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Abstract: A Dirichlet mixture of exponential power distributions, as a
prior on densities supported on the real line in the problem of Bayesian
density estimation, is a natural generalization of a Dirichlet mixture of
normals, which has been shown to possess good frequentist asymptotic
properties in terms of posterior consistency and rates of convergence. In
this article, we establish upper bounds on the rates of convergence for the
posterior distribution of a Dirichlet mixture of exponential power densities,
assuming that the true density has the same form as the model. When the
kernel is analytic and the mixing distribution has either compact support or
sub-exponential tails, a nearly parametric rate, up to a logarithmic factor
whose exponent depends on the tail behaviour of the base measure of the
Dirichlet process and the exponential decay rate at zero of the prior for
the scale parameter, is obtained. The result covers the important special
case where the true density is a location mixture of normals and shows that
a nearly parametric rate arises also when the prior on the scale contains
zero in its support, provided it has a sufficiently fast decay rate at zero.
This improves on some recent results on density estimation with Dirichlet
mixtures of normals by allowing the inverse-gamma distribution, which is
a commonly used prior on the square of the bandwidth. When the kernel
is not infinitely differentiable at zero, as the case may be depending on the
shape parameter, the posterior distribution is shown to concentrate around
the sampling density at a slower rate.
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1. Introduction

Mixtures of probability distributions naturally arise in some contexts as models
for observations of phenomena with multiple underlying factors. In a Bayesian
framework, mixture models provide convenient constructs for density estimation
because a prior can be induced on a space of densities by putting a prior on
the mixing distribution of a given collection of kernels. This approach, which
has the virtue of combining conceptual simplicity of the scheme with flexibility
of the model due to the wide range of possible kernel choices depending on the
sample space, was initiated by Ferguson [5] and Lo [17], who used a Dirichlet
process prior on the mixing distribution and derived the expressions for the
posterior and the Bayes’ density estimator (or predictive distribution). The dif-
ficulty in defining a prior on a set of densities using directly a Dirichlet process
lies in the fact that this process selects discrete distributions. A typical choice
for the kernel when the sample space is the real line is the normal density, but
an exponential power density can be more generally used. The motivation for
considering mixtures of other distributions than the normal lies in the fact that
the empirical distributions of many phenomena fail to conform to a normal. Ex-
ponential power distributions may represent a reasonable alternative when the
discrepancy is in the tails. For example, the normal-Laplace distribution, which
results from the convolution of independent normal and Laplace components,
behaves like the normal in the middle of its range and like the Laplace in the
tails. The interest in this distribution is due to its role in describing the stopped
rate of a Brownian motion, when the starting value is generated by a normal
and the hazard stopping rate is constant. Its use in the study of high frequency
price data is pointed out in Reed [19]. The normal-Laplace distribution makes
an interesting case for considering mixtures of exponential power distributions
because, as it will be shown, available results on normal mixtures do not cover
the case where the mixing distribution has fatter tails than those of the kernel.

An Exponential Power (EP) distribution has probability density function

f(x; θ, σ, p) =
1

2σp1/pΓ(1 + 1/p)
exp{−(|x− θ| /σ)p/p}, x ∈ R, (1.1)

with θ ∈ R and σ, p > 0. In the sequel, we shall use the symbol cp to denote the
normalizing constant, i.e., cp := 2p1/pΓ(1 + 1/p), and let ψσ, p(·) stand for the
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density function of an EP distribution with θ = 0,

ψσ, p(x) := f(x; 0, σ, p), x ∈ R.

An EP distribution is characterized by three parameters: the location param-
eter θ = E[X ], the scale parameter σ ≡ σp = {E[|X − θ|p]}1/p and the shape
parameter (or exponent) p that determines the thickness of the tails. Note that
Var(X) = σ2p2/pΓ(3/p)/Γ(1/p). For p = 2, the expression in (1.1) reduces to
the density of a normal,

ψσ, 2(x− θ) = φσ(x− θ) = σ−1φ((x − θ)/σ), x ∈ R,

where φ(·) stands for the standard normal density. As the shape parameter
varies, the EP density describes platikurtic distributions for p > 2, namely, dis-
tributions with lighter tails than those of a normal, and leptokurtic distributions
for 0 < p < 2. In particular, for p = 1, the Laplace or double-exponential density

ψσ, 1(x− θ) = (2σ)
−1
e−|x−θ|/σ, x ∈ R,

is obtained. EP distributions with 0 < p < 1 are called fractional distributions.
They have super-Laplace tails, i.e., tails that are beyond those of the Laplace
density. For p → 0+, the limiting distribution is degenerate at θ. For p → ∞,
the limiting distribution is uniform over the interval (θ − σ, θ + σ],

lim
p→∞

ψσ, p(x− θ) = (2σ)−1I(−1, 1]((x − θ)/σ), x ∈ R.

The derivation of EP distributions in the above form can be attributed to, among
others, Lunetta [18] and Vianelli [26], but EP distributions were first obtained
with a different parametrization by Subbotin [24] as a generalization of the
Gaussian distribution to model the distribution of random errors. For a review
of the main properties of Subbotin’s EP distributions see, e.g., Johnson, Kotz
and Balakrishnan [12], Chap. 24. EP distributions have been considered as an
alternative to the normal distribution in statistical modelling and used to study
Bayesian robustness, see, e.g., Choy and Smith [3]. West [30] showed that EP
distributions with p ∈ [1, 2] allow for a scale mixture of normals representation,
the normal (p = 2) being a degenerate mixture, while Walker and Gutiérrez-
Peña [28] proved that EP distributions with p ≥ 1 allow for a scale mixture of
uniforms representation:

ψσ, p(x− θ) =

∫ ∞

0

fX|U (x|u)fU (u) du, x ∈ R,

where

X |(U = u) ∼ Uniform

(

θ − σp1/p√
2
u1/p, θ +

σp1/p√
2
u1/p

)

and
U ∼ Gamma (1 + 1/p, 2−p/2).
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In this article, we consider location mixtures of EP distributions. The scale
parameter is assumed to be distributed independently of the mixing measure.
Thus, a prior on a set of densities is induced by the product measure of the
prior for the mixing distribution and the prior for the scale. In what follows, we
shall mainly focus on the case where the standard choice of a Dirichlet process
prior for the mixing distribution is considered. We are interested in establish-
ing whether and, if so, how fast the posterior distribution concentrates its mass
around the true density, as the amount of data increases. Weak and strong pos-
terior consistency, as well as rates of convergence, for Dirichlet location and
location-scale mixtures of normals have been studied in the recent literature.
Ghosal, Ghosh and Ramamoorthi [7] showed that, under general conditions, a
Dirichlet location mixture prior with Gaussian kernel gives rise to a consistent
posterior in the total variation distance. Lijoi, Prünster and Walker [16] weak-
ened the condition on the tails of the base measure of the Dirichlet process from
an exponential to a power decay law. Tokdar [25] proved strong consistency
for Dirichlet location-scale mixtures of normals and weakened a moment condi-
tion on the true density (Theorem 3.3, page 96). Ghosal and van der Vaart [8]
obtained (upper bounds on the) rates of convergence of the posteriors for Dirich-
let location and location-scale normal mixture priors in the case where the true
density is itself a location or a location-scale mixture of normals, the mixing
distribution having either compact support or sub-Gaussian tails, the scale be-
ing restricted to a known bounded interval. They showed that, under regularity
conditions on the prior, the posterior converges at a nearly parametric rate, up
to a logarithmic term whose exponent depends on the tail behaviour of the base
measure. For Dirichlet location mixtures of normals, assuming the same set-up,
Walker, Lijoi and Prünster [29] slightly improved the power of the logarithmic
term. This fast rate seems to be due to a combination of factors: the form of the
true density, which is exactly of the type selected by the prior, together with the
infinite degree of smoothness of the Gaussian kernel and the fact that a mixture
of normals, with mixing distribution having exponentially decaying tails, can be
approximated by a finite mixture of normals with a restricted number of compo-
nents. This yields a high prior concentration rate and, when the scale is forced
to stay bounded away from zero and infinity, a small entropy number, leading to
a nearly parametric rate. It may be argued whether the assumption on the scale
parameter plays a crucial role in determining the posterior rate or may be re-
moved without affecting the rate, except possibly for a logarithmic factor. If the
prior on the scale has full support on (0, ∞), one has to consider a richer approx-
imating class of densities, a sieve, with scale bounded below and above by se-
quences respectively decreasing to zero and increasing to infinity at proper rates.
Employing a fully supported prior for the scale amounts for regularity conditions
on the tails, the requirement on the decay rate at zero being expectedly more
restrictive than that at infinity, because the most important values are those in-
cluded in a neighborhood of zero. In fact, as the bandwidth tends to zero, normal
mixtures approximate any density and the complexity of the sieve increases.

The focus of the article is on rates of convergence for posterior distributions
of Dirichlet EP mixtures. We begin to show that a finite EP mixture can be
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estimated at a nearly parametric rate, whatever the value of the kernel shape
parameter, using a finite EP mixture prior. Then we consider true densities that
may be infinite EP mixtures. First the case where the kernel is analytic and the
mixing distribution has either compact support or sub-exponential tails is con-
sidered. No constraint is assumed on the scale. We show that a nearly parametric
rate arises also when the prior on the scale has full support on (0, ∞). The main
result states that, under regularity conditions on the tails of the base measure
of the Dirichlet process and the prior for the scale, the posterior of a Dirichlet
mixture of EP distributions converges at the target rate. The conditions we im-
pose on the tails of the prior for the scale are satisfied by the common choice of
an inverse-gamma prior on σ2. This result covers the important special case of
Dirichlet normal mixtures, complementing the findings of Ghosal and van der
Vaart [8], extending those of Walker, Lijoi and Prünster [29] and improving on
those of Scricciolo [21], where a slower rate, heavily depending on the tail decay
rate at zero of the prior for the bandwidth, was obtained. We also consider the
case where the kernel is not infinitely differentiable at zero. A slower rate is
obtained even assuming the scale to lie in a compact interval.

The article is organized as follows. Section 2 describes the set-up and intro-
duces some notation. Section 3 analyzes the case of finite mixtures. Section 4
presents the main results on infinite mixtures. It is split into two subsections:
Subsection 4.1 deals with the case where the kernel is analytic, Subsection 4.2
investigates the case of kernels that are not infinitely differentiable at zero. Sec-
tion 5 is devoted to final remarks and discussion. Auxiliary results invoked in
the proofs of the theorems are reported in the Appendix.

2. Preliminaries

Suppose we have observations X1, . . . , Xn from an unknown density fF, σ on R

which is a location mixture of EP distributions,

fF, σ(x) :=

∫

ψσ, p(x− θ) dF (θ), x ∈ R,

where F denotes the mixing distribution. In what follows, F will be also used
to indicate the corresponding probability measure. Note that fF, σ is just the
convolution of ψσ, p and F ,

fF, σ = F ∗ ψσ, p.

