sample
size.

6. Proofs

We first provide two concentration results: the first one deals with Gaussian
noise and the second one concerns noise admitting finite variance.

Lemma 2. Let η ∈ (0, 1). Let 0 < τ ≤ 1, be a real number. Let Λn,p be
the random event defined by Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn} where Vj =

n−1
∑n

i=1 xi,jεi. Let us define λn = 2
√
2

τ σ
√

n−1 log(p/η). Then

P

(
max

j=1,...,p
2|Vj | ≤ τλn

)
≥ 1− η.

Proof. Since Vj ∼ N (0, n−1σ2) for any j ∈ {1, . . . , p}, an elementary Gaussian
inequality gives

P

(
max

j=1,...,p
|Vj | ≥ τλn/2

)
≤ p max

j=1,...,p
P (|Vj | ≥ τλn/2)

≤ p exp

(
− n

2σ2

(
τλn

2

)2
)

= η.

This ends the proof.
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Lemma 3. Let η ∈ (0, 1). Let 0 < τ ≤ 1, be a real number. Denote also by L
the constant such that n−1

∑n
i=1 maxj=1,...,p x

2
i,j ≤ L. Let Λn,p be the random

event defined by Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn} where Vj = n−1
∑n

i=1 xi,jεi
is such that for any i = 1, . . . , n, x2

i,j ≤ L and the εi’s are independent random

variables with zero mean and finite variance Eε2i ≤ σ2. Denote by KNem the

quantity KNem = infq∈[2,∞]∩R(q − 1)p2/q. Then for λn = 2σ
τ

√
KNemL

nη , we have

P

(
max

j=1,...,p
2|Vj | ≤ τλn

)
≥ 1− η.

Proof. This inequality uses an inequality on the expectation of supremum of
square of sum of independent random variables that can be found in [11, The-
orem 2.2]. Let us mention that 2e log(p)− 3e < KNem < 2e log(p)− e. Markov
Inequality and Theorem 2.2 in [11] (with r = ∞) imply

P

(
max

j=1,...,p
|Vj | ≥ τλn/2

)
≤ 4

τ2λ2
n

E

(
max

j=1,...,p
V 2
j

)

≤ 4KNem

τ2λ2
n

n∑

i=1

E

(
max

j=1,...,p
n−2x2

i,jε
2
i

)
(15)

≤ 4σ2KNem

τ2nλ2
n

n−1
n∑

i=1

max
j=1,...,p

x2
i,j ≤ η,

where we used the definition of λn = 2σ
τ

√
KNemL

nη in the last inequality. Theorem

2.2 in [11] is used to obtain (15).

Proof of Theorem 1. We provide a first result which may help the legibility of
the paper. It states that the squared risk and the ℓ1-estimation error are con-
trolled by the restricted ℓ2-estimation error |β∗

B − β̂Quad
B |2.

Proposition 3. Let β̂Quad be the estimator defined by (2)-(4) with tuning pa-
rameters λn and µn. Let 0 < τ ≤ 1 be a real number. On the event Λn,p =
{maxj=1,...,p 2|Vj | ≤ τλn} with Vj = n−1

∑n
i=1 xi,jεi, if τ = 1/2 we have

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
+

λn

2
|β∗ − β̂Quad|1 ≤ rn|β∗

B − β̂Quad
B |2, (16)

where rn = 2λn

√
|A∗|+ 2µn|J̃β∗|2, and B is a set including A∗.

Proof. Let first X̃, Ỹ and ε̃ be the augmented dataset defined by

X̃ =

(
X√
nµnJ

)
, and Ỹ =

(
Y
0

)
, and ε̃ =

(
ε

−√
nµnJβ

∗

)
,

where 0 is a vector of size p containing only zeros and J is the p×p matrix given
by (5). Then we have Ỹ = X̃β∗ + ε̃, and the estimator β̂Quad, solution of the



1218 M. Hebiri and S. van de Geer

minimization problem (2) with the penalty given by (4), is also the minimizer
of

1

n

∣∣∣Ỹ − X̃β
∣∣∣
2

2
+ λn|β|1.

