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Abstract: While many efforts have been made to prove that the Lasso
behaves like a variable selection procedure at the price of strong (though
unavoidable) assumptions on the geometric structure of these variables,
much less attention has been paid to the oracle inequalities for the Lasso
involving the ℓ1-norm of the target vector. Such inequalities proved in the
literature show that, provided that the regularization parameter is properly
chosen, the Lasso approximately mimics the deterministic Lasso. Some of
them do not require any assumption at all, neither on the structure of
the variables nor on the regression function. Our first purpose here is to
provide a conceptually very simple result in this direction in the framework
of Gaussian models with non-random regressors.

Our second purpose is to propose a new estimator particularly adapted
to deal with infinite countable dictionaries. This estimator is constructed as
an ℓ0-penalized estimator among a sequence of Lasso estimators associated
to a dyadic sequence of growing truncated dictionaries. The selection proce-
dure is choosing automatically the best level of truncation of the dictionary
so as to make the best tradeoff between approximation, ℓ1-regularization
and sparsity. From a theoretical point of view, we shall provide an oracle
inequality satisfied by this selected Lasso estimator.

The oracle inequalities presented in this paper are obtained via the ap-
plication of a general theorem of model selection among a collection of
nonlinear models which is a direct consequence of the Gaussian concentra-
tion inequality. The key idea that enables us to apply this general theorem
is to see ℓ1-regularization as a model selection procedure among ℓ1-balls.

Keywords and phrases: Lasso, ℓ1-oracle inequalities, model selection by
penalization, ℓ1-balls, generalized linear Gaussian model.

Received June 2010.

1. Introduction

We consider the problem of estimating a regression function f belonging to a
Hilbert space H in a fairly general Gaussian framework which includes the fixed
design regression or the white noise frameworks. Given a dictionary D = {φj}j
of functions in H, we aim at constructing an estimator f̂ = θ̂.φ :=

∑

j θ̂j φj of f
which enjoys both good statistical properties and computational performance
even for large or infinite dictionaries.
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For high-dimensional dictionaries, direct minimization of the empirical risk
can lead to overfitting and we need to add a penalty to avoid it. One appropriate
choice would be to use an ℓ0-penalty by penalizing the number of non-zero
coefficients θ̂j of f̂ (see [5] for instance) so as to produce sparse estimators
and interpretable models, but this minimization problem is non-convex and
thus computationally unfeasible when the size of the dictionary becomes too
large. On the contrary, ℓ1-penalization leads to convex optimization, so there are
efficient algorithms to approximate the solution of this problem even for high-
dimensional data (see [12] for instance). Besides, by running these algorithms,
one can notice that ℓ1-penalty tends to produce sparse solutions and thus to
behave like an ℓ0-penalty. This phenomenon is due to the geometric properties
of the ℓ1-norm. For these reasons, ℓ1-penalization and its associated solution,
the so-called Lasso, have been widely used in the recent years as surrogate for
ℓ0-penalization.

In this paper, we look at the Lasso as an ℓ1-regularization algorithm rather
than a variable selection procedure. We analyze its performance by providing
an ℓ1-oracle inequality (see Theorem 3.1). It will prove that, provided that the
regularization parameter is properly chosen, the Lasso performs almost as well
as the deterministic Lasso, and what is noticeable is that this ℓ1-result requires
no assumption neither on the unknown target function nor on the variables φj

of the dictionary (except simple normalization that we can always assume by
considering φj/‖φj‖ instead of φj), contrary to the usual ℓ0-oracle inequalities
in the literature that are valid only under restrictive conditions.

The establishment of ℓ1-oracle inequalities for the Lasso is not entirely new.
In fact, a few authors such as Barron and al. [15], Bartlett and al. [2] or Rigollet
and Tsybakov [20] have recently studied such ℓ1-bounds, but there are some
differences between their results and ours (see page 673 for more details). By
stating Theorem 3.1, our aim is to add to the existing literature results on the ℓ1-
performance of the Lasso in simple, yet important, cases such as the fixed design
Gaussian regression or the white noise models. We shall establish both a bound
in probability and a bound in expectation, and our results shall be valid with no
assumption neither on the target function nor on the variables of the dictionary
(except simple normalization). Besides, we propose a method of analysis which
is quite different from the methods used in the papers mentioned above. We shall
derive our results from a fairly general model selection theorem for non linear
models, interpreting ℓ1-regularization as an ℓ1-balls model selection criterion
(see Appendix A). This approach will allow us to go one step further than the
analysis of the Lasso for finite dictionaries and to deal with infinite dictionaries
in various situations.

In the second part of this paper, we shall thus focus on infinite countable
dictionaries. While infinite dictionaries are more and more used in many ap-
plications such as micro-array data analysis or signal reconstruction, it proves
difficult to calibrate the regularization parameter of the Lasso and thus to es-
tablish good theoretical results on the performance of this estimator for such
dictionaries. To solve this problem, we propose a procedure that provides an
optimal level of truncation of the whole infinite dictionary as well as an efficient
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estimator in the linear span of this optimal finite subdictionary. For orthonor-
mal dictionaries, this estimator is nothing else than a soft-thresholding estimator
with an adaptive threshold.

The article is organized as follows. The framework and statistical problem
are introduced in Section 2. In Section 3, we study the case of finite dictionaries
and analyze the performance of the Lasso as an ℓ1-regularization algorithm by
providing an ℓ1-oracle inequality showing that the Lasso estimator works almost
as well as the deterministic Lasso provided that the regularization parameter is
chosen large enough. In section 4, we look at the case of infinite countable dic-
tionaries and introduce a procedure based on Lasso type penalization combined
with an additional complexity penalty that produces an efficient selected Lasso
estimator. The explanation of the key idea that enables us to derive all our
oracle inequalities from a single general model selection theorem is postponed
until Appendix A. Finally, the oracle inequalities are proved in Appendix B.

