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Université d’Aix-Marseille 1, CNRS UMR 6632,
C.M.I., 39 rue F. Joliot Curie, 13453 Marseille Cedex 13

e-mail: autin@cmi.univ-mrs.fr

Jean-Marc Freyermuth† and Rainer von Sachs†
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Abstract: We focus on the performances of tree-structured wavelet esti-
mators belonging to a large family of keep-or-kill rules, namely the Vertical
Block Thresholding family. For each estimator, we provide the maximal
functional space (maxiset) for which the quadratic risk reaches a given
rate of convergence. Following a discussion on the maxiset embeddings, we
identify the ideal estimator of this family, that is the one associated with
the largest maxiset. We emphasize the importance of such a result since
the ideal estimator is different from the usual (plug-in) estimator used to
mimic the performances of the Oracle. Finally, we confirm the good per-
formances of the ideal estimator compared to the other elements of that
family through extensive numerical experiments.
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1. Introduction

Wavelet methods are known to be powerful in nonparametric estimation of func-
tions. Indeed, the information of a function is localized in a few large wavelet
coefficients for a wide range of function classes. This is the key-point to under-
standing why Hard and Soft thresholding methods perform well. These methods
introduced by Donoho and Johnstone [13] consist in estimating the function by
using the empirical wavelet coefficients which are larger than a chosen thresh-
old value. In particular, these estimators were shown to be near optimal over
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Besov spaces while they are adaptive for the regularity parameter (see Donoho
and Johnstone [13, 14]). As mentioned by Autin [3] such thresholding rules are
elitist in the sense that small empirical wavelet coefficients are not used in the
reconstruction of the function.

Recent developments in wavelet thresholding have shown that elitist proce-
dures can be outperformed in both theoretical and practical way by methods
which refine the choice of the wavelet coefficients to be used in the reconstruc-
tion. This refined choice makes use of information from neighbored coefficients,
e.g., block thresholding methods (see among others Cai [9], Autin [3, 5]) or im-
pose that the empirical coefficients used for the reconstruction of the signal are
arranged over a rooted connected tree (see Baraniuk [8], Autin [4]). We denote
the latter as Tree Structured Wavelets (TSW) estimators. Interest in TSW al-
ready appeared in the works of Donoho [14] and Engel [15, 16]. In particular
they pointed out the connection between TSW and CART. TSW have been
proved useful in curve denoising (see among others Jansen [19], Lee [20], Autin
[4]) but their interest goes beyond as they furnish specific abilities to be used
in signal processing (Shapiro [23], Cohen et al. [10]), edge detection (Sun et al.
[24]), construction of statistical models in the coefficient domain (Freyermuth
et al. [17]). . . This paper is not in the line of comparing TSW to other well es-
tablished methods in curve denoising. Its aim is to suggest a formal treatment
of an algorithm that is closely related to the dyadic CART and to emphasize an
important aspect about the selection of the ideal procedure among a ’natural’
family of TSW estimators. The family of estimators that we will consider in-
cludes as special cases two popular TSW estimators, the CART-like estimator
obtained by model selection (see Donoho [14] and Engel [15]) and the Hard Tree
estimator (see Autin[4])).

The Figures 1-4 show an example of a reconstruction of the Blip function
using these methods (defined in Section 3) and the associated wavelet coefficient
magnitudes (the darker, the larger the coefficient magnitude).

Looking at the positions of the large wavelet coefficients in the Figure 1,
we notice a hierarchical structure between them. In particular, there are large
wavelet coefficients that persist across scales at the location of the singular-
ity. The two methods of reconstruction give estimators in the Figures 3 and 4
which appear to be close to the target function. Note that the sets of empirical
wavelet coefficients used by the two methods are embedded (see Proposition 3.1).
In particular, the cardinality of the set of empirical coefficients used in the re-
construction of the CART-like estimator (Figure 3) is smaller than the one of
the Hard Tree (Figure 4), quantitative results of section 6 support this remark.
These facts will be discussed and interpreted throughout the paper.

Donoho [14] proves that estimation under tree constraints can be solved by a
CART-like algorithm. A Tree-Oracle estimator is obtained after a recursive-per-
level method based on the comparison of the l2-mean of vertical blocks of the
true wavelet coefficients with the standard deviation. This is the best possible
tree-structured estimator minimizing the L2−risk which is unknown in practice
but its performances can be mimicked by plugging-in observed values of the
wavelet coefficients and adjusting the threshold value upwards to account for
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the noise. This estimator is proven to be near-minimax and to perform well in
practice. However, in this paper, adopting the maxiset approach, we show that
we should not compare local ℓ2-norms of empirical wavelet coefficients with the
threshold but rather local ℓ∞-norms.

Fig 1. True function. Fig 2. Noisy data.

Fig 3. CART-like estimator. Fig 4. Hard Tree estimator.

To reach this goal, that is the main result of this paper, we first introduce in
Section 3 a general family of TSW estimators so-called Vertical Block Thresh-
olding (VBT) which includes the two previous estimators as special cases. Then,
we compute the set of all the functions well estimated by each estimator in that
family. Namely, we consider the maxiset approach introduced by Cohen et al
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[11]. Its basics are presented in Section 4. This theory is applied in Section 5
to find the ideal estimator of the VBT family, that is the one for which the set
of well-estimated functions is the largest functional space. The main result of
our paper is expressed in Theorem 5.1 and its Corollary 5.1. Section 6 proposes
numerical experiments to confirm the superiority of the ideal estimator using
as a benchmark the informative results obtained by the Tree-Oracle estimator.
Finally after brief conclusive remarks in Section 7, Section 8 presents the proofs
of our main results.

2. Model and background

2.1. Wavelet setting and model

Let us consider a compactly supported wavelet basis of L2([0, 1]) with V van-
ishing moments (V ∈ N∗) which has been previously periodized {φ, ψjk, j ∈ N,
k ∈ {0, . . . , 2j − 1}}. Examples of such bases are given in [12]. Any function
f ∈ L2([0, 1]) can be written as follows:

f = αφ+

∞
∑

j=0

2j−1
∑

k=0

θjkψjk. (1)

The coefficient α and the components of θ = (θjk)jk are respectively the scal-

ing/wavelet coefficients of f . They correspond to the L2-scalar products between
f and the scaling/wavelet functions φ and ψjk.

We consider the sequential version of the Gaussian white noise model: we
dispose of observations of these coefficients which are assumed to be realizations
of independent random variables:

α̂ = α+ ǫξ,

θ̂jk = θjk + ǫξjk, (2)

where ξ, ξjk are i.i.d. N (0, 1), 0 < ǫ < 1 is supposed to be the noise level, and
where the sequence (θjk)j,k is sparse, meaning that only a small number of large
coefficients contain nearly all the information about the signal. That motivates
the use of keep-or-kill estimators, for which we recall the Hard thresholding
estimator:

f̂S = α̂φ+
∑

(j,k)∈S
θ̂jkψjk, (3)

where S =
{

(j, k) ; j ∈ N, j < jλǫ
; 0 ≤ k < 2j ; |θ̂jk| > λǫ

}

. If S is non empty, it
forms an unstructured set of indices of ‘large’ wavelet coefficients (in the sequel,
by ’large’ coefficients, we understand those which belong to S). Here,

• λǫ = m ǫ
√

log(ǫ−1), 0 < m <∞,
• jλ is the integer such that 2−jλ ≤ λ2 < 21−jλ (0 < λ < 1). For λǫ < 1,
jλǫ

− 1 is the finest level up to which we consider the empirical wavelet
coefficients to reconstruct the signal f .
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This term by term thresholding does not take into account the information
that give us the clusters of wavelet coefficients that we observed in the Figure 1.
But this knowledge has the practical application that, on the one hand, we
would not use in the reconstruction a large isolated wavelet coefficient because
it is not likely to be part of the signal; on the other hand, a small coefficient
in the neighborhood of large coefficients would be kept. This motivates the use
of refined thresholding methods such as the tree-structured wavelets (Autin [4]
and Baraniuk [8]) which we describe in the next section.