The scale parameter σ is assumed to be distributed independently of F according
to some distribution G on (0, ∞). Let π denote the overall prior on M(R) ×
(0, ∞), where M(R) is the set of all probability measures on R. The prior π
induces a prior on the class of densities F := {fF,σ : (F, σ) ∈ M(R)× (0, ∞)}
via the mapping (F, σ) 7→ fF,σ. We shall use the same symbol π to denote
either measure, the correct interpretation being clear from the context. We
assume that F is equipped with a metric d, which may be either the Hellinger
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dH(f, g) := (
∫

(f1/2 − g1/2)2 dλ)1/2, where λ is the Lebesgue measure on R, or
the one induced by the L1-norm, ‖f − g‖1 :=

∫

|f − g| dλ.
We are interested in assessing the rate of convergence for the posterior dis-

tribution corresponding to a prior π, under the non-Bayesian assumption that
X1, . . . , Xn are i.i.d. observations from a density f0. In the following, it will be
explicitly stated whether f0 is itself a location mixture of EP distributions, i.e.,
f0 ≡ fF0, σ0

, where F0 and σ0 denote the true values of F and σ, respectively.
A sequence εn → 0, as n → ∞, is said to be an upper bound on the posterior
rate of convergence relative to a metric d on F if, for some constant M > 0,
the posterior probability

π({fF, σ : d(fF, σ, f0) > Mεn}|X1, . . . , Xn) → 0,

P∞
0 -almost surely or in Pn

0 -probability, where P0 stands for the probability
measure corresponding to f0. In order to derive the rates of convergence for
Dirichlet mixtures of EP distributions, we shall appeal to a theorem of Ghosal
and van der Vaart [8], page 1239, reported as Theorem A.1 in the Appendix.
Condition (A.1) involves the packing number of a class of densities, say F ′,
equipped with a (semi-)metric d, denoted by D(ε, F ′, d), which is defined as
the maximum number of points in F ′ such that the distance between each pair
is at least ε. This number is related to the ε-covering number N(ε, F ′, d), the
minimum number of balls of radius ε needed to cover F ′, by the inequalities

N(ε, F
′, d) ≤ D(ε, F

′, d) ≤ N(ε/2, F
′, d). (2.1)

The logarithm of the packing or covering number is referred to as the (met-
ric) entropy. The symbols “.” and “&” will be used throughout to indicate
inequalities valid up to constants that may be universal or depend on P0. Fixed
constants within the present set-up will be inessential to our purposes.

3. Finite mixtures

The analysis of data generated by mixture models may reasonably begin from
the case where we have observations of phenomena with multiple underlying
factors whose cardinality is finite. If the responsible factors are known to be
finitely many, then a discrete EP mixture prior can be conveniently used to
estimate the sampling density. We begin to consider the case where all the
components of the mixture have the same value of the shape parameter. The
generic density takes the form

fF, σ(·) =
k
∑

j=1

wjψσ, p(· − θj),

with F a discrete distribution having a finite number of atoms which can be
represented as

∑k
j=1 wjδθj , where δθj denotes a point mass at θj . The number of

mixture components is a random variable (r.v.) K with probability mass func-
tion ρ(·) on the positive integers. Given K = k, the vector wk := (w1, . . . , wk)
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of mixing weights has conditional distribution πk on the (k − 1)-dimensional

simplex ∆k := {wk ∈ R
k : 0 ≤ wj ≤ 1, j = 1, . . . , k,

∑k
j=1 wj = 1} and

the locations θ1, . . . , θk are independent r.v.’s with common distribution Π. We
shall also write θk for (θ1, . . . , θk) to ease the notation. The hierarchical model
can be thus described:

• K ∼ ρ and σ ∼ G independently;

• given (k, σ), the r.v.’s θ1, . . . , θk
i.i.d.∼ Π and wk ∼ πk independently;

• given (k, σ, θk, wk), the r.v.’s X1, . . . , Xn are conditionally independent
and identically distributed with density fF,σ.

We shall show that, if the true density is itself a finite mixture of EP densities
with the same shape, under regularity conditions on the prior, the posterior
converges at nearly parametric rate n−1/2(logn). This rate agrees with those
found for other discrete kernel mixture priors, when the true density is of the
same form as the assumed model, see, for instance, Ghosal [6] for Bernstein
polynomials, Kruijer and van der Vaart [15] for beta mixtures, Scricciolo [22]
for histograms and polygons. The proof exploits the approximation properties
of the mixtures under consideration to find a good fitting distribution of a given
density in a proper subclass. In fact, any finite EP mixture can be approximated
arbitrarily closely (in the distance induced by the L1-norm) by mixtures having
exactly the same number of components, with locations and mixing weights
taking values in suitable neighborhoods of the corresponding true elements.
This technique is used to provide an estimate of the prior concentration rate
as well as an upper bound on the metric entropy of a sieve set. In the first
case, the number of mixture components is constant, this leading to a high
prior concentration rate; in the second case, it can be chosen to increase quite
slowly, at a logarithmic rate, as the approximation error goes to zero. In the
metric entropy estimate, we shall also need the bandwidth to approach zero at
a logarithmic rate, thus a suitable condition on the decay rate of the prior G
for σ at zero is required. We shall use the following assumption.

(A) G has a continuous and positive Lebesgue density g on an interval con-
taining σ0 and, for constants d > 0, γ, ̟ ∈ (0, ∞], satisfies

G(s) . e−ds−γ

as s→ 0 and 1−G(s) . s−̟ as s→ ∞. (3.1)

The common choice of an inverse-gamma prior on σ2 when the kernel is Gaussian
meets requirement (A). Let σ2 ∼ IG(α, β), with parameters α, β > 0. The
condition on the tail behaviour at zero is satisfied with γ = 2. In fact, for some
constant d > 0,

G(s) = Pr(σ ≤ s) = Pr(σ2 ≤ s2) . e−ds−2

, s > 0.

The condition on the tail behaviour at infinity is satisfied with ̟ = 2α,

1−G(s) = Pr(σ > s) = Pr(σ2 > s2) ≤ βα

αΓ(α)
s−2α, s > 0.

The next theorem states the first result of the section.
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Theorem 3.1. Let p > 0 be fixed. Suppose that f0 = F0 ∗ ψσ0, p is a finite EP
mixture. Assume that

(i) the prior G for σ satisfies condition (A);
(ii) the prior ρ for the number of components is such that, for constants b, B >

0, 0 < ρ(k) ≤ Be−bk for all k ∈ N;
(iii) for each k ∈ N, the prior πk for the mixing weights is a Dirichlet distribu-

tion Dir(α1, . . . , αk), with parameters α1, . . . , αk such that, for constants
a, A > 0, D ≥ 1 and for 0 < ε ≤ 1/(Dk),

Aεa ≤ αj ≤ D, j = 1, . . . , k;

(iv) the common prior Π for the locations has a continuous and positive density
on an interval containing the support of F0 and, for constants c, ϑ > 0,
satisfies

Π({θ : |θ| > t}) . e−ctϑ , for large t > 0.

Then, the posterior rate of convergence relative to dH is εn = n−1/2(logn).

Proof. We appeal to Theorem A.1 and show that conditions (A.1)–(A.3) are
satisfied with sequences ε̄n = n−1/2(logn) and ε̃n = n−1/2(log n)1/2, so that
(an upper bound on) the rate is given by εn := (ε̄n ∨ ε̃n) = ε̄n. For sequences
kn of positive integers, an, sn and tn of positive real numbers specified below,

let Fn :=
⋃kn

k=1 F
(k)
an, sn, tn , where F

(k)
an, sn, tn is the class of EP mixtures with at

most k components defined as

F
(k)
an, sn, tn :=







fF,σ : F =

k
∑

j=1

wjδθj , |θj | ≤ an, j = 1, . . . , k, sn ≤ σ ≤ tn







.

Along the lines of Lemma 3 of Ghosal and van der Vaart [10], pages 705–707,
it can be shown that

N(ε̄n, F
(k)
an, sn, tn , ‖ · ‖1) .

(

tn − sn
snε̄n

∨ 1

)

×
[(

2an
snε̄n

+ 1

)

×
(

5

ε̄n ∧ 1

)]k

.

Thus,

D(ε̄n, Fn, dH) ≤
kn
∑

k=1

D(ε̄n, F
(k)
an, sn, tn , dH)

≤
kn
∑

k=1

N(ε̄2n/4, F
(k)
an, sn, tn , ‖ · ‖1)

. kn × tn
snε̄2n/4

×
(

an
snε̄4n/16

)kn

.

For tn such that (log tn) = O(log n),

logD(ε̄n, Fn, dH) . kn log

(

an
snε̄n

)

.
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For constants D2 ≥ D1 > 0 and E, F, L > 0 to be chosen as below indicated,
let D1(logn) ≤ kn ≤ D2(logn), an = L(log ε̄−1

n )1/ϑ, sn = E(log ε̄−1
n )−1/γ and

tn = ε̄−F
n . Then, logD(ε̄n, Fn, dH) . nε2n and condition (A.1) is verified.

We check that condition (A.2) is satisfied with ε̃n = n−1/2(logn)1/2. For
a constant c2 > 0 that will arise from condition (A.3), let D1 ≥ (c2 + 4)/b,
E ≤ [d/4(c2+4)]1/γ , F ≥ [4(c2+4)/̟] and L ≥ [4(c2+4)/c]1/ϑ. By assumptions
(i), (ii) and (iv), we have

π(F c
n) ≤

∞
∑

k=kn+1

ρ(k) + E[K]Π([−an, an]c) + [G(sn) + 1−G(tn)]

. e−bkn + e−caϑ
n + e−ds−γ

n + t−̟
n

. e−(c2+4)nε̃2n ,

where E[K] <∞ by (ii).

Now, we consider condition (A.3). Recall that, by assumption, f0 is a finite
EP mixture, i.e., for some k0 ∈ N, w0

k0
:= (w0

1 , . . . , w
0
k0
) ∈ ∆k0

and θ
0
k0

:=

(θ01 , . . . , θ
0
k0
) ∈ R

k0 ,

f0(·) =
k0
∑

j=1

w0
jψσ0, p(· − θ0j ).

For any σ > 0 and any discrete distribution F on R with k0 support points
θk0

:= (θ1, . . . , θk0
) ∈ R

k0 and mixing weights wk0
:= (w1, . . . , wk0

) ∈ ∆k0
, by

inequalities (A.6) and (A.7),

‖fF,σ − f0‖1 ≤ ‖fF, σ − fF,σ0
‖1 + ‖fF,σ0

− f0‖1

.
|σ − σ0|
σ ∧ σ0

+

k0
∑

j=1

w0
j ‖ψσ0, p(· − θj)− ψσ0, p(· − θ0j )‖1

+

k0
∑

j=1

|wj − w0
j |‖ψσ0, p(· − θj)‖1

.
|σ − σ0|
σ ∧ σ0

+ ‖θk0
− θ

0
k0
‖ℓ1 + ‖wk0

−w0
k0
‖ℓ1 ,

where, for any pair xk, yk ∈ R
k, ‖xk−yk‖ℓ1 denotes the ℓ1-distance

∑k
j=1 |xj−

yj |. Let 0 < ε ≤ [(σ0/2) ∧ (1 − e−1)/
√
2] be fixed. For any density fF, σ with

σ > 0 such that |σ − σ0| ≤ ε and F =
∑k0

j=1 wjδθj , where ‖wk0
−w0

k0
‖ℓ1 ≤ ε

and ‖θk0
− θ

0
k0
‖ℓ1 ≤ ε, we have d2H(fF, σ, f0) ≤ ‖fF,σ − f0‖1 . ε. Thus, by
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Lemma A.10, for a suitable constant c1 > 0,






fF, σ : F =

k0
∑

j=1

wjδθj , ‖wk0
−w0

k0
‖ℓ1 ≤ ε, ‖θk0

− θ
0
k0
‖ℓ1 ≤ ε, |σ − σ0| ≤ ε







⊆ BKL

(

f0; c1ε

(

log
1

ε

)2
)

.