2. General framework and statistical problem

Let H be a separable Hilbert space equipped with a scalar product 〈., .〉 and
its associated norm ‖.‖. The statistical problem we consider is to estimate an
unknown target function f in H when observing a process (Y (h))h∈H

defined
by

Y (h) = 〈f, h〉+ εW (h), h ∈ H, (2.1)

where ε > 0 is a fixed parameter and (W (h))h∈H is an isonormal process, that
is to say a centered Gaussian process with covariance given by E[W (g)W (h)] =
〈g, h〉 for all g, h ∈ H. This framework is convenient to cover both finite-
dimensional models, such as the classical fixed design Gaussian regression model,
and infinite-dimensional models, such as the Gaussian white noise model (see
[17] for details on these models).

To solve the statistical problem (2.1), we shall introduce a dictionary D,
i.e. a given finite or infinite set of functions φj ∈ H that arise as candidate
basis functions for estimating the target function f , and consider estimators
f̂ = θ̂.φ :=

∑

j, φj∈D θ̂j φj in the linear span of D. All the matter is to choose a
“good” linear combination in the following meaning. It makes sense to aim at
constructing an estimator as the best approximating point of f by minimizing
‖f − h‖ or, equivalently, −2〈f, h〉 + ‖h‖2. However f is unknown, so one may
instead minimize the empirical least squares criterion

γ(h) := −2Y (h) + ‖h‖2. (2.2)

But since we are mainly interested in very large dictionaries, direct minimiza-
tion of the empirical least squares criterion can lead to overfitting. To avoid
it, we shall rather consider estimators solution of a penalized risk minimization
problem,

f̂ ∈ argmin
h

γ(h) + pen(h), (2.3)
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where pen(h) is a positive penalty to be chosen. Since the estimator f̂ depends

on the observations, its quality will be measured by its quadratic risk E[‖f−f̂‖2].
In Sections 3 and 4.3, we shall consider ℓ1-penalization, that is to say pen(h) ∝

inf{‖θ‖1 =
∑

j, φj∈D |θj | such that h = θ.φ}, while we shall suggest in Section 4

a penalty pen(h) combination of an ℓ1-penalty and a complexity penalty.

3. The Lasso for finite dictionaries

In this section, we provide an ℓ1-oracle inequality satisfied by the Lasso in the
case of finite dictionaries.

3.1. Definition of the Lasso estimator

We consider the generalized linear Gaussian model and the statistical pro-
blem (2.1) introduced in the last section. Throughout this section, we assume
that Dp = {φ1, . . . , φp} is a finite dictionary of size p. In this case, any h in the
linear span of Dp has finite ℓ1-norm

‖h‖L1(Dp) := inf







‖θ‖1 =
p
∑

j=1

|θj | , θ ∈ R
p such that h = θ.φ







(3.1)

and thus belongs to L1(Dp). We propose to estimate f by a penalized least
squares estimator as introduced at (2.3) with a penalty pen(h) proportional to

‖h‖L1(Dp). This estimator is the so-called Lasso estimator f̂p defined by

f̂p := f̂p(λp) = argmin
h∈L1(Dp)

γ(h) + λp‖h‖L1(Dp), (3.2)

where λp > 0 is some regularization parameter and γ(h) is defined by (2.2).

3.2. An ℓ1-oracle inequality

Let us now state the main result of this section. This ℓ1-oracle inequality high-
lights the fact that, provided that the regularization parameter λp is properly
chosen, the Lasso, which is the solution of the ℓ1-penalized empirical risk mini-
mization problem, behaves as well as the deterministic Lasso, that is to say the
solution of the ℓ1-penalized true risk minimization problem, up to an error term
of order O(ε2) where O(.) depends on the complexity of the dictionary.

Theorem 3.1. Assume that maxj=1,...,p ‖φj‖ ≤ 1 and that

λp ≥ 4ε
(

√

ln p+ 1
)

. (3.3)

Consider the corresponding Lasso estimator f̂p defined by (3.2).



The Lasso as an ℓ1-ball model selection procedure 673

Then, there exists an absolute positive constant C such that, for all z > 0, with
probability larger than 1− 3.4 e−z,

‖f−f̂p‖2+λp‖f̂p‖L1(Dp) ≤ C

[

inf
h∈L1(Dp)

(

‖f − h‖2+λp‖h‖L1(Dp)

)

+λp ε(1+ z)

]

.

(3.4)
Integrating (3.4) with respect to z leads to the following ℓ1-oracle inequality in
expectation,

E

[

‖f − f̂p‖2 + λp‖f̂p‖L1(Dp)

]

≤ C

[

inf
h∈L1(Dp)

(

‖f − h‖2 + λp‖h‖L1(Dp)

)

+ λpε

]

.

(3.5)

Remark 3.2. These last years, the Lasso has essentially been developed as an
approach to sparse recovery based on convex optimization and thus the main
focus on this estimator has been on the establishment of ℓ0-oracle inequalities
so as to study its performance as a variable selection procedure. Here, Theo-
rem 3.1 does not take into account sparsity and rather provides information
about the performance of the Lasso as an ℓ1-regularization algorithm by pro-
viding ℓ1-oracle inequalities satisfied by this estimator. Notice that the ℓ1-oracle
inequalities of Theorem 3.1 are valid for regularization parameters of the same
order (3.3) as the usual regularization parameters considered for the establish-
ment of ℓ0-oracle inequalities (see [4] among others). Let us also stress that,
contrary to the ℓ0-results that require some restrictive assumptions on the dic-
tionary and that are interesting only if the target function can be well approx-
imated by a sparse function in the linear span of the dictionary, the ℓ1-oracle
inequalities (3.4) and (3.5) are established with no assumption neither on the
target function nor on the structure of the variables φj of the dictionary Dp, ex-
cept simple normalization that we can always assume by considerating φj/‖φj‖
instead of φj . This shows that, whereas one can not be sure whether the condi-
tions for the Lasso to be a good variable selection procedure are fulfilled or not,
one is always guaranteed that the Lasso achieves high-performance as regards
ℓ1-regularization.

In fact, ℓ1-oracle inequalities of the same type as (3.4) or (3.5) have already
been studied by a few authors such as Barron and al. [15], Bartlett and al. [2]
or Rigollet and Tsybakov [20], but all these results present dissimilarities with
Theorem 3.1. Let us have a look at these differences.

