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Abstract: We consider the problems of estimating and detecting an un-
known function f depending on a multidimensional variable (for instance,
an image) observed in the Gaussian white noise. It is assumed that f be-
longs to anisotropic Sobolev class. The case of a function of infinitely many
variables is also considered. An asymptotic study (as the noise level tends
to zero) of the estimation and detection problems is done. In connection
with the estimation problem, we construct asymptotically minimax estima-
tors and establish sharp asymptotics for the minimax integrated squared
risk. In the detection problem, we construct asymptotically minimax tests
and provide conditions for distinguishability in the problem.
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1. Introduction

Recently nonparametric estimation and detection of multivariate signals, in a
variety of estimation and testing schemes, aroused considerable interest. In this
paper we study the problem of estimating and detecting a multivariate function
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f ∈ F ⊂ L2([0, 1]
d) = Ld2, 1 ≤ d ≤ ∞, observed in the Gaussian white noise

model
Xε = f + εW, (1.1)

where W is a d-dimensional Gaussian white noise, ε > 0 is a small parameter
(noise intensity), and F is a subset of Ld2 that consists of sufficiently smooth
functions. In this model, the “observation” is the function Xε : L

d
2 → G taking

its values in the set G of normal random variables such that if ξ = Xε(φ), η =
Xε(ψ), where φ, ψ ∈ Ld2, then E(ξ) = (f, φ), E(η) = (f, ψ), and Cov(ξ, η) =
ε2(φ, ψ). For any f ∈ Ld2, the observation Xε determines the Gaussian measure
Pε,f on Ld2 with mean function f and covariance operator ε2I, where I is the
identity operator (see [4, 17] for references). The corresponding expectation is
denoted by Eε,f . In this paper we study the case of fixed and finite d and the
case d = ∞.

We assume that f belongs to a Sobolev class F of functions with anisotropic
constraints of regularity. One problem of interest is to estimate an unknown
signal f using quadratic loss. Another problem of interest is to detect f , that is,
to test the hypothesis H0 : f = 0 versus a family of nonparametric alternatives
of the form H1ε : f ∈ F , ‖f‖2 ≥ rε, where ‖ · ‖2 is the L2-norm and rε → 0 is a
positive family.

Let {φl}l∈L be a fixed orthonormal basis in Ld2, with L being a countable
set. Then model (1.1) can be equivalently represented by the Gaussian sequence
space model

Xε,l = θl + εξl, ξl
i.i.d.∼ N (0, 1), l ∈ L, (1.2)

where θl = (f, φl) are the Fourier coefficients of f with respect to the basis
{φl}l∈L and Xε,l = Xε(φl) are the empirical Fourier coefficients. Then, the
problems of interest can be restated, in an obvious way, in terms of the Fourier
coefficients.

Anisotropic functional classes were studied in [4, 12, 13, 15] among others in
connection with estimating functions of a multidimensional variable. Anisotropic
constraints provide for a possible disparity of the inhomogeneous aspect in dif-
ferent directions. We will be interested in Sobolev functional classes described
with the aid of Fourier coefficients. In this paper, assuming that f belongs to a
Sobolev ball of varying radius, we construct asymptotically minimax estimators
and provide optimal rates of convergence and exact asymptotic constants in the
estimation problem (see Theorem 3.1 and Remark 3.1), cf. Theorem 1 of [15].
Also, for fixed and finite d we construct a family of asymptotically minimax
tests and establish sharp asymptotics of the minimax total error probability in
the detection problem (Theorem 3.2).

The estimation and detection problems for infinite-dimensional model (1.1)
with d = ∞ or d = dε → ∞ were studied in [5, 7–10]. Compared to the d-dimen-
sional case with d being fixed and finite, the problems for infinite-dimensional
Gaussian white noise have a much richer analytical content. This motivates the
study of the case d = ∞. Another argument in favour of studying the infinite-
dimensional model is that in reality the true dimensionality may not be known
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or may vary. Then, the results for infinite d, in conjunction with those for finite
d, would form a clearer picture of the state of nature.

In comparison with the case when d is fixed and finite, the problems of
estimating and detecting an infinite-dimensional signal are more challenging
from a mathematical point of view. So far, we have established logarithmic
asymptotics in these two problems (Theorem 3.3). When studying the case of
fixed and finite d we use some general results of the minimax theory given by
Theorems 2.1 and 2.2. For d = ∞ the analysis is completely different and is done
by using probabilistic methods for the study of the so-called count function.

The paper is organized as follows. First we introduce anisotropic Sobolev
classes with d being fixed and finite and then extend the definition to the infinite-
dimensional case (Section 2.1). After that we formulate the problems of interest
(Section 2.2), and introduce some general results of the minimax theory used in
the subsequent sections (Section 2.3). The main results are collected in Section 3.
The last section of the paper, Section 4, is rather diverse and contains the tools
of study, auxiliary results, and proof of theorems.

The majority of limits in the paper are taken as ε→ 0. The relation aε ∼ bε
means limε→0 aε/bε = 1. The relation aε ≍ bε means that there exist constants
0 < c < C < ∞ and a number ε0 > 0 such that c < aε/bε < C for ε ∈ (0, ε0).
Also, if limε→0 aε/bε = ∞ (or limε→0 aε/bε = 0) we write aε ≫ bε (or aε ≪ bε).

2. Statement of the problem

2.1. Definition of anisotropic Sobolev balls

Assume that d is fixed and finite and consider functional classes indexed by a
smoothness parameter σ = (σ1, . . . , σd), σj > 0, j = 1, . . . , d, that are defined
by seminorms. Such classes are introduced as follows.