Hence, by definition of the estimator β̂Quad we can write

1
n

∣∣∣Ỹ − X̃β̂Quad
∣∣∣
2

2
+ λn|β̂Quad|1 ≤ 1

n

∣∣∣Ỹ − X̃β∗
∣∣∣
2

2
+ λn|β∗|1

⇐⇒ 1
n

∣∣∣X̃β∗ − X̃β̂Quad + ε̃
∣∣∣
2

2
− 1

n |ε̃|22 ≤ λn|β∗|1 − λn|β̂Quad|1

⇐⇒ 1
n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+ 2

n ε̃
′X̃(β∗ − β̂Quad).

Let us now consider the term 2
n ε̃

′X̃(β∗−β̂Quad). By the definition of X̃ and ε̃, we

have the decomposition 1
n ε̃

′X̃(β∗−β̂Quad) = 1
nε

′X(β∗−β̂Quad)−µnβ
∗′J′J(β∗−

β̂Quad). The first term in this decomposition is quite common in the literature
and we treat it using arguments which can be found for instance in [7]. We then
need to adapt those arguments in order to deals with the second term of the
decomposition µnβ

∗′J′J(β∗ − β̂Quad) in the same time. Recall that A∗ = {j :

β∗
j 6= 0} and that J′J = J̃ . Let 0 < τ ≤ 1 be a real number. Then, on the event

Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn} with Vj = n−1
∑n

i=1 xi,jεi, we have

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+ τλn|β∗ − β̂Quad|1

−2µnβ
∗′J̃(β∗ − β̂Quad). (17)

The remainder of this proof is linked to the way we choose to treat the term
µnβ

∗′J̃(β∗ − β̂Quad) and in particular in the way we choose to link the RHS of

Inequality (17) to the quantity |β∗
A∗ − β̂Quad

A∗ |2. We obviously can write

−µnβ
∗′J̃(β∗ − β̂Quad) = −µnβ

∗
B
′J̃(β∗

B − β̂Quad
B ) ≤ µn|J̃β∗|2|β∗

B − β̂Quad
B |2,

where B is the smallest set of indices such that the first equality holds. Note
that the set B includes A∗, the true sparsity set, and is not much larger due to
the sparsity of J̃ .

Now let τ = 1/2 in (17), add 2−1λn|β∗ − β̂Quad|1 to both sides of this in-
equality. We then get

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
+

λn

2
|β∗ − β̂Quad|1

≤ λn

[
|β∗|1 − |β̂Quad|1 + |β∗ − β̂Quad|1

]
+ 2µn|J̃β∗|2|β∗

B − β̂Quad
B |2

≤ 2λn

∑

j∈A

∣∣∣β∗
j − β̂Quad

j

∣∣∣+ 2µn|J̃β∗|2|β∗
B − β̂Quad

B |2

≤ rn|β∗
B − β̂Quad

B |2, (18)
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where rn = 2λn

√
|A∗| + 2µn|J̃β∗|2, since |β∗

A∗ − β̂Quad
A∗ |1 ≤

√
|A∗||β∗

A∗ −
β̂Quad
A∗ |2 ≤

√
|A∗||β∗

B − β̂Quad
B |2. In the second above inequality, we used the

fact that |β∗
j − β̂Quad

j |+ |β∗
j | − |β̂Quad

j | = 0 for any j /∈ A and to the triangular

inequality. This is the claim of Proposition 3 when J̃ is sparse.

Let us now proof the main theorem. Thanks to Inequality (16) in Proposi-
tion 3, we easily obtain that

|β∗ − β̂Quad|1 ≤ ̺n|β∗
B − β̂Quad

B |2, (19)

where ̺n := 2rn/λn = 4
√
|A∗|+ 4µn

λn
|J̃β∗|2. Then the vector β∗−β̂Quad is an ad-

missible vector ∆ in Assumption B(B). As a consequence, using this assumption
in Equation (16), we get on one hand

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
≤ rn√

φµn

√
1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2
,

and a simple simplification leads to the first part of the result

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
≤ φ−1

µn
(2λn

√
|A∗|+ 2µn|J̃β∗|2)2. (20)

On the other hand, Inequality (19), combined to Assumption B(B) and Inequal-
ity (20), implies

|β∗ − β̂Quad|1 ≤ 2φ−1
µn

(2λn

√
|A∗|+ 2µn|J̃β∗|2)2

λn
,

which is the desired bound on the ℓ1 estimation error given in Theorem 1. The
proof is completed when we use Lemma 2 with τ = 1/2 to control the probability
of the event Λn,p.