In [20], Rigollet and Tsybakov are proposing an oracle inequality for the
Lasso similar to (3.4) which is valid under the same assumption as the one of
Theorem 3.1, i.e.simple normalization of the variables of the dictionary, but their
bound in probability can not be integrated to get an bound in expectation as the
one we propose at (3.5). Indeed, the constant measuring the level of confidence
of their risk bound appears inside the infimum term as a multiplicative factor of
the ℓ1-norm whereas the constant z measuring the level of confidence of our risk
bound (3.4) appears as an additive constant outside the infimum term so that the
bound in probability (3.4) can easily be integrated with respect to z, which leads
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to the bound in expectation (3.5). Besides, the lower bound of the regularization
parameter λp proposed by Tsybakov and Rigollet (λp ≥

√

8(1 + z/ lnp) ε
√
ln p)

depends on the level of condidence z, with the consequence that their choice of
the Lasso estimator f̂p = f̂p(λp) also depends on this level of confidence. On the
contrary, our lower bound λp ≥ 4ε(

√
ln p+ 1) does not depend on z so that we

are able to get the result (3.4) satisfied with high probability by an estimator

f̂p = f̂p(λp) independent of the level of confidence of this probability.
As regards Bartlett and al. [2], they have obtained an oracle inequality for

the Lasso of the same type as (3.4) in the context of linear regression. Nonethe-
less, they have considered the case of random design (X,Y ) ∈ R

d × R rather
than our setting with fixed design and Gaussian noise. Therefore, they have to
overcome rather substantial (and interesting) difficulties in the analysis of em-
pirical processes involved in the problem. In particular, their method of analysis
requires a uniform concentration phenomenon that forces them to make strong
assumptions, namely that both X and Y are bounded almost surely by a con-
stant independent of n. Moreover, they get a lower bound on the regularization
parameter with an extra ln-factor compared to (3.3).

However, the oracle inequality of Theorem 3.1 is proved with undetermined
constant C whereas the ℓ1-oracle inequalities in both [20] and [2] are sharp, i.e.
with C = 1.

Barron and al. [15] have also studied risk bounds for ℓ1-penalized estimators
in the case of random design. Rather than assuming that Y is bounded as it
is done by Bartlett and al., they make the assumption that the errors satisfy
some Bernstein’s moment condition, but on the other hand, they assume that
the target function is bounded by a constant and the risk bound they provide
is not satisfied by the Lasso itself but only by a truncated Lasso estimator.

The proof of Theorem 3.1 is detailed in Appendix B and we refer the reader
to Appendix A for the description of the key observation that has enabled us to
establish it. In a nutshell, the basic idea is to view the Lasso as the solution of a
penalized least squares model selection procedure over a countable collection of
models consisting of ℓ1-balls. Inequalities (3.4) and (3.5) are then deduced from
a general model selection theorem stated as Theorem A.1 in Appendix A. Let
us point out that this approach will allow us to go one step further than the
analysis of the Lasso for finite dictionaries and to deal with infinite dictionaries
as we shall see in Section 4.

4. A selected Lasso estimator for infinite countable dictionaries

In many applications such as micro-array data analysis or signal reconstruction,
we are now faced with situations in which the number of variables of the dic-
tionary is always increasing and can even be infinite. So it is desirable to find
competitive estimators for such infinite dimensional problems, but (except in
rare situations when the variables have a specific structure: see Remark 4.3 on
neural networks) it proves very difficult to establish good theoretical results on
the performance of the Lasso solution over an infinite dictionary. Indeed, when
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considering a finite dictionary of size p, Theorem 3.1 guarantees that for a reg-
ularization parameter greater than a certain quantity depending on the size p,
the corresponding Lasso estimator achieves good performance results, but for
an infinite dictionary there is no size p and thus no lower bound on the regu-
larization parameter to guarantee good performance of the corresponding Lasso
estimator. Our goal here is to propose a procedure to calibrate the regularization
parameter by providing an optimal size p̂ in a sense described below.

In order to deal with an infinite countable dictionary D, one may order the
variables of the dictionary, write the dictionary D = {φj}j∈N∗ = {φ1, φ2, . . . }
according to this order, then truncate D at a given level p to get a finite sub-
dictionary {φ1, . . . , φp} and finally estimate the target function by the Lasso

estimator f̂p over this subdictionary. This procedure implies two difficulties.
First, one has to put an order on the variables of the dictionary, and then all
the matter is to decide at which level one should truncate the dictionary to make
the best tradeoff between approximation and complexity. Here, our purpose is
to resolve this last dilemma by proposing a selected Lasso estimator based on an
algorithm choosing automatically the best level of truncation of the dictionary
once the variables have been ordered. Of course, the algorithm and thus the
estimation of the target function will depend on which order the variables have
been classified beforehand. Notice that the classification of the variables can
reveal to be more or less difficult according to the problem under consideration.
Nonetheless, there are a few applications where there may be an obvious order
for the variables, for instance in the important case of dictionaries of wavelets.

For the particular case of an orthonormal dictionary where the truncated
Lasso estimators are nothing else than soft-thresholding estimators with a fixed
threshold, the selected Lasso estimator is a soft-thresholding estimator with an
adaptive threshold which is automatically chosen by the algorithm constructing
this estimator. So, our procedure provides a new contribution to the crucial prob-
lem of choosing the threshold when working with soft-thresholding estimators.