First, assume that σj is a positive integer and that f is σj-smooth in the jth
argument, j = 1, . . . , d. For such a function f , define the seminorm ‖f‖σ,2 by

‖f‖2σ,2 =
d
∑

j=1

∥

∥

∥

∥

∥

∂σjf

∂x
σj

j

∥

∥

∥

∥

∥

2

2

, (2.1)

where ∂σjf/∂x
σj

j is a (generalized) derivative of order σj in the jth direction
(see, for example, [14, Sec. 4.1]), and denote by Fσ,d the anisotropic Sobolev
ball, i.e.,

Fσ,d = {f ∈ Ld2 : ‖f‖σ,2 ≤ 1}.
In a general case of σ = (σ1, . . . , σd) with σj > 0, we assume that all partial

derivatives ∂mj f

∂x
mj
j

of order 0 ≤ mj ≤ [σj ], j = 1, . . . , d, are 1-periodic, that is, for

all k = 1, . . . , d,

∂mjf

∂x
mj

j

(x1, . . . , xk−1, 0, xk+1, . . . , xd) =
∂mjf

∂x
mj

j

(x1, . . . , xk−1, 1, xk+1, . . . , xd),
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and extend (2.1) by means of Fourier expansion. Specifically, let {φk(x)}k∈Z be
the standard Fourier basis in L2[0, 1] and let {φl(x)}l∈Zd be a tensor product
basis in Ld2, i.e., for x = (x1, . . . , xd) ∈ [0, 1]d and l = (l1, . . . , ld) ∈ Z

d

φl(x) =

d
∏

k=1

ϕlk(xk),

where

ϕ0(x) = 1, ϕl(x) =
√
2 cos(2πlx), ϕ−l(x) =

√
2 sin(2πlx), l > 0.

For a function f(x) =
∑

l∈Zd θlφl(x) with the Fourier coefficients θl = (f, φl)
we set

‖f‖2σ,2 =
∑

l∈Zd

c2l θ
2
l ,

where for l = (l1, . . . , ld) ∈ Z
d and σ = (σ1, . . . , σd) ∈ R

d
+

c2l = c2l (σ) =

d
∑

j=1

(2π|lj |)2σj . (2.2)

When the σj ’s are positive integers this corresponds to (2.1) under the periodic
constraints.

We now move on to the case d = ∞ and remind the definition of the space
L∞
2 = L2([0, 1]

∞) of square integrable functions of infinitely many variables
(see [8]).

The set [0, 1]∞ = ([0, 1]∞,B([0, 1]∞), λ∞) is viewed as a probability product
space with σ-algebra B([0, 1]∞) generated by the cylindric sets ∩j≤d{xj ∈ Bj},
d = 1, 2, . . . , where Bj ⊂ [0, 1] are Borel sets, and the product Lebesgue measure
λ∞. Let

L∞
2 = {f : [0, 1]∞ → R :

∫

[0,1]∞
f2(x)λ∞(dx) <∞}.

The space L∞
2 is a Hilbert space with a standard scalar product. Its basis is

easy to specify by using the following argument. For each d ∈ N the standard
projection Pd : [0, 1]

∞ → [0, 1]d generates the standard embedding Ed of the set
Fd of functions defined on [0, 1]d to the set F∞ of functions defined on [0, 1]∞.
The space L∞

2 is then the closure of ∪d∈NEdL
d
2 under the standard embedding

E1L
1
2 ⊂ · · · ⊂ EdL

d
2 ⊂ Ed+1L

d+1
2 ⊂ · · · ⊂ F∞.

(Clearly, if f = limd→∞ fd and g = limd→∞ gd, where fd, gd ∈ Ld2, then

(f, g) = lim
d→∞

(fd, gd),

so that L∞
2 is a separable Hilbert space.) Next, define the set Z∞

0 that consists
of infinite sequences (lj) with finitely many nonzero terms:

Z
∞
0 =

∞
⋃

d=1

Z
d
0, Z

d
0 = {l = (l1, . . . , ld, 0, . . . , 0, . . .) ∈ Z

∞}.
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Then, by the fact L∞
2 = ∪d∈NEdLd2 we have L∞

2 = Lin
(

{φl(x)}l∈Z∞

0

)

, where for
x = (x1, x2, . . .) ∈ [0, 1]∞ and l = (l1, l2, . . .) ∈ Z

∞
0

φl(x) =

∞
∏

k=1

ϕlk(xk),

and Lin
(

{φl(x)}l∈Z∞

0

)

is the space spanned by the functions φl(x), l ∈ Z
∞
0 .

Thus the orthonormal system {φl(x)}l∈Z∞

0
form the basis of L∞

2 .
Now we consider smoothness constraints that are applicable to functions of

infinitely many variables. First, let σ = (σ1, σ2, . . .) be an infinite sequence of
positive integers. Define the semi-norm ‖f‖σ,2 by

‖f‖2σ,2 =
∞
∑

j=1

∥

∥

∥

∥

∥

∂σjf

∂x
σj

j

∥

∥

∥

∥

∥

2

2

. (2.3)

Assume, as before, that f together with all its partial derivatives is 1-periodic,
i.e., for all partial derivatives ∂mj f

∂x
mj
j

of order 0 ≤ mj ≤ σj , j = 1, 2, . . . , and for

all k = 1, 2, . . . ,

∂mjf

∂x
mj

j

(x1, . . . , xk−1, 0, xk+1, . . .) =
∂mjf

∂x
mj

j

(x1, . . . , xk−1, 1, xk+1, . . .). (2.4)

Let θl = (f, φl) be the Fourier coefficients of f with respect to the Fourier basis
{φl(x)}l∈Z∞

0
. Then in terms of the θj ’s,

‖f‖2σ,2 =
∑

l∈Z∞

0

c2l θ
2
l , c2l = c2l (σ) =

∞
∑

j=1

(2π|lj |)2σj .

Thus, in a general case of σ = (σ1, σ2, . . .) with σj > 0, j = 1, 2, . . ., we assume

that all partial derivatives ∂mj f

∂x
mj
j

of order 0 ≤ mj ≤ [σj ], j = 1, 2 . . . , are 1-

periodic, and set

‖f‖2σ,2 =
∑

l∈Z∞

0

c2l θ
2
l , c2l = c2l (σ) =

∞
∑

j=1

(2π|lj |)2σj .

Under a periodic constraint, the anisotropic Sobolev ball for d = ∞ is given by

Fσ,∞ = {f ∈ L∞
2 : ‖f‖σ,2 ≤ 1}.

