
Brazilian Journal of Probability and Statistics
2013, Vol. 27, No. 2, 245–262
DOI: 10.1214/11-BJPS172
© Brazilian Statistical Association, 2013

CADEM: A conditional augmented data EM algorithm for
fitting one parameter probit models

C. L. N. Azevedoa and D. F. Andradeb

aUniversity of Campinas
bFederal University of Santa Catarina

Abstract. In this article we develop an estimation method based on the aug-
mented data scheme and EM/SEM (Stochastic EM) algorithms for fitting
one-parameter probit (Rasch) IRT (Item Response Theory) models. Instead
of using the S steps of the SEM algorithm, that is, instead of simulating
values for the unobserved variables (augmented data and the latent traits),
we consider the conditional expectations of a set of unobserved variables
on the other set of unobserved variables, the current estimates of the pa-
rameters and the observed data, based on the full conditional distributions
from the Gibbs sampling algorithm. Our method, named the CADEM al-
gorithm (conditional augmented data EM), presents straightforward E steps,
which avoid the need to evaluate the usual integrals, also facilitating the M
steps, without the need to use numerical methods of optimization. We use the
CADEM algorithm to obtain both maximum likelihood estimates and maxi-
mum a posteriori estimates of the difficulty parameters for the one-parameter
probit (Rasch) model. Also, we obtain estimates for the latent traits, based
on conditional expectations. In addition, we show how to calculate the asso-
ciated standard errors. Some directions are provided to extend our approach
to other IRT models. In this respect, we perform a simulation study to com-
pare the estimation methods. The results indicated that our approach is quite
comparable to the usual marginal maximum likelihood (MML) and Gibbs
sampling methods (GS) in terms of parameter recovery. However, CADEM
is as fast as MML and as flexible as GS.

1 Introduction

IRT consists of a set of measurement models which have been increasingly applied
in many fields. Two important aspects concerning item response models (IRM) are
the large number of quantities to be estimated and their complex mathematical
structures. Due to these aspects, the use of an appropriate estimation method plays
a crucial role. Many works have been devoted to proposing and comparing estima-
tion methods. The marginal likelihood based methods, that is, marginal maximum
likelihood (MML) and marginal maximum a posteriori (MMAP), are probably the
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most popular methods for item parameter estimation. They produce consistent es-
timates in many situations [see Bock and Aitkin (1981) and Mislevy (1986)]. How-
ever, they are not appropriate or even able to handle more complex IRT models,
such as longitudinal models [see Andrade and Tavares (2005)], multilevel models
[see Fox and Glas (2001)] or asymmetric models [see Azevedo et al. (2011) and
Bazan et al. (2006)]. On the other hand, the MCMC based methods, which include
the full Gibbs sampling [see Albert (1992)] and Metropolis–Hasting within Gibbs
sampling [see Patz and Junker (1999a)], are able to handle complex methods even
though they are computationally intensive. Recently, Fox (2003) proposed the use
of the SEM algorithm for fitting a multilevel IRT model. Even though this method
requires less time than the traditional MCMC methods, it still demands a consid-
erable amount of time.

The main goal of this work is to propose an EM/SEM based algorithm to replace
the S steps in the SEM algorithm by the calculation of conditional expectations of
the augmented data, given the latent traits and the latent traits given the augmented
data. Then, the M steps are carried out straightforwardly. Our method is not only
very fast (as fast as MML and MMAP methods), but also can handle complex
models. Due to the conditional structure based on augmented data, our algorithm is
named CADEM (conditional augmented data EM algorithm). In addition, we show
how the standard errors can be easily calculated by using the Louis identity [see
Louis (1982)], and how it is possible to fit other IRT models. We also show how
to obtain Bayesian estimates (maximum of the posterior distribution) through the
CADEM algorithm. The results of the simulation study indicate that the CADEM
recovers all parameters as well as the usual methods. However, it has the advantage
of being as fast as MML and MMAP and as flexible as MCMC methods.

The article is organized as follows. After the introduction, we present the CA-
DEM algorithm. In the subsequent section we present the Bayesian extension of
the CADEM, while in the following one we discuss how CADEM can be used to
fit more complex IRT models. Then, a simulation study is presented, to compare all
estimation methods considered. Finally, we make some comments and conclusions
in the last section and show some additional calculations in the Appendix.