4.1. Definition of the selected Lasso estimator

We still consider the generalized linear Gaussian model and the statistical pro-
blem (2.1) introduced in Section 2. To solve this problem, we recall that we use

a dictionary D = {φj}j and seek for an estimator f̂ = θ̂.φ =
∑

j, φj∈D θ̂j φj

solution of the penalized empirical risk minimization problem,

f̂ ∈ argmin
h∈L1(D)

γ(h) + pen(h), (4.1)

where pen(h) is a suitable positive penalty. Here, we assume that the dictionary
is infinite countable and that it is ordered,

D = {φj}j∈N∗ = {φ1, φ2, . . . }.
Given this order, we can consider the sequence of truncated dictionaries (Dp)p∈N∗

where
Dp := {φ1, . . . , φp}
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corresponds to the subdictionary of D truncated at level p, and the associated
sequence of Lasso estimators (f̂p)p∈N∗ defined in Section 3.1,

f̂p := f̂p(λp) = argmin
h∈L1(Dp)

γ(h) + λp‖h‖L1(Dp), (4.2)

where (λp)p∈N∗ is a sequence of regularization parameters whose values will
be specified below. Now, we shall choose a final estimator as an ℓ0-penalized
estimator among a subsequence of the Lasso estimators (f̂p)p∈N∗ . More precisely,
let us denote by Λ the set of dyadic integers,

Λ = {2J , J ∈ N},

and define

p̂ = argmin
p∈Λ

[

γ(f̂p) + λp‖f̂p‖L1(Dp) + pen(p)
]

= argmin
p∈Λ

[

argmin
h∈L1(Dp)

(

γ(h) + λp‖h‖L1(Dp)

)

+ pen(p)

]

, (4.3)

where pen(p) penalizes the size p of the truncated dictionary Dp for all p ∈ Λ.

Then, the final estimator we consider is the selected Lasso estimator f̂p̂. From
(4.3) and the fact that L1(D) = ∪p∈ΛL1(Dp), we see that this selected Lasso

estimator f̂p̂ is a penalized least squares estimator solution of (4.1) where, for
all p ∈ Λ and h ∈ L1(Dp), pen(h) = λp‖h‖L1(Dp) + pen(p) is a combination
of both ℓ1-regularization and complexity penalization. We also see from (4.3)

that the algorithm automatically chooses the rank p̂ so that f̂p̂ makes the best
tradeoff between approximation, ℓ1-regularization and sparsity.

Remark 4.1. From a theoretical point of view, one could have defined f̂p̂
as an ℓ0-penalized estimator among the whole sequence of Lasso estimators
(f̂p)p∈N∗ (or more generally among any subsequence of (f̂p)p∈N∗) instead of

(f̂p)p∈Λ. Nonetheless, to compute f̂p̂ efficiently, it is interesting to limit the

number of computations of the sequence of Lasso estimators f̂p especially if
we choose a complexity penalty pen(p) that does not grow too fast with p.
In the sequel, we shall consider a penalty pen(p) ∝ ln p. So, taking a dyadic
truncation Dp := {φ1, . . . , φp} = {φ1, . . . , φ2J } of the dictionary D enables to
get a complexity penalty pen(p) ∝ ln p = J ln 2 which grows linearly at each
step J of the algorithm, thus leading to a more efficient algorithm. That is why
we have chosen to work with a dyadic subsequence of dictionaries rather than
with other subsequences.

Although our primary motivation for introducing the selected Lasso estimator
described above was to construct an estimator adapted from the Lasso and fitted
to solve problems of estimation dealing with infinite dictionaries, notice that
this estimator remains well-defined and can also be interesting for estimation in
the case of large finite dictionaries. Indeed, if we consider a finite dictionary of
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size p0, then it can be advantageous to work with the selected Lasso estimator
f̂p̂ rather than with the Lasso estimator f̂p0 since the definition of f̂p̂ guarantees

that f̂p̂ always makes a better tradeoff between approximation, ℓ1-regularization

and sparsity than f̂p0 . Besides, f̂p̂ is always sparser than f̂p0 since p̂ ≤ p0. In

particular, notice that f̂p̂ and f̂p0 coincide when p̂ = p0.

4.2. An oracle inequality

By applying the same general model selection theorem (Theorem A.1) as for
the establishment of Theorem 3.1, we can provide a risk bound satisfied by
the estimator f̂p̂ with properly chosen penalties λp and pen(p) for all p ∈ Λ.
The sequence of ℓ1-regularization parameters (λp)p∈Λ is simply chosen from the

lower bound given by (3.3) while a convenient choice for the complexity penalty
will be pen(p) ∝ ln p.

Theorem 4.2. Assume that supj∈N∗ ‖φj‖ ≤ 1. Set for all p ∈ Λ,

λp = c1ε
(

√

ln p+ 1
)

, pen(p) = c2ε
2 ln p, (4.4)

where c1 ≥ 4 and c2 > c1/
√
ln 2.

Consider the corresponding selected Lasso estimator f̂p̂ defined by (4.3).
Then, there exists an absolute constant C > 0 such that

E

[

‖f − f̂p̂‖2 + λp̂‖f̂p̂‖L1(Dp̂) + pen(p̂)
]

≤ C

[

inf
p∈Λ

(

inf
h∈L1(Dp)

(

‖f − h‖2 + λp‖h‖L1(Dp)

)

+ pen(p)

)

+ ε2
]

. (4.5)

4.3. The Lasso for particular infinite uncountable dictionaries

As explained at the beginning of this section, it is generally very difficult to
establish good theoretical results on the performance of the Lasso for infinite
dictionaries. Yet, let us just point out here that it can be easier to prove such
results for some particular infinite dictionaries whose structure is nice enough.
For example, it is the case for neural networks in the fixed design Gaussian
regression models. Recall that a neural network is a real-valued function defined
on R

d belonging to the linear span of the dictionary D = {φa,b ; a ∈ R
d, b ∈ R}

where
φa,b : R

d 7→ R, x 7→ 1{〈a,x〉+b>0}. (4.6)

Now, given a training sequence {(x1, Y1), . . . , (xn, Yn)}, if we assume that Yi =
f(xi) + σξi for all i = 1, . . . , n, then the Lasso estimator over the set of neural
network regression function estimators in L1(D) is defined by

f̂ := f̂(λ) = argmin
h∈L1(D)

‖Y − h‖2 + λ‖h‖L1(D), (4.7)
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where λ > 0 is a regularization parameter, ‖Y −h‖2 :=∑n
i=1 (Yi − h(xi))

2
/n is

the empirical risk of h and L1(D) is the linear span of D equipped with the ℓ1-
norm ‖h‖L1(D) := inf

{

‖θ‖1 =
∑

a∈Rd,b∈R
|θa,b|, h = θ.φ =

∑

a∈Rd,b∈R
θa,b φa,b

}

.
Despite the fact that the dictionary D is infinite uncountable, we are able to

establish an ℓ1-oracle inequality satisfied by the Lasso which is similar to the
one provided in Theorem 3.1 in the case of a finite dictionary. This is due to the
very particular structure of the dictionary D which is only composed of func-
tions derived from the Heaviside function. This property enables us to achieve
theoretical results without truncating the whole dictionary into finite subdic-
tionaries contrary to the study developed above where we considered arbitrary
infinite countable dictionaries. The following ℓ1-oracle inequality is once again
a direct application of the general model selection Theorem A.1 already used to
prove both Theorem 3.1 and Theorem 4.2.

