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1. Introduction and estimation

Let (Xn)n≥1 be a sequence of independent and identically distributed Rd-valued
random vectors, d ≥ 1, with cumulative distribution function F(x) = P(X ≤ x)
for x ∈ Rd and a density function f(·) with respect to Lebesgue measure on
Rd. Here, as usual, X = (X1, . . . , Xd) ≤ x = (x1, . . . , xd) means that each
component of X is less than or equal to the corresponding component of x, that
is, Xi ≤ xi, for all i = 1, . . . , d. The differential (or Shannon) entropy of f(·) is
defined to be

H(f) := −
∫

Rd

f(x) log (f(x)) dx (1.1)

:= −
∫

Rd

log (f(x)) dF(x), (1.2)
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whenever this integral is meaningful, and where, for x = (x1, . . . , xd), dx denotes
Lebesgue measure in Rd. We will use the convention that 0 log(0) = 0 since
u log(u) → 0 as u → 0.

The concept of differential entropy was originally introduced in Shannon’s
paper [42]. Since this early epoch, the notion of entropy has been the subject
of great theoretical and applied interest. We refer to [10, Chapter 8.] for a com-
prehensive overview of differential entropy and their mathematical properties.
Entropy concepts and principles play an fundamental role in many applications,
such as statistical communication theory [25], quantization theory [39], statisti-
cal decision theory [33], and contingency table analysis [28]. [11] introduced the
concept of convergence in entropy and showed that the latter convergence con-
cept implies convergence in L1. This property indicates that entropy is a useful
concept to measure “closeness in distribution”, and also justifies heuristically
the usage of sample entropy as test statistics when designing entropy-based tests
of goodness-of-fit. This line of research has been pursued by [45, 38, 19, 27, 20]
and [24] [including the references therein]. The idea here is that many families
of distributions are characterized by maximization of entropy subject to con-
straints (see, e.g., [32] and [34]). There is a huge literature on the Shannon’s
entropy and its applications. It is not the purpose of this paper to survey this
extensive literature.

In the literature, various estimator for H(f), based on a random sample
X1, . . . , Xn from the underlying distribution, have been proposed and their
asymptotic properties studied. For an exhaustive list of references in this vein,
we refer to [29, 4] and the references therein.

We mention that there exist mainly two approaches to the construction of
entropy estimators. The first approach is based on spacings when d = 1. The
the second approach, to be used in this paper to estimate H(f), consists in first
obtaining a suitable density estimate fn(·) for f(·), and then substituting f(·)
by fn(·) in an entropy-like functional of f(·).

The main contribution of the present paper is to establish an almost sure
uniform in bandwidth consistency of the kernel-type estimator of the entropy
functional H(f). In the entropy framework, the results obtained here are be-
lieved to be novel.

We start by giving some notation and conditions that are needed for the
forthcoming sections. Below, we will work under the following assumptions on
f(·) to establish our results.

(F.1) The functional H(f) is well-defined by (1.1), in the sense that

|H(f)| < ∞. (1.3)

We recall from (cf. [3, p. 237], [5, p. 108]) that the finiteness of H(f) is guar-
anteed if both E‖X‖2 < ∞, where ‖ · ‖ denotes the Euclidian norm in Rd, (in
which case H(f) < ∞) and f(·) is bounded (in which case H(f) > −∞). Ash
gives an example of a density function on R for which H(f) = ∞ and also one
for which H(f) = −∞. We refer to [30, Section 4] for conditions characterizing
(1.3) in terms of f(·).
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To define our entropy estimator we define, in a first step, a kernel density
estimator. Towards this aim, we introduce a measurable function K(·) fulfilling
the following conditions.

(K.1) K(·) is of bounded variation on Rd;
(K.2) K(·) is right continuous on Rd, i.e., for any t = (t1, . . . , td), we have

K(t1, . . . , td) = lim
ε1↓0,...,εd↓0

K(t1 + ε1, . . . , td + εd);

(K.3) ‖K‖∞ := sup
t∈Rd |K(t)| =: κ < ∞;

(K.4)
∫
Rd K(t)dt = 1.

The well known Akaike-Parzen-Rosenblatt (refer to [2, 36] and [40]) kernel es-
timator of f(·) is defined, for any x ∈ Rd, by

fn,hn
(x) := (nhd

n)
−1

n∑

i=1

K((x−Xi)/hn), (1.4)

where 0 < hn ≤ 1 is the smoothing parameter. For notational convenience, we
have chosen the same bandwidth sequence for each margins. This assumption
can be dropped easily. Refer for example to [23, Remark 8] for more details.