2.2. Tree-structured wavelet estimators

Tree-structured wavelet (TSW) estimators are based on the hierarchical inter-
pretation of the wavelet expansion (1). The periodized wavelets {ψjk}jk are
arranged over a nested multiscale structure such that the support of each ψjk

contains the supports of ψj+1,2k and ψj+1,2k+1. This induces a hierarchy among
the wavelet coefficients which can be represented over a binary tree rooted in
(0, 0) (see Figure 5). Hence, at the location of a singularity in the signal, we ob-
serve the persistence of large wavelet coefficients over all scales (see Figure 1).

Therefore, considering the wavelet coefficients as a multiresolution sequence
provides additional information which we aim to benefit from by imposing a
tree/hereditary constraint. The hereditary constraint requires that the set of
non zero wavelet coefficients after thresholding forms a connected rooted subtree.
In other words, it cannot include an empirical wavelet coefficient unless all its
ancestors (defined in equation (4) below) are large.

We denote as TJ the binary tree of depth J for which the nodes are the
couples of indices (j, k),

(

0 ≤ j < J, k ∈ {0, . . . , 2j − 1}
)

(see the Figure 5). For
any couple of indices (j, k), following Engel [16], we define the set which contains:

• its ancestors

P(j, k) = {(j −m, ⌈k/2m⌉) ; m = 0, . . . , j} , (4)

where ⌈x⌉ denotes the smallest integer smaller than or equal to x;
• its descendants

C(j, k) = {(j, k) , (j + 1, 2k) , (j + 1, 2k + 1) ,

(j + µ, 2µk) , . . . , (j + µ, 2µ(k + 1)− 1) , . . . ; µ = 2, 3, . . .} . (5)

Note that to each node of indices (j, k) correspond 2j
′−j descendants at levels

j′ (j ≤ j′ < J) and j + 1 ancestors.

Remark 2.1. When using smooth wavelets, the presence of an edge ’generates’
several large wavelet coefficients at each scale, due to the overlapping supports
of the wavelets. This idea is the leitmotiv of block thresholding methods (intra-
scales), but could also be applied to TSW. In such a case, the heredity constraint
would mean that a node at the scale j in the tree have more than two descendants
at the scale j+1 (see Baraniuk [8], Averkamp and Houdré [7]). In this paper, we
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scale

j = 0

j = 1

j = 2

j = J − 1

(0, 0)

(1, 0) (1, 1)

(2, 0) (2, 1) (2, 2) (2, 3)

Fig 5. Binary tree of depth J.

consider the situation where the ancestors have two descendants and therefore,
we naturally associate binary trees to wavelet coefficient sequences.

Let us now introduce the definition of a tree-structured estimator in our set-
ting.

Definition 2.1. We call tree-structured estimator of a signal f satisfying (1)
any keep-or-kill estimator

f̂T = α̂φ+
∑

(j,k)∈T
θ̂jkψjk,

where the set of the indices T satisfies the hereditary constraint formulated in
Engel [15], that is, if (j, k) is in T then all its ancestors are in T .

In the sequel we denote by |T | the cardinality of the tree T , i.e., the num-

ber of active wavelet coefficients kept in the estimator f̂T . Analogously to the
Hard thresholding estimator defined in (3), we only use the empirical wavelet
coefficients on levels smaller than jλǫ

.
Donoho [14] used the Oracle approach to propose a tree-structured near op-

timal estimator. His idea was to find a tree-structured estimator which mimics
the optimal risk Rǫ(f) only attained by the “Tree-Oracle”, that is

Rǫ(f) = min
f̂T , T ⊆Tjλǫ

E‖f̂T − f‖22 = min
T ⊆Tjλǫ





∑

(j,k)/∈T
θ2jk + ǫ2 (|T |+ 1)



 ,
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where the minimum is taken over all the tree-structured estimators. Donoho [14]
showed that the solution of this optimization problem under a tree constraint
has an inheritance property and therefore can be solved by a CART-like algo-
rithm applied to the true wavelet coefficients using ǫ as the threshold value. In
the sequel T O stands for the set of coefficients selected by the Tree-Oracle. In
practice, f̂O = α̂φ+

∑

(j,k)∈T O θ̂jkψjk is not available. Donoho [14] proposed to

consider the estimator f̂cart which minimizes the empirical complexity, that is

f̂cart = argmin
f̂T , T ⊆Tjλǫ





∑

(j,k)/∈T
θ̂2jk + λ2ǫ (|T |+ 1)



 .

Furthermore it was shown that the risk of f̂cart is of the same order as the
optimal risk up to a logarithmic term. Precisely, for m large enough, there exists
a constant K > 0 not depending on ǫ such that for any f ∈ L2([0, 1]):

E‖f̂cart − f‖22 ≤ K log(ǫ−1)Rǫ(f).

3. Vertical block thresholding estimators

Let us now define a general Vertical Block Thresholding (VBT) estimator f̂p,
for any 1 ≤ p ≤ ∞, as follows:

Definition 3.1 ((λ, p)-VBT-method). For given 0 < λ < 1, 1 ≤ p ≤ ∞ and any
set of real numbers

(

θjk, 0 ≤ j < jλ, 0 ≤ k < 2j
)

we define the sets of indices,
Ejk(θ, λ), for any (j, k), iteratively as follows:

• For j = jλ − 1 and for any k,

Ejk(θ, λ) = {(j, k)} if |θjk| > λ,

Ejk(θ, λ) = ∅ otherwise.

• For any 0 ≤ j < jλ − 1 and any k, we put

Fjk(θ, λ) := {(j, k)} ∪ {Ej+1,k′(θ, λ); (j, k) ∈ P(j + 1, k′)} .

Then

Ejk(θ, λ) = Fjk(θ, λ) if ‖θ / Fjk(θ, λ)‖p > λ,

Ejk(θ, λ) = ∅ otherwise,

where

‖θ / Fjk(θ, λ)‖p :=





1

#Fjk(θ, λ)

∑

(j′,k′)∈Fjk(θ,λ)

|θj′k′ |p




1/p

for 1 ≤ p <∞,

‖θ / Fjk(θ, λ)‖∞ := max
(j′,k′)∈Fjk(θ,λ)

|θj′k′ |.
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The (λ, p)-VBT-method is illustrated on an example in the Appendix 8.1.
For any real valued p ∈ [1,∞], it is associated to the following estimator:

f̂p := f̂T p := α̂φ+
∑

(j,k)∈T p

θ̂jkψjk (6)

= α̂φ+
∑

j∈N,j<jλǫ

2j−1
∑

k=0

θ̂jk 1

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′ (θ̂, λǫ)‖p > λǫ

}

ψjk,

where T p is the set of empirical wavelet coefficients used in the reconstruction
following the VBT method based on ℓp-norms.

We encourage the reader to check that for p = 2 (resp. p = ∞) the estimator

f̂p is the CART-like estimator (resp. the Hard Tree estimator). These estimators
have an interesting interpretation using the terminology of wavelet thresholding.
At each node (j, k), we consider the coefficient at (j, k) and those which survive
the previous step (i.e., at scale j+1). They form a connected subtree Fjk(θ, λ)
of C (j, k) rooted to (j, k). The decision to keep-or-kill this block of coefficients
depends on its ℓp-mean which is compared with the threshold λǫ. We remark
that unlike other block thresholding methods there is no need for controlling
the size of the blocks by any additional parameter.