Theorem 4.3. Assume that

λ ≥ κσ

√

d

n
(4.8)

for some absolute constant κ > 0 large enough and consider the corresponding
Lasso estimator f̂ defined by (4.7).
Then, there exists an absolute constant C > 0 such that

E

[

‖f − f̂‖2 + λ‖f̂‖L1(D)

]

≤ C

[

inf
h∈L1(D)

(

‖f − h‖2 + λ‖h‖L1(D)

)

+ λ
σ√
n

]

.

Appendix A: A model selection theorem

Let us end this paper by describing the main idea that has enabled us to establish
all the oracle inequalities of Theorem 3.1, Theorem 4.2 and Theorem 4.3 as an
application of a single general model selection theorem, and by stating and
proving this general theorem. We keep the notations introduced in Section 2.

The basic idea is to view the Lasso estimator as the solution of a penalized
least squares model selection procedure over a properly defined countable col-
lection of models with ℓ1-penalty. The key observation that enables one to make
this connection is the simple fact that L1(D) =

⋃

R>0{h ∈ L1(D), ‖h‖L1(D) ≤
R}, so that for any finite or infinite given dictionary D, the Lasso f̂ satisfies

γ(f̂) + λ‖f̂‖L1(D) = inf
h∈L1(D)

γ(h) + λ‖h‖L1(D) = inf
R>0

(

inf
‖h‖L1(D)≤R

γ(h) + λR

)

.

Then, to obtain a countable collection of models, we just discretize the family
of ℓ1-balls {h ∈ L1(D), ‖h‖L1(D) ≤ R} by setting for any integer m ≥ 1,

Sm =
{

h ∈ L1(D), ‖h‖L1(D) ≤ mε
}

,

and define m̂ as the smallest integer such that f̂ belongs to Sm̂, i.e.

m̂ =

⌈

‖f̂‖L1(D)

ε

⌉

. (A.1)
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It is now easy to derive from the definitions of m̂ and f̂ and from the fact that
L1(D) =

⋃

m≥1 Sm that

γ(f̂) + λm̂ε ≤ γ(f̂) + λ
(

‖f̂‖L1(D) + ε
)

= inf
h∈L1(D)

(

γ(h) + λ‖h‖L1(D)

)

+ λε

= inf
m≥1

(

inf
h∈Sm

(

γ(h) + λ‖h‖L1(D)

)

)

+ λε

≤ inf
m≥1

(

inf
h∈Sm

γ(h) + λmε

)

+ λε,

that is to say

γ(f̂) + pen(m̂) ≤ inf
m≥1

(

inf
h∈Sm

γ(h) + pen(m)

)

+ ρ (A.2)

with pen(m) = λmε and ρ = λε. This means that f̂ is equivalent to a ρ-
approximate penalized least squares estimator over the sequence of models given
by the collection of ℓ1-balls {Sm, m ≥ 1}. This property will enable us to de-
rive ℓ1-oracle inequalities by applying a general model selection theorem that
guarantees such inequalities provided that the penalty pen(m) is large enough.
This general theorem, stated below as Theorem A.1, is a restricted version of an
even more general model selection theorem that the interested reader can find
in [17], Theorem 4.18.

Theorem A.1. Let {Sm}m∈M be a countable collection of convex and compact
subsets of a Hilbert space H. Define, for any m ∈ M,

∆m := E

[

sup
h∈Sm

W (h)

]

, (A.3)

and consider weights {xm}m∈M such that

Σ :=
∑

m∈M

e−xm < ∞.

Let K > 1 and assume that, for any m ∈ M,

pen(m) ≥ 2Kε
(

∆m + εxm +
√

∆mεxm

)

. (A.4)

Given non negative ρm, m ∈ M, define a ρm-approximate penalized least squares
estimator as any f̂ ∈ Sm̂, m̂ ∈ M, such that

γ(f̂) + pen(m̂) ≤ inf
m∈M

(

inf
h∈Sm

γ(h) + pen(m) + ρm

)

.
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Then, there is a positive constant C(K) such that for all f ∈ H and z > 0, with
probability larger than 1− Σe−z,

‖f − f̂‖2 + pen(m̂)

≤ C(K)

[

inf
m∈M

(

inf
h∈Sm

‖f − h‖2 + pen(m) + ρm

)

+ (1 + z)ε2
]

. (A.5)

Integrating this inequality with respect to z leads to the following risk bound

E

[

‖f − f̂‖2 + pen(m̂)
]

≤ C(K)

[

inf
m∈M

(

inf
h∈Sm

‖f − h‖2 + pen(m) + ρm

)

+ (1 + Σ)ε2
]

. (A.6)

Appendix B: Proof of the ℓ1-oracle inequalities

Deriving Theorem 3.1, Theorem 4.2 and Theorem 4.3 from Theorem A.1 is an
exercise. Indeed, using the key observation that the Lasso and the selected Lasso
estimators are approximate penalized least squares estimators over a collection
of ℓ1-balls with a convenient penalty, it only remains to determine a lower bound
on this penalty to guarantee condition (A.4) and then to apply the conclusion
of Theorem A.1.

B.1. Proof of Theorem 3.1

Fix p ∈ N
∗. Let M = N

∗ and consider the collection of ℓ1-balls for m ∈ M,

Sm =
{

h ∈ L1(Dp), ‖h‖L1(Dp) ≤ mε
}

.

We have noticed at (A.2) that the Lasso estimator f̂p is a ρ-approximate penali-
zed least squares estimator over the sequence {Sm, m ≥ 1} for pen(m) = λpmε
and ρ = λpε. So, it only remains to determine a lower bound on λp that gua-
rantees that pen(m) satisfies condition (A.4).