2 CADEM algorithm

The two most typical approaches for parameter estimation in IRT are the marginal
maximum likelihood—marginal Bayesian methods and Bayesian estimation using
MCMC algorithms [see Bock and Aitkin (1981), Mislevy (1986), Albert (1992),
Patz and Junker (1999a) and Patz and Junker (1999b)]. While the former is limited
due to the use of numerical methods of integration and maximization, the latter
demands a large amount of computational processing time. Marginal methods are
much faster than MCMC algorithms, even though the latter are much more flexible
than the former. Our approach combines the advantages of these two classes of
methods.



CADEM 247

The EM algorithm is a method that allows obtaining maximum likelihood esti-
mates (or the maximum of posterior distributions) in the presence of missing data;
see Dempster et al. (1977). The idea underlying the EM algorithm is to maximize,
concerning the parameters, the expectation of the log-likelihood concerning the
missing data given the observed data and provisional estimates of the parameters.
The goal of our work is to develop a kind of EM algorithm by considering the
latent traits and an augmented data set as the unobserved data.

In this paper, we consider the situation where a set of n examinees (students,
patients, schools) is submitted to a measurement instrument (cognitive test, clinical
evaluation, questionnaire) composed of I items. Let Yij , the answer of examinee j

to item i, be a Bernoulli random variable, with 1 indicating a correct answer and 0
otherwise. To model such probability, we consider the one-parameter probit model
(1PP), that is,

Pij = P(Yij = 1|θj , bi) = �(θj − bi), (2.1)

where bi is the difficulty parameter and �(·) stands for the cumulative normal
function. The reader is referred to Baker and Kim (2004) for further details and
interpretations. Model (2.1) is also called the Rasch model, even though in this
case the cumulative distribution function of the standard logistic distribution is
used instead of the probit. Our main interest lies in making inferences about θ =
(θ1, . . . , θn)

′ and b = (b1, . . . , bI )
′.

To define the CADEM, it is convenient to consider the augmented data for the
1PP model proposed by Albert (1992), that is, Yij = I(Zij≥0), where

Zij |(θj , bi) ∼ N(θj − bi,1). (2.2)

Furthermore, let Ij and Ni be the indexes which represent the set of items an-
swered by (or presented to) examinee j and the set of examinees that answered
item i, respectively. Also, it is assumed that θj ∼ N(0,1), mutually independent.
Following the EM algorithm nomenclature, let Y·· = (Y11, . . . , Y1I , . . . , Yn1, . . . ,

YnI )
′ be the incomplete data set while (Z′··, θ ′,Y′··) is the complete data set,

Z·· = (Z11, . . . ,Z1I , . . . ,Zn1, . . . ,ZnI )
′ and θ = (θ1, . . . , θn)

′. That is, we con-
sider that W = (Z′··, θ ′)′ are the unobserved data. Under the usual assumptions of
conditional independence, the augmented data likelihood is given by

L(b, θ, z··|y··) ∝ p(z··|θ ,b,y··)p(θ)

=
{

n∏
j=1

∏
i∈Ij

p(zij |θj , bi, yij )

}{
n∏

j=1

p(θj )

}
(2.3)

=
{

n∏
j=1

∏
i∈Ij

exp {−0.5(zij − θj + bi)
2}1(yijk,zijk)

}

×
{

n∏
j=1

exp {−0.5(θ2
j )}

}
,
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where 1(yijk,zijk) = 1(yij=1)1(zij≥0) + 1(yij=0)1(zij<0) and 1 is the usual indicator
function. Therefore, the augmented log-likelihood is given by

lc = l(b, θ, z··|y··)

=
{

n∑
j=1

∑
i∈Ij

{−0.5(z2
ij − 2zij θj + θ2

j + 2zij bi − 2θjbi + b2
i )}

}
(2.4)

−
{

n∑
j=1

{0.5(θ2
j )}

}
.