From now on, we will study the performance of these VBT estimators to
address the following question: is the ℓ2-norm the best choice to consider among
f̂p estimators (1 ≤ p ≤ ∞)? In the next sections we use the maxiset approach
to prove that the answer is NO.

Define the Vertical Block Thresholding family (VBTǫ) as

VBTǫ =
{

f̂p, 1 ≤ p ≤ ∞
}

.

At first glance, as 1 ≤ p ≤ ∞ is real-valued, this family of estimators VBTǫ
seems to be uncountable. But it is not since the estimators are clearly tree-
structured. More precisely,

Proposition 3.1. For any 1 ≤ p ≤ q and for given λǫ,

1. T p and T q constitute trees of indices,
2. T p ⊆ T q,
3. T ∞ is the smallest tree (in terms of cardinality) which contains all ‘large’

empirical wavelet coefficients.

According to the previous proposition, we deduce that VBTǫ is a family of
tree-structured estimators with embedded trees. The larger p, the bigger the
tree.

4. Maxiset approach

In this section we recall the maxiset approach. The maxiset point of view has
been proposed by Cohen et al. [11] to measure the performance of estimators.
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Maxiset

PROCEDURE  f
^ vF (    )

Fig 6. Maxiset and Minimax

For a given estimator f̂ and a chosen sequence v = (vǫ)ǫ tending to 0 when ǫ goes
to 0, this approach consists in providing the set of all the functions (maxiset)

for which the rate of convergence of the quadratic-risk of f̂ is at least as fast
as v.

In this setting, the functional space G will be called maxiset of f̂ for the rate
of convergence v if and only if the following property holds:

sup
0<ǫ<1

v−1
ǫ E‖f̂ − f‖22 <∞ ⇐⇒ f ∈ G.

From now on we shall adopt the following notation: MS
(

f̂ , (vǫ)ǫ
)

= G.
Note that, if f̂ reaches the minimax rate v on a functional space F , then

F ⊆MS(f̂ǫ, (vǫ)ǫ). Hence, the maxiset approach appears to be more optimistic
than the minimax one. The following scheme illustrates this idea.

The maxiset setting allows to compare efficiently different procedures. This
approach lies on the fact that the larger the maxiset, the better the procedure.
Following Kerkyacharian and Picard [21, 22] and Autin [3], this way to measure
the performance of procedures is often successfully applicable to discriminate
procedures that are equivalent in the minimax sense, and to give theoretical
explanations for some phenomena observed in practice (see Section 6).

5. Main results

5.1. Functional spaces: Definitions and embeddings

In this paragraph, we characterize the functional spaces which shall appear in
the maxiset study of our estimators. Recall that, for later use of these functional
spaces, we shall consider wavelet bases with V vanishing moments.

Definition 5.1. Let 1 ≤ γ ≤ ∞, 0 < u < V . We say that a function f ∈
L2([0, 1]) belongs to the Besov space Bu

γ,∞ if and only if:

sup
J∈N

2γ(u−
1
γ
+ 1

2 )J
∑

j≥J

2j−1
∑

k=0

|θjk|γ <∞.
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Besov spaces naturally appear in estimation problems (see Autin [3] and
Cohen et al. [11]). These spaces characterize the functions for which the energy
of wavelet coefficients on levels larger than J (J ∈ N) is decreasing exponentially
in J . We recall some properties of embeddings. Let 1 ≤ γ ≤ γ′ ≤ ∞.

Bu
γ,∞ ( Bu′

γ,∞ for u > u′,

Bu
γ,∞ ( Bu′

γ′,∞ for u′ − 1

γ′
< u− 1

γ
.

For an overview of these spaces, see Härdle et al. [18].
Let us now define a new function space which is the key to our results:

Definition 5.2. Let 0 < r < 2 and 1 ≤ p ≤ ∞. We say that a function f
belongs to the space Wr,p if and only if:

sup
0<λ<1

λr−2
∑

j<jλ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ

}

<∞.

First, note that the larger r, the larger the functional space; second, in con-
trast to weak Besov spaces (see Cohen et al. [11] for an explicit definition)
which appear in the maxiset results for Hard and Soft thresholding estimators,
the spaces Wr,p (0 < r < 2) are not invariant under permutations of wavelet
coefficients within each scale. This property makes them able to distinguish func-
tions according to the “clustering properties” of their wavelet coefficients. These
functional spaces are quite large as suggested by our following Proposition 5.1.

Proposition 5.1. For any 0 < s < V, and any 2 ≤ p ≤ ∞

Bs
2,∞ ⊆W 2

1+2s ,p
. (7)

Our following Proposition 5.2 shows that, for the same parameter r (0 < r <
2), the functional spaces Wr,p (p ≥ 1) are embedded. The larger p the larger
Wr,p. Moreover, in Theorem 5.1, the intersections of function spaces appearing
in equation (9) below are shown to be directly related to the maxisets of the

estimators f̂p ∈ VBT ǫ.

Proposition 5.2. For any 1 ≤ p < q and any 0 < r < 2, we have the following
embeddings of spaces:

Wr,p ⊆Wr,q, (8)

Bu
2,∞ ∩W 2

1+2s ,2
( Bu

2,∞ ∩W 2
1+2s ,∞, for any u <

s

1 + 2s
. (9)

5.2. Maxiset results

In this paragraph we provide the maximal space (maxiset) of any f̂p ∈ VBT ǫ

associated with the rate λ
4s

1+2s
ǫ (s > 0). This corresponds to the optimal minimax
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rate over Besov spaces Bs
γ,∞, s >

1
γ − 1

2 under the L2-risk with a logarithm term.
In the maxiset context, this is a traditional choice which has nothing to do with
a price to pay for adaptivity. It gives a maxiset that is simpler to interpret
than the one we would get using the exact optimal minimax rate. And, for our
purpose, this is unnecessary complications since the choice of the rate will not
make any difference in the identification of the maxiset-ideal method among the
(λ, p)-VBT family.

Theorem 5.1. Let s > 0, 1 ≤ p ≤ ∞ and λǫ = m ǫ
√

log(ǫ−1). For any

m ≥ 4
√
3, we have the following equivalence:

sup
0<ǫ<1

λ
− 4s

1+2s
ǫ E‖f̂

p
− f‖22 <∞ ⇐⇒ f ∈ B

s
1+2s

2,∞ ∩W 2
1+2s ,p

,

that is to say, using the maxiset notation, MS(f̂
p
, (λ

4s
1+2s
ǫ )ǫ) = B

s
1+2s

2,∞ ∩W 2
1+2s ,p

.

Note that these maxisets are large functional spaces since from Proposi-

tion 5.1 we deduce that the functional space B
s

1+2s

2,∞ ∩W 2
1+2s ,p

contains the space

Bs
γ,∞ for any γ ≥ min(2, s−1). Hence this maxiset contains many functions

that cannot be reconstructed by linear procedures at the rate λ
− 4s

1+2s
ǫ (for more

details see Autin et al. [6]).
We now state the main result of the paper through the following corollary.

Corollary 5.1. Let λǫ = m ǫ
√

log (ǫ−1), with m ≥ 4
√
3 , then f̂∞ is the ideal

estimator in the maxiset sense among the VBT ǫ family.

Proof. Theorem 5.1 establishes the maxiset associated with any estimator f̂p
built with the (λǫ, p)−VBT method. According to (8) of Proposition 5.2 we
deduce that the maxisets of these estimators are embedded and that the largest
maxiset is the one associated with f̂∞ (Hard Tree estimator).