2.2. Estimation and detection over anisotropic Sobolev balls

When dealing with the estimation problem, we follow a familiar pattern. If for
an estimator f̂ε of f based on the observation Xε, and a sequence δε → ∞,

δε × (maximal risk of f̂ε) ≤ C <∞ for ε sufficiently small,
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and at the same time for any estimator f̃ε of f based on Xε,

δε × (maximal risk of f̃ε) ≥ c > 0 for ε sufficiently small

then the estimator f̂ε is said to be rate optimal. The parameter δε controls the
best possible rate of convergence. A more delicate problem, called the sharp op-
timality problem, consists of finding the rate optimal estimator whose minimax
risk is the smallest possible. That is, if one can find a rate optimal estimator f̂ε
such that the constants C and c obey the same asymptotics:

C = Cε = A(1 + o(1)) c = cε = A(1 + o(1)),

the estimator f̂ε is called asymptotically minimax, and A is called an exact
asymptotic constant.

To be precise, for 1 ≤ d ≤ ∞ define the minimax integrated squared risk by

R2
ε(Fσ,d) = inf

f̃ε

sup
f∈Fσ,d

Eε,f‖f − f̃ε‖22,

where the infimum is taken over all possible estimators f̃ε of f based on the
observation Xε. In this paper, we wish to find the asymptotically minimax esti-
mator f̂ε of f for which

sup
f∈Fσ,d

Eε,f‖f − f̂ε‖22 ∼ R2
ε(Fσ,d), ε→ 0,

and establish sharp asymptotics, which includes convergence rates and exact
asymptotic constants, for the risk R2

ε(Fσ,d).
Now, we turn to the detection problem. For a meaningful minimax testing

problem, the alternative hypothesis must have some neighborhood of the null
hypothesis removed. Therefore, for rε > 0 and 1 ≤ d ≤ ∞, we put

Fσ,d(rε) = {f ∈ Fσ,d : ‖f‖2 ≥ rε},

and consider testing the hypotheses

H0 : f = 0 vs. H1ε : f ∈ Fσ,d(rε).

When dealing with the detection problem, we judge the quality of testing by
using the minimax criterion based on the total error probability. For a test ψε
based on the observation Xε, define the error probabilities

αε(ψε) = Eε,0ψε,

βε(ψε, f) = Eε,f (1− ψε),

γε(ψε, f) = αε(ψε) + βε(ψε, f).

The maximum probability of type II error is then given by

βε(ψε,Fσ,d(rε)) = sup
f∈Fσ,d(rε)

βε(ψε, f).
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The quantity

γε(Fσ,d(rε)) = inf
ψε

γε(ψε,Fσ,d(rε)),

where

γε(ψε,Fσ,d(rε)) = αε(ψε) + βε(ψε,Fσ,d(rε)),
and the infimum is taken over all tests ψε based on Xε, is called the minimax
total error probability. A family of tests ψ∗

ε is called asymptotically minimax if

γε(ψ
∗
ε ,Fσ,d(rε)) = γε(Fσ,d(rε)) + o(1), ε→ 0.

We are interested in finding asymptotics of γε(Fσ,d(rε)) and determining the
structure of asymptotically minimax tests. In the context of signal detection
problem, this is called the sharp optimality problem.

It is always true that 0 ≤ γε(Fσ,d(rε)) ≤ 1. If the parameter rε in the
alternative hypothesis is too close to zero then γε(Fσ,d(rε)) → 1 as ε → 0,
and one cannot distinguish between the null hypothesis and the alternative.
Therefore the knowledge of the smallest rε for which γε(Fσ,d(rε)) → 0 as ε→ 0
is important. If there exists a family r∗ε = r∗ε (Fσ,d) → 0 such that

γε(Fσ,d(rε)) → 1 if rε/r
∗
ε → 0 and γε(Fσ,d(rε)) → 0 if rε/r

∗
ε → ∞,

then the family r∗ε is called the separation rate. Thus, another problem of interest
to us is to find asymptotics for the separation rate r∗ε .

From a technical point of view, it is more convenient to deal with ellipsoids in
sequence spaces rather than Sobolev balls in functional spaces. In the sequence
space of Fourier coefficients, the ball Fσ,d with fixed and finite d corresponds to
the ellipsoid

Θσ,d = {θ = (θl)l∈Zd :
∑

l∈Zd

c2l θ
2
l ≤ 1}, (2.5)

and for d = ∞ to the ellipsoid

Θσ,∞ = {θ = (θl)l∈Z∞

0
:
∑

l∈Z∞

0

c2l θ
2
l ≤ 1}.

The estimation problem then transforms to constructing asymptotically min-
imax estimator θ̂ε of θ using the data Xε,l in model (1.2), and establishing
exact asymptotics for the minimax squared risk associated to the ellipsoid Θσ,d,
1 ≤ d ≤ ∞:

R2
ε(Θσ,d) = inf

θ̃ε

sup
θ∈Θσ,d

‖θ − θ̃ε‖2 ∼ sup
θ∈Θσ,d

‖θ − θ̂ε‖2.

It is well known that Rε(Θσ,d) ≍ ε2/(2+σ
−1) (see [4, Sec. 16.3] and [15, Sec. 3]).

Moreover, the sharp asymptotic relation for Rε(Θσ,d) exists (see Theorem 1 of
[15]). In Sections 3 and 4, we shall state and prove a similar result for the ball
Fσ,d(Mε) = {f ∈ Ld2 : ‖f‖σ,2 ≤ Mε} of a varying radius Mε > 0 such that
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ε/Mε → 0, as ε → 0 (see Remark 3.1), and provide the asymptotically mini-
max estimator of f . We do that to illustrate our approach, which is somewhat
different (and shorter) compared to the one in [15], and goes in parallel with
deriving sharp asymptotics in the detection problem.

In the detection problem the set Fσ,d(rε), 1 ≤ d < ∞, that specifies the
alternative hypothesis corresponds to the ellipsoid with a small ball removed:

Θσ,d(rε) = {θ = (θl)l∈Zd :
∑

l∈Zd

θ2l c
2
l (σ) ≤ 1 and

∑

l∈Zd

θ2l ≥ r2ε}. (2.6)

IfM =Mε is a positive constant such that rε/M → 0 as ε→ 0, then the results
obtained for Θσ,d(rε) are immediately extended to the set Θσ,d(rε,M) defined
similarly to (2.6) with

∑

l∈Zd θ2l c
2
l (σ) ≤ M2 in place of

∑

l∈Zd θ2l c
2
l (σ) ≤ 1 (see

Remark 3.1).
When d = ∞ the set

Fσ,∞(rε) = {f ∈ Fσ,∞ : ‖f‖2 ≥ rε},

where Fσ,∞ = {f ∈ L∞
2 : ‖f‖2σ,2 ≤ 1}, takes the form

Θσ,∞(rε) = {θ = (θl)l∈Z∞

0
:
∑

l∈Z∞

0

θ2l c
2
l (σ) ≤ 1 and

∑

l∈Z∞

0

θ2l ≥ r2ε}.