Within the framework of the EM algorithm, it is necessary to evaluate the ex-
pectation E(W|b) from (2.4), that is, to calculate E[lnp(Z··,�,b|y··)|b]. How-
ever, obtaining the distribution of (Z··,�|y··,b) can be quite complicated. On the
other hand, the distributions Zij |(θ ,b,y··) and θj |(z··,b,y··) are known and easy
to handle. From Albert (1992), it follows that

θj |(z·j ,b,y·j ) ∼ N(θ̃j ψ̂θj
, ψ̂θj

), (2.5)

where

θ̃j = ∑
i∈Ij

(zij + bi), ψ̂θj
= (1 + Ij )

−1,

where Ij is the number of items presented to/answered by examinee j, and
Zij |(θj ,b, yij ) ∼ N(θj − bi,1)1(yijk,zijk). Furthermore, from Albert (1992) and
Liu et al. (1998), it follows that

Ẑij = E[Zij |(θj , bi, yij )] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θj − bi + φ(θj − bi)

1 − �(−θj + bi)
, if Yij = 1,

θj − bi − φ(θj − bi)

�(−θj + bi)
, if Yij = 0.

(2.6)

θ̂j = E[�j |(zij , bi, yij )] =
∑I

i=1(zij + bi)

I + 1
, (2.7)

where φ and � stand for the density and the cumulative distribution function of
the standard normal distribution. The idea is to calculate the expectations (2.6)
and (2.7) instead of E[W|ϑ]. That is, instead of calculating the expectation of all
unobserved variables given the data and current estimates of the parameters (based
on the joint distribution of W), the conditional expectations of one set of unob-
served variables (augmented data or latent traits) are calculated given the other set
(latent traits or augmented data), the data and current estimates of the parameters.
That is, we are treating a specific set of missing variables, in each iteration of the
EM algorithm, as parameters of interest. This may be viewed as a slight modifi-
cation in the original EM algorithm. Therefore, the conditional expectation of the
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log-likelihood is given by

Ec = E(Z,�|b,y)(l(b, θ , z··|y··))

≈
{

n∑
j=1

∑
i∈Ij

{−0.5(Ẑ2
ij − 2Ẑij θj + θ̂2

j + 2Ẑij bi − 2θ̂j bi + b2
i )}

}
(2.8)

−
{

n∑
j=1

{0.5(θ̂2
j )}

}
.

It is necessary to maximize (2.8) with respect to b. The following result sum-
marizes our approach.

Result 2.1. The conditional EM augmented data (CADEM) algorithm for the one-
parameter probit model can be expressed as follows:

E-steps: Proceed as follows:
E-step 1: Given the current estimates of b(t) and current expectations of θ (t),

evaluate (2.6).
E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1),

obtained in E-step 1, evaluate (2.7).
M-step: Given the current expectations Ŵ(k)(t+1), k = 1,2, update b by maximiz-

ing (2.8), that is, evaluate

b̂
(t+1)
i =

∑n
j=1 θ̂

(t+1)
j − ∑n

j=1 Ẑ
(t+1)
ij

ni + 1
,

where ni is the number of examinees that answered item i.

It is straightforward to verify the E-steps, by using the definitions of expecta-
tions of the normal and truncated-normal distributions. The M-step is obtained by
deriving (2.8) with respect to the vector b and equating it to 0. Therefore, we can
see that this procedure avoids not only the need to use numerical integration meth-
ods to evaluate the conditional expectations, it also avoids the need for numerical
methods in the M-step, as in the Bock and Aitkin approach; see Bock and Aitkin
(1981). So the CADEM algorithm is an alternative to the pseudo EM algorithm
proposed by Bock and Aitkin (1981).

The standard errors for difficulty parameters can be obtained by using The Louis
identity [see Louis (1982)], considering that the latent traits are known and the
augmented data are the unobserved data, for the sake of simplicity. That is,

−∂2lc

∂b2
i

= EF(Z,�)

(−∂2lc

∂b2
i

)
− V arF(Z,�)

(
− ∂lc

∂bi

)
, (2.9)

where F(Z,�) is a convenient distribution, which is a function of (Z,�) (see the
Appendix for more details). The standard errors associated with the latent trait
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estimates can be calculated by using the distribution (2.5), the current expectations
of Z·· and the following relationship:

V ar(�j |b,y··) = EZ(V ar�|Z(�j |z··,b,y··))
(2.10)

+ V arZ(E�|Z(�j |z··,b,y··)).