Let h ∈ Sm and consider θ = (θ1, . . . , θp) such that h = θ.φ =
∑p

j=1 θj φj

and ‖h‖L1(Dp) = ‖θ‖1. The linearity of W implies that

W (h) =

p
∑

j=1

θj W (φj) ≤
p
∑

j=1

|θj | |W (φj)| ≤ mε max
j=1,...,p

|W (φj)| . (B.1)

Recalling that W is isonormal (see (2.1)), we have Var [W (φj)] = ‖φj‖2 ≤ 1 for
all j = 1, . . . , p. So, the variables W (φj) and (−W (φj)), j = 1, . . . , p, are 2p
centered normal variables with variance less than 1 and thus (see Lemma 2.3 in
[17] for instance),

E

[

max
j=1,...,p

|W (φj)|
]

= E

[(

max
j=1,...,p

W (φj)

)

∨
(

max
j=1,...,p

(−W (φj))

)]

≤
√

2 ln(2p).
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Therefore, we deduce from (B.1) that

∆m := E

[

sup
h∈Sm

W (h)

]

≤ mε
√

2 ln(2p) ≤
√
2mε

(

√

ln p+
√
ln 2
)

. (B.2)

Now, choose the weights of the form xm = γm where γ > 0 is specified below.
Then,

∑

m≥1 e
−xm = 1/ (eγ − 1) := Σγ < +∞.

Defining K = 4
√
2/5 > 1 and γ = (1 −

√
ln 2)/K, and using the inequality

2
√
ab ≤ ηa+ η−1b with η = 1/2, we get that

2Kε
(

∆m + εxm +
√

∆mεxm

)

≤ Kε

(

5

2
∆m + 4xmε

)

≤ 4mε2
(

√

ln p+
√
ln 2 +Kγ

)

≤ 4mε2
(

√

ln p+ 1
)

≤ λpmε

as soon as
λp ≥ 4ε

(

√

ln p+ 1
)

. (B.3)

For such values of λp, condition (A.4) on the penalty function is satisfied and we
may apply Theorem A.1 with pen(m) = λpmε and ρ = λpε. Taking into account
the definition of m̂ at (A.1) and noticing that ε2 ≤ λpε/4 for λp satisfying (B.3),
we get from (A.5) that there exists some C > 0 such that for all z > 0, with
probability larger than 1− Σγ e

−z ≥ 1− 3.4 e−z ,

‖f − f̂p‖2 + λp‖f̂p‖L1(Dp)

≤ C

[

inf
m≥1

(

inf
‖h‖L1(Dp)≤mε

‖f − h‖2 + λpmε

)

+ λpε+ (1 + z)ε2

]

≤ C

[

inf
m≥1

(

inf
‖h‖L1(Dp)≤mε

‖f − h‖2 + λpmε

)

+ λpε(1 + z)

]

. (B.4)

Finally, to get the desired bound (3.4), just notice that for all g ∈ L1(Dp), by
considering mg = ⌈‖g‖L1(Dp)/ε⌉ ∈ N

∗ so that ‖g‖L1(Dp) ≤ mgε, we have

inf
m≥1

(

inf
‖h‖L1(Dp)≤mε

‖f − h‖2 + λpmε

)

≤ ‖f − g‖2 + λp mg ε

≤ ‖f − g‖2 + λp‖g‖L1(Dp) + λpε, (B.5)

and combining (B.4) with (B.5) leads to

‖f−f̂p‖2+λp‖f̂p‖L1(Dp) ≤ 2C

[

inf
g∈L1(Dp)

(

‖f − g‖2 + λp‖g‖L1(Dp)

)

+ λpε(1 + z)

]

.

Similarly, we get the risk bound (3.5) from (A.6). �
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B.2. Proof of Theorem 4.2

Let M = N
∗ × Λ and consider the set of ℓ1-balls for all (m, p) ∈ M,

Sm,p =
{

h ∈ L1(Dp), ‖h‖L1(Dp) ≤ mε
}

.

Define m̂ as the smallest integer such that f̂p̂ belongs to Sm̂,p̂, i.e.

m̂ =

⌈

‖f̂p̂‖L1(Dp̂)

ε

⌉

. (B.6)

Let α = 1 − c1/(c2
√
ln 2). From (B.6) and (4.4), using the fact that for all

p ∈ Λ,
√
ln p ≤ (ln p)/

√
ln 2, the definitions of α and f̂p̂ and the fact that

L1(Dp) =
⋃

m∈N∗ Sm,p, we get that

γ(f̂p̂) + λp̂m̂ε+ α pen(p̂)

≤ γ(f̂p̂) + λp̂‖f̂p̂‖L1(Dp̂) + λp̂ε+ α pen(p̂)

≤ γ(f̂p̂) + λp̂‖f̂p̂‖L1(Dp̂) + c1ε
2
(

√

ln p̂+ 1
)

+ αc2ε
2 ln p̂

≤ γ(f̂p̂) + λp̂‖f̂p̂‖L1(Dp̂) +

(

c1

c2
√
ln 2

+ α

)

c2ε
2 ln p̂+ c1ε

2

≤ γ(f̂p̂) + λp̂‖f̂p̂‖L1(Dp̂) + pen(p̂) + c1ε
2

≤ inf
p∈Λ

[

inf
h∈L1(Dp)

(

γ(h) + λp‖h‖L1(Dp)

)

+ pen(p)

]

+ c1ε
2

≤ inf
p∈Λ

[

inf
m∈N∗

(

inf
h∈Sm,p

γ(h) + λpmε

)

+ pen(p)

]

+ c1ε
2

≤ inf
(m,p)∈M

[

inf
h∈Sm,p

γ(h) + λpmε+ pen(p)

]

+ c1ε
2,

that is to say

γ(f̂p̂) + pen(m̂, p̂) ≤ inf
(m,p)∈M

[

inf
h∈Sm,p

γ(h) + pen(m, p) + ρp

]

,

with pen(m, p) := λpmε+α pen(p) and ρp := (1−α) pen(p) + c1ε
2 (notice that

thanks to the assumption c2 > c1/
√
ln 2, we have α ∈ ]0, 1[, so pen(m, p) > 0

and ρp > 0). This means that f̂p̂ is equivalent to a ρp-approximate penalized
least squares estimator over the sequence of models {Sm,p, (m, p) ∈ M}. By
applying Theorem A.1, this property will enable us to derive a performance
bound satisfied by f̂p̂ provided that pen(m, p) is large enough.
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Let us now choose weights of the form xm,p = γm+ β ln p where γ > 0 and
β > 0 are numerical constants specified later. Then,

Σγ,β :=
∑

(m,p)∈M

e−xm,p =

(

∑

m∈N∗

e−γm

)





∑

p∈Λ

e−β ln p





=

(

∑

m∈N∗

e−γm

)(

∑

J∈N

e−β ln 2J

)

=
1

(eγ − 1) (1− 2−β)
< +∞.