Although f̂2 was shown to be very powerful by using the Oracle approach
(see Donoho [14]), f̂∞ is better in the maxiset sense. This result is interpretable
as the necessity to keep all empirical wavelet coefficients larger than λǫ in the
reconstruction. Missing some of them has a huge maxiset-cost which corresponds
to the exclusion of many functions estimated at the same rate. Moreover this
suggests to include not only all the ‘large’ empirical wavelet coefficients but
also some well chosen small ones. Autin [3] already underlies this important

issue through what he calls cautious rules. In particular he proved that f̂∞
outperforms Hard and Soft thresholding estimators in the maxiset sense.

6. Numerical experiments

We first introduce the notations of the nonparametric model we are dealing
with:

Yi = f

(

i

N

)

+ σζi, 1 ≤ i ≤ N, ζi are i.i.d. N (0, 1) . (10)
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We refer the reader to the classical literature (e.g., Tsybakov [25]) for details
about the equivalence between this nonparametric regression model and the
sequence model given by equation (2). We only recall that the noise level ǫ is
such that ǫ = σ√

N
.

This section proposes numerical experiments designed to check whether the
choice of the ℓ∞ norm should be preferred as claimed by the corollary 5.1. The
previous theory does not model all the complexity encountered in practice with
the choice of the wavelet function, of the primary resolution scale, etc. Therefore,
we choose a classical setting for numerical experiments, using Daubechies 8 Least
Asymmetric. In addition, our theoretical model do not consider neither method-
dependent threshold nor data-driven threshold. Hence, for these experiments,
we naturally decide to use the universal threshold value for all methods, i.e.,
λ̂ = σ̂

√

2N−1 logN . We follow a standard approach to estimate σ by the Median
Absolute Deviation (MAD) divided by 0.6745 over the wavelet coefficients at
the finest wavelet scale J − 1 (see e.g., Vidakovic [26]).

We generate the data sets from a large panel of functions often used in wavelet
estimation studies (Antoniadis et al. [2]) with various Signal to Noise Ratios
SNR = {5, 10, 15, 20} and sample sizes N = {512, 1024, 2048}. We define the
SNR as the logarithm decibel scale of the ratio of the standard deviation of
the function values to the standard deviation of the noise. We compute the
Integrated Squared Error of the estimators f̂p, p ∈ {1, 2, 5, 10,∞} at the m-th

Monte Carlo replication (ISE(m)(f̂p), 1 ≤ m ≤M) as follows:

ISE(m)
(

f̂p

)

=
1

N

N
∑

i=1

(

f̂ (m)
p

(

i

N

)

− f

(

i

N

))2

. (11)

The Mean ISE is MISE(f̂p) = M−1
∑M

m=1 ISE
(m)(f̂p) and its standard error

is SE(f̂p) =M− 1
2 σ̂ISE(f̂p).

In this context we are particularly interested in comparing the results of
the estimators for p = 2 with p = ∞. In addition to that, we propose to test
the null hypothesis: H0 : MISE(f̂2) = MISE(f̂∞) against the alternative:

HA :MISE(f̂2) 6=MISE(f̂∞) using the Wilcoxon Signed-Rank test for paired
samples. Therefore, we can choose the number of Monte Carlo replications M
in order to ensure that the power of the test at level I-error of 5% is about 80%
to detect a difference in means of about 1% of MISE(f̂∞).

There are numerous connections between keep-or-kill estimation and hypoth-
esis testing (see Abramovich et al. [1]). We will get an interesting insight into
these methods by computing the number of false positives/negatives (i.e., type
I/II errors). To do so, we compare the set of indices of wavelet coefficients kept by
each estimators (T p) and by the Tree-Oracle (T O) with the one of the keep-or-
kill Oracle estimator SO =

{

(j, k) ; j ∈ N, j < jλ σ√
N

; 0 ≤ k < 2j ; |θjk| > σ√
N

}

.

In addition, we give in Tables 1 and 2 the size (number of nodes) of the trees.
The results suggest similar behavior for different values of N and SNR. To

keep clear the presentation of the results, we only report those for N = 1024
and SNR = 10 in Tables 1-2 and summarize the MISE results in Figure 7.
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Fig 7. MISE of (λ, p)-VBT estimator for five different values of p for estimating various
functions with a SNR equal to 10.

Table 1

MISE (10−4), number of false positives/negatives and average size of the tree (number of
non zero empirical wavelet coefficients in the estimator).

f̂1 f̂2 f̂5 f̂10 f̂∞ Tree-Oracle
Function: Step

MISE 15.06 14.52 13.60 13.15 12.80 4.45
False positives 0.01 0.01 0.02 0.07 0.60 1
False negatives 22.27 21.62 20.51 19.93 19.20 2
Size 19.73 20.39 21.51 22.14 23.41 41

Function: Wave
MISE 4.99 4.98 4.92 4.87 4.79 1.37
False positives 8.01 8.01 8.01 8.05 8.38 8
False negatives 29.34 29.25 28.87 28.52 27.70 0
Size 26.67 26.76 27.14 27.52 28.68 56

Function: Blip
MISE 3.31 3.25 3.12 3.05 3.06 1.39
False positives 0.00 0.00 0.00 0.04 0.73 0
False negatives 14.77 14.58 14.19 13.94 13.52 0
Size 19.24 19.42 19.82 20.10 21.21 34

Function: Blocks
MISE 8.56 8.08 7.66 7.44 7.10 2.30
False positives 3.32 3.90 4.61 5.04 5.62 9
False negatives 68.65 67.33 65.64 64.49 62.63 1
Size 50.67 52.57 54.97 56.55 58.99 124

Function: Bumps
MISE 3.20 3.12 3.06 3.01 2.93 0.97
False positives 1.02 1.08 1.42 1.69 2.09 5
False negatives 66.95 66.40 65.48 64.64 63.10 2
Size 74.07 74.69 75.94 77.04 78.99 143

Function: Heavisine
MISE 2.82 2.74 2.59 2.50 2.47 1.26
False positives 0.01 0.01 0.01 0.06 0.95 0
False negatives 13.12 12.90 12.45 12.16 11.61 3
Size 9.88 10.11 10.56 10.90 12.34 20
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Table 2

MISE (10−4), number of false positives/negatives and average size of the tree (number of
non zero empirical wavelet coefficients in the estimator).

f̂1 f̂2 f̂5 f̂10 f̂∞ Tree-Oracle
Function: Doppler

MISE 5.02 4.77 4.38 4.14 4.03 2.23
False positives 2.93 3.08 4.75 6.00 7.45 11
False negatives 22.88 22.60 21.72 21.11 20.57 5
Size 32.05 32.47 35.04 36.89 38.88 58

Function: Angles
MISE 2.80 2.80 2.80 2.80 2.87 1.32
False positives 0.01 0.02 0.07 0.14 0.82 1
False negatives 9.93 9.93 9.88 9.84 9.72 0
Size 19.08 19.09 19.18 19.30 20.10 30

Function: Parabolas
MISE 3.52 3.52 3.53 3.54 3.72 1.54
False positives 1.01 1.01 1.02 1.08 1.99 2
False negatives 7.66 7.66 7.64 7.62 7.51 0
Size 14.35 14.35 14.38 14.46 15.48 23

Function: time.shift.sine
MISE 2.32 2.32 2.32 2.33 2.45 1.09
False positives 0.01 0.01 0.01 0.06 0.86 0
False negatives 5.56 5.56 5.56 5.55 5.51 0
Size 17.45 17.45 17.46 17.51 18.36 23

Function: Spikes
MISE 1.77 1.54 1.47 1.44 1.41 0.62
False positives 0.84 1.00 1.02 1.05 1.31 1
False negatives 20.37 19.27 18.55 18.11 17.55 1
Size 37.47 38.73 39.47 39.94 40.76 57

Function: Corner
MISE 0.85 0.85 0.85 0.86 0.91 0.44
False positives 0.00 0.00 0.01 0.06 0.92 0
False negatives 6.44 6.44 6.44 6.43 6.35 1
Size 13.56 13.56 13.56 13.63 14.57 19

Comparing the MISE of f̂2 with f̂∞ we observe the optimality of the latter for
most of the test functions with sometimes important improvements, up to 16%
for the function ’doppler’. In the other cases, the loss of f̂∞ against f̂2 remains
under 7%. More than that, for many of these functions we have a monotone
decrease in the MISE as the value of p increases, reflecting the embeddings of
the maxisets of the VBT ǫ estimators (see Section 5).