In summary, we are replacing the conditional expectations E (�j |y, b̂), E (Zij |y,

b̂) and E (�jZij |y, b̂), which must be calculated in the original EM algorithm,
by E (�j |y, b̂, z·j ), E (Zij |y, b̂, θj ) and E (Zij E (�j |y, b̂,Zij ))|(y, b̂)). See the Ap-
pendix for more details.

2.1 Bayesian estimation

Like the EM algorithm [see Dempster et al. (1977)], the CADEM algorithm can
be also used to obtain the maximum of the posterior distributions of interest. To
accomplish that, we assume that the prior distribution of the difficulty parameters
is given by

p(b|ηb) =
I∏

i=1

p(bi |ηb) ∝
I∏

i=1

exp
{
−(bi − μb)

2

2ψb

}
, (2.11)

where ηb = (μb,ψb)
′. Therefore, from (2.3), (2.4) and (2.11), the posterior and

log-posterior distribution of (Z, θ,b) are given, respectively, by

p(b, θ, z··|y··) ∝ p(z··|θ ,b,y··)p(θ)p(b)

=
{

n∏
j=1

∏
i∈Ij

p(zij |θj , bi, yij )

}{
n∏

j=1

p(θj )

}{
I∏

i=1

p(bi)

}
(2.12)

=
{

n∏
j=1

∏
i∈Ij

exp{−0.5(zij − θj + bi)
2}1(yijk,zijk)

}

×
{

n∏
j=1

exp{−0.5(θ2
j )}

}{
I∏

i=1

exp
{
−(bi − μb)

2

2ψb

}}

and

pc = ln[p(b, θ, z··|y··)]

=
{

n∑
j=1

∑
i∈Ij

{−0.5(z2
ij − 2zij θj + θ2

j + 2zij bi − 2θjbi + b2
i )}

}
(2.13)

−
{

n∑
j=1

{0.5(θ2
j )}

}
−

{
I∑

i=1

{
(bi − μb)

2

2ψb

}}
+ const.
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On the other hand, as in (2.8), the conditional expectation of the log-posterior
can be suitably approximated by

Epc = E(Z,�|b,y)(p(b, θ, z··|y··))

≈
{

n∑
j=1

∑
i∈Ij

{−0.5(Ẑ2
ij − 2Ẑij θj + θ̂2

j + 2Ẑij bi − 2θ̂j bi + b2
i )}

}
(2.14)

−
{

n∑
j=1

{0.5(θ̂2
j )}

}
−

{
I∑

i=1

{
(bi − μb)

2

2ψb

}}
.

Thus, it is necessary to maximize (2.14) with respect to b. This leads to Re-
sult 2.1 with the M-Step replaced by the following M-Step.

M-step: Given current expectations Ŵ(k)(t+1), k = 1,2, update b by maximizing
(2.14), that is, evaluate

b̂
(t+1)
i =

∑n
j=1 θ̂

(t+1)
j − ∑n

j=1 Ẑ
(t+1)
ij − μb/ψb

ni + 1/ψb

.

The standard errors for the latent traits can be calculated by using for-
mula (2.10). For the difficulty parameters, it is necessary to use the log-
posterior (2.13) instead of the log-likelihood (2.4). For details, see the Appendix.

3 CADEM extensions

It is straightforward to use other latent trait distributions within the CADEM struc-
ture, as long as they permit a stochastic representation in terms of the symmet-
ric normal distribution. This is required to make the E-Steps easy to implement.
For example, the Student t, centered skew normal or finite mixture of normals
[see Azevedo et al. (2011)] can be considered. The M-steps concerning the es-
timation of the parameters of those distributions should also be included. Also,
the multiple group framework can be easily implemented, it is only necessary to
include additional M-steps concerning the population parameters, like the usual
MML estimation [see Bock and Zimowski (1997)]. In addition, the multidimen-
sional one-parameter probit model can also be estimated by using CADEM with a
few modifications.