In both cases, the hypotheses to be tested become H0 : θ = 0 versus H1ε : θ ∈
Θσ,d(rε).

2.3. Some general results

When estimating and detecting an infinite-dimensional vector from an ellipsoid
in a sequence space, the sharp asymptotics of the minimax squared risk and
minimax error probabilities are obtained by solving alike extremal problems.
Solutions to these problems, in implicit form, nowadays constitute standard re-
sults of the minimax theory. The first of these results connected to the estimation
problem is largely due to Pinsker [16] (see also [1, Ch. 7], [7, Sec. 2.2], and [18,
Sec. 3.1]); the second one, dealing with detection of a signal and obtained for
the first time in a slightly different setup in Theorem 1 of [2], is a combination
of statements from [6] (see [7, Sec. 2] for details).

In what follows, we use notation (x)+ = max(x, 0), x ∈ R.

Theorem 2.1. Let E2
ε (σ, d) be the value of the extremal problem on the set of

real-valued bilateral sequences {vl : l ∈ Z
d}:

E2
ε (σ, d) = ε2 sup

∑

l∈Zd

v2l
v2l + 1

subject to
∑

l∈Zd

c2l v
2
l ≤ ε−2, (2.7)

where c2l = c2l (σ) are given by (2.2). Then

Rε(Fσ,d) ≤ Eε(σ, d). (2.8)
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The extremal sequence {v̂2l }l∈Zd in (2.7) is of the form

v̂2l = (T/cl − 1)+

(we formally set v̂2l = ∞ if cl = 0), where the quantity T = Tε > 0 satisfies

∑

cl<T

c2l v̂
2
l = T 2

∑

cl<T

(

cl/T − (cl/T )
2
)

= ε−2, (2.9)

and the value of the problem is

E2
ε (σ, d) = ε2

∑

cl<T

(1 − cl/T ). (2.10)

Suppose that Tε → ∞. Then Rε(Fσ,d) ≥ Eε(σ, d)(1 + o(1)). Jointly with (2.8)
this yields

Rε(Fσ,d) ∼ Eε(σ, d). (2.11)

The asymptotically minimax estimator is a weighted projection-type estimator

f̂ε(x) =
∑

cl<T

cε,lXε(φl)φl(x), cε,l = 1− cl/T, x ∈ [0, 1]d.

Theorem 2.2. Let u2ε(Fσ,d(rε)) be the value of the extremal problem

u2ε(Fσ,d(rε)) = inf
1

2

∑

l∈Zd

v4l subject to
∑

l∈Zd

v2l ≥ (rε/ε)
2,

∑

l∈Zd

c2l v
2
l ≤ ε−2,

(2.12)

where c2l = c2l (σ) are given by (2.2). Then

γε(Fσ,d(rε)) → 1, as u2ε(Fσ,d(rε)) → 0.

Moreover, if rε → 0, then

γε(Fσ,d(rε)) = 2Φ(−uε(Fσ,d(rε))/2) + o(1). (2.13)

The extremal sequence is of the form

v̂2l = u20
(

1− (T/cl)
2
)

+
,

where the quantities u0 = u0,ε > 0 and T = Tε > 0 are determined by the
equations

∑

l∈Zd

v̂2l = u20
∑

cl<T

(

1− (cl/T )
2
)

= (rε/ε)
2, (2.14)

∑

l∈Zd

c2l v̂
2
l = u20

∑

cl<T

c2l
(

1− (cl/T )
2
)

= (1/ε)2, (2.15)
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T ≥ r−1
ε → ∞, (2.16)

and the value of the problem is

u2ε(Fσ,d(rε)) =
1

2

∑

l∈Zd

v̂4l =
1

2
u40
∑

cl<T

(

1− (cl/T )
2
)2
. (2.17)

The asymptotically minimax test is ψε = I(tε > uε(Fσ,d(rε))/2) and is based on
the χ2-type test statistic

tε = w−1
ε

∑

l∈Zd

wε,l(X̃
2
ε,l − 1), wε,l =

(

1− (cl/T )
2
)

+
, w2

ε =
1

2

∑

l∈Zd

w2
ε,l,

where X̃ε,l = ε−1Xε(φl).

The definition of separation rate r∗ε = r∗ε (Fσ,d) implies that r∗ε is determined
by the relation uε(Fσ,d(r∗ε )) ≍ 1. Thus, the family uε = uε(Fσ,d(rε)) character-
izes the distinguishability in the problem.

3. Main results

3.1. Sharp asymptotics for fixed d

Based on Theorems 2.1 and 2.2 we now establish two results that solve the sharp
optimality problems in connection with estimating and detecting a multivariate
signal f . We keep the notation of Theorems 2.1 and 2.2, and put

σ−1 = σ−1(d) =

d
∑

j=1

σ−1
j .

Theorem 3.1. Assume that the dimension d <∞ and the smoothness param-
eter σ = (σ1, . . . , σd) ∈ R

d
+, are fixed. Then as ε→ 0

Eε(σ, d) ∼ c(σ, d)ε2/(2+σ
−1), T 2 ∼ E−2

ε (σ, d)(σ−1 + 2)/σ−1,

where the exact asymptotic constant c(σ, d) is given by the formula

c2(σ, d) =

(

(

1 + 2/σ−1
)σ−1/2 2

∏d
j=1 Γ(1 + 1/(2σj))

πdσ−1(σ−1 + 1)Γ(σ−1/2)

)2/(2+σ−1)

. (3.1)

Theorem 3.2. Assume that the dimension d <∞ and the smoothness param-
eter σ = (σ1, . . . , σd) ∈ R

d
+, are fixed. Then as ε→ 0

uε(Fσ,d(rε)) ∼ C(σ, d)r2+σ
−1/2

ε ε−2, T 2 ∼ r−2
ε (σ−1 + 4)/σ−1,

where the exact asymptotic constant C(σ, d) is given by the formula

C2(σ, d) =
πd(σ−1)σ

−1/2(σ−1 + 2)Γ(1 + σ−1/2)