Looking at the number of false positives/negatives, we can check that f̂∞
allows to reduce the number of false negatives with a comparatively small in-
crease in the number of false positives yielding its good performances in terms
of MISE. Comparing the results to those of the Tree-Oracle we observe that
there are potentially huge improvements achievable by reducing the number
of false negatives. Indeed, the number of active coefficients of the Tree-Oracle
estimators (see Section 2.2),

∣

∣T O∣
∣ is about 25% to 110% larger than |T ∞|.
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7. Conclusions

In this paper we introduced the family of the Vertical Block Thresholding es-
timators. We studied their performances under L2-risk using the maxiset ap-
proach, and we identified the ideal procedure, that is the one obtained from
the (λǫ,∞)-VBT-method. The main message of this paper is that the ideal
estimator is different from the classical one obtained by plugging-in empirical
quantities in the Tree-Oracle which corresponds to the estimator built from the
(λǫ, 2)-VBT-method. Indeed, compared to the latter one, the ideal estimator is
able to reconstruct more functions at the chosen rate.

It is important to emphasize that we compared both theoretically and numer-
ically all these estimators for a fixed threshold value. We have chosen to use the
universal threshold value for the numerical experiments although it is known to
be too conservative in practice, simply in order to use the most standard choice
for our comparisons.

Our theoretical and numerical results emphasize the importance of reducing
the number of false negatives while maintaining the number of false positives. In
addition, the numerical experiments which implement the Tree-Oracle estimator
show us the important potential in reducing the amount of false negatives. To
do so, using these methods, we should either consider more complex hereditary
constraints or allow lower threshold values. Indeed, large threshold values lead
to suboptimal estimation of the localized structure in the underlying curve. It
would be more convenient to use a minimum risk threshold rather than the
universal threshold (cf. Jansen [19]) but, when used with Hard thresholding,
the estimate often shows unappealing visual artifacts (spurious bumps) due to
large wavelet coefficients at fine resolution scales generated from the random
noise (“false positives”). In this context, and as part of future research, we
expect the vertical block thresholding algorithms also for p < ∞ to be pow-
erful as they adaptively keep-or-kill blocks of coefficients even if they contain
coefficients larger than the threshold value. Hence, the control of false posi-
tives is not only achieved by the threshold value but by the algorithm too. The
conclusive words for the present results is that practical application would re-
quire to optimize simultaneously over the parameter p and over the threshold
value.

8. Appendix

8.1. Illustration of the Definition 3.1

In order to illustrate the definition 3.1 and the proposition 3.1 let us consider the
example of a sequence |θ| of wavelet coefficients magnitudes given by the tree
A in the Figure 8. We apply to this tree the (λ, p)-VBT-method for p = {2,∞}
with λ = 0.9 that yields the trees B and C.

In what follows we give the detailed steps of the iterative algorithm described
in the definition 3.1 for the (λ = 0.9, p = 2)-VBT method:
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A

1.2 0.2 0.1 2.1

0.4 0.7

1

B

0 0 0 2.1

0 0.7

1

C

1.2 0 0 2.1

0.4 0.7

1

Fig 8. A: an example of a tree of wavelet coefficient magnitudes
∣

∣θj,k
∣

∣; B: the result of
(λ = 0.9, p = 2)-VBT method applied to this example; C: the result of (λ = 0.9, p = ∞)-VBT
method applied to this example.

1. step 1: j = jλ − 1 = 2, k = {0, 1, 2, 3}, we easily see that E2,1 (θ, λ) =
E2,2 (θ, λ) = ∅, E2,0 (θ, λ) = {(2, 0)}, E2,3 (θ, λ) = {(2, 3)}.

2. step 2: j = 1, k = {0, 1}, note that:
{Ej+1,k′ (θ, λ)} = {E2,0 (θ, λ) , E2,1 (θ, λ) , E2,2 (θ, λ) , E2,3 (θ, λ)}
and that {Ej+1,k′ (θ, λ) , (j, k) ∈ P (j + 1, k′)} corresponds to the direct de-
scendants of (j, k), hence:

(a) for k = 0,
F1,0 (θ, λ) = {(1, 0) , E2,0 (θ, λ) , E2,1 (θ, λ)} = {(1, 0) , (2, 0)}.
We compute the ‖θ/F1,0 (θ, λ)‖2 ≈ 0.89 < λ

Then, we set E1,0 = ∅.
(b) For k = 1,

F1,1 (θ, λ) = {(1, 1) , (2, 3)}, ‖θ/F1,1 (θ, λ)‖2 ≈ 1.57 > λ. Then, we
set E1,1 (θ, λ) = {(1, 1) , (2, 3)}.

3. step 3: j = 0, k = 0,
F0,0 (θ, λ) = {(0, 0) , E1,0 (θ, λ) , E1,1 (θ, λ)} = {(0, 0) , (1, 1) , (2, 3)},
‖θ/F0,0 (θ, λ)‖2 ≈ 1.40 > λ.

8.2. Proof of Proposition 3.1

The proofs of 1. and 3. are obvious. To prove 2., we first notice that from Defini-
tion 3.1 the sets Ejk(θ, λ) and Fjk(θ, λ) depend on p. For notational convenience,
we suppress the dependence on this parameter in the paper except for this proof
as it is a crucial aspect to consider. Then we need the following Lemma 8.1.

Lemma 8.1. Let 1 ≤ p < q ≤ ∞, 0 < λ < 1 and let consider a sequence of
real numbers θ =

(

θjk, 0 ≤ j < jλ, 0 ≤ k < 2j
)

. Then the following embedding
property holds for any couple of indices (j, k):

Ejk(θ, λ, p) ⊆ Ejk(θ, λ, q). (12)
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Proof. We prove property (12) by level-recurrence arguments on Ejk(θ, λ, •). For
j = jλ − 1 and any k, we have that Ejk(θ, λ, p) = Ejk(θ, λ, q). If j = jλ − 2 then,
for any 0 ≤ k < 2j ,

Fjk(θ, λ, p) = Fjk(θ, λ, q).

When comparing the norms ‖.‖p and ‖.‖q, one gets

‖θ / Fjk(θ, λ, p)‖p = ‖θ / Fjk(θ, λ, q)‖p
≤ ‖θ / Fjk(θ, λ, q)‖q .

Hence ‖θ / Fjk(θ, λ, p)‖p > λ =⇒ ‖θ / Fjk(θ, λ, q)‖q > λ. It implies that
Ejk(θ, λ, p) ⊆ Ejk(θ, λ, q).

Suppose now that property (12) holds at a level j+1 such that 0 ≤ j < jλ−1
and for any 0 ≤ k′ < 2j+1. Then, for any 0 ≤ k < 2j

Fjk(θ, λ, p) ⊆ Fjk(θ, λ, q).