3.1 Other latent trait distributions

Let us assume that θj ∼ tν (Student t with ν degrees of freedom), then we can
write

θj |tj ∼ N(0, tj ),
(3.1)

tj ∼ IG
(

ν

2
,
ν

2

)
,
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where IG(α,β) represents an inverse-gamma distribution with parameters α and β .
Assuming the degrees of freedom ν as known, for the sake of simplicity, the CA-
DEM can be applied straightforwardly. The M-step remains the same. However, it
is necessary to consider an additional E-step, as follows:

E-steps: Proceed as follows:
E-step 1: Given the current estimates of b(t) and current expectations of θ (t),

evaluate (2.6).
E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1)

and t(t), obtained in E-step 1 and in the former iteration, respectively, eval-
uate

θ̂j = E[�j |(z·j ,b, tj ,y·j )] =
∑I

i=1(zij + bi)

I + tj
,

E-step 3: Given the current estimates of b(t) and current expectations of Z(t+1)

and θ (t+1), obtained in E-step 1 and in the E-step 2, respectively, from

Tj |(·) ∼ IG
(

1 + ν

2
,
θ2
j + ν

2

)
evaluate

t̂j = E[Tj |(θj )] = θ2
j + ν

ν − 1
.

The assumption of known degrees of freedom can be relaxed. In this case, the
M-step must be modified. However, the estimation of the degrees of freedom in the
Student t-distribution is not an easy task. The likelihood, for some data sets, can
be ill-behaved. In this case, the maximum likelihood estimates could be biased and
a Bayesian approach with a suitable prior distribution could be more appropriate.
We think that Jeffreys prior, as in Fonseca et al. (2008), would be more appro-
priate than uniform, exponential or gamma priors. The sensitivity to prior choices
depends on the number of examinees and on the number of items.

Now, let us assume that θj ∼ SNC(0,1, γθ ), where SNC(0,1, γθ ) stands for a
centered skew-normal distribution with zero mean, unity variance and asymmetry
coefficient γθ [see Azevedo et al. (2011)]. Following those authors, we have

θj |(tj , γθ ) ∼ N(τθ tj + αθ , σ
2
θ ), (3.2)

Tj ∼ HN(0,1), (3.3)

where HN(0,1) stands for a standard normal distribution truncated to the left of
zero and

τθ = √
ςθδθ ,

σ 2
θ = ςθ (1 − δ2

θ ).
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For the sake of simplicity, if we consider γθ as known, the CADEM can be
applied straightforwardly. The M-step remains the same. However, it is necessary
to modify the E-steps as follows:

E-steps: Proceed as follows:
E-step 1: It remains the same
E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1)

and t(t), obtained in E-step 1 and in the former iteration, respectively, eval-
uate

θ̂j = E[�j |(z·j ,b, tj ,y·j , γθ )] =
∑I

i=1(zij + τθ tj + αθ + bi)

I + σ 2
θ

,

E-step 3: Given the current estimates of b(t) and current expectations of Z(t+1)

and θ (t+1), obtained in E-step 1 and in the E-step 2, respectively, from
Tj |(·) ∼ HN(̂tj , ψ̂j ), where

t̂j = τθ (θj − αθ)

(τθ )2 + (σ 2
θ )

,

ψ̂j = (σ 2
θ )

(τθ )2 + (σ 2
θ )

,

evaluate

t̂j = E[Tj |(θj , γθ )] = t̂j +
√

ψ̂j

φ(−t̂j /
√

ψ̂j )

1 − �(−t̂j /
√

ψ̂j )
.

The assumption of the known asymmetry coefficient can be relaxed. In this
case, the M-step must be modified. The estimation of the asymmetry coefficient in
the skew normal distribution is not an easy task either. The likelihood, for some
data sets, can also be ill-behaved. In this case, the maximum likelihood estimate of
the asymmetry parameter may not exist and a Bayesian approach with a suitable
prior could be more appropriate. We think that the approach and priors considered
in Azevedo et al. (2011) and Azevedo et al. (2011) would be suitable, due to the
results obtained by the authors. They did not observe significant difference in the
results obtained using different priors

3.2 Multiple group one-parameter probit model

In the multiple group model, the selected groups of respondents are of specific
interest, such that group-specific population distributions need to be defined. Let
us define k = 1, . . . ,K , the index for groups, and let us assume that

θjk ∼ N(μθk
,ψθk

).
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In this case, the E-steps and M-step need to be modified, that is,

E-steps: Proceed as follows:
E-step 1: Given the current estimates of b(t) and current expectations of θ (t),

evaluate (2.6), with the index k representing the groups.
E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1),

obtained in E-step 1 and in the former iteration, respectively, evaluate

θ̂j = E[�j |(0·jk,b,μθk
,ψθk

,y·jk)] =
∑I

i=1(zijk + μθk
+ bi)

I + ψθk

.