In a second step, given fn,hn
(·), we estimate H(f) using the representation

(1.1), by setting

H
(1)
n,hn

(f) := −
∫

An

fn,hn
(x) log

(
fn,hn

(x)
)
dx, (1.5)

where
An := {x : fn,hn

(x) ≥ γn},

and γn ↓ 0 is a sequence of positive constant. The plug-in estimator H
(1)
n,hn

(f)
was introduced by [18] for d = 1 and An = [−bn, bn], where bn is a specified

sequence of constants. The integral estimator H
(1)
n,hn

(f) can be easily calculated
if, for example, fn(·) is a histogram.

In the present paper, we will consider also the resubstitution estimate pro-
posed in [1]. In this case, we shall study uniform-in-bandwidth consistency of the
estimator of H(f) based on the representation (1.2) which is, in turn, defined
by

H
(2)
n,hn

(f) := − 1

n

n∑

i=1

1Ωn,i
log (fn,hn

(Xi)) , (1.6)

where
Ωn,i := {fn,hn

(Xi) ≥ γn}, for i = 1, . . . , n

The limiting behavior of fn,hn
(·), for appropriate choices of the bandwidth hn,

has been studied by a large number statisticians over many decades. For good
sources of references to research literature in this area along with statistical
applications consult [16, 15, 6, 41] and [37]. In particular, under our assumptions,
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the condition that hn → 0 together with nhn → ∞ is necessary and sufficient for
the convergence in probability of fn,hn

(x) towards the limit f(x), independently
of x ∈ Rd and the density f(·). Various uniform consistency results involving the
estimator fn,hn

(·) have been recently established. We refer to [12, 22, 13] and the
references therein. The first seminal paper that devoted to obtaining uniform
in bandwidth results for the kernel-type estimator was [23]. Since then, there is
a considerable interest in obtaining so-called uniform in bandwidth results for
kernel-type estimators depending on a bandwidth sequence. In this paper we will

use their methods to establish convergence results for the estimates H
(1)
n,hn

(f)

and H
(2)
n,hn

(f) of H(f) in the same spirit of [7, 8].
The remainder of this paper is organized as follows. In Section 2, we state

our main results concerning the limiting behavior of H
(1)
n,hn

(f) and H
(2)
n,hn

(f).
Some concluding remarks and possible future developments are mentioned in
Section 3. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to Section 4.

2. Main results

To prove the strong consistency of H
(1)
n,hn

, we shall consider another, but more
appropriate and more computationally convenient, centering factor than the

expectation EH
(1)
n,hn

, which is delicate to handle. This is given by

ÊH
(1)
n,hn

(f) := −
∫

An

Efn,hn
(x) log

(
Efn,hn

(x)
)
dx.

The main result, concerningH
(1)
n,h, to be proved here may now be stated precisely

as follows.

Theorem 2.1. Let K(·) satisfy (K.1-2-3-4), and let f(·) be a bounded density
fulfill (F.1). Let c > 0 and {hn}n≥1 be a sequence of positive constants such
that, cn−1γ−4

n (log n) ≤ hn < 1. Then there exists a positive constant Υ, such
that

lim sup
n→∞

sup
hn≤h≤1

√
nhγ4

n|H
(1)
n,h(f)− ÊH

(1)
n,h(f)|√

(log(1/h) ∨ log logn)
≤ Υ a.s.

The proof of Theorem 2.1 is postponed until §4.
Let (h′

n)n≥1 and (h′′
n)n≥1 be two sequences of constants such that 0 < h′

n <
h′′
n < 1, together with h′′

n → 0 and nh′
nγ

4
n/ logn → ∞, as n → ∞. A direct

application of Theorem 2.1 shows that, with probability 1,

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)− ÊH

(1)
n,h(f)| = O

(√
(log(1/h′

n) ∨ log logn)

nh′
nγ

4
n

)
.

This, in turn, implies that

lim
n→∞

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)− ÊH

(1)
n,h(f)| = 0 a.s. (2.1)
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The following result handles the uniform deviation of the estimate H
(1)
n,hn

(f)
with respect to H(f).

Corollary 2.2. Let K(·) satisfy (K.1-2-3-4), and let f(·) be a uniformly Lip-
schitz continuous and bounded density on Rd, fulfilling (F.1). Then for each
pair of sequences 0 < h′

n < h′′
n ≤ 1 with h′′

n → 0, nh′
nγ

4
n/ logn → ∞ and

| log(h′′
n)|/ log logn → ∞ as n → ∞, we have

lim
n→∞

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)−H(f)| = 0 a.s. (2.2)

The proof of Corollary 2.2 is postponed until §4.
Remark 2.3. We note that the main problem in using entropy estimates such
as (1.5) is to choose properly the smoothing parameter hn. The uniform in band-
width consistency result given in (2.2) shows that any choice of h between h′

n

and h′′
n ensures the consistency of H

(1)
n,h(f). In other word, the fluctuation of the

bandwidth in a small interval do not affect the consistency of the nonparametric
estimator of H(f).