Defined the set N(w0
k0
; ε) := {wk0

∈ ∆k0
: ‖wk0

− w0
k0
‖ℓ1 ≤ ε}, for small

enough ε > 0, using Lemma A.1 of Ghosal [6], pages 1278–1279, and assumption
(iii), we have πk0

(N(w0
k0
; ε)) & exp{−c0k0 log(1/ε)}, where c0 is a positive

constant depending only on a, A, D and
∑k0

j=1 αj . Denoted by B(θ0
k0
; ε) the

θ
0
k0
-centered ℓ1-ball of radius ε,

B(θ0
k0
; ε) := {θk0

∈ R
k0 : ‖θk0

− θ
0
k0
‖ℓ1 ≤ ε},

by condition (iv), the prior probability of B(θ0
k0
; ε) under the k0-fold product

measure Π⊗k0 can be bounded below as follows:

Π⊗k0(B(θ0
k0
; ε)) ≥

k0
∏

j=1

Π

([

θ0j −
ε

k0
, θ0j +

ε

k0

])

& exp

{

−d1k0 log
1

ε

}

,

where d1 is a positive constant. Therefore, for c1, d2 > 0,

π(BKL(f0; c1ε(log ε
−1)2)) &

(
∫ σ0+ε

σ0−ε

g dλ

)

× ρ(k0)πk0
(N(w0

k0
; ε))Π⊗k0(B(θ0

k0
; ε))

& exp

{

−d2k0 log
1

ε

}

.

Set ξ := (c1ε)
1/2 log(1/ε), since log(1/ε) . log(1/ξ), we have π(BKL(f0; ξ

2)) &
exp {−c2 log(1/ξ)}, where c2 is a positive constant (possibly depending on f0).
Replacing ξ with ε̃n, we have π(BKL(f0; ε̃

2
n)) & exp{−c2nε̃2n} for sufficiently

large n, and the proof is complete.

Remark 3.1. The condition on the parameters of the Dirichlet distribution
contained in assumption (iii) is satisfied if, for example, a noninformative spec-
ification is considered, as when all the αj ’s are taken to be equal to some constant
D ≥ 1.

Now, we consider the case where the shape parameter is allowed to mix both
in the prior and in the true density. The generic density has the form

fF,pk, σ(·) :=
k
∑

j=1

wjψσ, pj (· − θj), F =

k
∑

j=1

wjδθj ,
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where pk := (p1, . . . , pk) is the vector of shape parameters that are assumed to
be independent r.v.’s with common distribution H . The hierarchical model can
be described as follows:

• K ∼ ρ and σ ∼ G independently;

• given (k, σ), wk ∼ πk, θ1, . . . , θk
i.i.d.∼ Π and p1, . . . , pk

i.i.d.∼ H indepen-
dently;

• given (k, σ, wk, θk, pk), the r.v.’s X1, . . . , Xn are conditionally indepen-
dent and identically distributed with density fF,pk, σ.

Theorem 3.2. Suppose that f0 is a finite mixture of EP densities of the type

f0(·) =
k0
∑

j=1

w0
jψσ0, p0

j
(· − θ0j ), (3.2)

with p0j > 0 for all j = 1, . . . , k0. Assume that conditions (i)–(iv) of Theo-
rem 3.1 are satisfied and

(v) the common prior H for the shape parameters has a continuous and posi-
tive Lebesgue density h on (0, ∞) and, for constants l > 0, β ∈ [1, ∞], υ ∈
(0, ∞], satisfies

H(p) . e−lp−β

as p→ 0 and 1−H(p) . p−υ as p→ ∞. (3.3)

Then, the posterior rate of convergence relative to dH is εn = n−1/2(log n).

Proof. The main steps in the proof of Theorem 3.1 go through in this case.
Conditions (A.1)–(A.3) are satisfied with the same sequences ε̄n = n−1/2(logn)
and ε̃n = n−1/2(log n)1/2. We begin to consider condition (A.1). For sequences
kn, an, sn, tn specified as in Theorem 3.1, and pn, qn of positive real numbers

to be chosen below, let Fn :=
⋃kn

k=1 F
(k)
n , where F

(k)
n is the class of mixtures

with at most k components defined as

F
(k)
n :=

{

fF,pk, σ : F =

k
∑

j=1

wjδθj , |θj | ≤ an, j = 1, . . . , k,

pn ≤ pj ≤ qn, j = 1, . . . , k, sn ≤ σ ≤ tn

}

.

Similarly to Theorem 3.1 and using Lemma A.4, it can be proved that for large
enough n,

N(ε̄n, F
(k)
n , ‖ · ‖1) .

(

tn − sn
snε̄n

∨ 1

)

×
(

2ane
1/pn

snε̄n
+ 1

)k

×
(

qn − pn
pnε̄n

∨ 1

)k

×
(

5

ε̄n ∧ 1

)k

.
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Consequently,

logD(ε̄n, Fn, dH) . kn

[

log

(

anqntn
pnsnε̄n

)

+
1

pn

]

.

For constants 0 < C1 ≤ [l/4(c2 + 4)]1/β and C2 ≥ [4(c2 + 4)/υ], where c2 > 0
is the constant arising from condition (A.3), let pn = C1(log ε̄

−1
n )−1/β and qn =

ε̄−C2
n . Since β ≥ 1, logD(ε̄n, Fn, dH) . nε2n and condition (A.1) is satisfied.
Using assumptions (i), (ii), (iv) and (v), condition (A.2) is seen to be satisfied

with ε̃n = n−1/2(log n)1/2. In fact,

π(F c
n) ≤

∞
∑

k=kn+1

ρ(k) + E[K]Π([−an, an]c)

+E[K][H(pn) + 1−H(qn)] + [G(sn) + 1−G(tn)]

. e−bkn + e−caϑ
n + e−lp−β

n + q−υ
n + e−ds−γ

n + t−̟
n

. e−(c2+4)nε̃2n ,

where E[K] <∞ by assumption (ii).
To check that condition (A.3) is satisfied with ε̃n, recall that, by assumption,

f0 is a finite EP mixture of the type fF0,p0
k0

, σ0
, with p0

k0
:= (p01, . . . , p

0
k0
)

having all components p0j > 0. For any σ > 0, any pk0
:= (p1, . . . , pk0

) with
positive pj ’s, and any discrete distribution F on R with k0 support points θk0

:=
(θ1, . . . , θk0

) ∈ R
k0 and weights wk0

:= (w1, . . . , wk0
) ∈ ∆k0

, by inequalities
(A.6), (A.7) and Lemma A.4,

‖fF,pk0
, σ − f0‖1 ≤ ‖fF,pk0

, σ − fF,pk0
, σ0

‖1 + ‖fF,pk0
, σ0

− fF,p0
k0

, σ0
‖1

+ ‖fF,p0
k0

, σ0
− f0‖1

≤ 2
|σ − σ0|
σ ∧ σ0

+

k0
∑

j=1

wj‖ψσ0, pj (· − θj)− ψσ0, p0
j
(· − θj)‖1

+

k0
∑

j=1

w0
j ‖ψσ0, p0

j
(· − θj)− ψσ0, p0

j
(· − θ0j )‖1

+

k0
∑

j=1

|wj − w0
j | ‖ψσ0, p0

j
(· − θj)‖1

≤ 2
|σ − σ0|
σ ∧ σ0

+
1

min1≤j≤k0
p0j

k0
∑

j=1

|pj − p0j |
pj

‖g(1)(·−θj)/σ0
(z∗j )‖1

+
2

σ0 min1≤j≤k0
cp0

j

‖θk0
− θ

0
k0
‖ℓ1 + ‖wk0

−w0
k0
‖ℓ1
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.
|σ − σ0|
σ ∧ σ0

+

k0
∑

j=1

|pj − p0j |
pj

‖g(1)(·−θj)/σ0
(z∗j )‖1

+ ‖θk0
− θ

0
k0
‖ℓ1 + ‖wk0

−w0
k0
‖ℓ1 ,

where min1≤j≤k0
p0j > 0 by assumption and min1≤j≤k0

cp0
j
> 0 because, for

any p > 0, cp is positive with limp→0+ cp = 0 and limp→∞ cp = 2. For each
j = 1, . . . , k0, z

∗
j is a point lying in between 1/(pj ∨ p0j) and 1/(pj ∧ p0j). Since

the value of ‖g(1)(·−θj)/σ0
(z∗j )‖1 does not depend on θj , the symbol θj may be

suppressed. For ease of notation, we shall write ‖g(1)(·/σ0)
(z∗j )‖1. If, for 0 < ε ≤

min1≤j≤k0
p0j/2, we have ‖pk0

− p0
k0
‖ℓ1 ≤ ε, then

‖fF,pk0
, σ0

− fF,p0
k0

, σ0
‖1 ≤ 1

min1≤j≤k0
p0j

k0
∑

j=1

|pj − p0j |
pj

‖g(1)(·/σ0)
(z∗j )‖1

≤ 2

(min1≤j≤k0
p0j)

2
‖g(1)(·/σ0)

(z0)‖1 ‖pk0
− p0

k0
‖ℓ1

. ‖pk0
− p0

k0
‖ℓ1 . ε,

where the second inequality descends from the fact that, since ‖g(1)(·/σ0)
(z)‖1

is continuous in z on (0, ∞), there exists a point z0 (depending on f0) such

that ‖g(1)(·/σ0)
(z∗j )‖1 ≤ ‖g(1)(·/σ0)

(z0)‖1 < ∞ for all j = 1, . . . , k0. Fix 0 < ε ≤
min{(σ0/2), (min1≤j≤k0

p0j/2), (1 − e−1)/
√
2}. For any density fF,pk0

, σ in the
set

{

fF,pk0
, σ : F =

k0
∑

j=1

wjδθj , ‖wk0
−w0

k0
‖ℓ1 ≤ ε, wj ≥

ε2

8
, j = 1, . . . , k0,

‖θk0
− θ

0
k0
‖ℓ1 ≤ ε, ‖pk0

− p0
k0
‖ℓ1 ≤ ε, 0 < pj ≤ p0j , j = 1, . . . , k0,

|σ − σ0| ≤ ε

}

,

we have d2H(fF,pk0
, σ, f0) ≤ ‖fF,pk0

, σ − f0‖1 . ε and, for a suitable δ ∈ (0, 1],

the quantity M2
δ defined in (A.16) is such that M2

δ = O(1/ε2). Thus, by The-
orem 5 of Wong and Shen [31], pages 357–358, for a suitable constant c1 > 0,
the above set is contained in BKL(f0; c1ε(log ε

−1)2). Using arguments similar to
those of Theorem 3.1 and the fact that, for small enough ε > 0, by condition (v),

Pr({pk0
: ‖pk0

− p0
k0
‖ℓ1 ≤ ε, 0 < pj ≤ p0j , j = 1, . . . , k0})

≥
k0
∏

j=1

Pr

([

p0j −
ε

k0
, p0j

])

=

k0
∏

j=1

(

∫ p0
j

p0
j−ε/k0

h(p) dp

)

& exp

{

−d2k0 log
1

ε

}

,
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we have π(BKL(f0; c1ε(log ε
−1)2)) & exp{−d3k0 log(1/ε)}, for some d3 > 0.

Therefore, for a suitable constant c2 > 0 (possibly depending on f0), we have
π(BKL(f0; ε̃

2
n)) & exp{−c2nε̃2n} for sufficiently large n.

Remark 3.2. An example of distribution with density of the form (3.2) is given
by the Laplace-normal (or Gauss-Laplace) mixture

f0(·) = w0ψσ0, 1(· − θ0) + (1− w0)φσ0
(· − θ0)

with equal locations, which was used by Kanji [14], Jones and McLachlan [13]
to fit wind shear data. Haas, Mittnik and Paolella [11] used the Gauss-Laplace
mixture for modelling and predicting financial risk.

Remark 3.3. Suppose the investigator wants to assign positive prior probabil-
ity to EP densities having tails equal to or lighter than those of a Laplace. A
prior distribution for p on [1, ∞) can be specified by considering a beta distri-
bution for 1/p as in Box and Tiao [2], page 167,

1/p ∼ Beta(a, a), a ≥ 1.