M-steps: Proceed as follows:
Given the current expectations Ŵ(k)(t+1), k = 1,2, update b by maximiz-
ing (2.14), that is, evaluate
M-step 1:

b̂
(t+1)
i =

∑n
j=1 θ̂

(t+1)
j − ∑n

j=1 Ẑ
(t+1)
ij − μb/ψb

ni + 1/ψb

.

M-step 2: To update μθk
and ψθk

, k = 1, . . . ,K , that is, to evaluate

μ̂θk
= 1

nk

nk∑
j=1

θ̂jk,

(3.4)

ψ̂θk
= 1

nk

nk∑
j=1

(θ̂jk − μ̂θk
)2.

3.3 Multidimensional one-parameter probit model

Let us suppose that

P(Yij = 1|θ j , bi) = �

(
P∑
p

θjp − bi

)
,

that is, we have the multidimensional probit model [see Reckase (2009) and
Beguin and Glas (2001)]. In this case, we can assume that

θ j ∼ NP (μθ ,�θ ),

with general structures for both μθ and �θ [see Beguin and Glas (2001)]. In this
case, both the E-steps and M-step must be modified as follows:

E-steps: Proceed as follows:
E-step 1: Given the current estimates of b(t) and current expectations of θ (t),

evaluate

Ẑij = E[Zij |(θ j , bi, yij )]
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P∑
p=1

θjp − bi + φ(
∑P

p=1 θjp − bi)

1 − �(−∑P
p=1 θjp + bi)

, if Yij = 1,

P∑
p=1

θjp − bi − φ(
∑P

p=1 θjp − bi)

�(−∑P
p=1 θjp + bi)

, if Yij = 0.

E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1)

obtained in E-step 1, evaluate

θ̂ j = E[�j |(0·j , bi,μθ ,�θ ,y·j )]

= (IP + �−1
θ )−1

[
I∑

i=1

(bi1P + zij 1P ) + �−1
θ μθ

]
.

M-steps: Proceed as follows:
Given the current expectations Ŵ(k)(t+1), k = 1,2, update b by maximiz-
ing (2.14), that is, evaluate
M-step 1:

b̂
(t+1)
i =

∑n
j=1 θ̂

(t+1)
j − ∑n

j=1 Ẑ
(t+1)
ij − μb/ψb

ni + 1/ψb

.

M-step 2: Update μθ and ψθ , that is, evaluate

μ̂θ = 1

n

n∑
j=1

θ̂ j ,

�̂θ = 1

n

n∑
j=1

(̂θ j − μ̂θ )(̂θ j − μ̂θ )
′.

3.4 Multidimensional multiple group one-parameter probit model

Let us assume we have several groups and we are considering a multidimentional
structure for latent traits, that is,

P(Yijk = 1|θ jk, bi) = �

(
P∑
p

θjkp − bi

)
, k = 1, . . . ,K.

One can combine the algorithms presented in subsections (3.2) and (3.3) in
order to fit this model through CADEM.

3.5 Rasch models

Let us, in any of the above models, replace the probit link by a logit link, that
is, in this case, we consider the usual Rasch models. Since the standard logistic
distribution can be suitably approximated by a Student t-distribution with ν =
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7.581 degrees of freedom [see Chen and Dey (1998)], a hierarchical structure can
be considered for the augmented data. This is equivalent to considering that

Zij |(θj , bi, ti) ∼ N(θj − bi, ti),
(3.5)

Ti ∼ IG
(

7.581

2
,

7.581

2

)
.

Therefore, CADEM can be used, replacing the E-steps concerning the aug-
mented data by the following E-Step.

E-steps: Proceed as follows:
E-step 1: Given the current estimates of b(t) and current expectations of θ (t)

and t(t), evaluate

Ẑij = E[Zij |(θj , bi, yij , ti)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θj − bi + √

ti
φ((θj − bi)/

√
ti)

1 − �((−θj + bi)/
√

ti)
, if Yij = 1,

θj − bi − √
ti

φ((θj − bi)/
√

ti)

�((−θj + bi)/
√

ti)
, if Yij = 0.