(σ−1 + 4)1+σ−1/2
∏d
j=1 Γ(1 + 1/(2σj))

. (3.2)
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Remark 3.1. By using rescaling arguments, it is straightforward to extend the
results of Theorems 3.1 and 3.2 to the case of anisotropic Sobolev ball

Fσ,d(M) = {f ∈ Ld2 : ‖f‖σ,2 ≤M}
of a radius M = Mε > 0 such that ε/M → 0 as ε → 0 (plus the assumption
that rε/M → 0 as ε → 0 in the detection problem). For such a ball, Theorems
3.1 and 3.2 remain valid with the constant cM (σ, d) in place of c(σ, d) and the
constant CM (σ, d) in place of C(σ, d), where

cM (σ, d) =Mσ−1/(2+σ−1)c(σ, d), CM (σ, d) =M−σ−1/2C(σ, d).

Indeed, setting c̃l = cl/M transforms the ellipsoid Θσ,d(M) = {θ = (θl)l∈Zd :
∑

l∈Zd c2l θ
2
l ≤ M2} into the ellipsoid Θ̃σ,d = {θ = (θl)l∈Zd :

∑

l∈Zd c̃2l θ
2
l ≤ 1}. If

now E2
ε (σ, d, c) stands for the value of extremal problem (2.7) and ε̃ = ε/M → 0,

then by Theorem 3.1, as ε→ 0,

Eε(σ, d, c̃) =MEε̃(σ, d, c) ∼ cM (σ, d)ε2/(2+σ
−1).

Similarly, if u2ε,c(Fσ,d(rε)) stands for the value of extremal problem (2.12) and
r̃ε = rε/M → 0, then by Theorem 3.2, as ε→ 0

uε,c̃(Fσ,d(rε)) = uε̃,c(Fσ,d(r̃ε)) ∼ CM (σ, d)r2+σ
−1/2

ε ε−2.

Remark 3.2. Theorem 3.1 together with Remark 3.1 extends Theorem 1 of
[15] to the case of Sobolev ball Fσ,d(Mε) of varying radius Mε ≫ ε (with the
assumption that M ≫ rε in the detection problem). In addition, Theorems
3.1 and 3.2 extend Theorems 3 and 4 of [7]. Indeed, when σ1 = . . . = σd =
σ > 0, our results coincide with those of Theorems 3 and 4 of [7] for the norm

‖f‖2σ,2 =
∑

l∈Zd c2l θ
2
l , where c

2
l =

∑d
j=1(2π|lj |)2σ. In this special (isotropic) case,

the constants c(σ, d) and C(σ, d) are monotone in d; decreasing and increasing,
respectively. In a general (anisotropic) case, when d = dε → ∞ or d = ∞, under
the assumption

∑∞
j=1 σ

−1
j <∞, formulas (3.1) and (3.2) yield

c(σ, d) ≍ π−d/(2+σ−1), C(σ, d) ≍ πd/2.

Generally speaking, these asymptoics are not usable because Theorems 3.1 and
3.2 are proved for fixed d. For example, in the isotropic case, the limiting be-
haviour of Rε(Fσ,d) and r∗ε (Fσ,d) for d = dε ≫ log(ε−1) is completely different
compared to the case d = dε = o(log(ε−1)) (see [7, Sec. 2.4]).

Remark 3.3. Theorems 3.1 and 3.2 imply as ε→ 0

Rε(Fσ,d) ≍ ε2/(2+σ
−1), r∗ε (Fσ,d) ≍ ε4/(4+σ

−1). (3.3)

Indeed, the separation rate r∗ε = r∗ε (Fσ,d) must satisfy uε(Fσ,d(r∗ε )) ≍ 1, which,
in view of Theorem 3.2, leads to the required asymptotics for r∗ε (Fσ,d). By (2.13)

this asymptotics yields γε(Fσ,d(rε)) → 0 for rε ≫ r∗ε ≍ ε4/(4+σ
−1). Next, using

(2.11) and Theorem 3.1, we have Rε(Fσ,d) ∼ c(σ, d)ε2/(2+σ
−1), and the rate

asymptotics for Rε(Fσ,d) follows immediately.
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3.2. Logarithmic asymptotics for d = ∞

The study of infinite-dimensional estimation and detection problems is done
under the assumption

σ−1 =
∞
∑

j=1

σ−1
j <∞. (3.4)

We have the following theorem.

Theorem 3.3. Assume that (3.4) is satisfied. Then as ε→ 0

logRε(Fσ,∞) ∼ 2 log ε

2 + σ−1
, log r∗ε (Fσ,∞) ∼ 4 log ε

4 + σ−1
.

Remark 3.4. Observe that the log-asymptotics for d = ∞ in Theorem 3.3 are
similar to those for 1 ≤ d <∞ (see (3.3)).

4. Proofs of Theorems

4.1. Proofs of Theorems 3.1 and 3.2

The proofs of Theorems 3.1 and 3.2 follow the pattern of [7, Sec. 3]. Let us start
with Theorem 3.2.

Proof of Theorem 3.2. We need to study equations (2.14), (2.15), and (2.17)
under condition (2.16). Denote

I1 = I1(σ, d) =
∑

cl<T

(

1− (cl/T )
2
)

, (4.1)

I2 = I2(σ, d) =
∑

cl<T

(cl/T )
2
(

1− (cl/T )
2
)

, (4.2)

I0 = I0(σ, d) =
∑

cl<T

(

1− (cl/T )
2
)2

= I1 − I2. (4.3)

It follows from (2.14), (2.15), and (2.17) that

T 2 = r−2
ε I1/I2, (4.4)

u2ε(Fσ,d(rε)) =
1

2
(rε/ε)

4I0/I
2
1 . (4.5)

Let us study the asymptotic behaviour of Ik, k = 0, 1, 2, when T → ∞. For this
put

xlj =
2πlj

T 1/σj
=

lj
mj

, j = 1, . . . , d, (4.6)
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where mj =
T 1/σj

2π . Then, recalling (2.2), as T → ∞,

I1 =
∑

cl<T



1−
d
∑

j=1

(2π|lj |)2σj/T 2





= m1 . . .md

∑

∑
|xlj

|2σj<1



1−
d
∑

j=1

|xlj |2σj



m−1
1 . . .m−1

d

∼ T σ
−1

(2π)d

∫

Dσ,d(1)



1−
d
∑

j=1

|xj |2σj



 dx1 . . . dxd, (4.7)

where

Dσ,d(1) = {x = (x1, . . . , xd) ∈ R
d :

d
∑

j=1

|xj |2σj < 1}.