Thus, 1/p has a symmetric distribution around the normal theory value 1/2.
Deviations from the normality can be taken into account by “adjusting” the
value of the parameter a. When a = 1, the prior distribution is uniform over
(0, 1]. When a > 1, the prior distribution is symmetric, with mode a 1/2, and
assigns high probability to EP distributions in a neighborhood of the normal. As
a→ ∞, the prior density becomes more and more peaked at 1/2 and converges
to a delta function, representing an assumption of exact normality. Since the
prior distribution for p corresponding to a beta for 1/p is left-truncated, the
lower tail condition in (3.3) is trivially satisfied with β = ∞, while the upper
tail condition is satisfied with υ = a because

1−H(p) ≤ Γ(2a)

a[Γ(a)]2
p−a, p ≥ 1.

Remark 3.4. As a consequence of Theorem 3.1 or Theorem 3.2, the Bayes’
estimator,

f̂n(·) :=
∫

f(·)π(df |X1, . . . , Xn),

converges to f0 in the Hellinger distance, in Pn
0 -probability, at a rate at least as

fast as n−1/2(log n),

dH(f̂n, f0) = OP(n
−1/2(logn)),

see, e.g., Theorem 5 of Shen and Wasserman [23], page 694.

4. Infinite mixtures

In this section, we analyze the case where the underlying factors may be in-
finitely many. We consider densities of the form fF, σ = F ∗ ψσ, p, where F can
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be any distribution on R. As a prior for F , we adopt a Dirichlet process Dα with
base measure α. We recall that a Dirichlet process on a measurable space (X, A),
with a finite and positive base measure α on (X, A), is a random probability
measure F on (X, A) such that, for every finite partition (A1, . . . , Ak) of X,
the vector of probabilities (F (A1), . . . , F (Ak)) has a Dirichlet distribution with
parameters (α(A1), . . . , α(Ak)). Observations from a Dirichlet process mixture
of EP distributions can be structurally described as follows:

• F ∼ Dα and σ ∼ G independently;

• given (F, σ), the r.v.’s θ1, . . . , θn
i.i.d.∼ F ;

• given (F, σ, θ1, . . . , θn), the r.v.’s e1, . . . , en
i.i.d.∼ ψσ, p;

• the observations are defined as Xi := θi + ei, for i = 1, . . . , n.

Let π = Dα × G denote the prior distribution for (F, σ), with the proviso
that the symbol π will also be used for the prior induced on F by the mapping
(F, σ) 7→ fF, σ, the ambiguity being resolved by the context. We recall that π is
said to be strongly consistent at f0 if, for every ε > 0, π(B(f0; ε)|X1, . . . , Xn) →
1 a.s. [P∞

0 ], with B(f0; ε) := {fF,σ : d(fF, σ, f0) ≤ ε}, where d can be either the
Hellinger or the L1-metric. Ascertainment of posterior consistency for Dirichlet
EP mixture priors can proceed as for Dirichlet normal mixture priors, for which
sufficient conditions were derived by Ghosal, Ghosh and Ramamoorthi [7] in
Theorem 7, page 152, using the sieve approach. Lijoi, Prünster and Walker [16],
Theorem 1, page 1293, weakened their conditions adopting an alternative ap-
proach due to Walker [27]. In both approaches, the main idea behind the proof
of consistency is to show that the prior satisfies Schwartz’s [20] condition on the
positivity of the probability of Kullback-Leibler neighborhoods of f0, known as
the Kullback-Leibler property and indicated by the notation f0 ∈ KL(π). The
following proposition provides sufficient conditions for f0 to be in the Kullback-
Leibler support of π.

Proposition 4.1. Assume that π = Dα×G, with the base measure α supported
on R and the prior G supported on (0, ∞). Let f0 be a continuous density on R

satisfying the following conditions:

(a) for some constant 0 < M0 <∞, 0 < f0(x) ≤M0 for all x ∈ R;
(b) |

∫

f0(x) log f0(x) dx| <∞;
(c) for some δ0 > 0,

∫

f0(x) log[f0(x)/ϕδ0(x)] dx < ∞, where ϕδ0(x) :=
inf |t−x|<δ0 f0(t);

(d) given p > 0, there exists η0 > 0 such that
∫

|x|p(1+η0)f0(x) dx <∞.

Then, f0 ∈ KL(π).

Proof. First, note that π = Dα ×G is a Type II mixture prior or a Prior 2, in
the terminology of Wu and Ghosal [32], page 299. Thus, we can appeal to their
Theorem 3, page 310. Once observed that the weak support of Dα is M(R), the
proof parallels that of Theorem 6, page 312, which deals with the case where
p = 1, namely, the kernel is a Laplace density. Note that conditions (a)–(c)
coincide with conditions B4–B6 of Theorem 2, pages 305–309. See also Wu and
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Ghosal [33]. It is, therefore, sufficient to check that conditions B3 and B7 are
satisfied. We begin with condition B3. Since, for x 6= 0,

ψ
(1)
1, p(x)

ψ1, p(x)
= −|x|p−1sgn(x) =

{

−xp−1, x > 0,

(−x)p−1, x < 0,

we have

x
ψ
(1)
1, p(x)

ψ1, p(x)
= −|x|p ≤ −1, for |x| ≥ 1,

and the condition is satisfied. As for condition B7, we need to check that, for
any a ∈ R and b > 0,

∫

f0(x)| logψ1, p((x − a)/b)| dx <∞,

and, for some η0 > 0,

∣

∣

∣

∣

∫

f0(x) logψ1, p(2x|x|η0) dx

∣

∣

∣

∣

<∞.

The linearity of logψ1, p(x) as a function of |x|p, together with assumption (d),
imply that the above integrals are finite.

4.1. Analytic kernels

In this subsection, we consider the case where the true density f0 = F0 ∗ ψσ0, p

is a location mixture of EP densities with shape parameter p that is an even
integer. If p = 2m, m ∈ N, then, for any value σ0 of the scale, the kernel ψσ0, p is
an analytic function. It is infinitely differentiable on R, and, in particular, at the
origin. We establish that, if the true mixing distribution F0 has either compact
support or sub-exponential tails, then the sequence of posterior distributions
(weakly) converges to a point mass at the true probability measure P0 with a
nearly parametric rate, up to a logarithmic factor. The key idea of the proof is
the following. A density f0 of the stated form can be uniformly approximated by
a finite mixture of EP distributions with a number of components that increases
at a logarithmic rate, as the approximation error goes to zero. Because of the
analyticity of the kernel, such a finitely supported mixing distribution can be
found by matching a relatively small number of moments of F0 or of its (re-
normalized) restriction to a compact set, see Lemma A.5 (cf. Lemma 3.1 of
Ghosal and van der Vaart [8], pages 1240–1241). This result is used to provide
an exponential lower bound on the prior probability of Kullback-Leibler type
neighborhoods of f0 as well as an exponential upper bound on the covering
number of a sieve set.

Theorem 4.1. Let p be a fixed even integer. Suppose that f0 = F0 ∗ψσ0, p, with
the true mixing distribution F0 having compact support. If the base measure α
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has a continuous and positive density on an interval containing the support of
F0 and, for constants b, δ > 0, satisfies the tail condition

α({θ : |θ| > t}) . e−btδ , for large t > 0, (4.1)

the prior G for σ satisfies condition (A), then the posterior rate of convergence
relative to dH is εn = n−1/2(log n)κ, where

κ =
1

2
+

[

1

2
∨ p
(

1

δ
+

1

γ

)]

. (4.2)

Proof. We show that conditions (A.1) through (A.3) of Theorem A.1 are sat-
isfied by ε̄n = n−1/2(logn)κ, with κ as in (4.2), and ε̃n = n−1/2(logn). Given
η ∈ (0, 1/5), for positive constants E, F and L to be suitably chosen later on,
let s = E(log η−1)−2/γ , 0 < t ≤ exp{F (log η−1)2} and 0 < a ≤ L(log η−1)2/δ.
Define

Fa, η, s, t := {fF,σ : F ([−a, a]) ≥ 1− η, s ≤ σ ≤ t}
and

Fa, s, t := {fF,σ : F ([−a, a]) = 1, s ≤ σ ≤ t}.
An estimate of the η-metric entropy of Fa, η2/16, s, t is provided. Using the second
inequality in (2.1) and d2H(f, g) ≤ ‖f − g‖1, we have

logD(η, Fa, η2/16, s, t, dH) ≤ logN(η/2, Fa, η2/16, s, t, dH)

≤ logN(η2/4, Fa, η2/16, s, t, ‖·‖1)

≤ logN(η2/8, Fa, s, t, ‖·‖1)

.

(

log
1

η

)2κ

,

where the third inequality descends from Lemma A.3 of Ghosal and van der
Vaart [8], page 1261, and the last one from Lemma A.9. The choice ηn =
ε̄n = n−1/2(logn)κ, sn = E(log η−1

n )−2/γ , tn = exp{F (log η−1
n )2} and an =

L(log η−1
n )2/δ leads to conclude that, for Fn := Fan, η2

n/16, sn, tn
, condition (A.1)

is verified because

logD(ε̄n, Fn, dH) . (logn)2κ = nε̄2n.

Now we show that condition (A.2) is also satisfied. By the independence of
F and σ,

π(F c
a, η2/16, s, t) = π({(F, σ) : F ([−a, a]) ≥ 1− η2/16, σ ∈ [s, t]c})

+ Π({F : F ([−a, a]) < 1− η2/16})
≤ [G(s) + 1−G(t)] + Π({F : F ([−a, a]c) > η2/16})

≤ [G(s) + 1−G(t)] + 16
α([−a, a]c)
η2α(R)

(4.3)

. e−ds−γ

+ t−̟ +
e−baδ

η2
,
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where in (4.3) we have used Markov’s inequality and the fact that F ([−a, a]c)
has a beta distribution with parameters α([−a, a]c) and α([−a, a]). The last
line follows from (3.1) of assumption (A) and from condition (4.1). Take ηn,
sn, tn, an and Fn as before. For a positive constant c2 which, as shown below,
arises from condition (A.3), let 0 < E ≤ [d/16(c2 + 4)]1/γ , F ≥ [16(c2 + 4)/̟]
and L ≥ [(16(c2 + 4) + 1)/b]1/δ. Then,

π(F c
n) . e−ds−γ

n + t−̟
n +

e−baδ
n

η2n

. exp
{

−(c2 + 4)(logn)2
}

+ exp

{

(

log
1

η2n

)

− [16(c2 + 4) + 1]

(

log
1

ηn

)2
}

. exp
{

−(c2 + 4)nε̃2n
}

.

It remains to be checked that condition (A.3) is satisfied. We show that, for
small enough ε > 0, there exist constants c1, c2 > 0 so that

π(BKL(f0; ε
2)) ≥ c1 exp

{

−c2
(

log
1

ε

)2
}

. (4.4)

The proof is in the same spirit as that of Theorem 5.1 by Ghosal and van der
Vaart [8], pages 1251–1253. Let 0 < ε ≤ [(σ0/2) ∧ (1 − e−1)/

√
2] be fixed.

Let [−a0, a0] be the support of F0. By Lemma A.5, there exists a discrete
distribution F ′

0 (depending on ε), supported on (at most) N . log(1/ε) points
θ1, . . . , θN in [−a0, a0] that are at least 2ε-separated, such that

‖fF ′
0
, σ0

− f0‖∞ . ε.