E-step 2: Given the current estimates of b(t) and current expectations of Z(t+1)

and t(t), obtained in E-step 1 and in the former iteration, respectively, eval-
uate

θ̂j = E[�j |(z·j ,b,y·j )] =
∑I

i=1(zijk + bi)

I/ti + 1
.

E-step 3: Given the current estimates of b(t) and current expectations of Z(t+1)

and θ (t), obtained in E-step 1 and E-step 2, respectively, evaluate

T̂i = E[Ti |(zi·, bi, θj ,yi·)] =
∑n

j=1(zij − θj + bi)
2 + 7.581/2

n + 7.581/2 − 2
.

The extension of CADEM to fit other IRT models certainly deserves more in-
vestigation. For instance, in the family of the two- and three- parameter and polyto-
mous models [see Nering and Ostini (2010)] it would be necessary to calculate the
expectation of products of the unobserved variables. In addition, due to the more
complex mathematical structure of polytomous models, it would be more difficult
to find suitable augmented data structures. However, this is far beyond the scope
of this paper.

4 Simulation

In order to compare our approach with the usual ones, we performed a simulation
study. In this effort, we compared the CADEM with marginal maximum likeli-
hood (MML), marginal maximum a posterior (MMAP) and full Gibbs sampling
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Table 1 Description of the estimation methods

Method Item Parameter Latent trait

CADEM ML Maximum Likelihood CADEM
CADEM MAP Maximum a posterior CADEM
FGS Full Gibbs sampling
MML MML –
MMAP (FGS prior) MMAP with CADEM/FGS prior –
MMAP (BILOG prior) MMAP with Bilog-MG prior –
MMAP MAP (FGS prior) MMAP with CADEM/FGS prior MAP
MMAP EAP (FGS prior) MMAP with CADEM/FGS prior EAP
MMAP MAP (BILOG prior) MMAP with Bilog-MG prior MAP
MMAP EAP (BILOG prior) MMAP with Bilog-MG prior EAP

algorithm (FGS). Also, we considered the expectation a posteriori (EAP) and max-
imum a posterior estimates (MAP) to the latent traits, using the MMAP estimates
of the difficulty parameters. Also, for MMAP estimation we considered differ-
ent prior distributions. One of them is the same prior used in the CADEM and
FGS, that is, N(0,9). Another is the default prior used by the commercial pack-
age Bilog-MG (see http://www.ssicentral.com/irt/index.html). Table 1 describes
the estimation methods used.

We considered a situation where n = 500 examinees answer a test of I = 30
items. The latent traits of the examinees were simulated from a N(0,1) distribu-
tion. The item difficulty parameters were chosen ranging from (−3,3), that is, we
intend to cover the whole latent trait scale, concerning the simulated values. We
generated a set of R = 50 replicas, that is, responses of the examinees to the items.
In each one of the replicas we used each one of the estimation methods described
in Table 1.

To compare the performance of the estimation methods, we considered some
appropriate statistics. Let ϑl be an element of (θj , bi), where l is a convenient
index (i or j) and ϑ̂lr its respective estimate obtained in the replica r, r = 1, . . . ,R.
Define also ϑ̂ l = 1

R

∑R
r=1 ϑ̂lr . The aforementioned statistics are as follows:

• Corr: correlation between ϑ̂ l and ϑl .
• MeanSE: mean of the standard errors over the parameters.
• Bias: bias of the estimates: (ϑ̂ l − ϑl).
• Var: variance of the estimates: 1

R

∑R
r=1(ϑ̂lr − ϑ̂ l)

2.

• RMSE: square root of the mean square error (MSE):
√

1
R

∑R
r=1(ϑ̂lr − ϑl)2.

• AVRB: absolute value of the relative bias: |ϑ̂ l−ϑl ||ϑl | .