Proof of Proposition 1. We first provide a bound on |β∗
Θ−β̂Quad

Θ |2 for Θ = B∪C.
Theorem 1 states a bounds on the prediction error and on the ℓ1 estimation error
under Assumption B(B). Here we do not care about the ℓ1 estimation error.
Then one can observe that in the intermediate step between (17) and (18) in
the previous proof, one can avoid the addition of the term λn|βQuad − β∗|1/2.
As a consequence, we obtain (20) but with τ = 1 instead of 1/2 in (17). Apart
from this value of τ everything remains the same.

More particularly, thanks to (19) we can use Assumption B′(B ∪ C),
which directly implies that the following inequality holds |β∗

Θ − β̂Quad
Θ |2 ≤√

φ−1
µn

√
1
n |X̃β∗ − X̃β̂Quad|2, with Θ = B ∪ C. Combining this inequality

with (20), we easily get

|β∗
Θ − β̂Quad

Θ |2 ≤ 2φ−1
µn

(λn

√
|A∗|+ µn|J̃β∗|2), (21)

with Θ = B ∪ C. Now, we consider the term |β∗
Θc − β̂Quad

Θc |2. Denote by δ the

vector δ = β∗ − β̂Quad for shorten. For any p-dimensional vector a, let a(1) ≤
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a(2) ≤ · · ·a(p) be the corresponding ranked sequence. Given this new notation,
note that for any j ∈ [1, . . . , p], the inequality |δBc |(j) ≤ |δBc |1 × j−1 holds. As
a consequence

|δΘc |22 ≤ |δBc |21
∑

j≥m+1

j−2 ≤ m−1|δBc |21,

where we recall that Θ = B ∪ C, with |B| = m. Then using the last display
with (19) yields to

|δΘc |2 ≤ ̺n√
m
|δB|2 ≤ ̺n√

m
|δΘ|2,

where ̺n = 4
√
|A|+ 4µn

λn
|J̃β∗|2. Combine this last inequality with (21) implies

|δ|2 ≤ (1 +
̺n√
m
)|δΘ|2 ≤ 2φ−1

µn
(1 +

̺n√
m
)(λn

√
|A∗|+ µn|J̃β∗|2).

Since |δ|∞ ≤ |δ|2, we obtained the desired control on the sup-norm of β∗ −
β̂Quad.

Proof of Theorem 2. This result is quite natural since it is a direct consequence
of Proposition 1. We refer the reader to the proof of Theorem 2 in [18] for
instance.

Proof of Theorem 3. We consider now the case of general matrices J̃ . Most of
the proof is similar to the sparse case (Proof of Theorem 1 above). The same
reasoning leads to (17) and the only different occurs when we deal with the term

−µnβ
∗′J̃(β∗ − β̂Quad). We have here

−µnβ
∗′J̃(β∗ − β̂Quad) ≤ µn|J̃β∗|∞|β∗ − β̂Quad|1.

Then, if we set τ = 1
4 and the tuning parameter µn = λn

8|J̃β∗|∞
, Inequality (17)

becomes

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+

λn

2
|β∗ − β̂Quad|1.

Add 2−1λn|β∗−β̂Quad|1 to both sides of the previous inequality and then thanks

to the fact that |β∗
j − β̂Quad

j | + |β∗
j | − |β̂Quad

j | = 0 for any j /∈ A∗ and to the
triangular inequality, the above inequality implies that (we refer to the proof of
Proposition 3 for similar arguments).

1

n

∣∣∣X̃β∗ − X̃β̂Quad
∣∣∣
2

2
+

λn

2
|β∗ − β̂Quad|1 ≤ 2λn

√
|A∗||β∗

A∗ − β̂Quad
A∗ |2.