Moreover, for all (m, p) ∈ M, we can prove similarly as (B.2) that

∆m,p := E

[

sup
h∈Sm,p

W (h)

]

≤
√
2mε

(

√

ln p+
√
ln 2
)

.

Now, define K = c1[
√
2(2 + (c1 − 2)−1)]−1 (notice that K > 1 thanks to the

assumption c1 ≥ 4), γ = (1 −
√
ln 2)/K > 0 and β = (c2α)/(c1K) > 0. Taking

into account these definitions and using the inequality 2
√
ab ≤ ηa+ η−1b with

η = (c1 − 2)−1, a = ∆m,p and b = εxm,p, we get that

2Kε
(

∆m,p + εxm,p +
√

∆m,pεxm,p

)

≤ Kε
((

2 + (c1 − 2)−1
)

∆m,p + c1xm,pε
)

≤ c1ε
2
(

m
√

ln p+m
√
ln 2 +Kγm+Kβ ln p

)

≤ c1ε
2

(

m
(

√

ln p+ 1
)

+
c2α

c1
ln p

)

≤ λpmε+ α pen(p)

= pen(m, p).

Thus, condition (A.4) is satisfied and we can apply Theorem A.1 with pen(m, p) =
λpmε+ α pen(p) and ρp = (1− α) pen(p) + c1ε

2, which leads to:

E

[

‖f − f̂p̂‖2 + λp̂m̂ε+ α pen(p̂)
]

≤ C

[

inf
(m,p)∈M

(

inf
h∈Sm,p

‖f − h‖2 + λpmε+ pen(p)

)

+ (c1 + 1 + Σγ,β) ε
2

]

≤ C

[

inf
(m,p)∈M

(

inf
h∈Sm,p

‖f − h‖2 + λpmε+ pen(p)

)

+ ε2
]

, (B.7)

where C > 0 denotes some absolute constant. The infimum of this risk bound can
easily be extended to infp∈Λ infh∈L1(Dp). Indeed, let p0 ∈ Λ and g ∈ L1 (Dp0),
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and consider mg = ⌈‖g‖L1(Dp0)
/ε⌉ ∈ N

∗ so that g ∈ Smg,p0 . Then,

inf
(m,p)∈M

(

inf
h∈Sm,p

‖f − h‖2 + λpmε+ pen(p)

)

≤ ‖f − g‖2 + λp0mgε+ pen(p0)

≤ ‖f − g‖2 + λp0

(

‖g‖L1(Dp0)
+ ε
)

+ pen(p0)

≤ ‖f − g‖2 + λp0‖g‖L1(Dp0)
+

(

c1

c2
√
ln 2

+ 1

)

pen(p0) + c1ε
2. (B.8)

So, we deduce from (B.7) and (B.8) that there exists C > 0 such that

E

[

‖f − f̂p̂‖2 + λp̂m̂ε+ α pen(p̂)
]

≤ C

[

inf
p∈Λ

(

inf
g∈L1(Dp)

(

‖f − g‖2 + λp‖g‖L1(Dp)

)

+ pen(p)

)

+ ε2
]

. (B.9)

Finally, let us notice that from the fact that α ∈ ]0, 1[ and from (B.6), we have

E

[

‖f − f̂p̂‖2 + λp̂‖f̂p̂‖L1(Dp̂) + pen(p̂)
]

≤ 1

α
E

[

‖f − f̂p̂‖2 + λp̂m̂ε+ α pen(p̂)
]

.

(B.10)
Combining (B.9) with (B.10) leads to the result. �

B.3. Proof of Theorem 4.3

Let us recall that, for t > 0, the t-packing number N (t,G, N) of a set G with
respect to a normN(.) is the maximalm ∈ N

∗ such that there exist g1, . . . , gm ∈
G with N(gi − gj) ≥ t for all 1 ≤ i < j ≤ m, while the t-entropy number is
defined by H(t,G, N) := ln (N (t,G, N)) .

Lemma B.1. Let t > 0 and let D = {φa,b : a ∈ R
d, b ∈ R} be a dictionary of

neurons where φa,b is defined by (4.6). Then,

∫ 1

0

√

H(t,D, ‖.‖) dt ≤ C
√
d+ 1,

where C > 0 is an absolute constant (C ≥ 22 is convenient).

Proof. The result just comes from the fact that D is a subset of the boolean n-
cube with Vapnik-Chervonenkis dimension d+1. Indeed, for all a ∈ R

d and b ∈
R, let us denote by Aa,b the affine half-space of Rd defined by Aa,b = {x ∈ R

d :
〈a, x〉+ b > 0} and consider the associated VC class A = {Aa,b, a ∈ R

d, b ∈ R}
which is of dimension d+ 1. Also introduce

A(xn
1 ) :=

{(1{x1∈A}, . . . , 1{xn∈A}

)

, A ∈ A
}

⊂ {0, 1}n
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equipped with the ℓ1-norm ‖.‖1,n defined by

‖u‖1,n =
1

n

n
∑

i=1

|ui|

for all u = (u1, . . . , un) ∈ A(xn
1 ). Then, for all φa,b ∈ D, (4.6) implies that φa,b =1Aa,b

and ‖φa,b‖ =
√

‖ua,b‖1,n where ua,b = (1{x1∈Aa,b}, . . . , 1{xn∈Aa,b}) ∈
A(xn

1 ). Thus, we get that

H (t,D, ‖.‖) ≤ H
(√

t,A(xn
1 ), ‖.‖1,n

)

.