Similarly, as T → ∞,

I2 ∼ T σ
−1

(2π)d

∫

Dσ,d(1)

d
∑

j=1

|xj |2σj



1−
d
∑

j=1

|xj |2σj



 dx1 . . . dxd, (4.8)

I0 ∼ T σ
−1

(2π)d

∫

Dσ,d(1)





d
∑

j=1

|xj |2σj



1−
d
∑

j=1

|xj |2σj









2

dx1 . . . dxd. (4.9)

Next, making the change of variables in the integrals in (4.7)–(4.9):

yj = x
2σj

j , j = 1, . . . , d,

and denoting by Σd the d-dimensional simplex, i.e,

Σd = {y = (y1, . . . , yd) ∈ R
d : yj ≥ 0,

d
∑

j=1

yj ≤ 1},

we get

I1 ∼ T σ
−1

(2π)dσ1 . . . σd

∫

Σd



1−
d
∑

j=1

yj



 y
1/(2σ1)−1
1 . . . y

1/(2σd)−1
d dy1 . . . dyd,

(4.10)

I2 ∼ T σ
−1

(2π)dσ1 . . . σd

∫

Σd

d
∑

j=1

yi



1−
d
∑

j=1

yj



 y
1/(2σ1)−1
1 . . . y

1/(2σd)−1
d dy1 . . . dyd,

(4.11)

I0 ∼ T σ
−1

(2π)dσ1 . . . σd

∫

Σd



1−
d
∑

j=1

yj





2

y
1/(2σ1)−1
1 . . . y

1/(2σd)−1
d dy1 . . . dyd.

(4.12)
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The integrals on the right-hand sides of (4.10)–(4.12) can be calculated using
the Liouville formula (see, for example, [3, Ch. XVIII])

∫

Σd

φ(x1 + · · ·+ xd)x
p1−1
1 . . . xpd−1

d dx1 . . . dxd

=
Γ(p1) . . .Γ(pd)

Γ(p1 + · · ·+ pd)

∫ 1

0

φ(u)up1+···pd−1du,

where pi > 0, i = 1, . . . d, and the integral on the right-hand side is absolutely
convergent. Applying the Liouville formula, we get as T → ∞

I1 ∼ T σ
−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σdΓ(σ−1/2)

∫ 1

0

(1− u)uσ
−1/2−1du

=
T σ

−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σdΓ(2 + σ−1/2)
;

I2 ∼ T σ
−1

σ−1Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σdΓ(σ−1/2)

∫ 1

0

(1− u)uσ
−1/2du

=
T σ

−1

σ−1Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σd(σ−1 + 4)Γ(2 + σ−1/2)
,

and

I0 = I1 − I2 ∼ 4T σ
−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)d(σ−1 + 4)σ1 . . . σdΓ(2 + σ−1/2)
.

From this
I1/I2 ∼ (σ−1 + 4)/σ−1,

and by (4.4)

T ∼ r−1
ε

(

(σ−1 + 4)/σ−1
)1/2

. (4.13)

Next, using relation (4.13) and the identity Γ(x + 1) = xΓ(x), we have

I0/I
2
1 ∼ 2(2π)dσ1 . . . σdΓ(2 + σ−1/2)

T σ−1(σ−1 + 4)Γ(1/(2σ1)) . . .Γ(1/(2σd))

∼ πdrσ
−1

ε (σ−1)σ
−1/2(σ−1 + 2)Γ(1 + σ−1/2)

(σ−1 + 4)1+σ−1/2Γ(1 + 1/(2σ1)) . . .Γ(1 + 1/(2σd))
.

Whence, by (4.5) and in view of Theorem 2.2, we arrive at the statement of
Theorem 3.2.

Proof of Theorem 3.1. Similarly to the proof of Theorem 3.2, we need to study
equations (2.9) and (2.10) as T → ∞. Denote

J1 = J1(σ, d) =
∑

cl<T

(1− cl/T ) , (4.14)

J2 = J2(σ, d) =
∑

cl<T

(cl/T ) (1− cl/T ) . (4.15)
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Let xlj be defined in (4.6), and let Dσ,d and Σd be as before. Applying the
Liouville formula, we have as T → ∞

J1 =
∑

cl<T






1−





d
∑

j=1

(2π|lj |)2σj/T 2





1/2






= m1 . . .md

∑

∑
|xlj

|2σj<1






1−





d
∑

j=1

|xlj |2σj





1/2





m−1

1 . . .m−1
d

∼ T σ
−1

(2π)d

∫

Dσ,d(1)






1−





d
∑

j=1

|xj |2σj





1/2





dx1 . . . dxd,

=
T σ

−1

(2π)dσ1 . . . σd

∫

Σd






1−





d
∑

j=1

yj





1/2





y
1/(2σ1)−1
1 . . . y

1/(2σd)−1
d dy1 . . . dyd

=
T σ

−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σdΓ(σ−1/2)

(∫ 1

0

uσ
−1/2−1du−

∫ 1

0

u(σ
−1−1)/2du

)

=
2T σ

−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ−1(σ−1 + 1)σ1 . . . σdΓ(σ−1/2)
.

Similar calculations for the sum J2 yield as T → ∞

J2 ∼ T σ
−1

(2π)d

∫

Dσ,d(1)











d
∑

j=1

|xj |2σj





1/2

−
d
∑

j=1

|xj |2σj






dx1 . . . dxd,

=
T σ

−1

(2π)dσ1. . . σd

∫

Σd











d
∑

j=1

yj





1/2

−
d
∑

j=1

yj






y
1/(2σ1)−1
1 . . . y

1/(2σd)−1
d dy1. . . dyd

=
T σ

−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)dσ1 . . . σd

(∫ 1

0

u(σ
−1−1)/2du−

∫ 1

0

uσ
−1/2du

)

=
2T σ

−1

Γ(1/(2σ1)) . . .Γ(1/(2σd))

(2π)d(σ−1 + 1)(σ−1 + 2)σ1 . . . σdΓ(σ−1/2)
,

and hence
J1/J2 ∼ (σ−1 + 2)/σ−1.