Now, we shall establish another result in a similar direction for a class of
compactly supported densities. We need the following additional conditions.

(F.2) f(·) has a compact support say I and is s-time continuously differentiable,
and there exists a constant 0 < M < ∞ such that

sup
x∈I

∣∣∣∣∣
∂sf(x)

∂xj1
1 . . . ∂xjd

d

∣∣∣∣∣ ≤ M, j1 + · · ·+ jd = s.

(K.5) K(·) is of order s, i.e., for some constant S 6= 0,
∫

Rd

tj11 . . . tjdd K(t)dt = 0, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = 1, . . . , s− 1,

∫

Rd

|tj11 . . . tjdd |K(t)dt = S, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = s.

Under the condition (F.2), the differential entropy of f(·) may be written as
follows

H(f) = −
∫

I

f(x) log (f(x)) dx.

Theorem 2.4. Let K(·) satisfy (K.1-2-3-4-5), and let f(·) fulfill (F.1-2). Then
for each pair of sequences 0 < h′

n < h′′
n ≤ 1 with h′′

n → 0 and nh′
n/ logn → ∞

as n → ∞, we have, for any γ > 0

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nh|H(1)

n,h(f)−H(f)|
√
log(1/h) ∨ log logn

≤ ζ(I) a.s.,

where

ζ(I) :=

(
γ2 + γ + 1

γ2

)1/2

sup
x∈I

{
f(x)

∫

Rd

K2(u)du

}1/2

.
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The proof of Theorem 2.4 is postponed until §4.
To state our result concerning H

(2)
n,hn

(f) we need the following additional
condition.

(F.3) E

[
log2

(
f(X)

)]
< ∞.

Remark 2.5. Condition (F.3) is extremely weak and is satisfied by all com-
monly encountered distributions including many important heavy tailed distri-
butions for which the moments do not exists (see. e.g. [43] for more details and
references on the subject.)

To prove the strong consistency of H
(2)
n,hn

we consider the following centering
factor

ÊH
(2)
n,hn

(f) :=
1

n

n∑

i=1

1Ωn,i
log (E(fn,hn

(x) | Xi = x)) .

The main results concerningH
(2)
n,h(f) are summarized in the following Theorems.

Theorem 2.6. Let K(·) satisfy (K.1-2-3-4), and let f(·) be a bounded density
fulfilling (F.1). Let c > 0 and {hn}n≥1 be a sequence of positive constants such
that, cn−1γ−2

n (logn) ≤ hn < 1. Then there exists a positive constant Υ′, such
that

lim sup
n→∞

sup
hn≤h≤1

√
nhγ2

n|H
(2)
n,h(f)− ÊH

(2)
n,h(f)|√

(log(1/h) ∨ log logn)
≤ Υ′ a.s.

The proof of Theorem 2.6 is postponed until §4.
Theorem 2.7. Assume that the kernel function K(·) is compactly supported
and satisfies the conditions (K.1-2-3-4-5). Let f(·) be a bounded density function
fulfilling the conditions (F.1-2-3). Let {h′

n}n≥1 and {h′′
n}n≥1 such that h′

n =
An−δ and h′′

n = Bn−δ with arbitrary choices of 0 < A < B < ∞ and (1/(d +
4)) ≤ δ < 1. Then, for γ > 0, we have with probability one,

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|H
(2)
n,h(f)−H(f)|

√
2 log(1/h)

≤ σI, (2.3)

where

σI :=
1

γ

{
sup
x∈I

f(x)

∫

Rd

K2(u)du

}1/2

,

where I is given in (F.2).

The proof of Theorem 2.7 is postponed until §4.
Remark 2.8. Theorem 2.4 leads, using the techniques developed in [13], to the
construction of asymptotic 100% certainty interval for the true entropy H(f),
i.e., as n → ∞, for each ε > 0

P

(
H(f) ∈

[
H

(1)
n,h(f)−An,ε, H

(1)
n,h(f) +Bn,ε

])
≈ 100%,
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see (2.5) bellow for explicit expressions of An,ε and Bn,ε. We give in what follows,
the idea how to construct this interval. Throughout, we let h ∈ [h′

n, h
′′
n], where

h′
n and h′′

n are as in Theorem 2.4. We infer from Theorem 2.4 that, for suitably
chosen data-dependent functions Ln = Ln(X1, . . . , Xn) > 0, for each 0 < ε < 1,
we have, as n → ∞,

P

(
1

Ln
|H(1)

n,h(f)−H(f)| ≥ 1 + ε

)
→ 0. (2.4)

Assuming the validity of the statement (2.4), we obtain asymptotic certainty
interval for H(f) in the following sense. For each 0 < ε < 1, we have, as n → ∞,

P

(
H(f) ∈

[
H

(1)
n,h(f)− (1 + ε)Ln, H

(1)
n,h(f) + (1 + ε)Ln

])
→ 1. (2.5)

Whenever (2.5) holds for each 0 < ε < 1, we will say that the interval

[
H

(1)
n,h(f)− Ln, H

(1)
n,h(f) + Ln

]
,

provides asymptotic 100% certainty interval for H(f).