Tables 2 and 3 present the statistics concerning the latent traits and difficulty
parameter estimates, respectively. The results are quite similar, indicating that the

http://www.ssicentral.com/irt/index.html
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Table 2 Results for latent trait estimation

Method Var MeanSE Bias RMSE

CADEM ML 0.076 0.229 0.037 0.298
CADEM MAP 0.076 0.229 0.037 0.298
FGS 0.081 0.298 0.034 0.299
MML MAP 0.079 0.296 0.036 0.299
MML EAP 0.081 0.298 0.033 0.300
MMAP MAP (FGS prior) 0.078 0.294 0.036 0.299
MMAP EAP (FGS prior) 0.080 0.297 0.033 0.299
MMAP MAP (BILOG prior) 0.078 0.294 0.036 0.299
MMAP EAP (BILOG prior) 0.081 0.297 0.033 0.299

Table 3 Results for difficulty parameter estimation

Method Var MeanSE Bias RMSE

CADEM ML 0.007 0.079 0.033 0.088
CADEM MAP 0.006 0.079 0.032 0.088
FGS 0.007 0.082 0.032 0.088
MML 0.007 0.081 0.030 0.088
MMAP (FGS prior) 0.007 0.080 0.029 0.087
MMAP (BILOG prior) 0.007 0.080 0.029 0.087

Figure 1 AVRB for the latent traits estimates.

estimation methods recovered the parameters with the same accuracy. Figures 1
and 2 suggest the same conclusions. Table 4 indicates that MVM and MMAP (in-
cluding EAP/MAP) methods were the fastest, followed by CADEM, even though
the difference is quite small. As expected, the FGS required more time than the



CADEM 259

Figure 2 AVRB for the difficulty parameter estimates.

Table 4 Spent time (in seconds), achieved precision for the item estimation (API), number of
required iterations for the item estimation (NRII), achieved precision for the latent trait estimate
(APLT)

Method ST PAI NRII APLT

CADEM ML (CML) 2.818 0.000 93.920 –
CADEM MAP (CMAP) 2.833 0.000 93.840 –
FGS 292.816 0.000 –
MML MAP 0.368 0.000 80.300 0.000
MML EAP 0.327 0.000 80.300 –
MMAP MAP with FGS prior 0.363 0.000 79.940 0.000
MMAP EAP with FGS prior 0.332 0.000 79.940 –
MMAP MAP with BILOG prior 0.363 0.000 79.920 0.000
MMAP EAP with BILOG prior 0.332 0.000 79.920 –

others to estimate the parameters. In conclusion, all methods behaved in a simi-
lar way. However, CADEM is faster than the MCMC algorithms and, as shown
before, more flexible to estimate IRT models than the marginal likelihood based
methods. Therefore, we claim that CADEM is an interesting alternative to fit IRT
models.

5 Comments and conclusions

A new estimation method, named CADEM, was proposed for fitting one parame-
ter (Rasch) models. We showed that it recovers the parameters equally as well as
the usual methods. The CADEM structure can be extended to handle more com-
plex IRT models, such as multiple groups, two- and three- parameters and multi-
dimensional models, since an augmented data framework, concerning the IRF, is
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available. CADEM has the advantage of being as fast as MML and MMAP meth-
ods and as flexible as MCMC based methods. In addition, CADEM considers the
uncertainty of latent trait estimates in the difficulty parameter estimation. As was
shown, CADEM can be easily extended to incorporate prior information. Non-
normal distributions for the latent traits can be also considered since they admit
a stochastic representation in terms of the symmetric normal distribution. More
investigation is necessary to improve the standard error calculations as well as to
extend CADEM to estimate more complex IRT models.

Appendix

To calculate the standard errors associated with the difficulty parameter estimates
SE(bi), first, from (2.4), notice that

∂lc

∂bi

=
n∑

j=1

(zij − θj − bi), (A.1)

−∂2lc

∂b2
i

= ni. (A.2)

For the sake of simplicity, we use (A.1) and (A.2) in (2.9), by calculating the
expectations and variance through the distribution Zij |θj , yij . Therefore, it follows
that

SE(bi) =
(
ni −

n∑
j=1

V ar(Zij |θ̂j , b̂i , yij )

)−1

.

For the standard errors associated with the latent traits, we use formula (2.10),
replacing the expectation and variance EZ and V arZ by EZ|θ̂ and V arZ|θ̂ , respec-
tively. That is,

V ar(�j |y) = (1 + Ij )
−2

(
I∑

i=1

(V ar(Zij |θ̂j , b̂i , yij ))

)
+ (1 + Ij )

−1.

For the Bayesian calculations, it is only necessary to consider the derivative of
the log of (2.11), which is not presented here.
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