By Lemma A.8, ‖fF ′
0
, σ0

− f0‖1 . ε(log ε−1)1/p. Represent F ′
0 as

∑N
j=1 wjδθj ,

where |θj − θk| ≥ 2ε for all j 6= k. For any probability measure F on R such
that

N
∑

j=1

|F ([θj − ε, θj + ε])− wj | ≤ ε

and any σ > 0 such that |σ − σ0| ≤ ε, we have

‖fF,σ − fF ′
0
, σ0

‖1 . ‖ψσ, p − ψσ0, p‖1 +
ε

σ ∧ σ0

+2
N
∑

j=1

|F ([θj − ε, θj + ε])− wj |

.
|σ − σ0|
σ ∧ σ0

+
ε

σ ∧ σ0
+ 2ε . ε, (4.5)
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where in (4.5) we have used inequality (A.6). It follows that

d2H(fF, σ, f0) ≤ ‖fF,σ − fF ′
0
, σ0

‖1 + ‖fF ′
0
, σ0

− f0‖1 . ε

(

log
1

ε

)1/p

.

Since [θj − ε, θj + ε] ⊂ [−a0− 1, a0+1] for all j = 1, . . . , N , we have F ([−a0 −
1, a0 + 1]) > 1/2. By Lemma A.10,






fF,σ :
N
∑

j=1

|F ([θj − ε, θj + ε])− wj | ≤ ε, |σ − σ0| ≤ ε







⊆ BKL

(

f0; ε

(

log
1

ε

)2+1/p
)

. (4.6)

Using the independence of F and σ, together with the assumptions on the base
measure α and the prior G for σ, we obtain the bound in (4.4). Thus, condition
(A.3) is satisfied with ε̃n = n−1/2(log n) and the proof is complete.

Remark 4.1. Given p = 2m,m ∈ N, the best rate is obtained when κ = 1. This
implies having δ ≥ 2p, namely, the base measure α should have quite rapidly
decaying tails. Note that the rate depends on the tail behaviour of the prior G
for σ only through its exponential decay rate γ at zero.

Remark 4.2. If p = 2, i.e., the kernel is Gaussian, and γ = ∞, i.e., the scale
parameter σ is bounded below away from zero, σ ∈ [σ, ∞) for some known
σ > 0, then (an upper bound on) the rate is

εn = n−1/2(logn)κ, κ =
1

2
+

(

1

2
∨ 2

δ

)

,

which is the same found by Ghosal and van der Vaart [8] in Theorem 5.1,
page 1250, wherein, except for assumption (A), the same conditions as in The-
orem 4.1 are postulated.

The assumption of Theorem 4.1 that the true mixing distribution F0 has com-
pact support can be relaxed to allow for an unbounded set of locations, without
affecting the nearly parametric rate, by requiring F0 to have sub-exponential
tails and the base measure α to have an EP density with suitably constrained
shape parameter.

Theorem 4.2. Let p be a fixed even integer. Suppose that f0 = F0 ∗ψσ0, p, with
the true mixing distribution F0 satisfying the tail condition

F0({θ : |θ| > t}) . e−c0t
p

, for large t > 0, (4.7)

for some constant c0 > 0. If the base measure α has a density α′ such that, for
constants b > 0 and 0 < δ ≤ p, satisfies

α′(θ) ∝ e−b|θ|δ , θ ∈ R, (4.8)
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the prior distribution G for σ satisfies assumption (A), then the posterior rate
of convergence relative to dH is εn = n−1/2(logn)κ, where

κ =
1

2
+ p

(

1

δ
+

1

γ

)

. (4.9)

Proof. First, note that a density α′, as assumed in (4.8), is continuous and
positive on R and that, for δ ≥ 1, the corresponding base measure α satisfies
the tail condition (4.1) in virtue of inequality (A.14). For δ ∈ (0, 1), inequality
(A.15) incurs an additional factor of a1−δ in the upper bound for α([−a, a]c)
in (4.3), which can be absorbed into e−baδ

for large enough b. Thus, condition
(A.2) is satisfied. Furthermore, since (p/δ) ≥ 1, the value of κ in (4.2) reduces
to that in (4.9).

The proof differs from that of Theorem 4.1 only in the derivation of the
bound π(BKL(f0; ε

2)) & exp{−c2(log ε−1)2}, as ε → 0. For given 0 < ε ≤
[(σ0/2)∧ (1− e−1)/

√
2], let aε := (c−1

0 log ε−1)1/p. Let F ∗
0 be the re-normalized

restriction of F0 to [−aε, aε]. Using Lemma A.3 of Ghosal and van der Vaart [8],
page 1261, and assumption (4.7), we have ‖fF∗

0
, σ0

− f0‖1 . ε. By Lemma A.5,
there exists a discrete distribution F ′

0, which matches the (finite) moments of
F ∗
0 up to the order N . log(1/ε) and has at most N support points in [−aε, aε]

that are (at least) 2ε-separated, such that ‖fF ′
0
, σ0

− fF∗
0
, σ0

‖∞ . ε. By Lemma

A.8, ‖fF ′
0
, σ0

− fF∗
0
, σ0

‖1 . ε(log ε−1)1/p. Represented F ′
0 as

∑N
j=1 wjδθj , with

|θj − θk| ≥ 2ε for all j 6= k, for any distribution F on R such that

N
∑

j=1

|F ([θj − ε, θj + ε])− wj | ≤ ε (4.10)

and any σ > 0 such that |σ − σ0| ≤ ε, using the same chain of inequalities as in
(4.5), we have ‖fF,σ − fF ′

0
, σ0

‖1 . ε. Thus,

d2H(fF, σ, f0) ≤ ‖fF,σ − fF ′
0
, σ0

‖1 + ‖fF ′
0
, σ0

− fF∗
0
, σ0

‖1 + ‖fF∗
0
, σ0

− f0‖1

. ε

(

log
1

ε

)1/p

.

Now we can invoke Lemma A.10, taking into account Remark A.3. To this end,
note that, if F satisfies relationship (4.10), then F ([−aε−1, aε+1]) > 1/2. Thus,
inclusion (4.6) holds true. To apply Lemma A.2 of Ghosal and van der Vaart [8],
pages 1260–1261, observe that, for each |θj | ≤ aε, we have α([θj − ε, θj + ε]) &

εe−baδ
ε & εb

′

for some constant b′ > 0, because, by assumption, (δ/p) ≤ 1.
Then, the proof can be completed by laying out the same arguments as in
Theorem 4.1.

Remark 4.3. Given p = 2m,m ∈ N, the best rate is obtained for δ = p, namely,
when the tail decay rate of the base measure α equals the shape parameter of
the kernel. In such a case,

κ =
3

2
+
p

γ
.
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If, in addition, γ = ∞, i.e., the scale parameter σ is bounded below away from
zero, σ ∈ [σ, ∞) for some known σ > 0, then εn = n−1/2(log n)3/2. Note that
this rate does not depend on p. Also, it agrees with the one obtained by Ghosal
and van der Vaart [8] in Theorem 5.2, pages 1254–1255, for mixtures of normal
densities with standard deviation σ lying in a bounded interval [σ, σ] ⊂ (0, ∞).

Remark 4.4. Given p > 0, if the true density f0 = F0 ∗ ψσ0, p, then

ψσ0, p(2x) . f0(x) ≤ ψσ0, p(x/2)

+
1

σ0cp
F0({θ : |θ| ≥ |x|/2}), for large |x|. (4.11)

If the true mixing distribution F0 has sub-exponential tails, i.e., for constants
c0, q > 0,

F0({θ : |θ| > t}) . e−c0t
q

, for large t > 0,

then it is the term with the slower decay rate that dominates in the upper bound
in (4.11),

ψσ0, p(2x) . f0(x) . e−c1|x|
p∧q

, for large |x|.

Therefore, under assumption (4.7) of Theorem 4.2,

f0(x) ∼ e−C0|x|
p

,

this meaning that f0(x)/e
−C0|x|

p → c, as |x| → ∞, where c is a positive constant.
Theorem 4.2 contemplates only the case where F0 has tail decay rate at least
as fast as that of the kernel, as when, for example, f0 is the convolution of two
normals,

f0 = φτ0 ∗ φσ0
= φ(τ2

0
+σ2

0
)1/2 .

If, instead, f0 is the convolution of a Gaussian kernel and a Laplace distribution,
f0 = ψτ0, 1 ∗ φσ0

, then Theorem 4.2 does not apply.

The result of Theorem 4.2 for the important special case of a Gaussian kernel
with an inverse-gamma prior on σ2 is separately stated in the following corollary.

Corollary 4.1. Suppose that f0 is a mixture of normals, f0 = F0 ∗ φσ0
, with

the true mixing distribution F0 having sub-Gaussian tails,

F0({θ : |θ| > t}) . e−c0t
2

, for large t > 0,

for some constant c0 > 0. If the base measure α is normal and the prior on
σ2 is an inverse-gamma, then the posterior rate of convergence relative to dH is
εn = n−1/2(logn)5/2.

In the next corollary, we state a result on the posterior expected density f̂n,
for which an explicit expression can be found in Lo [17], Theorem 2, pages 353–
354. The “in probability” statement is understood to be with respect to Pn

0 .
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Corollary 4.2. Under the conditions of Theorem 4.1 or Theorem 4.2,

dH(f̂n, f0) = OP(n
−1/2(logn)κ),

where κ is as in (4.2) or (4.9), respectively.

In Theorem 4.1 and Theorem 4.2, verification of the remaining mass condition
(A.2) for F c

n has led us to ask for the base measure α to have either sub-
exponential tails or a density α′ of a prescribed form. In the next theorem, the
use of Lemma A.11, which provides an upper bound on the posterior probability
of F c

n by exploiting the properties of the Dirichlet process, allows us to impose a
less restrictive condition on α. In fact, condition (4.12) requires α′ to have tails
only bounded below by those of an EP density. On the other hand, however, we
consider a stronger condition on the upper tail of the prior G for σ, a request
that might be due to the method of proof. The requirement on G is formalized
hereafter as condition (A′) for easy reference.

(A′) G has a continuous and positive Lebesgue density g on an interval con-
taining σ0 and, for constants d1, d2 > 0, γ1, γ2 ∈ (0, ∞], satisfies

G(s) . e−d1s
−γ1

as s→ 0 and 1−G(s) . e−d2s
γ2

as s→ ∞.

Assumption (A′) differs from assumption (A) because it requires G to have
an exponentially decaying tail also at infinity. This rules out the possibility of
using an inverse-gamma prior on σ2, unless σ is known to lie in some interval
(0, σ], with 0 < σ <∞: in such a case, in fact, a right-truncated inverse-gamma
distribution trivially satisfies the tail condition at infinity. For example, a prior
distribution for σ verifying condition (A′) may have density of the form

g(σ) =
νeβ

1 + ν
[βσ−2e−β/σI(0, 1](σ) + βσν−1e−βσν

I(1,∞)(σ)], σ > 0,

with parameters β, ν > 0. Note that g is a continuous and positive density
proportional to an inverse-gamma IG(1; β) on (0, 1] and to a Weibull W(ν; β)
on (1, ∞). Condition (A′) is satisfied with γ1 = 1 and γ2 = ν, i.e.,

G(s) =
νeβ

1 + ν
e−βs−1

, 0 < s ≤ 1,

and

1−G(s) =
eβ

1 + ν
e−βsν , s > 1.