Next, in view of (2.9) and (2.10),

E2
ε (σ, d) = ε2J1, T 2 = E−2

ε (σ, d)J1/J2 ∼ E−2
ε (σ, d)(σ−1 + 2)/σ−1,

where T = Tε satisfies

T 2 = ε−2/J2 ∼ (2π)d(σ−1 + 1)(σ−1 + 2)σ1 . . . σdΓ(σ
−1/2)

2ε2T σ−1Γ(1/(2σ1)) . . .Γ(1/(2σd))
.
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From this, using again the identity Γ(x+ 1) = xΓ(x),

T 2 ∼
(

πd(σ−1 + 1)(σ−1 + 2)Γ(σ−1/2)

2ε2Γ(1 + 1/(2σ1)) . . .Γ(1 + 1/(2σd))

)2/(2+σ−1)

,

and the statement of Theorem 3.1 follows.

4.2. Proof of Theorem 3.3

The proof of Theorem 3.3 utilizes the so-called count function and largely con-
sists of studying its properties.

4.2.1. Count function

An important role in the analysis of the infinite-dimensional case is played by
the count function N(t) which is defined for any t > 0 as follows:

N(t) = card{N (t)}, N (t) = {l ∈ Z
∞
0 : cl ≤ t}.

The count function can be thought of as the distribution function of the coeffi-
cients cl. It satisfies N(t) → ∞ as t → ∞, and determines rate asymptotics of
integrated squared risk in the estimation problem and of separation rate in the
detection problem. More precisely, for the estimation problem (see, for example,
[10, Sec. 2])

Rε(Fσ,∞) ≍ T−1, where ε2T 2N(T ) ≍ 1, (4.16)

and for the detection problem

r∗ε (Fσ,∞) ≍ T−1, where ε4T 4N(T ) ≍ 1. (4.17)

In addition, under certain regularity constraints on N(t), this function controls
sharp asymptotics of the minimax integrated squared risk R2

ε(Fσ,∞) and the
minimax total error probability γε(Fσ,d(rε)) (see, for example, [10, Sec. 2] for
details).

4.2.2. Probability measures

Due to (4.16) and (4.17) finding rate asymptotics of Rε(Fσ,∞) and r∗ε (Fσ,∞(rε))
requires studying the properties of N(t) as t → ∞. A general method consists
of defining a family of prior distributions Ph on the set of indices Z

∞
0 and

investigating the behaviour of the function N(t) = card{l ∈ Z
∞
0 : cl ≤ t} using

probabilistic and analytical tools.
First, let us define a family of probability measures Ph, depending on a

positive parameter h, of the form

Ph(l) =

∞
∏

j=1

Ph,j(lj), l ∈ Z
∞.
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To this end, define the random variables

Yj(k) = (2π|k|)2σj , j = 1, 2, . . . , k ∈ Z,

and view the coefficients

c2l =
∞
∑

j=1

(2π|lj |)2σj =
∞
∑

j=1

Yj(lj)
def
= S(l), l ∈ Z

∞
0 ,

as realizations of the random variables S(l), l ∈ Z
∞
0 . Then

N(t) = card{l ∈ Z
∞
0 : S(l) ≤ t2}.

Next, for h > 0 define the probability measures Ph,j on Z by

Ph,j(k) = exp(−hYj(k)− Zj(h)), Zj(h) = log

(

∑

k∈Z

exp(−hYj(k))
)

,

and put

Ph(l) =

∞
∏

j=1

Ph,j(lj) = exp(−hS(l)− Z(h)),

where

Z(h) =

∞
∑

j=1

Zj(h) =

∞
∑

j=1

log (1 +Gj(h)) , Gj(h) = 2

∞
∑

k=1

exp(−h(2πk)2σj ).

(4.18)

Using the arguments similar to those in [9, p. 16], it is readily shown that for
all h > 0

Ph(Z
∞
0 ) = lim

d→∞
Ph(Z

d
0) = 1,

so that Ph(l) is a probability measure on Z
∞ with support on Z

∞
0 .

Setting

H = t2

leads to the representation, for any h > 0, t > 0,

N(t) = card{l ∈ Z
∞
0 : cl ≤ t} = card{l ∈ Z

∞
0 : S(l) ≤ H}

= eZ(h)+hH
∑

l∈Z∞

0
:S(l)≤H

eh(S(l)−H)Ph(l) = eZ(h)+hHIh,

where Ih = Eh
(

eh(S−H)
I{S≤H}

)

≤ 1. Hence

logN(t) ≤ Z(h) + ht2, ∀h > 0, t > 0. (4.19)
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4.2.3. Auxiliary results

This section contains some auxiliary results that will be used in the proof of
Theorem 3.3.

Lemma 4.1. Let the sequence (σj)j≥1 be non-decreasing and let (3.4) hold true.
Then

σj/j → ∞, j → ∞.

Proof. The lemma is easily proved by contradiction. Suppose there exist a sub-
sequence (σjk)k≥1 and a constant B > 0 such that

σjk ≤ Bjk, k = 1, 2, . . . .

Then for jk/2 ≤ j ≤ jk we have σj ≤ 2Bj, and for k sufficiently large

∑

jk/2≤j≤jk

σ−1
j ≥ 1

2B

∑

jk/2≤j≤jk

1

j
∼ 1

2B

∫ jk

jk/2

dx

x
=

log 2

2B
> 0. (4.20)

On the other hand, in view of (3.4),

∑

jk/2≤j≤jk

σ−1
j <

∑

j≥jk/2

σ−1
j → 0, k → ∞,

which contradicts (4.20). Hence, the lemma follows.

In the sequel, without loss of generality the sequence (σj)j≥1 is assumed
non-decreasing.

By (4.19) the upper bound for logN(t) is controlled by the term Z(h) + ht2.
The following lemma establishes the asymptotic behavior of Z(h).

Lemma 4.2. As h→ 0

Z(h) ∼ σ−1

2
log(h−1).