To construct Ln we proceed as follows. Assume that there exists a sequence
{In}n≥1 of strictly nondecreasing compact subsets of I, such that

⋃

n≥1

In = I

(for the estimation of the support I we may refer to [17] and the references
therein). Furthermore, suppose that there exists a sequence (possibly random)
{ζn(In)}, n = 1, 2, . . . , converging to ζ(I) in the sense that

P

(∣∣∣∣
ζn(In)

ζ(I)
− 1

∣∣∣∣ ≥ ε

)
→ 0 as n → ∞ for each ε > 0. (2.6)

Observe that the statement (2.6) is satisfied when the choice

ζn(In) := sup
x∈In

√
fn,h(x)

∫

Rd

K2(u)du

is considered. Consequently, we may define the quantity Ln displayed in the
statement (2.4) by

Ln :=

√
γ4
n

(
log(1/h) ∨ log logn

)

nh
× ζn(In).

Remark 2.9. A practical choice of γn is β(log n)−α where β > 0 and α ≥ 0.
In the case of the density which is bounded away from 0, α is equal to 0.
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Remark 2.10. [26] establish uniform in bandwidth consistency and central
limit theorems for a different but related estimator to the one proposed in the
present paper. That is, [26] propose

Ĥn,hn
:= − 1

n

n∑

i=1

log {fn,hn,−i(Xi)} ,

where

fn,hn,−i(Xi) := 1/((n− 1)hn)
∑

1≤j 6=i≤n

K ((Xi −Xj)/hn) .

Their results hold subject to the condition ((C) p. 751, where we choose φ(x) =
x log x that corresponds to the negative entropy) which is satisfied when density
f(·) is bounded away from 0 on its support, refer to Remark 1. p. 752 of [26],
their approach is different from that used in this paper and is based on the
notion of a local U -statistic. We mention that the estimator proposed by [26]
seems to be simpler and with faster rates of convergence. The fact that we use
the a “thresholding” estimator of the entropy permits us to consider a large class
of density by paying the price of loss in the rate of convergence. Furthermore,
if we assume that the density f(·) is bounded away from 0 on its support, then
the rate of the strong convergence is of order {{log(1/hn)}/{nhn}}1/2 which is
the same rate of the strong convergence for the density kernel-type estimators,
this is precisely the contain of Theorem 2.4.

3. Concluding remarks and future works

We have addressed the problem of nonparametric estimation of Shannon’s en-
tropy. The results presented in this work are general, since the required condi-
tions are fulfilled by a large class of densities.

The evaluation of the integral in (1.5) requires numerical integration and is
not easy if fn,hn

(·) is a kernel density estimator but it does not involve any
stochastic aspects. The integral estimator can however be easily calculated if we
approximate fn,hn

(·) by piecewise-constant functions on a fine enough partition,
for example, fn,hn

(·) is a histogram. We mention that in some particular case
(K(·) is a double exponential kernel), the approximations are easily calculated
since the distribution function corresponding to the kernel K(·) is available,

confer [21] for more details. An interesting aspect of the H
(2)
n,hn

(f) is that its

rate of convergence is faster than that of H
(1)
n,hn

(f) and that is very easy to
compute.

It will be interesting to enrich our results presented here by an additional
uniformity in term of γn in the supremum appearing in all our theorems, which
requires non trivial mathematics, this would go well beyond the scope of the
present paper. Another direction of research is to obtain results, based on U -
statistic approach, similar to that in [26] for entropy estimator under general
conditions, i.e., without assuming the condition that the density f(·) is bounded
away from 0 on its support.
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4. Proofs

This section is devoted to the proofs of our results.

Proof of Theorem 2.1.

We first decompose H
(1)
n,hn

(f)− ÊH
(1)
n,hn

(f) into the sum of two components, by
writing

H
(1)
n,hn

(f)− ÊH
(1)
n,hn

(f)

= −
∫

An

fn,hn
(x) log

(
fn,hn

(x)
)
dx

+

∫

An

Efn,hn
(x) log

(
Efn,hn

(x)
)
dx

= −
∫

An

{log fn,hn
(x)− logEfn,hn

(x)}Efn,hn
(x)dx

−
∫

An

{fn,hn
(x)− Efn,hn

(x)} log fn,hn
(x)dx

:= ∆1,n,hn
+∆2,n,hn

. (4.1)

We observe that for all z > 0, |log z| ≤
∣∣ 1
z − 1

∣∣ + |z − 1|. Therefore, for any
x ∈ An = {x : fn,hn

(x) ≥ γn}, we get

| log fn,hn
(x) − logEfn,hn

(x)| =
∣∣∣∣log

fn,hn
(x)

Efn,hn
(x)

∣∣∣∣

≤
∣∣∣∣
Efn,hn

(x)

fn,hn
(x)

− 1

∣∣∣∣+
∣∣∣∣
fn,hn

(x)

Efn,hn
(x)

− 1

∣∣∣∣

=
|Efn,hn

(x)− fn,hn
(x)|

fn,hn
(x)

+
|fn,hn

(x)− Efn,hn
(x)|

Efn,hn
(x)

.