Since
Ejk(θ, λ, •) ∈ {∅,Fjk(θ, λ, •)} ,

property (12) clearly holds if Ejk(θ, λ, q) = Fjk(θ, λ, q). We only have to prove
the property for the case Ejk(θ, λ, q) = ∅, i.e. when ‖θ / Fjk(θ, λ, q)‖q ≤ λ. First,
we note that Fjk(θ, λ, q) = Fjk(θ, λ, p)∪(Fjk(θ, λ, q) \ Fjk(θ, λ, p)) and secondly,
we note that, ‖θ / Fjk(θ, λ, q) \ Fjk(θ, λ, p)‖q > λ. The latter statement comes
from the fact that if the set of indices Fjk(θ, λ, q) \Fjk(θ, λ, p) is pruned by the
(λ, q)-VBT-method, that means that its ℓq mean is lower than the threshold λ.

Let us set Fjk(θ, λ, q) = Fjk(θ, λ, p) ∪ (Fjk(θ, λ, q) \ Fjk(θ, λ, p)) . Therefore,

λq ≥ ‖θ / Fjk(θ, λ, q)‖qq

=
#Fjk(θ, λ, p)

#Fjk(θ, λ, q)
‖θ / Fjk(θ, λ, p)‖qq

+
#Fjk(θ, λ, q) −#Fjk(θ, λ, p)

#Fjk(θ, λ, q)
‖θ / Fjk(θ, λ, q) \ Fjk(θ, λ, p)‖qq.

So

λq ≥ #Fjk(θ, λ, p)

#Fjk(θ, λ, q)
‖θ / Fjk(θ, λ, p)‖qq +

#Fjk(θ, λ, q) −#Fjk(θ, λ, p)

#Fjk(θ, λ, q)
λq,

and λ ≥ ‖θ / Fjk(θ, λ, p)‖q. When comparing norms ‖.‖p and ‖.‖q one gets

λ ≥ ‖θ / Fjk(θ, λ, p)‖p.

So Ejk(θ, λ, p) = ∅ that is to say Ejk(θ, λ, p) ⊆ Ejk(θ, λ, q).
We conclude that property (12) holds at level j. This ends the proof.

Corollary 8.1. Let 1 ≤ p < q ≤ ∞, 0 < λ < 1 and let consider a sequence of
real numbers θ :=

(

θjk, 0 ≤ j < jλ, 0 ≤ k < 2j
)

. Then, for any couple of indices
(j, k), the following property holds:

‖θ / Fjk(θ, λ, q)‖q ≤ λ =⇒ ‖θ / Fjk(θ, λ, p)‖p ≤ λ. (13)
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Proof. Because of the (λ, •)-VBT-method, property (13) holds if and only if

Ejk(θ, λ, q) = ∅ =⇒ Ejk(θ, λ, p) = ∅.

This statement is a consequence of Lemma 8.1.
The proof of Proposition 3.1 is then deduced from the corollary above.

8.3. Proof of Proposition 5.1

Proof. According to (8) of Proposition 5.2, it suffices to state the embedding
for the case p = 2.

Let f ∈ Bs
2,∞. There exists C > 0 such that, for any j ∈ N, the wavelet

coefficients of f satisfy:
2j−1
∑

k=0

θ2jk ≤ C 2−2js.

Fix 0 < λ < 1. Let jλ,s be the integer such that 2−jλ,s ≤ λ
2

1+2s < 21−jλ,s . Notice
that jλ,s ≤ jλ.

∑

j<jλ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′ (θ, λ)‖2 ≤ λ

}

≤
∑

j<jλ,s

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′ (θ, λ)‖2 ≤ λ

}

+
∑

j≥jλ,s

∑

k

θ2jk

≤ 2jλ,sλ2 + C 2−2sjλ,s

≤ (2 + C) λ
4s

1+2s .

Hence

sup
0<λ<1

λ−
4s

1+2s

∑

j<jλ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖2 ≤ λ

}

<∞,

that is to say, f ∈W 2
1+2s ,2

.

8.4. Proof of the maxiset results

In this section, we first provide technical lemmas which shall be used to prove
the maxiset result established in Theorem 5.1. Then we prove Proposition 5.2
and Theorem 5.1.
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8.4.1. Technical lemmas and their proof

Lemma 8.2. Let 0 < r < 2 and let f belong to the space B
2−r
4

2,∞ ∩Wr,p. Then:

sup
0<λ<1

λr
[

log

(

1

λ

)]−1
∑

j<jλ

2j−1
∑

k=0

1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p > λ

}

<∞.

Proof. Let f ∈ B
2−r
4

2,∞ ∩Wr,p. Then its wavelet coefficients satisfy:

sup
j∈N

2
2−r
2 j

∑

k

θ2jk <∞,

sup
0<λ<1

λr−2
∑

j<jλ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ

}

< ∞.

For any n ∈ N, we denote by jλ,n the smallest integer such that

2−jλ,n ≤ (λ21+n)2.

sup
0<λ<1

λr
[

log

(

1

λ

)]−1
∑

j<jλ

2j−1
∑

k=0

1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p > λ

}

= sup
0<λ<1

λr
[

log

(

1

λ

)]−1

×
∑

n∈N

∑

j<jλ

2j−1
∑

k=0

1

{

λ2n < min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ21+n

}

.

For any n ∈ N, the number of wavelet coefficients under interest can be upper
bounded by counting j+1 ancestors for each leave at level j in the tree (a leave
is a coefficient satisfying λ2n < min(j′,k′)∈P(j,k) ‖θ / Fj′k′(θ, λ)‖p ≤ λ21+n and
|θjk| > λ2n). So,

sup
0<λ<1

λr

[

log

(

1

λ

)]−1
∑

n∈N

∑

j<jλ

2j−1
∑

k=0

1

{

λ2n < min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ21+n

}

≤ sup
0<λ<1

λr

[

log

(

1

λ

)]−1

×
∑

n∈N

∑

j<jλ

2j−1
∑

k=0

(j + 1) 1

{

|θjk| > λ2n; λ2n < min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ21+n

}

.

For any n ∈ N, the leaves (j, k) with level j < jλ,n are the same as the ones got
from the (λ2n, p)-VBT-method satisfying min(j′,k′)∈P(j,k) ‖θ / Fj′k′(θ, λ2n)‖p ≤
λ21+n. Moreover the number of such leaves is smaller than or equal to the
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number of wavelet coefficients θjk with absolute value strictly larger than λ2n

and such that min(j′,k′)∈P(j,k) ‖θ / Fj′k′(θ, λ21+n)‖p ≤ λ21+n. So

sup
0<λ<1

λr

[

log

(

1

λ

)]−1

×
∑

n∈N

∑

j<jλ

2j−1
∑

k=0

(j + 1) 1

{

|θjk| > λ2n; λ2n < min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ)‖p ≤ λ21+n

}

≤ sup
0<λ<1

λr

[

log

(

1

λ

)]−1

×
∑

n∈N

∑

j<jλ,n

2j−1
∑

k=0

jλ 1

{

|θjk| > λ2n; min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ21+n)‖p ≤ λ21+n

}

+ sup
0<λ<1

λr−2
∑

n∈N

41−n
∑

j≥jλ,n

2j−1
∑

k=0

θ2jk

= A+B.

Since f ∈Wr,p,

A ≤ sup
0<λ<1

λr−2
∑

n∈N

41−n

×
∑

j<jλ,n

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, λ21+n)‖p ≤ λ21+n

}

< ∞.

Since f ∈ B
2−r
4

2,∞ , one has B <∞. This ends the proof.