The conditions on G appearing in (A′) were also postulated by Ghosal and van
der Vaart [10], page 699, to assess posterior rates of convergence for Dirichlet
normal mixtures at smooth densities. However, these authors consider a sample-
size-dependent prior on σ: in their set-up, in fact, G is the distribution of σ/σn,
with σn a sequence of positive real numbers such that n−a1 . σn . n−a2 , for
some 0 < a2 < a1 < 1.
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Theorem 4.3. Let p be a fixed even integer. Suppose that f0 = F0 ∗ψσ0, p, with
the true mixing distribution F0 having either compact support or sub-exponential
tails as in (4.7). If the base measure α has a continuous and positive density α′

such that, for constants b > 0 and 0 < δ < p, satisfies

α′(θ) & e−b|θ|δ , for large |θ|, (4.12)

the prior distribution G for σ satisfies condition (A′), then the posterior rate of
convergence relative to dH is εn = n−1/2(log n)κ, where

κ =
1

2
+ p

(

1

γ1
+

1

γ2

)

+

(

1

2
∨ pδ

γ2(p− δ)

)

. (4.13)

Proof. For sequences an, ηn, sn and tn to be suitably chosen later on, let Fn

be defined as in Theorem 4.1. The proof differs from that of Theorem 4.1 for
the arguments laid out to show that the convergence π(F c

n|X1, . . . , Xn)→0, in
Pn
0 -probability, as n→ ∞, holds true. Note that

π(F c
n|X1, . . . , Xn) ≤ Pr(σ < sn|X1, . . . , Xn) + Pr(σ > tn|X1, . . . , Xn)

+Pr({F : F ([−an, an]c) > η2n/16}|X1, . . . , Xn)

=: J (1)
n + J (2)

n + J (3)
n .

Let c2 > 0 be the constant arising from condition (A.3). For constants E ≤
[d1/16(c2 + 4)]1/γ1 and F ≥ [16(c2 + 4)/d2]

1/γ2 , let sn = E(log η−1
n )−2/γ1 and

tn = F (log η−1
n )2/γ2 . For k = 1, 2, the sequence J

(k)
n

P→ 0, because En
0 [J

(k)
n ] → 0

in virtue of Lemma 1 in Ghosal and van der Vaart [9], page 195, (see also
Lemma 5 of Barron, Schervish and Wasserman [1], pages 543–544). To deal

with J
(3)
n , note that

E
n
0 [J

(3)
n ]

≤ E
n
0 [Pr({F : F ([−an, an]c) > η2n/16}|X1, . . . , Xn) I{max1≤i≤n |Xi|≤an/2}]

+E
n
0 [I{max1≤i≤n |Xi|>an/2}]. (4.14)

To show that

E
n
0 [I{max1≤i≤n |Xi|>an/2}] = 1− [1− P0 (|X1| > an/2)]

n → 0,

we distinguish the two cases where F0 has compact support or sub-exponential
tails:

(i) if F0 has compact support, i.e., F0([−a0, a0]) = 1 for some a0 > 0, then
for sufficiently large n so that (an/4) ≥ a0,

P0(|X1| > an/2) ≤ (4σ0)
pa−(p−1)

n ψσ0, p(an/4) =: Un;
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(ii) if F0 has sub-exponential tails as in (4.7), then

P0 (|X1| > an/2) . Un +
4p

pσ0cpc0
a−(p−1)
n exp

{

−c0
(an

4

)p}

.

For an such that, for some constant ̺ ≥ 0,

• in case (i),
1

pσp
0

(an
4

)p

≥ (1 + ̺)(log n), (4.15)

• in case (ii),
(

1

pσp
0

∧ c0
)

(an
4

)p

≥ (1 + ̺)(logn), (4.15′)

we have nP0 (|X1| > an/2) → 0, hence En
0 [I{max1≤i≤n |Xi|>an/2}] → 0. Note that,

since p > 1 and an → ∞, it suffices to take ̺ = 0 in (4.15) or (4.15′).
The first term of (4.14) can be handled by appealing to Lemma A.11, with

η2 = η2n/16, T = tn and a = an = L(log η−1
n )ξ, where

ξ =
2

γ2
+

(

1

p
∨ 2δ

γ2(p− δ)

)

and L is a positive constant chosen so that, not only is condition (4.15) or (4.15′)
satisfied, but also for some ω > 0,

n exp

{

− (an/tn)
p

p2p+1
+ baδn + 2 log

1

ηn

}

≤ n exp

{

log
1

n1+ω

}

=
1

nω
→ 0.

If nη2n → ∞, then also the first term in (A.17) converges to zero. To complete
the proof, it remains to choose ηn so that condition (A.1) is also satisfied. From
Theorem 4.1, which appeals to Lemma A.9, it is known that

logD(ηn, Fn, dH) .

[(

an
sn

)p

∨
(

log
1

ηn

)]

×
(

log
1

ηn

)

.

For ηn = ε̄n = n−1/2(logn)κ, with κ as in (4.13), we have logD(ε̄n, Fn, dH) .
nε̄2n. Also, nη

2
n = nε̄2n = (log n)2κ → ∞. Recalling that ε̃n = n−1/2(log n), an

upper bound on the rate is given by εn := (ε̄n ∨ ε̃n) = ε̄n.

Remark 4.5. Let supp(g) denote the support of the prior density g for σ. An
inspection of the proof of Theorem 4.3 shows that, when supp(g) ⊆ (0, σ], for
some 0 < σ < ∞, then δ is also allowed to take the value p, i.e., 0 < δ ≤ p.
Furthermore, it turns out that κ = 1 + p/γ, with γ the tail decay rate of G at
zero. This rate is better than the one we would get using Theorem 4.2: in fact,
since (p/δ) ≥ 1, it results 1

2 + p/δ + p/γ > 1 + p/γ.

Remark 4.6. If G has compact support [σ, σ] ⊂ (0, ∞), which corresponds
to having γ1 = γ2 = ∞, then κ = 1 and, for any value of p = 2m, m ∈ N, an
upper bound on the rate is n−1/2(logn), which is the same obtained by Walker,



294 C. Scricciolo

Lijoi and Prünster [29], pages 742–744, for the special case where a normal base
measure α is used and a normal mixture f0, with mixing distribution F0 having
sub-Gaussian tails, is considered. Theorem 4.3 extends their result to EP kernels
using a different approach and improves it on by relaxing the condition on the
tail behaviour of α′ from a sub-exponential to an over-exponential decay rate.

Corollary 4.3. Under the conditions of Theorem 4.3,

dH(f̂n, f0) = OP(n
−1/2(log n)κ),

where κ is as in (4.13).

4.2. Non-analytic kernels

In this subsection, we study the case where the kernel is not infinitely differen-
tiable at zero. This case corresponds to values of p 6= 2m, m ∈ N. Let p denote
the greatest integer strictly smaller than p. If p is not an even integer, then the
kernel is only p-times differentiable at the origin. Precisely, for p ∈ (0, 1], the
kernel is not differentiable at zero. For p ∈ (1, 2), the kernel is only one time
differentiable at zero, with

ψ(1)
σ, p(0) = 0.

In fact,

ψ(1)
σ, p(x) = − 1

σp
ψσ, p(x)|x|p−1sgn(x), ∀x ∈ R, (4.16)

with 0 < (p − 1) < 1 in |x|p−1. When p > 2 and p 6= 2m, m ∈ N, for every
1 ≤ k ≤ (p − 1), by Leibniz formula for the kth derivative of a product of
functions applied to (4.16), for any x ∈ R,

ψ(k+1)
σ, p (x) := Dkψ(1)

σ, p(x)

= − 1

σp

k
∑

l=0

(

k

l

)

Dl(|x|p−1sgn(x))Dk−lψσ, p(x)

= − 1

σp
|x|p−1 sgn(x)ψ(k)

σ, p(x)

− 1

σp

k
∑

l=1

(

k

l

)

[

l−1
∏

h=0

(p− 1− h)

]

|x|(p−1)−l [sgn(x)]1+l ψ(k−l)
σ, p (x),

where Dkf denotes the kth derivative of a function f , with the convention that
D0f = f . Thus, for each j = 1, . . . , p,

ψ(j)
σ, p(0) = 0.

Note that, for j = p, because of the term |x|p−p [sgn(x)]p, where 0 < (p−p) ≤ 1,

the function ψ
(p)
σ, p cannot be further differentiated at zero.
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The fact that ψσ, p is not infinitely differentiable at the origin seems to play a
key role in the search for a finitely supported approximating mixing distribution
F ′
0 of a given F0 with a restricted number of atoms. When p 6= 2m, m ∈ N, the

arguments of Lemma 3.1 in Ghosal and van der Vaart [8], pages 1240–1241,
cannot be used to find F ′

0 by the moment matching condition, because θ and
x do not separate by factorization (see their equation (3.8), page 1241). An
approximating mixing distribution can be found using the matching condition
combined with a preliminary partitioning argument, but this incurs an addi-
tional factor of ε−(1∨1/p) in the number of support points (cf. Lemma A.5),
leading to a slower than nearly parametric rate.

Theorem 4.4. Let p > 1/2 be such that p 6= 2m, m ∈ N. Suppose that f0 =
F0∗ψσ0, p, with the true mixing distribution F0 having either compact support or
sub-exponential tails as in (4.7) and the true scale σ0 lying in a compact interval
[σ, σ] ⊂ (0, ∞). If the base measure α has a continuous and positive density α′

such that, for constants b > 0 and 0 < δ ≤ p, satisfies (4.12), the prior G for σ
is supported on [σ, σ] and has a continuous and positive density on an interval
containing σ0, then the posterior rate of convergence relative to dH is

εn = n−1/2[1+(1∨1/p)](logn)κ,

where κ > 0 depends on p.

Proof. We show that conditions (A.1) and (A.3) of Theorem A.1 are satisfied
by sequences ε̄n = n−1/2[1+(1∨1/p)](logn)ς and ε̃n = n−1/2[1+(1∨1/p)](log n)κ,
with 0 < ς < κ, so that εn := (ε̄n ∨ ε̃n) = ε̃n. We begin to consider condition
(A.1). Given η ∈ (0, 1/5), for a constant L > 0 to be suitably chosen, let
0 < a ≤ L(log η−1)1/p. Let Fa, η, σ, σ and Fa, σ, σ be defined as in the proof
of Theorem 4.1. Reasoning as in Lemma 3 of Ghosal and van der Vaart [10],
pages 705–707, and using the result of Lemma A.5, it can be proved that, for
any p > 0 such that p 6= 2m, m ∈ N, if (a/σ) . (log η−1)1/p, then for small
enough η > 0,

logN(η(log η−1)1/p, Fa, σ, σ, ‖ · ‖1) . log

(

σ

ση

)

+

[

η−(1∨1/p)

(

log
1

η

)1/p
]

×
[

log

(

2a

ση1∨1/p
+ 1

)

+ log
1

η

]

. (4.17)

Thus,

logD(η1/2(log η−1)1/2p, Fa, η/16, σ, σ, dH)

≤ logN(η1/2(log η−1)1/2p/2, Fa, η/16, σ, σ, dH)

≤ logN(η(log η−1)1/p/4, Fa, η/16, σ, σ, ‖ · ‖1)

≤ logN(η(log η−1)1/p/8, Fa, σ, σ, ‖ · ‖1)

. η−(1∨1/p)

(

log
1

η

)1+1/p

,
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where the third inequality descends from Lemma A.3 of Ghosal and van der
Vaart [8], page 1261, and the last one from (4.17). Let

ς =
(1 + 1/p) + (1/p)(1 ∨ 1/p)

2[1 + (1 ∨ 1/p)]
.

Choosing
η1/2n (log η−1

n )1/2p = n−1/2[1+(1∨1/p)](logn)ς = ε̄n

and an = L(log η−1
n )1/p, for Fn := Fan, ηn/16, σ, σ, condition (A.1) is seen to be

verified,
logD(ε̄n, Fn, dH) . nε̄2n.