In the following ‖ · ‖∞ denotes, as usual, the supremum norm, i.e., ‖φ(x)‖∞ :=
sup

x∈Rd ‖φ(x)‖. We know (see, e.g., [23]), for each h′
n < h < h′′

n, as n → ∞, we
have

‖fn,h(x) − Efn,h(x)‖∞ = O

(√
(log(1/h′

n) ∨ log logn)

nh′
n

)
.

For any x ∈ An, one can see that

Efn,hn
(x) ≥ γn.

We readily obtain from these relations, for any x ∈ An, that

| log fn,hn
(x) − logEfn,hn

(x)| ≤ 2

γn
|fn,hn

(x)− Efn,hn
(x)| .
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We can therefore write, for any n ≥ 1, the following chain of inequalities

|∆1,n,hn
| =

∣∣∣∣
∫

An

{log fn,hn
(x) − logEfn,hn

(x)}Efn,hn
(x)dx

∣∣∣∣

≤
∫

An

|log fn,hn
(x)− logEfn,hn

(x)|Efn,hn
(x)dx

≤ 2

γn

∫

An

|fn,hn
(x)− Efn,hn

(x)|Efn,hn
(x)dx

≤ 2

γn
sup
x∈An

|Efn,hn
(x) − fn,hn

(x)|
∫

An

Efn,hn
(x)dx

≤ 2

γn
sup
x∈Rd

|Efn,hn
(x)− fn,hn

(x)|
∫

Rd

Efn,hn
(x)dx.

In view of condition (K.4), by the change of variables and an application of
Fubini’s theorem, we have

∫

Rd

Efn,h(x)dx = 1.

Thus, for any n ≥ 1, we have the following bound

|∆1,n,hn
| ≤ 2

γn
sup
x∈Rd

|Efn,hn
(x) − fn,hn

(x)| . (4.2)

We next evaluate the second term ∆2,n,hn
in the right side of (4.1). Since

|log z| ≤ 1
z + z, for all z > 0, one can see that

|∆2,n,hn
| =

∣∣∣∣
∫

An

{fn,hn
(x)− Efn,hn

(x)} log fn,hn
(x)dx

∣∣∣∣

≤
∫

An

|fn,hn
(x)− Efn,hn

(x)|
[

1

fn,hn
(x)

+ fn,hn
(x)

]
dx.

Similarly as above, we get, for any x ∈ An,

1

fn,hn
(x)

+ fn,hn
(x) =

(
1

fn,hn
(x)fn,hn

(x)
+ 1

)
fn,hn

(x)

≤
( 1

γ2
n

+ 1
)
fn,hn

(x).

We can therefore write the following chain of inequalities, for any n ≥ 1,

|∆2,n,hn
|

≤
( 1

γ2
n

+ 1
)∫

An

|Efn,hn
(x)− fn,hn

(x)| fn,hn
(x)dx

≤
( 1

γ2
n

+ 1
)

sup
x∈An

|Efn,hn
(x)− fn,hn

(x)|
∫

An

fn,hn
(x)dx

≤
( 1

γ2
n

+ 1
)

sup
x∈An

|Efn,hn
(x)− fn,hn

(x)|
∫

Rd

fn,hn
(x)dx.
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In view of condition (K.4), by change of variables, we have

∫

Rd

fn,h(x)dx = 1.

Thus, for any n ≥ 1, we have

|∆2,n,hn
| ≤

( 1

γ2
n

+ 1
)
sup
x∈Rd

|Efn,hn
(x)− fn,hn

(x)| . (4.3)

We now impose some slightly more general assumptions on the kernel K(·) than
that of Theorem 2.1. Consider the class of functions

K :=
{
K((x− ·)/h1/d) : h > 0, x ∈ R

d
}
.

For ε > 0, set N(ε,K) = supQ N(κε,K, dQ), where the supremum is taken over

all probability measures Q on (Rd,B), where B represents the σ-field of Borel
sets of Rd. Here, dQ denotes the L2(Q)-metric and N(κε,K, dQ) is the minimal
number of balls {g : dQ(g, g

′) < ε} of dQ-radius ε needed to cover K. We assume
that K satisfies the following uniform entropy condition.