This above intermediate result is the analogous of Proposition 3 in the case
where J̃ is general. That is, we get a similar bound but depending on |β∗

A∗ −
β̂Quad
A∗ |2 instead of |β∗

B − β̂Quad
B |2 and with rn = 2λn

√
|A∗|. Note also that (19)

is replaced by the following linear inequality |β∗ − β̂Quad|1 ≤ 4|β∗
A − β̂Quad

A |1.
Taking into account this changing, we use can use Assumption RE instead of
Assumption B(B) and then a similar reasoning as in the proof of Theorem 1
leads to the desired results.
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Proof of Proposition 2. Using exactly the same reasoning as in the proof of
Proposition 1 but based on Theorem 3 instead of Theorem 1 we obtain with
probability at least 1− η

|β∗
A∗ − β̂Quad

A∗ |2 ≤ 2φ−1
µn

λn

√
|A∗|, (22)

since here τ becomes equal to 1/2 in Lemma 2. This completes the proof of the
first part of the Proposition. We now show that A∗ ⊂ Â with high probability.
Thanks to (22), we have with high probability |β∗

A∗ − β̂Quad
A∗ |∞ ≤ U where we

used U = 2φ−1
µn

λn

√
|A∗| for short. But

|β̂Quad
A∗ − β∗

A∗ |∞ ≤ U ⇔ β∗
j − U ≤ β̂Quad

j ≤ β∗
j + U ∀j ∈ A∗.

Note that by assumption, we have |β∗
j | > U, ∀j ∈ A∗. Then if we distinguish

the case β∗
j > 0 and the case β∗

j < 0, we easily conclude that β∗
j > 0 implies

β̂Quad
j > 0 and β∗

j < 0 implies β̂Quad
j < 0. This ables us to write

P(Sgn(β̂Quad
A∗ ) = Sgn(β∗

A∗)) ≥ P(|β̂Quad
A∗ − β∗

A∗ |∞ ≤ U) ≥ 1− η,

and this naturally implies the that A∗ ⊂ Â with high probability.

Proof of Theorem 4. We now show that Â ⊂ A∗ with high probability. This
proof is quite inspired by the one by Bunea [5]. First of all, note that we can
write the KKT conditions of the minimization problem (6) as

|Kn(β̂
Quad − β∗)− X ′ε

n
+ µnJ̃β

∗|∞ ≤ λn

2
. (23)

Then all the solutions of the criterion (6) share the same active set

Â =

{
j ∈ {1, . . . , p} : |(Kn(β̂

Quad − β∗))j −
X ′

jε

n
+ µn(J̃β

∗)j | =
λn

2

}
.

That is, all these solutions have non-zero components at the same positions. We
now use this property to show that the estimator β̂Quad has non-zero compo-
nents at the same positions as a well-controlled (but uncomputable) estimator
on an event which occurs with high probability. For this purpose, let us consider
the criterion

F (b) = ‖Y −
∑

j∈A∗

Xjbj‖2n + λn

∑

j∈A∗

|bj |+ µnb
′
A∗J′

A∗JA∗bA∗ ,

where recall that for any p-dimensional vector a and any set Θ ⊂ {1, . . . , p}, the
notation aΘ means that (aΘ)j = aj , ∀j ∈ Θ and 0 otherwise. Moreover, JA∗ is
such that (JA∗)j,k = Jj,k if j, k ∈ A∗ and 0 otherwise. Define the estimator

b̂ = argmin
b∈Rp: b(A∗)c=0p

F (b),
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where 0p is the zero in Rp. Since we restricted b̂ to be zero when β∗ is zero and
that this is an information we do not have access to, we mention that the vector
is not computable. Let us denote by Ω the following event

Ω =
⋂

k/∈A∗





∣∣∣∣∣∣

∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )−

X ′
kε

n
+ µn

∑

j∈A∗

J̃j,kβ
∗
j

∣∣∣∣∣∣
<

λn

2



 .

Observe how the event Ω is inspired by the KKT conditions (23). Actually, on

the event Ω, the components b̂k with k /∈ A∗ equals zero as they do not saturate
KKT conditions. This makes the minimization of F (b) over b ∈ Rp : b(A∗)c = 0p

coincide with the minimization of the criterion (6) on Ω. That is, the estimator

b̂ turns out to be also solution of the original criterion (6) on Ω. But β̂Quad is
also solution of (6) and then, as we already pointed, this implies that on Ω, both

of β̂Quad and b̂ have non-zero components at the same positions and then, b̂ has
non-zero components at components j ∈ Â. Add the fact that by construction
b̂(A∗)c = 0p, then Â ⊂ A∗ on the event Ω. It then remains to prove that the
event Ω occurs with high probability. We have