Proof. The key point is to split Z(h) appropriately into the main term, which
gives the required asymptotics, and the remainder. We have (see (4.18))

Z(h) =
∑

1≤j≤J

log(1 +Gj(h)) +
∑

j>J

log(1 +Gj(h))
def
= S1 + S2, (4.21)

where parameter J = J(h) → ∞ as h→ 0 is chosen to have

Gj(h) =

{

Cjh
−1/(2σj) +O(1) , if j ≤ J,

Bje
−h(2π)2σj

, if j > J,



502 Yu. Ingster and N. Stepanova

with some constants Cj ≍ 1 and Bj ≍ 1. Such a choice of J is possible because
for “small” σj ’s, setting mj = h−1/(2σj),

Gj(h) = 2mj

∞
∑

k=1

exp
(

−(2π(k/mj))
2σj
)

m−1
j

= 2mj

∫ ∞

0

e−(2πx)2σj
dx+O(1) =

Γ(1/(2σj))

2σjπh1/(2σj)
+O(1),

and for “large” σj ’s, the function Gj(h) is approximated by the first term

2e−h(2π)
2σj

.
To be precise, let the parameter J = J(h) → ∞ as h→ 0 be such that

δ1
def
= hσJ (2π)

2σJ ≍ 1. (4.22)

This yields

δ
def
= δ1/σJ = h(2π)2σJ = o(1),

and using Lemma 4.1

J ≪ σJ ≍ log(h−1). (4.23)

Then the first sum in (4.21) equals

S1 =
∑

1≤j≤J

log(1 +Gj(h)) =
∑

1≤j≤J

log
(

Cjh
−1/(2σj) +O(1)

)

=
∑

1≤j≤J

log
(

h−1/(2σj)
)

+
∑

1≤j≤J

log
(

Cj +O(1)h1/(2σj)
)

=
log(h−1)

2

∑

1≤j≤J

σ−1
j +O(J) =

σ−1 log(h−1)

2
(1 + o(1)). (4.24)

It remains to show that S2 = o(log(h−1)). By the inequality ey − ex ≥
ex(y − x), which is the same as ez − 1 ≥ z, we have

(2π)2σj − (2π)2σJ ≥ (2π)2σJ c(σj − σJ), c = 2 log(2π).

Therefore using log(1 + x) ≤ x and noting that

Gj(h) ∼ 2 exp
(

−h(2π)2σj
)

, h→ 0,

we get

S2 =
∑

j>J

log(1 +Gj(h)) ≤ 4
∑

j>J

exp
(

−h(2π)2σj
)

= 4 exp(−h(2π)2σJ )
∑

j>J

exp(−h
(

2π)2σj − (2π)2σJ
)
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≤ 4
∑

j>J

exp(−h(2π)2σJ c(σj − σJ )) = 4 exp(cδ1)
∑

j>J

exp(−cδσj)

≤ 4 exp(cδ1)
∑

j>J

exp(−cδAj) ≤ 4 exp(cδ1) exp(−cδAJ)
(1 − exp(−cAδ))

≤ 4 exp(cδ1)

(1− exp(−cAδ)) ,

where, thanks to Lemma 4.1, we use the inequality σj > Aj, A → ∞. If Aδ is
bounded away from zero then S2 = O(1) and we are done. If Aδ = o(1) then,
recalling that δ1 ≍ 1 and A→ ∞, we may continue

S2 ≤ 4 exp(cδ1)

(1− exp(−cAδ)) ∼ 4 exp(cδ1)

cAδ
=

4 exp(cδ1)

cδ1

σJ
A

≍ σJ
A

= o(σJ ) = o(log(h−1)),

where the last equality is due to (4.23). Thus

Z(h) =
σ−1 log(h−1)

2
(1 + o(1)),

and the lemma is proved.

4.2.4. Proof of Theorem 3.3

The proofs of both relations are similar. Let us prove the second one. This is
done in two steps, the lower bound part and the upper bound part. The lower
bound part is reduced to the finite-dimensional case. To simplify notation, we
write r∗ε for r∗ε (Fσ,∞).

By Remark 3.3,

log r∗ε
log ε

≥ log r∗ε (Fσ,d)
log ε

∼ 4

4 + σ−1(d)
, σ−1(d) =

d
∑

j=1

σ−1
j .

Then, in view of (3.4), passage to the limit as d→ ∞ gives the lower bound:

log r∗ε
log ε

≥ 4

4 + σ−1
(1 + o(1)). (4.25)

The upper bound part consists of showing that for sufficiently small ε > 0

log r∗ε
log ε

≤ 4

4 + σ−1
(1 + o(1)). (4.26)

By (4.17)

log r∗ε ∼ − logT, where 4 log ε+ logN(T ) ∼ −4 logT,
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and hence

log r∗ε
log ε

∼ 1 +
logN(T )

4 log ε
.

Therefore for the validity of (4.26) it suffices to show that for sufficiently small ε

logN(T ) ≤ 4σ−1 log(ε−1)

4 + σ−1
(1 + o(1)), (4.27)

where T = Tε satisfies ε
4T 4N(T ) ≍ 1.

From (4.19) for any h > 0

logN(T ) ≤ Z(h) + hT 2, T 2 ≍ 1

ε2N1/2(T )
, (4.28)

where by Lemma 4.2,

Z(h) ∼ σ−1

2
log(h−1), h→ 0.

Up to a vanishing term, the right-hand side of inequality in (4.28) is equal
to (σ−1/2) log(h−1) + hT 2. The minimum of the latter (as a function of h) is
attained at the point h = σ−1/(2T 2). In other words, the minimum occurs when
h ≍ ε2N1/2(T ), see (4.28). In this case hT 2 ≍ 1, and

log(h−1) ∼ 2 log(ε−1)− 1

2
logN(T ).

Therefore, using (4.28)

logN(T ) ≤ σ−1

2
log(h−1)(1 + o(1)) +O(1)

=

(

σ−1 log(ε−1)− σ−1

4
logN(T )

)

(1 + o(1)) +O(1).

From this inequality (4.27), and hence the upper bound (4.26), follows. Com-
bining (4.25) and (4.26), we get the required asymptotic expression for r∗ε .

For the estimation problem the proof is completely analogous, cf. (4.16) and
(4.17). The proof of Theorem 3.3 is completed.
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