(K.6) for some C > 0 and ν > 0,

N(ε,K) ≤ Cε−ν , 0 < ε < 1. (4.4)

Finally, to avoid using outer probability measures in all of statements, we impose
the following measurability assumption.

(K.7) K is a pointwise measurable class, that is, there exists a countable sub-
class K0 of K such that we can find for any function g ∈ K a sequence of
functions {gm : m ≥ 1} in K0 for which

gm(z) −→ g(z), z ∈ R
d.

Remark 4.1. Remark that condition (K.6) is satisfied whenever (K.1) holds,
i.e., K(·) is of bounded variation on Rd (in the sense of Hardy and Kauser, see,
e.g. [9, 47] and [31]). Condition (K.7) is satisfied whenever (K.2) holds, i.e., K(·)
is right continuous (refer to [13] and [23] and the references therein).

By Theorem 1 of [23], whenever K(·) is measurable and satisfies (K.3-4-6-7),
and when f(·) is bounded, we have for each c > 0, and for a suitable function
Σ(c), with probability 1,

lim sup
n→∞

sup
cn−1 logn≤h≤1

√
nh‖fn,h − Efn,h‖∞√
log(1/h) ∨ log logn

= Σ(c) < ∞, (4.5)

which implies, in view of (4.2) and (4.3), that, with probability 1,

lim sup
n→∞

sup
hn≤h<1

√
nhγ4

n|∆1,n,h|√
(log(1/h) ∨ log logn)

= 0, (4.6)
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and

lim sup
n→∞

sup
hn≤h<1

√
nhγ4

n|∆2,n,h|√
(log(1/h) ∨ log logn)

≤ Υ(c). (4.7)

Recalling (4.1), the proof of Theorem 2.1 is completed by combining (4.6)
with (4.7).

Proof of Corollary 2.2.

Recall An = {x : fn,hn
(x) ≥ γn} and let Ac

n the complement of An in Rd (i.e.,
Ac

n = {x : fn,hn
(x) < γn}). Observe that

|f(x)| ≥ |fn,hn
(x)| − |fn,hn

(x)− f(x)| ≥ γn

+O

(√
(log(1/h′

n) ∨ log logn)

nh′
n

)
+O(h′′

n
1/d

).

Keep in mind that | log(h′′
n)|/ log logn → ∞ as n → ∞, thus, for n enough large,

the two last terms of the last inequality are dominated by the first one, then,
we obtain

|f(x)| ≥ γn.

We repeat the arguments above with the formal change of H
(1)
n,hn

(f) by H(f).
We show that, for any n ≥ 1,

|ÊH(1)
n,hn

(f)−H(f)|

≤
∣∣∣∣∣

∫

Ac
n

f(x) log
(
f(x)

)
dx

∣∣∣∣∣

+
1

γn
sup
x∈Rd

|Efn,hn
(x)− f(x)|

+
( 1

γ2
n

+ 1
)
sup
x∈Rd

|Efn,hn
(x) − f(x)| . (4.8)

It is obvious to see that
∫

Ac
n

f(x)dx ≤
∫

1

2
f(x)≤γn

f(x)dx+

∫

fn,h(x)≤γn≤
1

2
f(x)

f(x)dx

≤
∫

1

2
f(x)≤γn

f(x)dx+ 2

∫

Rd

|fn,h(x)− f(x)|dx.

Observe that we have

1{ 1

2
f(x)≤γn}f(x) ≤ f(x)
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and 1{ 1

2
f(x)≤γn}f(x) → 0 as n → ∞, thus an application of Lebesgue dominated

convergence theorem gives

lim
n→∞

∫

1

2
f(x)≤γn

f(x)dx = 0. (4.9)

Keep in mind that the conditions hn → 0 together with nhn → ∞ as n → ∞,
ensure that (see e.g., [15])

lim
n→∞

∫

Rd

|fn,hn
(x)− f(x)|dx = 0 a.s.

We need the following instrumental fact due to [14, Lemma 3.3. p.40] and see
also [35, Proof of Theorem 2.2] which for convenience and easy reference we
state here.

Fact. Let [h′
n, h

′′
n] be a sequence of deterministic interval, where nh′

n → ∞ and
h′′
n → 0, as n → ∞. For every ǫ > 0, then there exist n0 > 0 and r > 0 such

that

P

{
sup

h′

n≤h≤h′′

n

∫

Rd

|fn,h(x) − f(x)|dx > ǫ

}
≤ exp

{
−rnǫ2

}
, n ≥ n0.