Moreover, we can easily get from the upper bound of the entropy for a VC class
of dimension d+ 1 provided by Haussler in [14] that

∫ 1

0

√

H
(√

t,A(xn
1 ), ‖.‖1,n

)

dt ≤ C
√
d+ 1,

where C > 0 is an absolute constant (C ≥ 22 is convenient), hence the result.

Proof of Theorem 4.3 Let us define ε = σ/
√
n. Consider the collection of

ℓ1-balls for m ∈ N
∗,

Sm =
{

h ∈ L1(D), ‖h‖L1(D) ≤ mε
}

.

We have noticed in Appendix A that the Lasso estimator f̂ is a ρ-approximate
penalized least squares estimator over the sequence {Sm, m ≥ 1} for pen(m) =
λmε and ρ = λε. So, it only remains to determine a lower bound on λ that
guarantees that pen(m) satisfies condition (A.4) and to apply the conclusion of
Theorem A.1.

Let h ∈ Sm. For all δ > 0, there exist coefficients θa,b such that h =
∑

a,b θa,b φa,b and
∑

a,b |θa,b| ≤ mε+ δ. By linearity of W , we get that

W (h) =
∑

a,b

θa,b W (φa,b) ≤ sup
a,b

|W (φa,b)|
∑

a,b

|θa,b| ≤ (mε+ δ) sup
a,b

|W (φa,b)|.

Then, by Dudley’s criterion (see Theorem 3.18 in [17] for instance), we have

∆m := E

[

sup
h∈Sm

W (h)

]

≤ (mε+ δ)E

[

sup
a,b

|W (φa,b)|
]

≤ 12(mε+ δ)

∫ α

0

√

H (t,D, ‖.‖) dt,

where α2 = supa,b E[W
2(φa,b)] = supa,b ‖φa,b‖2 = supa,b(

∑n
i=1 φ

2
a,b(xi)/n) ≤ 1

from (4.6). So, α ≤ 1 and we get from Lemma B.1 that there exists c > 0
(c ≥ 12× 22 = 264 is convenient) such that

∆m ≤ 12(mε+ δ)

∫ 1

0

√

H (t,D, ‖.‖) dt ≤ c(mε+ δ)
√
d+ 1. (B.11)
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Now if we choose weights xm = cm, then
∑

m≥1 e
−xm := Σc < +∞, and

using the inequality 2
√
ab ≤ a+ b we get from (B.11) that for all K > 1,

2Kε
(

∆m + εxm +
√

∆mεxm

)

≤ 3Kε (∆m + εxm)

≤ 3Kε
(

c(mε+ δ)
√
d+ 1 + cmε

)

≤ 3cKε(mε+ δ)
(√

d+ 1 + 1
)

≤ 3c(
√
2 + 1)Kε(mε+ δ)

√
d.

Since this inequality is true for all δ > 0, we get when δ tends to 0 that there
exists κ > 0 (κ = 3c(

√
2 + 1)K) such that

2Kε
(

∆m + εxm +
√

∆mεxm

)

≤ κmε2
√
d ≤ λmε

as soon as
λ ≥ κε

√
d. (B.12)

For such values of λ, condition (A.4) on the penalty function is satisfied and me
may apply Theorem A.1 with pen(m) = λmε and ρ = λε for all m ≥ 1. We end
the proof similarly as the one of Theorem 3.1. �
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de Probabilités de Saint-Flour 2003. Lecture Notes in Mathematics 1896,
Springer Berlin-Heidelberg (2007). MR2319879

[18] Massart, P. and Meynet, C. An ℓ1-oracle inequality for the Lasso.
arXiv, 1007.4791 (2010).

[19] Meinshausen, N. and Yu, B. Lasso-type recovery of sparse representa-
tions for high-dimensional data. Annals of Statistics, Vol. 37, No. 1, 246–270
(2009). MR2488351

[20] Rigollet, P. andTsybakov, A. Exponential screening and optimal rates
of sparse estimation. Preprint (2010).

[21] Rivoirard, V. Nonlinear estimation over weak Besov spaces and minimax
Bayes method. Bernoulli, Vol. 12, No. 4, 609–632 (2006). MR2248230

[22] Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society, Series B, 58, 267–288 (1996). MR1379242

[23] van de Geer, S.A. High dimensional generalized linear models and the
Lasso. Annals of Statistics, Vol. 36, No. 2, 614–645 (2008). MR2396809

[24] Zhang, C.H. and Huang, J. Model-selection consistency of the Lasso in
high-dimensional linear regression. Annals of Statistics, Vol. 36, 1567–1594
(2008). MR2435448

[25] Zhao, P. and Yu, B. On model selection consistency of Lasso. J. Machine
Learning Res., 7, 2541–2567 (2007). MR2274449

http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=1848302
http://www.ams.org/mathscinet-getitem?mr=1261635
http://www.ams.org/mathscinet-getitem?mr=1635414
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1618204
http://www.ams.org/mathscinet-getitem?mr=1313896
http://www.ams.org/mathscinet-getitem?mr=2711791
http://www.ams.org/mathscinet-getitem?mr=2500227
http://www.ams.org/mathscinet-getitem?mr=2319879
http://arxiv.org/abs/1007.4791
http://www.ams.org/mathscinet-getitem?mr=2488351
http://www.ams.org/mathscinet-getitem?mr=2248230
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2396809
http://www.ams.org/mathscinet-getitem?mr=2435448
http://www.ams.org/mathscinet-getitem?mr=2274449

	Introduction
	General framework and statistical problem
	The Lasso for finite dictionaries
	Definition of the Lasso estimator
	An 1-oracle inequality

	A selected Lasso estimator for infinite countable dictionaries
	Definition of the selected Lasso estimator
	An oracle inequality
	The Lasso for particular infinite uncountable dictionaries

	A model selection theorem
	Proof of the 1-oracle inequalities
	Proof of Theorem 3.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Acknowledgements
	References