Now we show that π(F c
n|X1, . . . , Xn)→0, in Pn

0 -probability, as n→ ∞. We
have

π(F c
n|X1, . . . , Xn) ≤ Pr({F : F ([−an, an]c) > ηn/16}|X1, . . . , Xn) =: Jn,

where Jn plays the role of J
(3)
n in the proof of Theorem 4.3. Note that, since the

prior G for σ is compactly supported, for each n ∈ N, the terms J
(1)
n and J

(2)
n

are both equal to zero, Pn
0 -almost surely. Now,

E
n
0 [Jn]

≤ E
n
0 [Pr({F : F ([−an, an]c) > ηn/16}|X1, . . . , Xn) I{max1≤i≤n |Xi|≤an/2}]

+E
n
0 [I{max1≤i≤n |Xi|>an/2}].

Both terms on the right-hand side can be seen to converge to zero as in the
proof of Theorem 4.3. In particular, the first term is handled by appealing to
Lemma A.11, with η2 = ηn/16, T = σ and a = an. In this case, ξ = 1/p because
γ2 = ∞. Also, nηn → ∞, which guarantees that the first addendum in (A.17)
converges to zero.

To show that condition (A.3) is satisfied with ε̃n, we provide a lower bound
on π(BKL(f0; ε

2)), as ε → 0. Let 0 < ε ≤ [(σ0/2) ∧ (1 − e−1)/
√
2] be fixed.

We begin to consider the case where F0 has compact support, say [−a0, a0] for
some a0 > 0. By Lemma A.5, there exists a discrete distribution F ′

0 (depending
on ε), supported on at most

N . ε−(1∨1/p)(log ε−1)1/p

points θ1, . . . , θN ∈ [−a0, a0], such that

‖fF ′
0
, σ0

− f0‖∞ . ε.

For small enough ε > 0, by Lemma A.8,

‖fF ′
0
, σ0

− f0‖1 . ε

(

log
1

ε

)1/p

.
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For p > 1/2, without loss of generality, we may assume that the support points
of F ′

0 are at least 2ε2-separated (cf. Ghosal and van der Vaart [8], page 1252).

Represented F ′
0 as

∑N
j=1 wjδθj , with |θj − θk| ≥ 2ε2 for all j 6= k, for any

probability measure F on R such that

N
∑

j=1

|F ([θj − ε2, θj + ε2])− wj | ≤ ε2

and any σ > 0 such that |σ − σ0| ≤ ε,

‖fF,σ − fF ′
0
, σ0

‖1 . ‖ψσ, p − ψσ0, p‖1 +
ε2

σ ∧ σ0

+2
N
∑

j=1

|F ([θj − ε2, θj + ε2])− wj |

.
|σ − σ0|
σ ∧ σ0

+
ε2

σ ∧ σ0
+ 2ε2 . ε.

Thus,

d2H(fF, σ, f0) ≤ ‖fF,σ − fF ′
0
, σ0

‖1 + ‖fF ′
0
, σ0

− f0‖1 . ε

(

log
1

ε

)1/p

.

Reasoning as in the proof of Theorem 4.1, for a constant c > 0,






fF, σ :

N
∑

j=1

|F ([θj − ε2, θj + ε2])− wj | ≤ ε2, |σ − σ0| ≤ ε







⊆ BKL

(

f0; cε

(

log
1

ε

)2+1/p
)

.

Note that, for p > 1/2, the condition ε2 ≤ (1/N) of Lemma A.2 in Ghosal and
van der Vaart [8], page 1260, is satisfied. Hence, for constants c′, c′′ > 0,

π(BKL(f0; cε(log ε
−1)2+1/p)) & exp{−c′N log(1/ε)}

& exp{−c′′ε−(1∨1/p)(log ε−1)1+1/p}.

Let ε̃n = n−1/2[1+(1∨1/p)](logn)κ with

κ =
(1 + 1/p) + (2 + 1/p)(1 ∨ 1/p)

2[1 + (1 ∨ 1/p)]
.

Then, for a suitable constant c2 > 0, we have π(BKL(f0; ε̃
2
n)) & exp{−c2nε̃2n}.

Following the arguments in the proof of Theorem 4.2, the same bound can
be obtained for the case where F0 has sub-exponential tails. To complete the
proof, note that κ > ς , thus an upper bound on the rate is given by εn = ε̃n.
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Remark 4.7. The result covers the case of a normal-Laplace density f0, for
which a rate of n−1/4(logn)5/4 is obtained.

Some remarks are in order. Differently from Theorem 4.1, Theorem 4.2 and
Theorem 4.3, the posterior rate has been derived here assuming that the scale
lies in a compact interval. The result is based on inequalities that are explicit
in the lower and upper bounds on the scale so that, in principle, a rate could
be obtained also when σ is unconstrained. Yet, as the rate would be slower, the
aim is not pursued. As far as we are aware, the (minimax) optimal rate of con-
vergence, relative to the Hellinger or the L1-metric, for this density estimation
problem is unknown. Admittedly, we have found only an upper bound on the
posterior rate and are not able to say whether, except possibly for a logarithmic
factor, this bound is sharp or not.

5. Final remarks

In this article, we have studied frequentist asymptotic properties of posterior
distributions of Dirichlet EP mixture priors, focussing on rates of convergence.
Some theoretical properties usually discussed for specific densities nested in
the family of EP distributions, like the normal, have been extended to more
general kernels with non-trivial implications on posterior rates. The discrepancy
observed in the rates for analytic and non-analytic kernels seems to suggest that,
for infinite mixtures, the accuracy of the posterior in quantifying the uncertainty
on the true density may heavily depend on the regularity of the kernel. It should
be mentioned that a similar behaviour has been recently noted also by de Jonge
and van Zanten [4] in a regression setting, insofar that the regularity of the
kernel influences the posterior contraction rate, leading to a slower rate when
the kernel is not analytic. This feature deserves further investigation to clarify
whether and, if so, why the lack of regularity of the kernel causes a loss in the
rate.

The results on posterior rates are of interest not only in density estimation, as
previously pointed out, but also in the context of linear regression with unknown
error distribution, see, e.g., Ghosal and van der Vaart [9], pages 205–207. In
both settings, however, the cases where the true mixing distribution has tails
decaying not exponentially fast or the true density is a scale mixture of normals,
like the Cauchy or Student’s t distribution, are not covered. This suggests that
a potential future direction to pursue is an extension of previous results to
Dirichlet scale mixtures of EP distributions.

Appendix: Auxiliary results

This Appendix reports the statement of a theorem in the recent literature (cf.
Theorem A.1), which is instrumental to derive the main results of the article,
establishes some facts about the uniform approximation of EP mixtures by finite
mixtures (cf. Lemma A.5) and provides an upper bound on the metric entropy
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of a sieve set of EP mixtures (cf. Lemma A.9). Some lemmas are straightforward
extensions to EP mixtures of results valid for normal mixtures, thus only those
proofs requiring further arguments are presented.

Theorem A.1. [Theorem 2.1 in Ghosal and van der Vaart [8]]. Let
πn be a sequence of priors on a class of densities F equipped with a metric d
that can be either the Hellinger or the one induced by the L1-norm. Suppose
that for positive sequences ε̄n, ε̃n → 0 such that n(ε̄2n ∧ ε̃2n) → ∞, constants
c1, c2, c3, c4 > 0 and sets Fn ⊆ F , we have

logD(ε̄n, Fn, d) ≤ c1nε̄
2
n, (A.1)

πn(F \ Fn) ≤ c3e
−(c2+4)nε̃2n , (A.2)

πn(BKL(f0; ε̃
2
n)) ≥ c4e

−c2nε̃
2
n , (A.3)

where BKL(f0; ε̃
2
n) := {f :

∫

log(f0/f) dP0 ≤ ε̃2n,
∫

(log(f0/f))
2 dP0 ≤ ε̃2n}.

Then, for εn := (ε̄n ∨ ε̃n) and a sufficiently large constant M > 0, the posterior
probability

πn({f : d(f, f0) > Mεn}|X1, . . . , Xn) → 0

in Pn
0 -probability, as n→ ∞.

The following four lemmas present some useful inequalities.

Lemma A.1. Let p > 0 be fixed. For any σ > 0 and x, y ∈ R,

sup
θ∈R

|ψσ, p(x− θ)− ψσ, p(y − θ)| . 1

σ

( |x− y|
σ

)1∧p

. (A.4)

Proof. Let σ > 0 and x, y ∈ R be fixed. We begin to consider the case where
p ∈ (0, 1). For any θ ∈ R,

|ψσ, p(x− θ)− ψσ, p(y − θ)| ≤ 1

σcp

[

1− exp

{

−1

p

( |x− y|
σ

)p}]

≤ 1

pcp

|x− y|p
σ1+p

,

where we have used the inequalities

|u− v|p ≤ |u− z|p + |z − v|p, ∀u, v, z ∈ R, p ∈ (0, 1),

and 1 − e−t ≤ t, for t ≥ 0. Now, we deal with the case where p ≥ 1. For any
θ ∈ R,

|ψσ, p(x − θ)− ψσ, p(y − θ)| =

∣

∣

∣

∣

∣

∫ |x−θ|∨|y−θ|

|x−θ|∧|y−θ|

ψ(1)
σ, p(z) dz

∣

∣

∣

∣

∣

≤ sup
z≥0

|ψ(1)
σ, p(z)| ||x− θ| − |y − θ|| . |x− y|

σ2
,

because

sup
z≥0

|ψ(1)
σ, p(z)| =

1

σ2cp

(

p− 1

e

)1−1/p

.
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Thus, for any p > 0,

|ψσ, p(x− θ)− ψσ, p(y − θ)| . 1

σ

( |x− y|
σ

)1∧p

, ∀ θ ∈ R,

and the result follows.

The following two bounds on the supremum and L1-norm of the difference
between two EP mixtures are the same as those for normal mixtures (cf. the
proof of Lemma 3 in Ghosal and van der Vaart [10], pages 705–707).

Lemma A.2. Let p > 0 be fixed. For any probability measure F on R and any
pair σ, σ′ > 0,

‖F ∗ ψσ, p − F ∗ ψσ′, p‖∞ ≤ ‖ψσ, p − ψσ′, p‖∞

.
|σ − σ′|
σσ′

.
|σ − σ′|
(σ ∧ σ′)2

(A.5)

and

‖F ∗ ψσ, p − F ∗ ψσ′, p‖1 ≤ ‖ψσ, p − ψσ′, p‖1 ≤ 2
|σ − σ′|
σ ∧ σ′

. (A.6)

Note that the constant in the upper bound (A.6) does not depend on p. The
proof of the following inequality for the case where p = 2, i.e., the kernel is
Gaussian, can be found within the proof of Lemma 1 of Ghosal, Ghosh and
Ramamoorthi [7], pages 156–157.

Lemma A.3. Let p > 0 be fixed. For any σ > 0 and any pair θj , θk ∈ R,

‖ψσ, p(· − θj)− ψσ, p(· − θk)‖1 ≤ 2 ‖ψ1, p‖∞
|θj − θk|

σ
≤ 2

cp

|θj − θk|
σ

. (A.7)

Lemma A.4. Let σ > 0 be given. For any pair p, p′ > 0,

‖ψσ, p − ψσ, p′‖1 =
|p− p′|
pp′

‖g(1)(·/σ)(z
∗)‖1,

where g(·/σ)(z) := ψσ, z−1(·) and 1/(p ∨ p′) < z∗ < 1/(p ∧ p′). Furthermore,

‖ψσ, p − ψσ, p′‖1 .
|p− p′|
p ∧ p′ ×







1, as z∗ → 0,

1

p ∨ p′ , as z∗ → ∞.
(A.8)

Proof. Let z := 1/p and

g(x/σ)(z) := ψσ, z−1(x) =
zz

2σΓ(1 + z)
exp {−z(|x| /σ)1/z}, z > 0.
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By the Mean Value Theorem,

‖ψσ, p − ψσ, p′‖1 = ‖g(·/σ)(z)− g(·/σ)(z
′)‖1 =

|p− p′|
pp′

‖ g(1)(·/σ)(z
∗)‖1,

where 1/(p ∨ p′) < z∗ < 1/(p ∧ p′) and

g
(1)
(x/σ)(z

∗) = g(x/σ)(z
∗) [1 + log z∗ −Ψ(1 + z∗)]

+ g(x/σ)(z
∗) (|x|/σ)1/z∗

[log(|x|/σ)1/z∗ − 1], x ∈ R,

with Ψ(z) := D1 log Γ(z) the Digamma function. Clearly,

‖g(1)(·/σ)(z
∗)‖1 ≤ |1 + log z∗ −Ψ(1 + z∗)|

+

∫

g(x/σ)(z
∗)(|x|/σ)1/z∗ | log(|x|/σ)1/z∗ − 1| dx

=: T1 + T2.