A routine application of the Borel-Cantelli lemma implies, for all h ∈ [h′
n, h

′′
n]

such that nh′
n → ∞ and h′′

n → 0, as n → ∞, that

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Rd

|fn,h(x) − f(x)|dx = 0 a.s. (4.10)

By combining (4.10) with (4.9), we obtain

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Ac
n

f(x)dx = 0 a.s. (4.11)

Since the entropy H(f) is finite [by condition (F.1)], the measure

ν(A) :=

∫

A

| log
(
f(x)

)
|dF(x),

is absolutely continuous with respect to the measure µ(A) =
∫
A
dF(x), which

guaranteed that

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Ac
n

f(x) log
(
f(x)

)
dx = 0 a.s. (4.12)

Recall that we have for each h′
n < h < h′′

n, as n → ∞,

‖Efn,h(x)− f(x)‖∞ = O(h′′
n
1/d

). (4.13)



Kernel-type estimators of Shannon’s entropy 453

Thus, we have

lim
n→∞

sup
h′

n≤h≤h′′

n

γ−2
n ‖Efn,h(x) − f(x)‖∞ = 0.

This when combined with (4.8), entails that, as n → ∞,

sup
h′

n≤h≤h′′

n

‖ÊH(1)
n,h(f)−H(f)‖ → 0. (4.14)

Using (4.11) and (4.14) in connection with (2.1) imply the desired conclu-
sion (2.2).

Proof of Theorem 2.4.

Under conditions (F.2), (K.5) and using Taylor expansion of order s we get, for
x ∈ I,

|Efn,h(x)− f(x)| = hs/d

s!

∣∣∣∣∣

∫ ∑

k1+···+kd=s

tk1

1 . . . tkd

d

∂sf(x− hθt)

∂xk1

1 . . . ∂xkd

d

K(t)dt

∣∣∣∣∣ ,

where θ = (θ1, . . . , θd) and 0 < θi < 1, i =, 1, . . . , d. Thus a straightforward ap-
plication of Lebesgue dominated convergence theorem gives, for n large enough,

sup
x∈I

|Efn,h(x)− f(x)| = O(h′′
n
s/d

). (4.15)

Let J be a nonempty compact subset of the interior of I (say I̊). First, note that
we have from Corollary 3.1.2. p. 62 of [46]

lim sup
n→∞

sup
h′

n≤h≤h′′

n

sup
x∈J

√
nh|fn,h(x)− f(x)|√
log(1/h) ∨ log logn

= sup
x∈J

{
f(x)

∫

Rd

K2(t)dt

}1/2

.(4.16)

Set, for all n ≥ 1,

πn(J) =

∣∣∣∣
∫

J

fn,hn
(x) log

(
fn,hn

(x)
)
dx−

∫

J

f(x) log
(
f(x)

)
dx

∣∣∣∣ . (4.17)

Using condition (F.2) (f(·) is compactly supported), f(·) is bounded away from
zero on its support, thus, we have for n enough large, there exists γ > 0, such
that f(x) > γ, for all x in the support of f(·). By the same previous arguments
we have, for n enough large,

πn(J) ≤ 1

γ
sup
x∈J

|fn,hn
(x)− f(x)|

+
( 1

γ2
+ 1
)
sup
x∈J

|fn,hn
(x)− f(x)| .
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One finds, by combining the last equation with (4.16),

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nh πn(J)√

{(log(1/h) ∨ log logn)

≤
(
γ2 + γ + 1

γ2

)1/2

sup
x∈J

{
f(x)

∫

Rd

K2(t)dt

}1/2

. (4.18)

Let {Jℓ}, ℓ = 1, 2, . . . , be a sequence of nondecreasing nonempty compact subsets

of I̊ such that ⋃

ℓ≥1

Jℓ = I.

Now, from (4.18), it is straightforward to observe that

lim
ℓ→∞

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ4

nπn(Jℓ)√
(log(1/h) ∨ log logn)

≤ lim
ℓ→∞

(
γ2 + γ + 1

γ2

)1/2

sup
x∈Jℓ

{
f(x)

∫

Rd

K2(t)dt

}1/2

≤
(
γ2 + γ + 1

γ2

)1/2

sup
x∈I

{
f(x)

∫

Rd

K2(t)dt

}1/2

.

The proof of Theorem 2.4 is completed.

Proof of Theorem 2.6.

Let ϕn,hn
(x) := E(fn,hn

(x)). Recall that

H
(2)
n,hn

(f)− ÊH
(2)
n,hn

(f) = − 1

n

n∑

i=1

1Ωn,i
log(fn,hn

(Xi)) + 1Ωn,i
log (ϕn,hn

(Xi))

=: Ξn,hn
.

Using a Taylor-Lagrange expansion of the log(·) function, we have, for some
random sequence θn ∈ (0, 1),

Ξn,hn
=

1

n

n∑

i=1

1Ωn,i

[
fn,hn

(Xi)− ϕn,hn
(Xi)

(1− θn)fn,hn
(Xi) + θnϕn,hn

(Xi)

]
.