Lemma 8.3. Let 0 < λ < 1, 1 ≤ p ≤ ∞, (j, k) be a couple of indices and θ be
a sequence of wavelet coefficients. The two following properties are equivalent:

i) ‖θ / Fjk(θ, λ)‖p > λ.
ii) There exists a tree T rooted at (j, k) such that:

1

#T
∑

(u,v)∈T
|θuv|p > λp if 1 ≤ p <∞,

max
(u,v)∈T

|θuv| > λ if p = ∞.

Proof. We only prove the equivalence property for any 1 ≤ p < ∞ since the
proof for the case p = ∞ is analogous.

i) =⇒ ii)

Choose T = Fjk(θ, λ). From i) one gets

1

#T
∑

(u,v)∈T
|θuv|p = ‖θ / Fjk(θ, λ)‖pp > λp.
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Hence ii) is satisfied.

ii) =⇒ i)

Assume that there exists a subtree T rooted at (j, k) such that

1

#T
∑

(u,v)∈T
|θuv|p > λp.

and consider the tree Fjk(θ, λ) obtained with the (λ, p)-VBT-method. The proof
is trivial if T = Fjk(θ, λ). Otherwise, when looking at the possibly different
nodes (j′, k′) between T and Fjk(θ, λ), one has:

• if F0 := Fjk(θ, λ) \ T 6= ∅ then

1

#F0

∑

(u,v)∈F0

|θuv|p > λp,

Indeed, for each set of indices (j′, k′) ∈ Fjk(θ, λ) the (λ, p)-VBT-method
method has verified that ‖θ/Fj′k′ (θ, λ)‖p > λ.

• if T0 := T \ Fjk(θ, λ) 6= ∅, conversely to the argument of the previous
assertion, we have that

1

#T0
∑

(u,v)∈T0

|θuv|p ≤ λp.

Therefore, since Fjk(θ, λ) = (F0 ∪ T ) \ T0, we deduce that

1

#Fjk(θ, λ)

∑

(u,v)∈Fjk(θ,λ)

|θuv|p = ‖θ / Fjk(θ, λ)‖pp > λp.

So i) is satisfied. This ends the proof.

Lemma 8.4. Let 0 < λ < 1
2 and let (θ

(1)
jk , 0 ≤ j < jλ, 0 ≤ k < 2j) and

(θ
(2)
jk , 0 ≤ j < jλ, 0 ≤ k < 2j) be two sequences of real numbers. Suppose that

the following property holds:

∃(j′, k′) such that ‖θ(2) / Fj′k′ (θ(2), 2λ)‖p > 2λ

and ‖θ(1) / Fj′k′ (θ(1), λ)‖p ≤ λ.

Then there exists (j”, k”) such that 0 ≤ j” < jλ, 0 ≤ k” < 2j and

|θ(2)j”k” − θ
(1)
j”k”| > λ.

Proof. Suppose that for any (j”, k”) such that 0 ≤ j” < jλ, 0 ≤ k” < 2j one
has

|θ(2)j”k” − θ
(1)
j”k”| ≤ λ. (14)
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Then






1

#Fj′k′(θ(2), 2λ)

∑

(u,v)∈F
j′k′ (θ(2),2λ)

|θ(2)uv |
p







1/p

−







1

#Fj′k′(θ(2), 2λ)

∑

(u,v)∈Fj′k′ (θ(2),2λ)

|θ(1)uv |
p







1/p

≤







1

#Fj′k′(θ(2), 2λ)

∑

(u,v)∈Fj′k′ (θ(2),2λ)

∣

∣

∣θ
(1)
uv − θ(2)uv

∣

∣

∣

p







1/p

≤ λ.

So, due to the assumption on the sequence (θ
(2)
jk , 0 ≤ j < jλ, 0 ≤ k < 2j),

1

#Fj′k′ (θ(2), 2λ)

∑

(u,v)∈Fj′k′ (θ(2),2λ)

|θ(1)uv |p > λp.

Since T := Fj′k′(θ(2), 2λ) is a tree rooted at (j′, k′), when using Lemma 8.3
one gets

‖θ(1) / Fj′k′ (θ(1), λ)‖pp =
1

#Fj′k′(θ(1), λ)

∑

(u,v)∈Fj′k′(θ(1),λ)

|θ(1)uv |p > λp.

Thus, this ends the proof by contradiction with the assumption on the sequence

(θ
(1)
jk , 0 ≤ j < jλ, 0 ≤ k < 2j).

8.4.2. Proof of Proposition 5.2

Let 0 < s < V and 0 < u < s
1+2s .

(8) The embedding property is a direct consequence of 2. of Proposition 3.1.
(9) The large inclusions are due to (8). To prove the strict embedding we

construct a function which belongs to Bu
2,∞ ∩ W 2

1+2s ,∞ but not to W 2
1+2s ,2

.

The main idea to construct such a function is to ensure that f̂∞ uses all the
coefficients up to the finest scale and that f̂2 thresholds the finest scale. To do
so, we put non zero coefficients at each odd scales j and, within each scales,
only one non zero coefficient over two. Hence, the ℓ2 norm of the first block of
coefficients, i.e., Fjλ−2,k is lower than the threshold. In other words f̂2 sets a

whole scale of coefficients to zero whereas f̂∞ keeps them. Now formally, let us
consider the function h with wavelet coefficients (θjk)jk satisfying:

θjk = 2−
j
2 if j and k are odd and 0 ≤ k < 2(j + 1) 2

j
1+2s ,

θjk = 0 otherwise.
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This function h belongs to the space Bu
2,∞ ∩W 2

1+2s ,∞ but does not belong to

the space W 2
1+2s ,2

, which we show now.

Proof. Put r = 2(1 + 2s)−1. For any level j large enough

2j−1
∑

k=0

θ2jk ≤
[

(j + 1)2
j

1+2s + 1
]

2−j = (j + 2)2−
2js

1+2s ≤ 2−2ju.

Hence h ∈ Bu
2,∞. Moreover h ∈W 2

1+2s ,∞ since it is clear that

sup
0<λ<1

λr−2
∑

j<jλ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′ (θ, λ)‖∞ ≤ λ

}

= 0.

But

sup
0<λ<1

λr−2
2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′ (θ, λ)‖2 ≤ λ

}

≥ sup
0<λ<1

[

jλ 2
jλ−1

1+2s − 1
]

λr−2 2−jλ+1

> sup
0<λ<1

jλ − 1

= +∞.

Hence h /∈ W 2
1+2s ,2

.

8.4.3. Proof of Theorem 5.1

For this proof, we use the following concentration inequality: P [|Z| > λ] ≤
2 exp

(−λ2

2

)

where Z denotes a standard Gaussian random variable. Here and
later, we shall denote by C a constant which may be different from line to line.

Proof. Notice that the result can be proven by replacing the supremum over ǫ
in [0, 1[ by the supremum over ǫ in ]0, ǫm[, where ǫm is such that 0 < ǫm < 1

2

and such that 0 < λǫm = mǫm

√

log(ǫ−1
m ) < 1

2 .