As z∗ → 0,
T1 . (z∗)−1 + γ +O(z∗) . (z∗)−1,

where γ is the Euler-Mascheroni constant, and T2 . σ(z∗)−1. The first bound
in (A.8) follows the fact that (z∗)−1 < (p ∨ p′). As z∗ → ∞, T1 = O(1) and
T2 = O(1), whence the second bound.

The next lemma establishes that, at least when the kernel is analytic, EP
mixtures can be uniformly approximated by finite EP mixtures with a relatively
small number of components.

Lemma A.5. Let p > 0 be fixed. Let 0 < ε < 1 and a, σ > 0 be given. Define
D := [(a/σ) ∨ (p log ε−1)1/p]. For any probability measure F on [−a, a], there
exists a discrete probability measure F ′ on [−a, a], with at most

N .







Dp, if p = 2m,
m ∈ N,

Dε−(1∨1/p), if p 6= 2m,

support points, such that

‖F ∗ ψσ, p − F ′ ∗ ψσ, p‖∞ .
ε

σ
. (A.9)

Proof. In the case where p is an even integer the result can be proved as in
Lemma 3.1 of Ghosal and van der Vaart [8], pages 1240–1241. In the case where
p 6= 2m, m ∈ N, for any constant M > 0 and any probability measure F ′ on
[−a, a],

‖F ∗ ψσ, p − F ′ ∗ ψσ, p‖∞ ≤ sup
|x|<M

|(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)| (A.10)

+ sup
|x|≥M

|(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)|. (A.11)
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For M = 2[a∨σ(p log ε−1)1/p] = 2σD, the term in (A.11) is bounded above, up
to a constant, by (ε/σ),

sup
|x|≥M

|(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)| ≤ 2ψσ, p(M − a) .
ε

σ
.

To bound above the term in (A.10), we consider a finite partition of (−M, M)
into k = ⌈(2M/σ)ε−(1∨1/p)⌉ = O(Dε−(1∨1/p)) disjoint, consecutive intervals
I1, . . . , Ik each of length l ≤ σε1∨1/p and, possibly, a final interval Ik+1 of
length lk+1 < σε1∨1/p. Let J stand for the total number of intervals in the
partition. It is either J = k or J = k + 1. Then,

sup
|x|<M

|(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)|

= max
1≤j≤J

sup
x∈Ij

|(F ∗ ψσ, p)(x)− (F ′ ∗ ψσ, p)(x)|.

For each j = 1, . . . , J , let xj denote the left endpoint of the interval Ij . In fact,
any point in Ij would serve the aim. Then,

sup
x∈Ij

|(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)|

= sup
x∈Ij

|(F ∗ ψσ, p)(x) ∓ (F ∗ ψσ, p)(xj)∓ (F ′ ∗ ψσ, p)(xj)− (F ′ ∗ ψσ, p)(x)|

≤ 2 sup
x∈Ij

sup
|θ|≤a

|ψσ, p(x− θ)− ψσ, p(xj − θ)|

+

∣

∣

∣

∣

∫ a

−a

ψσ, p(xj − θ) d(F − F ′)(θ)

∣

∣

∣

∣

, (A.12)

where, by inequality (A.4),

sup
|θ|≤a

|ψσ, p(x− θ)− ψσ, p(xj − θ)| . 1

σ
(|x− xj |/σ)1∧p .

ε

σ
, ∀x ∈ Ij .

Furthermore, if for each j = 1, . . . , J ,

∫ a

−a

ψσ, p(xj − θ) dF (θ) =

∫ a

−a

ψσ, p(xj − θ) dF ′(θ), (A.13)

then the term in (A.12) vanishes and supx∈Ij |(F ∗ ψσ, p)(x) − (F ′ ∗ ψσ, p)(x)| .
(ε/σ) for all j = 1, . . . , J . Inequality (A.9) follows by combining the bounds on
the terms in (A.10) and (A.11). It remains to choose F ′ so that all the matching
conditions in (A.13) are satisfied. Since the functions ψσ, p(xj−·) are continuous
on [−a, a], by Lemma A.1 of Ghosal and van der Vaart [8], page 1260, F ′ can be
chosen to be a discrete probability measure on [−a, a], with at most N = J +1
support points, such that all the above conditions are satisfied. The proof is
thus complete.
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Remark A.1. Combining inequality (A.5) with Lemma A.5, for any pair
σ, σ′> 0,

‖F ∗ ψσ, p − F ′ ∗ ψσ′, p‖∞ .
|σ − σ′|
(σ ∧ σ′)2

+
ε

σ ∧ σ′
,

where F ′ is a discrete probability measure on [−a, a], with at most

N .











(

[a/(σ ∧ σ′)] ∨ [p log(1/ε)]1/p
)p
, if p = 2m,

m ∈ N,
(

[a/(σ ∧ σ′)] ∨ [p log(1/ε)]1/p
)

ε−(1∨1/p), if p 6= 2m,

support points.

The next lemma provides an upper bound on the tail probability of an EP
distribution with p ≥ 1.

Lemma A.6. Let p ≥ 1 be fixed and let σ > 0 be given. For any B > 0,

∫ ∞

B

ψσ, p(x) dx ≤ σp

Bp−1
ψσ, p(B). (A.14)

Proof. Write

ψσ, p(B) = −
∫ ∞

B

ψ(1)
σ, p(x) dx =

∫ ∞

B

xp−1

σp
ψσ, p(x) dx

≥ Bp−1

σp

∫ ∞

B

ψσ, p(x) dx.

Inequality (A.14) follows immediately.

Remark A.2. For σ = 1 and p = 2, inequality (A.14) reduces to

∫ ∞

B

φ(x) dx ≤ φ(B)

B
,

which, rewritten in terms of the Mill’s ratio, takes the form

φ(B)

1− Φ(B)
≥ B,

where Φ(·) denotes the standard normal cumulative distribution function.

Next, a similar bound valid for any p > 0 is derived which, in particular,
holds for p ∈ (0, 1).

Lemma A.7. Let p > 0 be fixed and let σ > 0 be given. For any B > σ,

∫ ∞

B

ψσ, p(x) dx ≤ B

(B/σ)p − 1
ψσ, p(B). (A.15)
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Proof. For each B > 0,

∫ ∞

B

ψσ, p(x) dx = −Bψσ, p(B) +

∫ ∞

B

(x

σ

)p

ψσ, p(x) dx

≥ −Bψσ, p(B) +

(

B

σ

)p ∫ ∞

B

ψσ, p(x) dx,

where the first equality follows from integration by parts. If (B/σ) > 1, then
inequality (A.15) holds.

The following lemma provides an upper bound on the L1-distance between
two EP mixtures by relating it to the corresponding L∞-distance. It is based
on Lemma A.7 and extends an analogous result valid for normal mixtures (cf.
Lemma 3.2 of Ghosal and van der Vaart [8], pages 1242–1243).

Lemma A.8. Let p > 0 be fixed. Given a > 0, let F and F ′ be probability
measures on [−a, a]. For given σ > 0, define

d∞ := ‖F ∗ ψσ, p − F ′ ∗ ψσ, p‖∞.

If d∞ ≤ (e−2/p/σ), then

‖F ∗ ψσ, p − F ′ ∗ ψσ, p‖1 . d∞

[

a ∨ σ
(

p log
1

σd∞

)1/p
]

.

The next lemma gives an upper bound on the L1-metric entropy of a sieve set
of EP mixtures. It is based on Lemma A.5 and Lemma A.8 and can be proved
similarly to Lemma 3 of Ghosal and van der Vaart [10], pages 705–707, which
deals with normal mixtures.

Lemma A.9. Let p = 2m, m ∈ N, be fixed. Let 0 < ε < 1/5. Let 0 < s < t and
a > 0 be such that, for some ν > 0,

a

s
.

(

log
1

ε

)ν

.

Define Fa, s, t := {F ∗ ψσ, p : F ([−a, a]) = 1, s ≤ σ ≤ t}. Then,

logN(ε, Fa, s, t, ‖ · ‖1) . log

(

t

sε

)

+

[

(a

s

)p

∨
(

log
1

ε

)]

×
[

log

(

2a

sε
+ 1

)

+ log
1

ε

]

.

The following assertion is useful to estimate the prior probability of Kullback-
Leibler type neighborhoods of f0 when checking condition (A.3). Ghosal and van
der Vaart [8] present this result for p = 2 (cf. Lemma 4.1, pages 1248–1249).
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Lemma A.10. Let p > 0 be fixed. Let F ′ be a probability measure on R such
that, for some constant b′ > 0,

F ′({θ : |θ| > t}) . e−b′tp , for large t > 0.

Let F be another probability measure on R such that, for some constant B > 0,
F ([−B, B]) ≥ 1/2. For σ, σ′ > 0, let q := F ∗ ψσ, p and q′ := F ′ ∗ ψσ′, p. For
0 < ε ≤ [(σ′/2) ∧ (1− e−1)/

√
2], if |σ − σ′| ≤ ε and dH(q, q

′) ≤ ε, then

∫

q′
(

log
q′

q

)

dλ . ε2 log
1

ε
,

∫

q′
(

log
q′

q

)2

dλ . ε2
(

log
1

ε

)2

.

Remark A.3. The assertion of Lemma A.10 still holds true if

B ≡ B(ε) = O((log ε−1)1/p).

In such a case, in fact, for a suitable δ ∈ (0, 1] (depending on b′, σ′, p) and some
ξ > 0,

M2
δ :=

∫

{(q′/q)≥e1/δ}

q′
(

q′

q

)δ

dλ (A.16)

is such that M2
δ = O(1/εξ) and Theorem 5 of Wong and Shen [31], pages 357–

358, goes through.

The next lemma is a version of Lemma 11 of Ghosal and van der Vaart [10],
pages 715–717, adapted to EP mixtures.

Lemma A.11. Let p > 0 be fixed. Let X1, . . . , Xn be i.i.d. observations from a
probability measure P0 with density f0 = F0 ∗ψσ0, p. Suppose that the model is a
location mixture of EP densities, i.e., fF,σ = F ∗ψσ, p, with the scale parameter
σ distributed independently of the mixing distribution F . If the base measure α
of the Dirichlet process prior for F has a continuous and positive density α′ on
[−a, a], with a ≥ 1, then, for any 0 < T ≤ (a/2) and η > 0, there exists a
constant K > 0 (depending only p) such that

E
n
0 [Pr({F : F ([−a, a]c) > η2}|X1, . . . , Xn) I{max1≤i≤n |Xi|≤a/2}]

.
α([−a, a]c)
η2[α(R) + n]

+
Kne−(a/T )p/(p2p+1)

η2λa
(A.17)

+E
n
0 [Pr(σ > T |X1, . . . , Xn)],

where λa := inf |θ|≤a α
′(θ) > 0.
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