Recalling that Ωn,i =
{
fn,hn

(Xi) ≥ γn
}
, we readily obtain, with probability 1,

|Ξn,hn
| ≤ 1

nγn

n∑

i=1

1Ωn,i
|fn,hn

(Xi)− ϕn,hn
(Xi)|

≤ 1

γn
sup
x∈I

|fn,hn
(x)− ϕn,hn

(x)|

=
1

γn
sup
x∈I

|fn,hn
(x)− E(fn,hn

(x))| .

Combining the last inequality with (4.5), we readily obtain the desired result.
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Proof of Theorem 2.7.

We have

H
(2)
n,hn

(f)−H(f) = {H(2)
n,hn

(f)− ÊH
(2)
n,hn

(f)} + {ÊH(2)
n,hn

(f)−H(f)}.
Since the first term in the right hand of the last equality is controlled in the
preceding proof, it remains only to evaluate the second one. To simplify our

exposition, we will decompose ÊH
(2)
n,hn

(f)−H(f) into the sum of three compo-
nents, that is

ÊH
(2)
n,hn

(f)−H(f) = − 1

n

n∑

i=1

1Ωn,i
log(ϕn,hn

(Xi)) + E (log (f(Xi)))

= − 1

n

n∑

i=1

1Ωn,i
(log(ϕn,hn

(Xi))− log(f(Xi)))

− 1

n

n∑

i=1

(
1Ωn,i

log(f(Xi))− log(f(Xi))
)

− 1

n

n∑

i=1

(log(f(Xi))− E (log(f(Xi))))

=: −∇1,n,hn
−∇2,n,hn

−∇3,n,hn
. (4.19)

In view of (4.19), we have

∇1,n,hn
=

1

n

n∑

i=1

1Ωn,i
(log(ϕn,h(Xi))− log(f(Xi))) .

Using again a Taylor-Lagrange expansion of the log(·) function, we have, for
some random sequence θn ∈ (0, 1),

∇1,n,hn
=

1

n

n∑

i=1

1Ωn,i

[
ϕn,hn

(Xi)− f(Xi)

(1 − θn)ϕn,hn
(Xi) + θnf(Xi)

]
.

By condition (F.2), there exists a constant ηI > 0, such that f(x) > ηI for all
x ∈ I. It follows that for n enough large that, f(x) > γn for all x ∈ I. Recalling
that Ωn,i =

{
fn,hn

(Xi) ≥ γn
}
, we readily obtain, with probability 1,

|∇1,n,hn
| ≤ 1

nγn

n∑

i=1

1Ωn,i
|ϕn,hn

(Xi)− f(Xi)|

≤ 1

γn
sup
x∈I

|ϕn,hn
(x)− f(x)| .

We mention that the bandwidth h is to be chosen in such a way that the bias
of fn,h(x) may be neglected, in the sense that

lim
n→∞

sup
h′

n≤h≤h′′

n

{
nh

2 log(1/h)

}1/2

sup
x∈I

∣∣ϕn,h(x)− f(x)
∣∣ = 0, (4.20)



456 S. Bouzebda and I. Elhattab

which is implied by (4.15). Thus,

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|∇1,n,h|√
2 log(1/h)

= 0. (4.21)

We next evaluate the second term ∇2,n,hn
in the right side of (4.19). We have

from (4.15) and (4.5)

sup
h′

n≤h≤h′′

n

sup
x∈I

∣∣fn,h(x) − f(x)
∣∣ = O

(√
(log(1/h′

n)

nh′
n

)
.

Thus, for n sufficiently large, almost surely, fn,h(x) ≥ (1/2)f(x) for all x ∈ I and
all h ∈ [h′

n, h
′′
n]. Note that under condition (F.2), the density f(·) is compactly

supported, it is possible to find a positive constant ηI such as f(x) > ηI. This
implies that fn,h(x) ≥ ηI/2, and thus, for all n enough large, we have, almost
surely,

1Ωn,i
= 1, (4.22)

which implies that, for all n enough large, almost surely,

∇2,n,hn
= 0. (4.23)

We finally evaluate the second term ∇3,n,hn
in the right side of (4.19). We have,

∇3,n,hn
= − 1

n

n∑

i=1

ξi,

where, for i = 1, . . . , n,

ξi := log{f(Xi)} − E

(
log{f(Xi)}

)
,

are a centered independent and identically distributed random variables with
finite variance Var

(
log(f(Xi))

)
(condition (F.3)). Observe that

γn
n

√
nhn

∑n
i=1 ξi√

2 log(1/hn)
=

γn
√
hn log logn√
log(1/hn)

∑n
i=1 ξi√

2n log logn

which, by the law of the iterated logarithm, tends to 0 as n tends to infinity.
Namely,

lim
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|∇3,n,h|√
2 log(1/h)

= 0. (4.24)

Using (4.24) and (4.23) in connection with (4.16) completes the proof of Theo-
rem 2.7.
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