=⇒
Suppose that, for any 0 < ǫ < ǫm, E‖f̂p − f‖22 ≤ C λ

4s
1+2s
ǫ . Then,

∑

j≥jλǫ

2j−1
∑

k=0

θ2jk ≤ E‖f̂p − f‖22

≤ C λ
4s

1+2s
ǫ

≤ C 2−
2s

1+2s jλǫ .
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So, using argument of continuity, f ∈ B
s

1+2s

2,∞ . Moreover

(

λǫ
2

)− 4s
1+2s ∑

j<jλǫ+2

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′ (θ,
λǫ
2
)‖p ≤ λǫ

2

}

≤ A1 +A2 +A3,

with

A1 =

(

λǫ
2

)− 4s
1+2s∑

j<jλǫ

2j−1
∑

k=0

E

[

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′ (θ̂, λǫ)‖p ≤ λǫ

}]

≤
(

λǫ
2

)− 4s
1+2s

E‖f̂
p
− f‖22

≤ C,

A2 =

(

λǫ

2

)− 4s
1+2s

× E





∑

j<jλǫ

2j−1
∑

k=0

θ2jk1

{

∃(j′, k′) ∈ P(j, k) : ‖θ/Fj′k′(θ,
λǫ

2
)‖p ≤

λǫ

2
, ‖θ̂ / Fj′k′(θ̂, λǫ)‖p > λǫ

}





≤ C 2jλǫ λ
− 4s

1+2s
ǫ

∑

j<jλǫ

2j−1
∑

k=0

θ2jkP

(

|θ̂jk − θjk | >
λǫ

2

)

≤ C 2jλǫ λ
− 4s

1+2s
ǫ ǫ

m2

8

≤ C λ
m2

8
−4

ǫ

≤ C.

The last inequalities require Lemma 8.4 and m ≥ 4
√
2 to hold.

Now

A3 =

(

λǫ
2

)− 4s
1+2s





2j−1
∑

k=0

θ2jλǫk
+

2j−1
∑

k=0

θ2jλǫ+1k





≤ C

(

λǫ
2

)− 4s
1+2s

2−
2s

1+2s jλǫ

≤ C.

The last inequality holds since we have already proved that f ∈ B
s

1+2s

2,∞ . When
combining the bounds of A1, A2 and A3 and using argument of continuity, one
deduces that f ∈W 2

1+2s ,p
.

⇐=
Suppose that f ∈ B

s
1+2s

2,∞ ∩W 2
1+2s ,p

. For any 0 < ǫ < ǫm, the quadratic risk of

the estimator f̂p can be decomposed as follows:
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E‖f̂
p
− f‖22

= E





∑

j<jλǫ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′(θ̂, λǫ)‖p ≤ λǫ

}





+
∑

j<jλǫ

2j−1
∑

k=0

E

[

(θ̂jk − θjk)
21

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′(θ̂, λǫ)‖p > λǫ

}]

+
∑

j≥jλǫ

2j−1
∑

k=0

θ2jk + ǫ2

= B1 +B2 +B3.

Since f ∈ B
s

1+2s

2,∞ ∩W 2
1+2s ,p

and due to Lemma 8.4

B1 = E





∑

j<jλǫ

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′(θ̂, λǫ)‖p ≤ λǫ

}





≤
∑

j<jλǫ−2

2j−1
∑

k=0

θ2jk1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ, 2λǫ)‖p ≤ 2λǫ

}

+ C 2−
2s

1+2s jλǫ + 2jλǫ

∑

j<jλǫ−2

2j−1
∑

k=0

θ2jkP
(

|θ̂jk − θjk| > λǫ

)

≤ C
(

λ
4s

1+2s
ǫ + 2jλǫ ǫ

m2

2

)

≤ C λ
4s

1+2s
ǫ ,

as soon as m ≥ 2
√
2.

By using Lemmas 8.2 and 8.4, and the Cauchy-Schwarz inequality

B2 =
∑

j<jλǫ

2j−1
∑

k=0

E

[

(θ̂jk − θjk)
21

{

min
(j′,k′)∈P(j,k)

‖θ̂ / Fj′k′(θ̂, λǫ)‖p > λǫ

}]

≤ ǫ2
∑

j<jλǫ+2

2j−1
∑

k=0

1

{

min
(j′,k′)∈P(j,k)

‖θ / Fj′k′(θ,
λǫ
2
)‖p >

λǫ
2

}

+ C 2
jλǫ
2 ǫ2

∑

j<jλǫ

2j−1
∑

k=0

P1/2

(

|θ̂jk − θjk| >
λǫ
2

)

≤ C
(

λ
4s

1+2s
ǫ + 2

jλǫ
2 ǫ

m2

16

)

≤ C
(

λ
4s

1+2s
ǫ + λ

m2

16 −1
ǫ

)

≤ C λ
4s

1+2s
ǫ ,
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as soon as m ≥ 4
√
3. Since f ∈ B

s
1+2s

2,∞ ,

B3 = ǫ2 +
∑

j≥jλǫ

2j−1
∑

k=0

θ2jk

≤ ǫ2 + C 2−
2s

1+2s jλǫ

≤ C λ
4s

1+2s
ǫ .

When combining the bounds of B1, B2 and B3 one deduces that

sup
0<ǫ<1

λ
− 4s

1+2s
ǫ E‖f̂p − f‖22 <∞.

This ends the proof.
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[18] Härdle, W. and Kerkycharian, G. and Picard D. and Tsybakov,

A. (1998). Wavelets, approximation, and statistical applications. Springer
Verlag, Lectures Notes in Statistics, vol. 129. MR1618204

[19] Jansen, M. (2001). Noise Reduction by Wavelet Thresholding. Springer
Verlag, Lecture Notes in Statistics, vol. 161, 224 pp. MR1848545

[20] Lee, T. (2002). Tree based wavelet regression for correlated data using the
minimum description length principle. Australian and New Zealand Journal
of Statistics, 44(1), 23-39. MR1894978

[21] Kerkyacharian, G., and Picard, D. (2000). Thresholding Algorithms,
Maxisets and Well Concentrated Bases. Test, 9(2), 283-344. MR1821645

[22] Kerkyacharian, G., and Picard, D. (2002). Minimax or maxisets?
Bernoulli, 8(2), 219-253. MR1895892

[23] Shapiro, J. (1993). Embedded image coding using zero trees of wavelet
coefficients. IEEE Transactions on Signal Processing, 41(12), 3445-3462.

[24] Sun, J., Gu, D., Chen, Y., and Zhang, S. (2004). A multiscale edge
detection algorithm based on wavelet domain vector hidden markov tree
model. Pattern Recognition, 37, 1315-1324.

[25] Tsybakov, A. (2008). Introduction to Nonparametric Estimation.
Springer Series in Statistics, 214 pp. MR2724359

[26] Vidakovic, B. (1999). Statistical Modelling by Wavelets, John Wiley &
Sons, Inc., New York, 384 pp. MR1681904

http://www.ams.org/mathscinet-getitem?mr=1724035
http://www.ams.org/mathscinet-getitem?mr=1848303
http://www.ams.org/mathscinet-getitem?mr=1848302
http://www.ams.org/mathscinet-getitem?mr=1162107
http://www.ams.org/mathscinet-getitem?mr=1311089
http://www.ams.org/mathscinet-getitem?mr=1474073
http://www.ams.org/mathscinet-getitem?mr=1276437
http://www.ams.org/mathscinet-getitem?mr=2724848
http://www.ams.org/mathscinet-getitem?mr=1618204
http://www.ams.org/mathscinet-getitem?mr=1848545
http://www.ams.org/mathscinet-getitem?mr=1894978
http://www.ams.org/mathscinet-getitem?mr=1821645
http://www.ams.org/mathscinet-getitem?mr=1895892
http://www.ams.org/mathscinet-getitem?mr=2724359
http://www.ams.org/mathscinet-getitem?mr=1681904

	Introduction
	Model and background
	Wavelet setting and model
	Tree-structured wavelet estimators

	Vertical block thresholding estimators
	Maxiset approach
	Main results
	Functional spaces: Definitions and embeddings
	Maxiset results

	Numerical experiments
	Conclusions
	Appendix
	Illustration of the Definition 3.1
	Proof of Proposition 3.1 
	Proof of Proposition 5.1
	Proof of the maxiset results
	Technical lemmas and their proof
	Proof of Proposition 5.2
	Proof of Theorem 5.1


	Acknowledgments
	References