P(Â * A∗) ≤ P(Ωc)

≤
∑

k/∈A∗

P




∣∣∣∣∣∣

∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )−

X ′
kε

n
+ µn

∑

j∈A∗

J̃j,kβ
∗
j

∣∣∣∣∣∣
≥ λn

2




≤
∑

k/∈A∗

P




∣∣∣∣∣∣

∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )−

X ′
kε

n

∣∣∣∣∣∣
≥ λn

2
− µn|J̃β∗|∞




≤
∑

k/∈A∗

P




∣∣∣∣∣∣

∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )−

X ′
kε

n

∣∣∣∣∣∣
≥ λn

4




≤
∑

k/∈A∗

P



∣∣∣∣∣
∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )

∣∣∣∣∣ ≥
λn

8


 +

∑

k/∈A∗

P

(∣∣∣∣
X ′

kε

n

∣∣∣∣ ≥
λn

8

)
(24)

where we used the fact that for real number a and b, we have |a| + |b| ≥
|a + b| in the third inequality and the fact that µn = λn

4|J̃β∗|∞
in the

forth one. Let us consider the last two terms in the last display separately.

First, since λn = 16σ

√
log(p/

√
ηp/(1+p))

n , and using close arguments to those

employed in Lemma 2, we obtain
∑

k/∈A∗ P
(
|X

′
kε
n | ≥ λn

8

)
≤ η 1

1+p ; second, ac-

cording to
∑

k/∈A∗ P
(
|∑j∈A∗(Kn)j,k(b̂j − β∗

j )| ≥ λn

8

)
, we need to control

|∑j∈A∗(Kn)j,k(b̂j−β∗
j )| for every k /∈ A∗. On one hand, Assumption D implies

∀ k /∈ A∗

∣∣∣∣∣
∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )

∣∣∣∣∣ ≤
∑

j∈A∗

|b̂j − β∗
j |t/|A∗|. (25)



The Smooth-Lasso and other ℓ1 + ℓ2-penalized methods 1223

By definition of b̂, we just have to repeat the proof of Theorem 3 but with b̂
instead of β̂Quad and only on the true sparsity set A∗. We get that on the event
Λn,A∗ =

{
maxj∈A∗ |X ′

jε| ≤ λn/8
}
, which is the same that Λn,p but using A∗

instead of {1, . . . , p},
∑

j∈A∗

|b̂j − β∗
j | ≤ 8φ−1

µn
λn|A∗|.

Moreover, similar reasoning as in Lemma 2 leads to P
(
Λc
n,A∗

)
≤ η 1

1+p . Combine

this result with (25) and get

∑

k/∈A∗

P



∣∣∣∣∣
∑

j∈A∗

(Kn)j,k(b̂j − β∗
j )

∣∣∣∣∣ ≥
λn

8


 ≤ pP



∑

j∈A∗

|b̂j − β∗
j | ≥

|A∗|λn

8t




≤ pP



∑

j∈A∗

|b̂j − β∗
j | ≥ 8φ−1

µn
λn|A∗|




≤ pP
(
Λc
n,A∗

)
≤ η

p

1 + p
,

provided that t ≤ φµn

64 . We finally conclude by this last inequality and (24) that

P(Â * A∗) ≤ η( 1
1+p + p

1+p ) ≤ η. Then we get the desired result.

Proof of Theorem 5. This proof is almost the same as the one of Theorem 1. The
only difference is the way to control the event Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn}
where Vj = n−1

∑n
i=1 xi,jεi when the noise admits only zero mean and finite

variance. Then we do not use the concentration inequality provided in Lemma 2
for the Gaussian noise but an analog concentration inequality more adapted to
this type of noise. This concentration inequality is given by Lemma 3 and we
get

P

(
max

j=1,...,p
2|Vj | ≤ τλn

)
≥ 1− η,

for a value of λn = 2σ
τ

√
KNemL

nη . Then we set τ = 1/2 and we plug this new value

of the tuning parameter λn instead to the one used to establish the previous
results into Theorem 1. We just finish the proof by using the fact that µn =
λn

√
|A∗|

2|J̃β∗|2
and we obtain the analogous of Corollary 1.
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